1 | !> @file microphysics.f90 |
---|
2 | !--------------------------------------------------------------------------------! |
---|
3 | ! This file is part of PALM. |
---|
4 | ! |
---|
5 | ! PALM is free software: you can redistribute it and/or modify it under the terms |
---|
6 | ! of the GNU General Public License as published by the Free Software Foundation, |
---|
7 | ! either version 3 of the License, or (at your option) any later version. |
---|
8 | ! |
---|
9 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
10 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
11 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
12 | ! |
---|
13 | ! You should have received a copy of the GNU General Public License along with |
---|
14 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
15 | ! |
---|
16 | ! Copyright 1997-2014 Leibniz Universitaet Hannover |
---|
17 | !--------------------------------------------------------------------------------! |
---|
18 | ! |
---|
19 | ! Current revisions: |
---|
20 | ! ------------------ |
---|
21 | ! |
---|
22 | ! |
---|
23 | ! Former revisions: |
---|
24 | ! ----------------- |
---|
25 | ! $Id: microphysics.f90 1683 2015-10-07 23:57:51Z knoop $ |
---|
26 | ! |
---|
27 | ! 1682 2015-10-07 23:56:08Z knoop |
---|
28 | ! Code annotations made doxygen readable |
---|
29 | ! |
---|
30 | ! 1646 2015-09-02 16:00:10Z hoffmann |
---|
31 | ! Bugfix: Wrong computation of d_mean. |
---|
32 | ! |
---|
33 | ! 1361 2014-04-16 15:17:48Z hoffmann |
---|
34 | ! Bugfix in sedimentation_rain: Index corrected. |
---|
35 | ! Vectorized version of adjust_cloud added. |
---|
36 | ! Little reformatting of the code. |
---|
37 | ! |
---|
38 | ! 1353 2014-04-08 15:21:23Z heinze |
---|
39 | ! REAL constants provided with KIND-attribute |
---|
40 | ! |
---|
41 | ! 1346 2014-03-27 13:18:20Z heinze |
---|
42 | ! Bugfix: REAL constants provided with KIND-attribute especially in call of |
---|
43 | ! intrinsic function like MAX, MIN, SIGN |
---|
44 | ! |
---|
45 | ! 1334 2014-03-25 12:21:40Z heinze |
---|
46 | ! Bugfix: REAL constants provided with KIND-attribute |
---|
47 | ! |
---|
48 | ! 1322 2014-03-20 16:38:49Z raasch |
---|
49 | ! REAL constants defined as wp-kind |
---|
50 | ! |
---|
51 | ! 1320 2014-03-20 08:40:49Z raasch |
---|
52 | ! ONLY-attribute added to USE-statements, |
---|
53 | ! kind-parameters added to all INTEGER and REAL declaration statements, |
---|
54 | ! kinds are defined in new module kinds, |
---|
55 | ! comment fields (!:) to be used for variable explanations added to |
---|
56 | ! all variable declaration statements |
---|
57 | ! |
---|
58 | ! 1241 2013-10-30 11:36:58Z heinze |
---|
59 | ! hyp and rho have to be calculated at each time step if data from external |
---|
60 | ! file LSF_DATA are used |
---|
61 | ! |
---|
62 | ! 1115 2013-03-26 18:16:16Z hoffmann |
---|
63 | ! microphyical tendencies are calculated in microphysics_control in an optimized |
---|
64 | ! way; unrealistic values are prevented; bugfix in evaporation; some reformatting |
---|
65 | ! |
---|
66 | ! 1106 2013-03-04 05:31:38Z raasch |
---|
67 | ! small changes in code formatting |
---|
68 | ! |
---|
69 | ! 1092 2013-02-02 11:24:22Z raasch |
---|
70 | ! unused variables removed |
---|
71 | ! file put under GPL |
---|
72 | ! |
---|
73 | ! 1065 2012-11-22 17:42:36Z hoffmann |
---|
74 | ! Sedimentation process implemented according to Stevens and Seifert (2008). |
---|
75 | ! Turbulence effects on autoconversion and accretion added (Seifert, Nuijens |
---|
76 | ! and Stevens, 2010). |
---|
77 | ! |
---|
78 | ! 1053 2012-11-13 17:11:03Z hoffmann |
---|
79 | ! initial revision |
---|
80 | ! |
---|
81 | ! Description: |
---|
82 | ! ------------ |
---|
83 | !> Calculate cloud microphysics according to the two moment bulk |
---|
84 | !> scheme by Seifert and Beheng (2006). |
---|
85 | !------------------------------------------------------------------------------! |
---|
86 | MODULE microphysics_mod |
---|
87 | |
---|
88 | |
---|
89 | PRIVATE |
---|
90 | PUBLIC microphysics_control |
---|
91 | |
---|
92 | INTERFACE microphysics_control |
---|
93 | MODULE PROCEDURE microphysics_control |
---|
94 | MODULE PROCEDURE microphysics_control_ij |
---|
95 | END INTERFACE microphysics_control |
---|
96 | |
---|
97 | INTERFACE adjust_cloud |
---|
98 | MODULE PROCEDURE adjust_cloud |
---|
99 | MODULE PROCEDURE adjust_cloud_ij |
---|
100 | END INTERFACE adjust_cloud |
---|
101 | |
---|
102 | INTERFACE autoconversion |
---|
103 | MODULE PROCEDURE autoconversion |
---|
104 | MODULE PROCEDURE autoconversion_ij |
---|
105 | END INTERFACE autoconversion |
---|
106 | |
---|
107 | INTERFACE accretion |
---|
108 | MODULE PROCEDURE accretion |
---|
109 | MODULE PROCEDURE accretion_ij |
---|
110 | END INTERFACE accretion |
---|
111 | |
---|
112 | INTERFACE selfcollection_breakup |
---|
113 | MODULE PROCEDURE selfcollection_breakup |
---|
114 | MODULE PROCEDURE selfcollection_breakup_ij |
---|
115 | END INTERFACE selfcollection_breakup |
---|
116 | |
---|
117 | INTERFACE evaporation_rain |
---|
118 | MODULE PROCEDURE evaporation_rain |
---|
119 | MODULE PROCEDURE evaporation_rain_ij |
---|
120 | END INTERFACE evaporation_rain |
---|
121 | |
---|
122 | INTERFACE sedimentation_cloud |
---|
123 | MODULE PROCEDURE sedimentation_cloud |
---|
124 | MODULE PROCEDURE sedimentation_cloud_ij |
---|
125 | END INTERFACE sedimentation_cloud |
---|
126 | |
---|
127 | INTERFACE sedimentation_rain |
---|
128 | MODULE PROCEDURE sedimentation_rain |
---|
129 | MODULE PROCEDURE sedimentation_rain_ij |
---|
130 | END INTERFACE sedimentation_rain |
---|
131 | |
---|
132 | CONTAINS |
---|
133 | |
---|
134 | |
---|
135 | !------------------------------------------------------------------------------! |
---|
136 | ! Description: |
---|
137 | ! ------------ |
---|
138 | !> Call for all grid points |
---|
139 | !------------------------------------------------------------------------------! |
---|
140 | SUBROUTINE microphysics_control |
---|
141 | |
---|
142 | USE arrays_3d, & |
---|
143 | ONLY: hyp, nr, pt, pt_init, q, qc, qr, zu |
---|
144 | |
---|
145 | USE cloud_parameters, & |
---|
146 | ONLY: cp, hyrho, nc_const, pt_d_t, r_d, t_d_pt |
---|
147 | |
---|
148 | USE control_parameters, & |
---|
149 | ONLY: call_microphysics_at_all_substeps, drizzle, dt_3d, dt_micro, & |
---|
150 | g, intermediate_timestep_count, & |
---|
151 | large_scale_forcing, lsf_surf, precipitation, pt_surface, & |
---|
152 | rho_surface,surface_pressure |
---|
153 | |
---|
154 | USE indices, & |
---|
155 | ONLY: nzb, nzt |
---|
156 | |
---|
157 | USE kinds |
---|
158 | |
---|
159 | USE statistics, & |
---|
160 | ONLY: weight_pres |
---|
161 | |
---|
162 | IMPLICIT NONE |
---|
163 | |
---|
164 | INTEGER(iwp) :: i !< |
---|
165 | INTEGER(iwp) :: j !< |
---|
166 | INTEGER(iwp) :: k !< |
---|
167 | |
---|
168 | REAL(wp) :: t_surface !< |
---|
169 | |
---|
170 | IF ( large_scale_forcing .AND. lsf_surf ) THEN |
---|
171 | ! |
---|
172 | !-- Calculate: |
---|
173 | !-- pt / t : ratio of potential and actual temperature (pt_d_t) |
---|
174 | !-- t / pt : ratio of actual and potential temperature (t_d_pt) |
---|
175 | !-- p_0(z) : vertical profile of the hydrostatic pressure (hyp) |
---|
176 | t_surface = pt_surface * ( surface_pressure / 1000.0_wp )**0.286_wp |
---|
177 | DO k = nzb, nzt+1 |
---|
178 | hyp(k) = surface_pressure * 100.0_wp * & |
---|
179 | ( ( t_surface - g / cp * zu(k) ) / & |
---|
180 | t_surface )**(1.0_wp / 0.286_wp) |
---|
181 | pt_d_t(k) = ( 100000.0_wp / hyp(k) )**0.286_wp |
---|
182 | t_d_pt(k) = 1.0_wp / pt_d_t(k) |
---|
183 | hyrho(k) = hyp(k) / ( r_d * t_d_pt(k) * pt_init(k) ) |
---|
184 | ENDDO |
---|
185 | ! |
---|
186 | !-- Compute reference density |
---|
187 | rho_surface = surface_pressure * 100.0_wp / ( r_d * t_surface ) |
---|
188 | ENDIF |
---|
189 | |
---|
190 | ! |
---|
191 | !-- Compute length of time step |
---|
192 | IF ( call_microphysics_at_all_substeps ) THEN |
---|
193 | dt_micro = dt_3d * weight_pres(intermediate_timestep_count) |
---|
194 | ELSE |
---|
195 | dt_micro = dt_3d |
---|
196 | ENDIF |
---|
197 | |
---|
198 | ! |
---|
199 | !-- Compute cloud physics |
---|
200 | IF ( precipitation ) THEN |
---|
201 | CALL adjust_cloud |
---|
202 | CALL autoconversion |
---|
203 | CALL accretion |
---|
204 | CALL selfcollection_breakup |
---|
205 | CALL evaporation_rain |
---|
206 | CALL sedimentation_rain |
---|
207 | ENDIF |
---|
208 | |
---|
209 | IF ( drizzle ) CALL sedimentation_cloud |
---|
210 | |
---|
211 | END SUBROUTINE microphysics_control |
---|
212 | |
---|
213 | !------------------------------------------------------------------------------! |
---|
214 | ! Description: |
---|
215 | ! ------------ |
---|
216 | !> Adjust number of raindrops to avoid nonlinear effects in sedimentation and |
---|
217 | !> evaporation of rain drops due to too small or too big weights |
---|
218 | !> of rain drops (Stevens and Seifert, 2008). |
---|
219 | !------------------------------------------------------------------------------! |
---|
220 | SUBROUTINE adjust_cloud |
---|
221 | |
---|
222 | USE arrays_3d, & |
---|
223 | ONLY: qr, nr |
---|
224 | |
---|
225 | USE cloud_parameters, & |
---|
226 | ONLY: eps_sb, xrmin, xrmax, hyrho, k_cc, x0 |
---|
227 | |
---|
228 | USE cpulog, & |
---|
229 | ONLY: cpu_log, log_point_s |
---|
230 | |
---|
231 | USE indices, & |
---|
232 | ONLY: nxl, nxr, nys, nyn, nzb, nzb_s_inner, nzt |
---|
233 | |
---|
234 | USE kinds |
---|
235 | |
---|
236 | IMPLICIT NONE |
---|
237 | |
---|
238 | INTEGER(iwp) :: i !< |
---|
239 | INTEGER(iwp) :: j !< |
---|
240 | INTEGER(iwp) :: k !< |
---|
241 | |
---|
242 | CALL cpu_log( log_point_s(54), 'adjust_cloud', 'start' ) |
---|
243 | |
---|
244 | DO i = nxl, nxr |
---|
245 | DO j = nys, nyn |
---|
246 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
247 | IF ( qr(k,j,i) <= eps_sb ) THEN |
---|
248 | qr(k,j,i) = 0.0_wp |
---|
249 | nr(k,j,i) = 0.0_wp |
---|
250 | ELSE |
---|
251 | IF ( nr(k,j,i) * xrmin > qr(k,j,i) * hyrho(k) ) THEN |
---|
252 | nr(k,j,i) = qr(k,j,i) * hyrho(k) / xrmin |
---|
253 | ELSEIF ( nr(k,j,i) * xrmax < qr(k,j,i) * hyrho(k) ) THEN |
---|
254 | nr(k,j,i) = qr(k,j,i) * hyrho(k) / xrmax |
---|
255 | ENDIF |
---|
256 | ENDIF |
---|
257 | ENDDO |
---|
258 | ENDDO |
---|
259 | ENDDO |
---|
260 | |
---|
261 | CALL cpu_log( log_point_s(54), 'adjust_cloud', 'stop' ) |
---|
262 | |
---|
263 | END SUBROUTINE adjust_cloud |
---|
264 | |
---|
265 | |
---|
266 | !------------------------------------------------------------------------------! |
---|
267 | ! Description: |
---|
268 | ! ------------ |
---|
269 | !> Autoconversion rate (Seifert and Beheng, 2006). |
---|
270 | !------------------------------------------------------------------------------! |
---|
271 | SUBROUTINE autoconversion |
---|
272 | |
---|
273 | USE arrays_3d, & |
---|
274 | ONLY: diss, dzu, nr, qc, qr |
---|
275 | |
---|
276 | USE cloud_parameters, & |
---|
277 | ONLY: a_1, a_2, a_3, b_1, b_2, b_3, beta_cc, c_1, c_2, c_3, & |
---|
278 | c_const, dpirho_l, eps_sb, hyrho, k_cc, kin_vis_air, & |
---|
279 | nc_const, x0 |
---|
280 | |
---|
281 | USE control_parameters, & |
---|
282 | ONLY: dt_micro, rho_surface, turbulence |
---|
283 | |
---|
284 | USE cpulog, & |
---|
285 | ONLY: cpu_log, log_point_s |
---|
286 | |
---|
287 | USE grid_variables, & |
---|
288 | ONLY: dx, dy |
---|
289 | |
---|
290 | USE indices, & |
---|
291 | ONLY: nxl, nxr, nys, nyn, nzb, nzb_s_inner, nzt |
---|
292 | |
---|
293 | USE kinds |
---|
294 | |
---|
295 | IMPLICIT NONE |
---|
296 | |
---|
297 | INTEGER(iwp) :: i !< |
---|
298 | INTEGER(iwp) :: j !< |
---|
299 | INTEGER(iwp) :: k !< |
---|
300 | |
---|
301 | REAL(wp) :: alpha_cc !< |
---|
302 | REAL(wp) :: autocon !< |
---|
303 | REAL(wp) :: dissipation !< |
---|
304 | REAL(wp) :: k_au !< |
---|
305 | REAL(wp) :: l_mix !< |
---|
306 | REAL(wp) :: nu_c !< |
---|
307 | REAL(wp) :: phi_au !< |
---|
308 | REAL(wp) :: r_cc !< |
---|
309 | REAL(wp) :: rc !< |
---|
310 | REAL(wp) :: re_lambda !< |
---|
311 | REAL(wp) :: selfcoll !< |
---|
312 | REAL(wp) :: sigma_cc !< |
---|
313 | REAL(wp) :: tau_cloud !< |
---|
314 | REAL(wp) :: xc !< |
---|
315 | |
---|
316 | CALL cpu_log( log_point_s(55), 'autoconversion', 'start' ) |
---|
317 | |
---|
318 | DO i = nxl, nxr |
---|
319 | DO j = nys, nyn |
---|
320 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
321 | |
---|
322 | IF ( qc(k,j,i) > eps_sb ) THEN |
---|
323 | |
---|
324 | k_au = k_cc / ( 20.0_wp * x0 ) |
---|
325 | ! |
---|
326 | !-- Intern time scale of coagulation (Seifert and Beheng, 2006): |
---|
327 | !-- (1.0_wp - qc(k,j,i) / ( qc(k,j,i) + qr(k,j,i) )) |
---|
328 | tau_cloud = 1.0_wp - qc(k,j,i) / ( qr(k,j,i) + qc(k,j,i) ) |
---|
329 | ! |
---|
330 | !-- Universal function for autoconversion process |
---|
331 | !-- (Seifert and Beheng, 2006): |
---|
332 | phi_au = 600.0_wp * tau_cloud**0.68_wp * & |
---|
333 | ( 1.0_wp - tau_cloud**0.68_wp )**3 |
---|
334 | ! |
---|
335 | !-- Shape parameter of gamma distribution (Geoffroy et al., 2010): |
---|
336 | !-- (Use constant nu_c = 1.0_wp instead?) |
---|
337 | nu_c = 1.0_wp !MAX( 0.0_wp, 1580.0_wp * hyrho(k) * qc(k,j,i) - 0.28_wp ) |
---|
338 | ! |
---|
339 | !-- Mean weight of cloud droplets: |
---|
340 | xc = hyrho(k) * qc(k,j,i) / nc_const |
---|
341 | ! |
---|
342 | !-- Parameterized turbulence effects on autoconversion (Seifert, |
---|
343 | !-- Nuijens and Stevens, 2010) |
---|
344 | IF ( turbulence ) THEN |
---|
345 | ! |
---|
346 | !-- Weight averaged radius of cloud droplets: |
---|
347 | rc = 0.5_wp * ( xc * dpirho_l )**( 1.0_wp / 3.0_wp ) |
---|
348 | |
---|
349 | alpha_cc = ( a_1 + a_2 * nu_c ) / ( 1.0_wp + a_3 * nu_c ) |
---|
350 | r_cc = ( b_1 + b_2 * nu_c ) / ( 1.0_wp + b_3 * nu_c ) |
---|
351 | sigma_cc = ( c_1 + c_2 * nu_c ) / ( 1.0_wp + c_3 * nu_c ) |
---|
352 | ! |
---|
353 | !-- Mixing length (neglecting distance to ground and |
---|
354 | !-- stratification) |
---|
355 | l_mix = ( dx * dy * dzu(k) )**( 1.0_wp / 3.0_wp ) |
---|
356 | ! |
---|
357 | !-- Limit dissipation rate according to Seifert, Nuijens and |
---|
358 | !-- Stevens (2010) |
---|
359 | dissipation = MIN( 0.06_wp, diss(k,j,i) ) |
---|
360 | ! |
---|
361 | !-- Compute Taylor-microscale Reynolds number: |
---|
362 | re_lambda = 6.0_wp / 11.0_wp * & |
---|
363 | ( l_mix / c_const )**( 2.0_wp / 3.0_wp ) * & |
---|
364 | SQRT( 15.0_wp / kin_vis_air ) * & |
---|
365 | dissipation**( 1.0_wp / 6.0_wp ) |
---|
366 | ! |
---|
367 | !-- The factor of 1.0E4 is needed to convert the dissipation |
---|
368 | !-- rate from m2 s-3 to cm2 s-3. |
---|
369 | k_au = k_au * ( 1.0_wp + & |
---|
370 | dissipation * 1.0E4_wp * & |
---|
371 | ( re_lambda * 1.0E-3_wp )**0.25_wp * & |
---|
372 | ( alpha_cc * EXP( -1.0_wp * ( ( rc - & |
---|
373 | r_cc ) / & |
---|
374 | sigma_cc )**2 & |
---|
375 | ) + beta_cc & |
---|
376 | ) & |
---|
377 | ) |
---|
378 | ENDIF |
---|
379 | ! |
---|
380 | !-- Autoconversion rate (Seifert and Beheng, 2006): |
---|
381 | autocon = k_au * ( nu_c + 2.0_wp ) * ( nu_c + 4.0_wp ) / & |
---|
382 | ( nu_c + 1.0_wp )**2 * qc(k,j,i)**2 * xc**2 * & |
---|
383 | ( 1.0_wp + phi_au / ( 1.0_wp - tau_cloud )**2 ) * & |
---|
384 | rho_surface |
---|
385 | autocon = MIN( autocon, qc(k,j,i) / dt_micro ) |
---|
386 | |
---|
387 | qr(k,j,i) = qr(k,j,i) + autocon * dt_micro |
---|
388 | qc(k,j,i) = qc(k,j,i) - autocon * dt_micro |
---|
389 | nr(k,j,i) = nr(k,j,i) + autocon / x0 * hyrho(k) * dt_micro |
---|
390 | |
---|
391 | ENDIF |
---|
392 | |
---|
393 | ENDDO |
---|
394 | ENDDO |
---|
395 | ENDDO |
---|
396 | |
---|
397 | CALL cpu_log( log_point_s(55), 'autoconversion', 'stop' ) |
---|
398 | |
---|
399 | END SUBROUTINE autoconversion |
---|
400 | |
---|
401 | |
---|
402 | !------------------------------------------------------------------------------! |
---|
403 | ! Description: |
---|
404 | ! ------------ |
---|
405 | !> Accretion rate (Seifert and Beheng, 2006). |
---|
406 | !------------------------------------------------------------------------------! |
---|
407 | SUBROUTINE accretion |
---|
408 | |
---|
409 | USE arrays_3d, & |
---|
410 | ONLY: diss, qc, qr |
---|
411 | |
---|
412 | USE cloud_parameters, & |
---|
413 | ONLY: eps_sb, hyrho, k_cr0 |
---|
414 | |
---|
415 | USE control_parameters, & |
---|
416 | ONLY: dt_micro, rho_surface, turbulence |
---|
417 | |
---|
418 | USE cpulog, & |
---|
419 | ONLY: cpu_log, log_point_s |
---|
420 | |
---|
421 | USE indices, & |
---|
422 | ONLY: nxl, nxr, nys, nyn, nzb, nzb_s_inner, nzt |
---|
423 | |
---|
424 | USE kinds |
---|
425 | |
---|
426 | IMPLICIT NONE |
---|
427 | |
---|
428 | INTEGER(iwp) :: i !< |
---|
429 | INTEGER(iwp) :: j !< |
---|
430 | INTEGER(iwp) :: k !< |
---|
431 | |
---|
432 | REAL(wp) :: accr !< |
---|
433 | REAL(wp) :: k_cr !< |
---|
434 | REAL(wp) :: phi_ac !< |
---|
435 | REAL(wp) :: tau_cloud !< |
---|
436 | REAL(wp) :: xc !< |
---|
437 | |
---|
438 | CALL cpu_log( log_point_s(56), 'accretion', 'start' ) |
---|
439 | |
---|
440 | DO i = nxl, nxr |
---|
441 | DO j = nys, nyn |
---|
442 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
443 | |
---|
444 | IF ( ( qc(k,j,i) > eps_sb ) .AND. ( qr(k,j,i) > eps_sb ) ) THEN |
---|
445 | ! |
---|
446 | !-- Intern time scale of coagulation (Seifert and Beheng, 2006): |
---|
447 | tau_cloud = 1.0_wp - qc(k,j,i) / ( qc(k,j,i) + qr(k,j,i) ) |
---|
448 | ! |
---|
449 | !-- Universal function for accretion process (Seifert and |
---|
450 | !-- Beheng, 2001): |
---|
451 | phi_ac = ( tau_cloud / ( tau_cloud + 5.0E-5_wp ) )**4 |
---|
452 | ! |
---|
453 | !-- Parameterized turbulence effects on autoconversion (Seifert, |
---|
454 | !-- Nuijens and Stevens, 2010). The factor of 1.0E4 is needed to |
---|
455 | !-- convert the dissipation rate (diss) from m2 s-3 to cm2 s-3. |
---|
456 | IF ( turbulence ) THEN |
---|
457 | k_cr = k_cr0 * ( 1.0_wp + 0.05_wp * & |
---|
458 | MIN( 600.0_wp, & |
---|
459 | diss(k,j,i) * 1.0E4_wp )**0.25_wp & |
---|
460 | ) |
---|
461 | ELSE |
---|
462 | k_cr = k_cr0 |
---|
463 | ENDIF |
---|
464 | ! |
---|
465 | !-- Accretion rate (Seifert and Beheng, 2006): |
---|
466 | accr = k_cr * qc(k,j,i) * qr(k,j,i) * phi_ac * & |
---|
467 | SQRT( rho_surface * hyrho(k) ) |
---|
468 | accr = MIN( accr, qc(k,j,i) / dt_micro ) |
---|
469 | |
---|
470 | qr(k,j,i) = qr(k,j,i) + accr * dt_micro |
---|
471 | qc(k,j,i) = qc(k,j,i) - accr * dt_micro |
---|
472 | |
---|
473 | ENDIF |
---|
474 | |
---|
475 | ENDDO |
---|
476 | ENDDO |
---|
477 | ENDDO |
---|
478 | |
---|
479 | CALL cpu_log( log_point_s(56), 'accretion', 'stop' ) |
---|
480 | |
---|
481 | END SUBROUTINE accretion |
---|
482 | |
---|
483 | |
---|
484 | !------------------------------------------------------------------------------! |
---|
485 | ! Description: |
---|
486 | ! ------------ |
---|
487 | !> Collisional breakup rate (Seifert, 2008). |
---|
488 | !------------------------------------------------------------------------------! |
---|
489 | SUBROUTINE selfcollection_breakup |
---|
490 | |
---|
491 | USE arrays_3d, & |
---|
492 | ONLY: nr, qr |
---|
493 | |
---|
494 | USE cloud_parameters, & |
---|
495 | ONLY: dpirho_l, eps_sb, hyrho, k_br, k_rr |
---|
496 | |
---|
497 | USE control_parameters, & |
---|
498 | ONLY: dt_micro, rho_surface |
---|
499 | |
---|
500 | USE cpulog, & |
---|
501 | ONLY: cpu_log, log_point_s |
---|
502 | |
---|
503 | USE indices, & |
---|
504 | ONLY: nxl, nxr, nys, nyn, nzb, nzb_s_inner, nzt |
---|
505 | |
---|
506 | USE kinds |
---|
507 | |
---|
508 | IMPLICIT NONE |
---|
509 | |
---|
510 | INTEGER(iwp) :: i !< |
---|
511 | INTEGER(iwp) :: j !< |
---|
512 | INTEGER(iwp) :: k !< |
---|
513 | |
---|
514 | REAL(wp) :: breakup !< |
---|
515 | REAL(wp) :: dr !< |
---|
516 | REAL(wp) :: phi_br !< |
---|
517 | REAL(wp) :: selfcoll !< |
---|
518 | |
---|
519 | CALL cpu_log( log_point_s(57), 'selfcollection', 'start' ) |
---|
520 | |
---|
521 | DO i = nxl, nxr |
---|
522 | DO j = nys, nyn |
---|
523 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
524 | IF ( qr(k,j,i) > eps_sb ) THEN |
---|
525 | ! |
---|
526 | !-- Selfcollection rate (Seifert and Beheng, 2001): |
---|
527 | selfcoll = k_rr * nr(k,j,i) * qr(k,j,i) * & |
---|
528 | SQRT( hyrho(k) * rho_surface ) |
---|
529 | ! |
---|
530 | !-- Weight averaged diameter of rain drops: |
---|
531 | dr = ( hyrho(k) * qr(k,j,i) / & |
---|
532 | nr(k,j,i) * dpirho_l )**( 1.0_wp / 3.0_wp ) |
---|
533 | ! |
---|
534 | !-- Collisional breakup rate (Seifert, 2008): |
---|
535 | IF ( dr >= 0.3E-3_wp ) THEN |
---|
536 | phi_br = k_br * ( dr - 1.1E-3_wp ) |
---|
537 | breakup = selfcoll * ( phi_br + 1.0_wp ) |
---|
538 | ELSE |
---|
539 | breakup = 0.0_wp |
---|
540 | ENDIF |
---|
541 | |
---|
542 | selfcoll = MAX( breakup - selfcoll, -nr(k,j,i) / dt_micro ) |
---|
543 | nr(k,j,i) = nr(k,j,i) + selfcoll * dt_micro |
---|
544 | |
---|
545 | ENDIF |
---|
546 | ENDDO |
---|
547 | ENDDO |
---|
548 | ENDDO |
---|
549 | |
---|
550 | CALL cpu_log( log_point_s(57), 'selfcollection', 'stop' ) |
---|
551 | |
---|
552 | END SUBROUTINE selfcollection_breakup |
---|
553 | |
---|
554 | |
---|
555 | !------------------------------------------------------------------------------! |
---|
556 | ! Description: |
---|
557 | ! ------------ |
---|
558 | !> Evaporation of precipitable water. Condensation is neglected for |
---|
559 | !> precipitable water. |
---|
560 | !------------------------------------------------------------------------------! |
---|
561 | SUBROUTINE evaporation_rain |
---|
562 | |
---|
563 | USE arrays_3d, & |
---|
564 | ONLY: hyp, nr, pt, q, qc, qr |
---|
565 | |
---|
566 | USE cloud_parameters, & |
---|
567 | ONLY: a_term, a_vent, b_term, b_vent, c_evap, c_term, diff_coeff_l,& |
---|
568 | dpirho_l, eps_sb, hyrho, kin_vis_air, k_st, l_d_cp, l_d_r, & |
---|
569 | l_v, rho_l, r_v, schmidt_p_1d3, thermal_conductivity_l, & |
---|
570 | t_d_pt, ventilation_effect |
---|
571 | |
---|
572 | USE constants, & |
---|
573 | ONLY: pi |
---|
574 | |
---|
575 | USE control_parameters, & |
---|
576 | ONLY: dt_micro |
---|
577 | |
---|
578 | USE cpulog, & |
---|
579 | ONLY: cpu_log, log_point_s |
---|
580 | |
---|
581 | USE indices, & |
---|
582 | ONLY: nxl, nxr, nys, nyn, nzb, nzb_s_inner, nzt |
---|
583 | |
---|
584 | USE kinds |
---|
585 | |
---|
586 | IMPLICIT NONE |
---|
587 | |
---|
588 | INTEGER(iwp) :: i !< |
---|
589 | INTEGER(iwp) :: j !< |
---|
590 | INTEGER(iwp) :: k !< |
---|
591 | |
---|
592 | REAL(wp) :: alpha !< |
---|
593 | REAL(wp) :: dr !< |
---|
594 | REAL(wp) :: e_s !< |
---|
595 | REAL(wp) :: evap !< |
---|
596 | REAL(wp) :: evap_nr !< |
---|
597 | REAL(wp) :: f_vent !< |
---|
598 | REAL(wp) :: g_evap !< |
---|
599 | REAL(wp) :: lambda_r !< |
---|
600 | REAL(wp) :: mu_r !< |
---|
601 | REAL(wp) :: mu_r_2 !< |
---|
602 | REAL(wp) :: mu_r_5d2 !< |
---|
603 | REAL(wp) :: nr_0 !< |
---|
604 | REAL(wp) :: q_s !< |
---|
605 | REAL(wp) :: sat !< |
---|
606 | REAL(wp) :: t_l !< |
---|
607 | REAL(wp) :: temp !< |
---|
608 | REAL(wp) :: xr !< |
---|
609 | |
---|
610 | CALL cpu_log( log_point_s(58), 'evaporation', 'start' ) |
---|
611 | |
---|
612 | DO i = nxl, nxr |
---|
613 | DO j = nys, nyn |
---|
614 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
615 | IF ( qr(k,j,i) > eps_sb ) THEN |
---|
616 | ! |
---|
617 | !-- Actual liquid water temperature: |
---|
618 | t_l = t_d_pt(k) * pt(k,j,i) |
---|
619 | ! |
---|
620 | !-- Saturation vapor pressure at t_l: |
---|
621 | e_s = 610.78_wp * EXP( 17.269_wp * ( t_l - 273.16_wp ) / & |
---|
622 | ( t_l - 35.86_wp ) & |
---|
623 | ) |
---|
624 | ! |
---|
625 | !-- Computation of saturation humidity: |
---|
626 | q_s = 0.622_wp * e_s / ( hyp(k) - 0.378_wp * e_s ) |
---|
627 | alpha = 0.622_wp * l_d_r * l_d_cp / ( t_l * t_l ) |
---|
628 | q_s = q_s * ( 1.0_wp + alpha * q(k,j,i) ) / & |
---|
629 | ( 1.0_wp + alpha * q_s ) |
---|
630 | ! |
---|
631 | !-- Supersaturation: |
---|
632 | sat = ( q(k,j,i) - qr(k,j,i) - qc(k,j,i) ) / q_s - 1.0_wp |
---|
633 | ! |
---|
634 | !-- Evaporation needs only to be calculated in subsaturated regions |
---|
635 | IF ( sat < 0.0_wp ) THEN |
---|
636 | ! |
---|
637 | !-- Actual temperature: |
---|
638 | temp = t_l + l_d_cp * ( qc(k,j,i) + qr(k,j,i) ) |
---|
639 | |
---|
640 | g_evap = 1.0_wp / ( ( l_v / ( r_v * temp ) - 1.0_wp ) * & |
---|
641 | l_v / ( thermal_conductivity_l * temp ) & |
---|
642 | + r_v * temp / ( diff_coeff_l * e_s ) & |
---|
643 | ) |
---|
644 | ! |
---|
645 | !-- Mean weight of rain drops |
---|
646 | xr = hyrho(k) * qr(k,j,i) / nr(k,j,i) |
---|
647 | ! |
---|
648 | !-- Weight averaged diameter of rain drops: |
---|
649 | dr = ( xr * dpirho_l )**( 1.0_wp / 3.0_wp ) |
---|
650 | ! |
---|
651 | !-- Compute ventilation factor and intercept parameter |
---|
652 | !-- (Seifert and Beheng, 2006; Seifert, 2008): |
---|
653 | IF ( ventilation_effect ) THEN |
---|
654 | ! |
---|
655 | !-- Shape parameter of gamma distribution (Milbrandt and Yau, |
---|
656 | !-- 2005; Stevens and Seifert, 2008): |
---|
657 | mu_r = 10.0_wp * ( 1.0_wp + TANH( 1.2E3_wp * & |
---|
658 | ( dr - 1.4E-3_wp ) ) ) |
---|
659 | ! |
---|
660 | !-- Slope parameter of gamma distribution (Seifert, 2008): |
---|
661 | lambda_r = ( ( mu_r + 3.0_wp ) * ( mu_r + 2.0_wp ) * & |
---|
662 | ( mu_r + 1.0_wp ) & |
---|
663 | )**( 1.0_wp / 3.0_wp ) / dr |
---|
664 | |
---|
665 | mu_r_2 = mu_r + 2.0_wp |
---|
666 | mu_r_5d2 = mu_r + 2.5_wp |
---|
667 | |
---|
668 | f_vent = a_vent * gamm( mu_r_2 ) * & |
---|
669 | lambda_r**( -mu_r_2 ) + b_vent * & |
---|
670 | schmidt_p_1d3 * SQRT( a_term / kin_vis_air ) *& |
---|
671 | gamm( mu_r_5d2 ) * lambda_r**( -mu_r_5d2 ) * & |
---|
672 | ( 1.0_wp - & |
---|
673 | 0.5_wp * ( b_term / a_term ) * & |
---|
674 | ( lambda_r / ( c_term + lambda_r ) & |
---|
675 | )**mu_r_5d2 - & |
---|
676 | 0.125_wp * ( b_term / a_term )**2 * & |
---|
677 | ( lambda_r / ( 2.0_wp * c_term + lambda_r ) & |
---|
678 | )**mu_r_5d2 - & |
---|
679 | 0.0625_wp * ( b_term / a_term )**3 * & |
---|
680 | ( lambda_r / ( 3.0_wp * c_term + lambda_r ) & |
---|
681 | )**mu_r_5d2 - & |
---|
682 | 0.0390625_wp * ( b_term / a_term )**4 * & |
---|
683 | ( lambda_r / ( 4.0_wp * c_term + lambda_r ) & |
---|
684 | )**mu_r_5d2 & |
---|
685 | ) |
---|
686 | |
---|
687 | nr_0 = nr(k,j,i) * lambda_r**( mu_r + 1.0_wp ) / & |
---|
688 | gamm( mu_r + 1.0_wp ) |
---|
689 | ELSE |
---|
690 | f_vent = 1.0_wp |
---|
691 | nr_0 = nr(k,j,i) * dr |
---|
692 | ENDIF |
---|
693 | ! |
---|
694 | !-- Evaporation rate of rain water content (Seifert and |
---|
695 | !-- Beheng, 2006): |
---|
696 | evap = 2.0_wp * pi * nr_0 * g_evap * f_vent * sat / & |
---|
697 | hyrho(k) |
---|
698 | evap = MAX( evap, -qr(k,j,i) / dt_micro ) |
---|
699 | evap_nr = MAX( c_evap * evap / xr * hyrho(k), & |
---|
700 | -nr(k,j,i) / dt_micro ) |
---|
701 | |
---|
702 | qr(k,j,i) = qr(k,j,i) + evap * dt_micro |
---|
703 | nr(k,j,i) = nr(k,j,i) + evap_nr * dt_micro |
---|
704 | |
---|
705 | ENDIF |
---|
706 | ENDIF |
---|
707 | |
---|
708 | ENDDO |
---|
709 | ENDDO |
---|
710 | ENDDO |
---|
711 | |
---|
712 | CALL cpu_log( log_point_s(58), 'evaporation', 'stop' ) |
---|
713 | |
---|
714 | END SUBROUTINE evaporation_rain |
---|
715 | |
---|
716 | |
---|
717 | !------------------------------------------------------------------------------! |
---|
718 | ! Description: |
---|
719 | ! ------------ |
---|
720 | !> Sedimentation of cloud droplets (Ackermann et al., 2009, MWR). |
---|
721 | !------------------------------------------------------------------------------! |
---|
722 | SUBROUTINE sedimentation_cloud |
---|
723 | |
---|
724 | USE arrays_3d, & |
---|
725 | ONLY: ddzu, dzu, pt, q, qc |
---|
726 | |
---|
727 | USE cloud_parameters, & |
---|
728 | ONLY: eps_sb, hyrho, l_d_cp, nc_const, pt_d_t, sed_qc_const |
---|
729 | |
---|
730 | USE constants, & |
---|
731 | ONLY: pi |
---|
732 | |
---|
733 | USE control_parameters, & |
---|
734 | ONLY: dt_do2d_xy, dt_micro, intermediate_timestep_count |
---|
735 | |
---|
736 | USE cpulog, & |
---|
737 | ONLY: cpu_log, log_point_s |
---|
738 | |
---|
739 | USE indices, & |
---|
740 | ONLY: nxl, nxr, nys, nyn, nzb, nzb_s_inner, nzt |
---|
741 | |
---|
742 | USE kinds |
---|
743 | |
---|
744 | IMPLICIT NONE |
---|
745 | |
---|
746 | INTEGER(iwp) :: i !< |
---|
747 | INTEGER(iwp) :: j !< |
---|
748 | INTEGER(iwp) :: k !< |
---|
749 | |
---|
750 | REAL(wp), DIMENSION(nzb:nzt+1) :: sed_qc !< |
---|
751 | |
---|
752 | CALL cpu_log( log_point_s(59), 'sed_cloud', 'start' ) |
---|
753 | |
---|
754 | sed_qc(nzt+1) = 0.0_wp |
---|
755 | |
---|
756 | DO i = nxl, nxr |
---|
757 | DO j = nys, nyn |
---|
758 | DO k = nzt, nzb_s_inner(j,i)+1, -1 |
---|
759 | |
---|
760 | IF ( qc(k,j,i) > eps_sb ) THEN |
---|
761 | sed_qc(k) = sed_qc_const * nc_const**( -2.0_wp / 3.0_wp ) * & |
---|
762 | ( qc(k,j,i) * hyrho(k) )**( 5.0_wp / 3.0_wp ) |
---|
763 | ELSE |
---|
764 | sed_qc(k) = 0.0_wp |
---|
765 | ENDIF |
---|
766 | |
---|
767 | sed_qc(k) = MIN( sed_qc(k), hyrho(k) * dzu(k+1) * q(k,j,i) / & |
---|
768 | dt_micro + sed_qc(k+1) & |
---|
769 | ) |
---|
770 | |
---|
771 | q(k,j,i) = q(k,j,i) + ( sed_qc(k+1) - sed_qc(k) ) * & |
---|
772 | ddzu(k+1) / hyrho(k) * dt_micro |
---|
773 | qc(k,j,i) = qc(k,j,i) + ( sed_qc(k+1) - sed_qc(k) ) * & |
---|
774 | ddzu(k+1) / hyrho(k) * dt_micro |
---|
775 | pt(k,j,i) = pt(k,j,i) - ( sed_qc(k+1) - sed_qc(k) ) * & |
---|
776 | ddzu(k+1) / hyrho(k) * l_d_cp * & |
---|
777 | pt_d_t(k) * dt_micro |
---|
778 | |
---|
779 | ENDDO |
---|
780 | ENDDO |
---|
781 | ENDDO |
---|
782 | |
---|
783 | CALL cpu_log( log_point_s(59), 'sed_cloud', 'stop' ) |
---|
784 | |
---|
785 | END SUBROUTINE sedimentation_cloud |
---|
786 | |
---|
787 | |
---|
788 | !------------------------------------------------------------------------------! |
---|
789 | ! Description: |
---|
790 | ! ------------ |
---|
791 | !> Computation of sedimentation flux. Implementation according to Stevens |
---|
792 | !> and Seifert (2008). Code is based on UCLA-LES. |
---|
793 | !------------------------------------------------------------------------------! |
---|
794 | SUBROUTINE sedimentation_rain |
---|
795 | |
---|
796 | USE arrays_3d, & |
---|
797 | ONLY: ddzu, dzu, nr, pt, q, qr |
---|
798 | |
---|
799 | USE cloud_parameters, & |
---|
800 | ONLY: a_term, b_term, c_term, cof, dpirho_l, eps_sb, hyrho, & |
---|
801 | limiter_sedimentation, l_d_cp, precipitation_amount, prr, & |
---|
802 | pt_d_t, stp |
---|
803 | |
---|
804 | USE control_parameters, & |
---|
805 | ONLY: call_microphysics_at_all_substeps, dt_do2d_xy, dt_micro, & |
---|
806 | dt_3d, intermediate_timestep_count, & |
---|
807 | intermediate_timestep_count_max, & |
---|
808 | precipitation_amount_interval, time_do2d_xy |
---|
809 | |
---|
810 | USE cpulog, & |
---|
811 | ONLY: cpu_log, log_point_s |
---|
812 | |
---|
813 | USE indices, & |
---|
814 | ONLY: nxl, nxr, nys, nyn, nzb, nzb_s_inner, nzt |
---|
815 | |
---|
816 | USE kinds |
---|
817 | |
---|
818 | USE statistics, & |
---|
819 | ONLY: weight_substep |
---|
820 | |
---|
821 | IMPLICIT NONE |
---|
822 | |
---|
823 | INTEGER(iwp) :: i !< |
---|
824 | INTEGER(iwp) :: j !< |
---|
825 | INTEGER(iwp) :: k !< |
---|
826 | INTEGER(iwp) :: k_run !< |
---|
827 | |
---|
828 | REAL(wp) :: c_run !< |
---|
829 | REAL(wp) :: d_max !< |
---|
830 | REAL(wp) :: d_mean !< |
---|
831 | REAL(wp) :: d_min !< |
---|
832 | REAL(wp) :: dr !< |
---|
833 | REAL(wp) :: dt_sedi !< |
---|
834 | REAL(wp) :: flux !< |
---|
835 | REAL(wp) :: lambda_r !< |
---|
836 | REAL(wp) :: mu_r !< |
---|
837 | REAL(wp) :: z_run !< |
---|
838 | |
---|
839 | REAL(wp), DIMENSION(nzb:nzt+1) :: c_nr !< |
---|
840 | REAL(wp), DIMENSION(nzb:nzt+1) :: c_qr !< |
---|
841 | REAL(wp), DIMENSION(nzb:nzt+1) :: d_nr !< |
---|
842 | REAL(wp), DIMENSION(nzb:nzt+1) :: d_qr !< |
---|
843 | REAL(wp), DIMENSION(nzb:nzt+1) :: nr_slope !< |
---|
844 | REAL(wp), DIMENSION(nzb:nzt+1) :: qr_slope !< |
---|
845 | REAL(wp), DIMENSION(nzb:nzt+1) :: sed_nr !< |
---|
846 | REAL(wp), DIMENSION(nzb:nzt+1) :: sed_qr !< |
---|
847 | REAL(wp), DIMENSION(nzb:nzt+1) :: w_nr !< |
---|
848 | REAL(wp), DIMENSION(nzb:nzt+1) :: w_qr !< |
---|
849 | |
---|
850 | CALL cpu_log( log_point_s(60), 'sed_rain', 'start' ) |
---|
851 | |
---|
852 | IF ( intermediate_timestep_count == 1 ) prr(:,:,:) = 0.0_wp |
---|
853 | ! |
---|
854 | !-- Compute velocities |
---|
855 | DO i = nxl, nxr |
---|
856 | DO j = nys, nyn |
---|
857 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
858 | IF ( qr(k,j,i) > eps_sb ) THEN |
---|
859 | ! |
---|
860 | !-- Weight averaged diameter of rain drops: |
---|
861 | dr = ( hyrho(k) * qr(k,j,i) / & |
---|
862 | nr(k,j,i) * dpirho_l )**( 1.0_wp / 3.0_wp ) |
---|
863 | ! |
---|
864 | !-- Shape parameter of gamma distribution (Milbrandt and Yau, 2005; |
---|
865 | !-- Stevens and Seifert, 2008): |
---|
866 | mu_r = 10.0_wp * ( 1.0_wp + TANH( 1.2E3_wp * & |
---|
867 | ( dr - 1.4E-3_wp ) ) ) |
---|
868 | ! |
---|
869 | !-- Slope parameter of gamma distribution (Seifert, 2008): |
---|
870 | lambda_r = ( ( mu_r + 3.0_wp ) * ( mu_r + 2.0_wp ) * & |
---|
871 | ( mu_r + 1.0_wp ) )**( 1.0_wp / 3.0_wp ) / dr |
---|
872 | |
---|
873 | w_nr(k) = MAX( 0.1_wp, MIN( 20.0_wp, & |
---|
874 | a_term - b_term * ( 1.0_wp + & |
---|
875 | c_term / & |
---|
876 | lambda_r )**( -1.0_wp * & |
---|
877 | ( mu_r + 1.0_wp ) ) & |
---|
878 | ) & |
---|
879 | ) |
---|
880 | |
---|
881 | w_qr(k) = MAX( 0.1_wp, MIN( 20.0_wp, & |
---|
882 | a_term - b_term * ( 1.0_wp + & |
---|
883 | c_term / & |
---|
884 | lambda_r )**( -1.0_wp * & |
---|
885 | ( mu_r + 4.0_wp ) ) & |
---|
886 | ) & |
---|
887 | ) |
---|
888 | ELSE |
---|
889 | w_nr(k) = 0.0_wp |
---|
890 | w_qr(k) = 0.0_wp |
---|
891 | ENDIF |
---|
892 | ENDDO |
---|
893 | ! |
---|
894 | !-- Adjust boundary values |
---|
895 | w_nr(nzb_s_inner(j,i)) = w_nr(nzb_s_inner(j,i)+1) |
---|
896 | w_qr(nzb_s_inner(j,i)) = w_qr(nzb_s_inner(j,i)+1) |
---|
897 | w_nr(nzt+1) = 0.0_wp |
---|
898 | w_qr(nzt+1) = 0.0_wp |
---|
899 | ! |
---|
900 | !-- Compute Courant number |
---|
901 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
902 | c_nr(k) = 0.25_wp * ( w_nr(k-1) + & |
---|
903 | 2.0_wp * w_nr(k) + w_nr(k+1) ) * & |
---|
904 | dt_micro * ddzu(k) |
---|
905 | c_qr(k) = 0.25_wp * ( w_qr(k-1) + & |
---|
906 | 2.0_wp * w_qr(k) + w_qr(k+1) ) * & |
---|
907 | dt_micro * ddzu(k) |
---|
908 | ENDDO |
---|
909 | ! |
---|
910 | !-- Limit slopes with monotonized centered (MC) limiter (van Leer, 1977): |
---|
911 | IF ( limiter_sedimentation ) THEN |
---|
912 | |
---|
913 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
914 | d_mean = 0.5_wp * ( qr(k+1,j,i) - qr(k-1,j,i) ) |
---|
915 | d_min = qr(k,j,i) - MIN( qr(k+1,j,i), qr(k,j,i), qr(k-1,j,i) ) |
---|
916 | d_max = MAX( qr(k+1,j,i), qr(k,j,i), qr(k-1,j,i) ) - qr(k,j,i) |
---|
917 | |
---|
918 | qr_slope(k) = SIGN(1.0_wp, d_mean) * MIN ( 2.0_wp * d_min, & |
---|
919 | 2.0_wp * d_max, & |
---|
920 | ABS( d_mean ) ) |
---|
921 | |
---|
922 | d_mean = 0.5_wp * ( nr(k+1,j,i) - nr(k-1,j,i) ) |
---|
923 | d_min = nr(k,j,i) - MIN( nr(k+1,j,i), nr(k,j,i), nr(k-1,j,i) ) |
---|
924 | d_max = MAX( nr(k+1,j,i), nr(k,j,i), nr(k-1,j,i) ) - nr(k,j,i) |
---|
925 | |
---|
926 | nr_slope(k) = SIGN(1.0_wp, d_mean) * MIN ( 2.0_wp * d_min, & |
---|
927 | 2.0_wp * d_max, & |
---|
928 | ABS( d_mean ) ) |
---|
929 | ENDDO |
---|
930 | |
---|
931 | ELSE |
---|
932 | |
---|
933 | nr_slope = 0.0_wp |
---|
934 | qr_slope = 0.0_wp |
---|
935 | |
---|
936 | ENDIF |
---|
937 | |
---|
938 | sed_nr(nzt+1) = 0.0_wp |
---|
939 | sed_qr(nzt+1) = 0.0_wp |
---|
940 | ! |
---|
941 | !-- Compute sedimentation flux |
---|
942 | DO k = nzt, nzb_s_inner(j,i)+1, -1 |
---|
943 | ! |
---|
944 | !-- Sum up all rain drop number densities which contribute to the flux |
---|
945 | !-- through k-1/2 |
---|
946 | flux = 0.0_wp |
---|
947 | z_run = 0.0_wp ! height above z(k) |
---|
948 | k_run = k |
---|
949 | c_run = MIN( 1.0_wp, c_nr(k) ) |
---|
950 | DO WHILE ( c_run > 0.0_wp .AND. k_run <= nzt ) |
---|
951 | flux = flux + hyrho(k_run) * & |
---|
952 | ( nr(k_run,j,i) + nr_slope(k_run) * & |
---|
953 | ( 1.0_wp - c_run ) * 0.5_wp ) * c_run * dzu(k_run) |
---|
954 | z_run = z_run + dzu(k_run) |
---|
955 | k_run = k_run + 1 |
---|
956 | c_run = MIN( 1.0_wp, c_nr(k_run) - z_run * ddzu(k_run) ) |
---|
957 | ENDDO |
---|
958 | ! |
---|
959 | !-- It is not allowed to sediment more rain drop number density than |
---|
960 | !-- available |
---|
961 | flux = MIN( flux, & |
---|
962 | hyrho(k) * dzu(k+1) * nr(k,j,i) + sed_nr(k+1) * & |
---|
963 | dt_micro & |
---|
964 | ) |
---|
965 | |
---|
966 | sed_nr(k) = flux / dt_micro |
---|
967 | nr(k,j,i) = nr(k,j,i) + ( sed_nr(k+1) - sed_nr(k) ) * & |
---|
968 | ddzu(k+1) / hyrho(k) * dt_micro |
---|
969 | ! |
---|
970 | !-- Sum up all rain water content which contributes to the flux |
---|
971 | !-- through k-1/2 |
---|
972 | flux = 0.0_wp |
---|
973 | z_run = 0.0_wp ! height above z(k) |
---|
974 | k_run = k |
---|
975 | c_run = MIN( 1.0_wp, c_qr(k) ) |
---|
976 | |
---|
977 | DO WHILE ( c_run > 0.0_wp .AND. k_run <= nzt ) |
---|
978 | |
---|
979 | flux = flux + hyrho(k_run) * ( qr(k_run,j,i) + & |
---|
980 | qr_slope(k_run) * ( 1.0_wp - c_run ) * & |
---|
981 | 0.5_wp ) * c_run * dzu(k_run) |
---|
982 | z_run = z_run + dzu(k_run) |
---|
983 | k_run = k_run + 1 |
---|
984 | c_run = MIN( 1.0_wp, c_qr(k_run) - z_run * ddzu(k_run) ) |
---|
985 | |
---|
986 | ENDDO |
---|
987 | ! |
---|
988 | !-- It is not allowed to sediment more rain water content than |
---|
989 | !-- available |
---|
990 | flux = MIN( flux, & |
---|
991 | hyrho(k) * dzu(k) * qr(k,j,i) + sed_qr(k+1) * & |
---|
992 | dt_micro & |
---|
993 | ) |
---|
994 | |
---|
995 | sed_qr(k) = flux / dt_micro |
---|
996 | |
---|
997 | qr(k,j,i) = qr(k,j,i) + ( sed_qr(k+1) - sed_qr(k) ) * & |
---|
998 | ddzu(k+1) / hyrho(k) * dt_micro |
---|
999 | q(k,j,i) = q(k,j,i) + ( sed_qr(k+1) - sed_qr(k) ) * & |
---|
1000 | ddzu(k+1) / hyrho(k) * dt_micro |
---|
1001 | pt(k,j,i) = pt(k,j,i) - ( sed_qr(k+1) - sed_qr(k) ) * & |
---|
1002 | ddzu(k+1) / hyrho(k) * l_d_cp * & |
---|
1003 | pt_d_t(k) * dt_micro |
---|
1004 | ! |
---|
1005 | !-- Compute the rain rate |
---|
1006 | IF ( call_microphysics_at_all_substeps ) THEN |
---|
1007 | prr(k,j,i) = prr(k,j,i) + sed_qr(k) / hyrho(k) * & |
---|
1008 | weight_substep(intermediate_timestep_count) |
---|
1009 | ELSE |
---|
1010 | prr(k,j,i) = sed_qr(k) / hyrho(k) |
---|
1011 | ENDIF |
---|
1012 | |
---|
1013 | ENDDO |
---|
1014 | ENDDO |
---|
1015 | ENDDO |
---|
1016 | |
---|
1017 | ! |
---|
1018 | !-- Precipitation amount |
---|
1019 | IF ( intermediate_timestep_count == intermediate_timestep_count_max & |
---|
1020 | .AND. ( dt_do2d_xy - time_do2d_xy ) < & |
---|
1021 | precipitation_amount_interval ) THEN |
---|
1022 | DO i = nxl, nxr |
---|
1023 | DO j = nys, nyn |
---|
1024 | precipitation_amount(j,i) = precipitation_amount(j,i) + & |
---|
1025 | prr(nzb_s_inner(j,i)+1,j,i) * & |
---|
1026 | hyrho(nzb_s_inner(j,i)+1) * dt_3d |
---|
1027 | ENDDO |
---|
1028 | ENDDO |
---|
1029 | ENDIF |
---|
1030 | |
---|
1031 | CALL cpu_log( log_point_s(60), 'sed_rain', 'stop' ) |
---|
1032 | |
---|
1033 | END SUBROUTINE sedimentation_rain |
---|
1034 | |
---|
1035 | |
---|
1036 | !------------------------------------------------------------------------------! |
---|
1037 | ! Description: |
---|
1038 | ! ------------ |
---|
1039 | !> Call for grid point i,j |
---|
1040 | !------------------------------------------------------------------------------! |
---|
1041 | |
---|
1042 | SUBROUTINE microphysics_control_ij( i, j ) |
---|
1043 | |
---|
1044 | USE arrays_3d, & |
---|
1045 | ONLY: hyp, nc_1d, nr, nr_1d, pt, pt_init, pt_1d, q, q_1d, qc, & |
---|
1046 | qc_1d, qr, qr_1d, zu |
---|
1047 | |
---|
1048 | USE cloud_parameters, & |
---|
1049 | ONLY: cp, hyrho, nc_const, pt_d_t, r_d, t_d_pt |
---|
1050 | |
---|
1051 | USE control_parameters, & |
---|
1052 | ONLY: call_microphysics_at_all_substeps, drizzle, dt_3d, dt_micro, & |
---|
1053 | g, intermediate_timestep_count, large_scale_forcing, & |
---|
1054 | lsf_surf, precipitation, pt_surface, & |
---|
1055 | rho_surface,surface_pressure |
---|
1056 | |
---|
1057 | USE indices, & |
---|
1058 | ONLY: nzb, nzt |
---|
1059 | |
---|
1060 | USE kinds |
---|
1061 | |
---|
1062 | USE statistics, & |
---|
1063 | ONLY: weight_pres |
---|
1064 | |
---|
1065 | IMPLICIT NONE |
---|
1066 | |
---|
1067 | INTEGER(iwp) :: i !< |
---|
1068 | INTEGER(iwp) :: j !< |
---|
1069 | INTEGER(iwp) :: k !< |
---|
1070 | |
---|
1071 | REAL(wp) :: t_surface !< |
---|
1072 | |
---|
1073 | IF ( large_scale_forcing .AND. lsf_surf ) THEN |
---|
1074 | ! |
---|
1075 | !-- Calculate: |
---|
1076 | !-- pt / t : ratio of potential and actual temperature (pt_d_t) |
---|
1077 | !-- t / pt : ratio of actual and potential temperature (t_d_pt) |
---|
1078 | !-- p_0(z) : vertical profile of the hydrostatic pressure (hyp) |
---|
1079 | t_surface = pt_surface * ( surface_pressure / 1000.0_wp )**0.286_wp |
---|
1080 | DO k = nzb, nzt+1 |
---|
1081 | hyp(k) = surface_pressure * 100.0_wp * & |
---|
1082 | ( ( t_surface - g / cp * zu(k) ) / t_surface )**(1.0_wp / 0.286_wp) |
---|
1083 | pt_d_t(k) = ( 100000.0_wp / hyp(k) )**0.286_wp |
---|
1084 | t_d_pt(k) = 1.0_wp / pt_d_t(k) |
---|
1085 | hyrho(k) = hyp(k) / ( r_d * t_d_pt(k) * pt_init(k) ) |
---|
1086 | ENDDO |
---|
1087 | ! |
---|
1088 | !-- Compute reference density |
---|
1089 | rho_surface = surface_pressure * 100.0_wp / ( r_d * t_surface ) |
---|
1090 | ENDIF |
---|
1091 | |
---|
1092 | ! |
---|
1093 | !-- Compute length of time step |
---|
1094 | IF ( call_microphysics_at_all_substeps ) THEN |
---|
1095 | dt_micro = dt_3d * weight_pres(intermediate_timestep_count) |
---|
1096 | ELSE |
---|
1097 | dt_micro = dt_3d |
---|
1098 | ENDIF |
---|
1099 | |
---|
1100 | ! |
---|
1101 | !-- Use 1d arrays |
---|
1102 | q_1d(:) = q(:,j,i) |
---|
1103 | pt_1d(:) = pt(:,j,i) |
---|
1104 | qc_1d(:) = qc(:,j,i) |
---|
1105 | nc_1d(:) = nc_const |
---|
1106 | IF ( precipitation ) THEN |
---|
1107 | qr_1d(:) = qr(:,j,i) |
---|
1108 | nr_1d(:) = nr(:,j,i) |
---|
1109 | ENDIF |
---|
1110 | |
---|
1111 | ! |
---|
1112 | !-- Compute cloud physics |
---|
1113 | IF ( precipitation ) THEN |
---|
1114 | CALL adjust_cloud( i,j ) |
---|
1115 | CALL autoconversion( i,j ) |
---|
1116 | CALL accretion( i,j ) |
---|
1117 | CALL selfcollection_breakup( i,j ) |
---|
1118 | CALL evaporation_rain( i,j ) |
---|
1119 | CALL sedimentation_rain( i,j ) |
---|
1120 | ENDIF |
---|
1121 | |
---|
1122 | IF ( drizzle ) CALL sedimentation_cloud( i,j ) |
---|
1123 | |
---|
1124 | ! |
---|
1125 | !-- Store results on the 3d arrays |
---|
1126 | q(:,j,i) = q_1d(:) |
---|
1127 | pt(:,j,i) = pt_1d(:) |
---|
1128 | IF ( precipitation ) THEN |
---|
1129 | qr(:,j,i) = qr_1d(:) |
---|
1130 | nr(:,j,i) = nr_1d(:) |
---|
1131 | ENDIF |
---|
1132 | |
---|
1133 | END SUBROUTINE microphysics_control_ij |
---|
1134 | |
---|
1135 | !------------------------------------------------------------------------------! |
---|
1136 | ! Description: |
---|
1137 | ! ------------ |
---|
1138 | !> Adjust number of raindrops to avoid nonlinear effects in |
---|
1139 | !> sedimentation and evaporation of rain drops due to too small or |
---|
1140 | !> too big weights of rain drops (Stevens and Seifert, 2008). |
---|
1141 | !> The same procedure is applied to cloud droplets if they are determined |
---|
1142 | !> prognostically. Call for grid point i,j |
---|
1143 | !------------------------------------------------------------------------------! |
---|
1144 | SUBROUTINE adjust_cloud_ij( i, j ) |
---|
1145 | |
---|
1146 | USE arrays_3d, & |
---|
1147 | ONLY: qr_1d, nr_1d |
---|
1148 | |
---|
1149 | USE cloud_parameters, & |
---|
1150 | ONLY: eps_sb, xrmin, xrmax, hyrho, k_cc, x0 |
---|
1151 | |
---|
1152 | USE indices, & |
---|
1153 | ONLY: nzb, nzb_s_inner, nzt |
---|
1154 | |
---|
1155 | USE kinds |
---|
1156 | |
---|
1157 | IMPLICIT NONE |
---|
1158 | |
---|
1159 | INTEGER(iwp) :: i !< |
---|
1160 | INTEGER(iwp) :: j !< |
---|
1161 | INTEGER(iwp) :: k !< |
---|
1162 | |
---|
1163 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1164 | |
---|
1165 | IF ( qr_1d(k) <= eps_sb ) THEN |
---|
1166 | qr_1d(k) = 0.0_wp |
---|
1167 | nr_1d(k) = 0.0_wp |
---|
1168 | ELSE |
---|
1169 | ! |
---|
1170 | !-- Adjust number of raindrops to avoid nonlinear effects in |
---|
1171 | !-- sedimentation and evaporation of rain drops due to too small or |
---|
1172 | !-- too big weights of rain drops (Stevens and Seifert, 2008). |
---|
1173 | IF ( nr_1d(k) * xrmin > qr_1d(k) * hyrho(k) ) THEN |
---|
1174 | nr_1d(k) = qr_1d(k) * hyrho(k) / xrmin |
---|
1175 | ELSEIF ( nr_1d(k) * xrmax < qr_1d(k) * hyrho(k) ) THEN |
---|
1176 | nr_1d(k) = qr_1d(k) * hyrho(k) / xrmax |
---|
1177 | ENDIF |
---|
1178 | |
---|
1179 | ENDIF |
---|
1180 | |
---|
1181 | ENDDO |
---|
1182 | |
---|
1183 | END SUBROUTINE adjust_cloud_ij |
---|
1184 | |
---|
1185 | |
---|
1186 | !------------------------------------------------------------------------------! |
---|
1187 | ! Description: |
---|
1188 | ! ------------ |
---|
1189 | !> Autoconversion rate (Seifert and Beheng, 2006). Call for grid point i,j |
---|
1190 | !------------------------------------------------------------------------------! |
---|
1191 | SUBROUTINE autoconversion_ij( i, j ) |
---|
1192 | |
---|
1193 | USE arrays_3d, & |
---|
1194 | ONLY: diss, dzu, nc_1d, nr_1d, qc_1d, qr_1d |
---|
1195 | |
---|
1196 | USE cloud_parameters, & |
---|
1197 | ONLY: a_1, a_2, a_3, b_1, b_2, b_3, beta_cc, c_1, c_2, c_3, & |
---|
1198 | c_const, dpirho_l, eps_sb, hyrho, k_cc, kin_vis_air, x0 |
---|
1199 | |
---|
1200 | USE control_parameters, & |
---|
1201 | ONLY: dt_micro, rho_surface, turbulence |
---|
1202 | |
---|
1203 | USE grid_variables, & |
---|
1204 | ONLY: dx, dy |
---|
1205 | |
---|
1206 | USE indices, & |
---|
1207 | ONLY: nzb, nzb_s_inner, nzt |
---|
1208 | |
---|
1209 | USE kinds |
---|
1210 | |
---|
1211 | IMPLICIT NONE |
---|
1212 | |
---|
1213 | INTEGER(iwp) :: i !< |
---|
1214 | INTEGER(iwp) :: j !< |
---|
1215 | INTEGER(iwp) :: k !< |
---|
1216 | |
---|
1217 | REAL(wp) :: alpha_cc !< |
---|
1218 | REAL(wp) :: autocon !< |
---|
1219 | REAL(wp) :: dissipation !< |
---|
1220 | REAL(wp) :: k_au !< |
---|
1221 | REAL(wp) :: l_mix !< |
---|
1222 | REAL(wp) :: nu_c !< |
---|
1223 | REAL(wp) :: phi_au !< |
---|
1224 | REAL(wp) :: r_cc !< |
---|
1225 | REAL(wp) :: rc !< |
---|
1226 | REAL(wp) :: re_lambda !< |
---|
1227 | REAL(wp) :: selfcoll !< |
---|
1228 | REAL(wp) :: sigma_cc !< |
---|
1229 | REAL(wp) :: tau_cloud !< |
---|
1230 | REAL(wp) :: xc !< |
---|
1231 | |
---|
1232 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1233 | |
---|
1234 | IF ( qc_1d(k) > eps_sb ) THEN |
---|
1235 | |
---|
1236 | k_au = k_cc / ( 20.0_wp * x0 ) |
---|
1237 | ! |
---|
1238 | !-- Intern time scale of coagulation (Seifert and Beheng, 2006): |
---|
1239 | !-- (1.0_wp - qc(k,j,i) / ( qc(k,j,i) + qr_1d(k) )) |
---|
1240 | tau_cloud = 1.0_wp - qc_1d(k) / ( qr_1d(k) + qc_1d(k) ) |
---|
1241 | ! |
---|
1242 | !-- Universal function for autoconversion process |
---|
1243 | !-- (Seifert and Beheng, 2006): |
---|
1244 | phi_au = 600.0_wp * tau_cloud**0.68_wp * ( 1.0_wp - tau_cloud**0.68_wp )**3 |
---|
1245 | ! |
---|
1246 | !-- Shape parameter of gamma distribution (Geoffroy et al., 2010): |
---|
1247 | !-- (Use constant nu_c = 1.0_wp instead?) |
---|
1248 | nu_c = 1.0_wp !MAX( 0.0_wp, 1580.0_wp * hyrho(k) * qc_1d(k) - 0.28_wp ) |
---|
1249 | ! |
---|
1250 | !-- Mean weight of cloud droplets: |
---|
1251 | xc = hyrho(k) * qc_1d(k) / nc_1d(k) |
---|
1252 | ! |
---|
1253 | !-- Parameterized turbulence effects on autoconversion (Seifert, |
---|
1254 | !-- Nuijens and Stevens, 2010) |
---|
1255 | IF ( turbulence ) THEN |
---|
1256 | ! |
---|
1257 | !-- Weight averaged radius of cloud droplets: |
---|
1258 | rc = 0.5_wp * ( xc * dpirho_l )**( 1.0_wp / 3.0_wp ) |
---|
1259 | |
---|
1260 | alpha_cc = ( a_1 + a_2 * nu_c ) / ( 1.0_wp + a_3 * nu_c ) |
---|
1261 | r_cc = ( b_1 + b_2 * nu_c ) / ( 1.0_wp + b_3 * nu_c ) |
---|
1262 | sigma_cc = ( c_1 + c_2 * nu_c ) / ( 1.0_wp + c_3 * nu_c ) |
---|
1263 | ! |
---|
1264 | !-- Mixing length (neglecting distance to ground and stratification) |
---|
1265 | l_mix = ( dx * dy * dzu(k) )**( 1.0_wp / 3.0_wp ) |
---|
1266 | ! |
---|
1267 | !-- Limit dissipation rate according to Seifert, Nuijens and |
---|
1268 | !-- Stevens (2010) |
---|
1269 | dissipation = MIN( 0.06_wp, diss(k,j,i) ) |
---|
1270 | ! |
---|
1271 | !-- Compute Taylor-microscale Reynolds number: |
---|
1272 | re_lambda = 6.0_wp / 11.0_wp * & |
---|
1273 | ( l_mix / c_const )**( 2.0_wp / 3.0_wp ) * & |
---|
1274 | SQRT( 15.0_wp / kin_vis_air ) * & |
---|
1275 | dissipation**( 1.0_wp / 6.0_wp ) |
---|
1276 | ! |
---|
1277 | !-- The factor of 1.0E4 is needed to convert the dissipation rate |
---|
1278 | !-- from m2 s-3 to cm2 s-3. |
---|
1279 | k_au = k_au * ( 1.0_wp + & |
---|
1280 | dissipation * 1.0E4_wp * & |
---|
1281 | ( re_lambda * 1.0E-3_wp )**0.25_wp * & |
---|
1282 | ( alpha_cc * EXP( -1.0_wp * ( ( rc - r_cc ) / & |
---|
1283 | sigma_cc )**2 & |
---|
1284 | ) + beta_cc & |
---|
1285 | ) & |
---|
1286 | ) |
---|
1287 | ENDIF |
---|
1288 | ! |
---|
1289 | !-- Autoconversion rate (Seifert and Beheng, 2006): |
---|
1290 | autocon = k_au * ( nu_c + 2.0_wp ) * ( nu_c + 4.0_wp ) / & |
---|
1291 | ( nu_c + 1.0_wp )**2 * qc_1d(k)**2 * xc**2 * & |
---|
1292 | ( 1.0_wp + phi_au / ( 1.0_wp - tau_cloud )**2 ) * & |
---|
1293 | rho_surface |
---|
1294 | autocon = MIN( autocon, qc_1d(k) / dt_micro ) |
---|
1295 | |
---|
1296 | qr_1d(k) = qr_1d(k) + autocon * dt_micro |
---|
1297 | qc_1d(k) = qc_1d(k) - autocon * dt_micro |
---|
1298 | nr_1d(k) = nr_1d(k) + autocon / x0 * hyrho(k) * dt_micro |
---|
1299 | |
---|
1300 | ENDIF |
---|
1301 | |
---|
1302 | ENDDO |
---|
1303 | |
---|
1304 | END SUBROUTINE autoconversion_ij |
---|
1305 | |
---|
1306 | |
---|
1307 | !------------------------------------------------------------------------------! |
---|
1308 | ! Description: |
---|
1309 | ! ------------ |
---|
1310 | !> Accretion rate (Seifert and Beheng, 2006). Call for grid point i,j |
---|
1311 | !------------------------------------------------------------------------------! |
---|
1312 | SUBROUTINE accretion_ij( i, j ) |
---|
1313 | |
---|
1314 | USE arrays_3d, & |
---|
1315 | ONLY: diss, qc_1d, qr_1d |
---|
1316 | |
---|
1317 | USE cloud_parameters, & |
---|
1318 | ONLY: eps_sb, hyrho, k_cr0 |
---|
1319 | |
---|
1320 | USE control_parameters, & |
---|
1321 | ONLY: dt_micro, rho_surface, turbulence |
---|
1322 | |
---|
1323 | USE indices, & |
---|
1324 | ONLY: nzb, nzb_s_inner, nzt |
---|
1325 | |
---|
1326 | USE kinds |
---|
1327 | |
---|
1328 | IMPLICIT NONE |
---|
1329 | |
---|
1330 | INTEGER(iwp) :: i !< |
---|
1331 | INTEGER(iwp) :: j !< |
---|
1332 | INTEGER(iwp) :: k !< |
---|
1333 | |
---|
1334 | REAL(wp) :: accr !< |
---|
1335 | REAL(wp) :: k_cr !< |
---|
1336 | REAL(wp) :: phi_ac !< |
---|
1337 | REAL(wp) :: tau_cloud !< |
---|
1338 | REAL(wp) :: xc !< |
---|
1339 | |
---|
1340 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1341 | IF ( ( qc_1d(k) > eps_sb ) .AND. ( qr_1d(k) > eps_sb ) ) THEN |
---|
1342 | ! |
---|
1343 | !-- Intern time scale of coagulation (Seifert and Beheng, 2006): |
---|
1344 | tau_cloud = 1.0_wp - qc_1d(k) / ( qc_1d(k) + qr_1d(k) ) |
---|
1345 | ! |
---|
1346 | !-- Universal function for accretion process |
---|
1347 | !-- (Seifert and Beheng, 2001): |
---|
1348 | phi_ac = ( tau_cloud / ( tau_cloud + 5.0E-5_wp ) )**4 |
---|
1349 | ! |
---|
1350 | !-- Parameterized turbulence effects on autoconversion (Seifert, |
---|
1351 | !-- Nuijens and Stevens, 2010). The factor of 1.0E4 is needed to |
---|
1352 | !-- convert the dissipation rate (diss) from m2 s-3 to cm2 s-3. |
---|
1353 | IF ( turbulence ) THEN |
---|
1354 | k_cr = k_cr0 * ( 1.0_wp + 0.05_wp * & |
---|
1355 | MIN( 600.0_wp, & |
---|
1356 | diss(k,j,i) * 1.0E4_wp )**0.25_wp & |
---|
1357 | ) |
---|
1358 | ELSE |
---|
1359 | k_cr = k_cr0 |
---|
1360 | ENDIF |
---|
1361 | ! |
---|
1362 | !-- Accretion rate (Seifert and Beheng, 2006): |
---|
1363 | accr = k_cr * qc_1d(k) * qr_1d(k) * phi_ac * SQRT( rho_surface * hyrho(k) ) |
---|
1364 | accr = MIN( accr, qc_1d(k) / dt_micro ) |
---|
1365 | |
---|
1366 | qr_1d(k) = qr_1d(k) + accr * dt_micro |
---|
1367 | qc_1d(k) = qc_1d(k) - accr * dt_micro |
---|
1368 | |
---|
1369 | ENDIF |
---|
1370 | |
---|
1371 | ENDDO |
---|
1372 | |
---|
1373 | END SUBROUTINE accretion_ij |
---|
1374 | |
---|
1375 | |
---|
1376 | !------------------------------------------------------------------------------! |
---|
1377 | ! Description: |
---|
1378 | ! ------------ |
---|
1379 | !> Collisional breakup rate (Seifert, 2008). Call for grid point i,j |
---|
1380 | !------------------------------------------------------------------------------! |
---|
1381 | SUBROUTINE selfcollection_breakup_ij( i, j ) |
---|
1382 | |
---|
1383 | USE arrays_3d, & |
---|
1384 | ONLY: nr_1d, qr_1d |
---|
1385 | |
---|
1386 | USE cloud_parameters, & |
---|
1387 | ONLY: dpirho_l, eps_sb, hyrho, k_br, k_rr |
---|
1388 | |
---|
1389 | USE control_parameters, & |
---|
1390 | ONLY: dt_micro, rho_surface |
---|
1391 | |
---|
1392 | USE indices, & |
---|
1393 | ONLY: nzb, nzb_s_inner, nzt |
---|
1394 | |
---|
1395 | USE kinds |
---|
1396 | |
---|
1397 | IMPLICIT NONE |
---|
1398 | |
---|
1399 | INTEGER(iwp) :: i !< |
---|
1400 | INTEGER(iwp) :: j !< |
---|
1401 | INTEGER(iwp) :: k !< |
---|
1402 | |
---|
1403 | REAL(wp) :: breakup !< |
---|
1404 | REAL(wp) :: dr !< |
---|
1405 | REAL(wp) :: phi_br !< |
---|
1406 | REAL(wp) :: selfcoll !< |
---|
1407 | |
---|
1408 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1409 | IF ( qr_1d(k) > eps_sb ) THEN |
---|
1410 | ! |
---|
1411 | !-- Selfcollection rate (Seifert and Beheng, 2001): |
---|
1412 | selfcoll = k_rr * nr_1d(k) * qr_1d(k) * SQRT( hyrho(k) * rho_surface ) |
---|
1413 | ! |
---|
1414 | !-- Weight averaged diameter of rain drops: |
---|
1415 | dr = ( hyrho(k) * qr_1d(k) / nr_1d(k) * dpirho_l )**( 1.0_wp / 3.0_wp ) |
---|
1416 | ! |
---|
1417 | !-- Collisional breakup rate (Seifert, 2008): |
---|
1418 | IF ( dr >= 0.3E-3_wp ) THEN |
---|
1419 | phi_br = k_br * ( dr - 1.1E-3_wp ) |
---|
1420 | breakup = selfcoll * ( phi_br + 1.0_wp ) |
---|
1421 | ELSE |
---|
1422 | breakup = 0.0_wp |
---|
1423 | ENDIF |
---|
1424 | |
---|
1425 | selfcoll = MAX( breakup - selfcoll, -nr_1d(k) / dt_micro ) |
---|
1426 | nr_1d(k) = nr_1d(k) + selfcoll * dt_micro |
---|
1427 | |
---|
1428 | ENDIF |
---|
1429 | ENDDO |
---|
1430 | |
---|
1431 | END SUBROUTINE selfcollection_breakup_ij |
---|
1432 | |
---|
1433 | |
---|
1434 | !------------------------------------------------------------------------------! |
---|
1435 | ! Description: |
---|
1436 | ! ------------ |
---|
1437 | !> Evaporation of precipitable water. Condensation is neglected for |
---|
1438 | !> precipitable water. Call for grid point i,j |
---|
1439 | !------------------------------------------------------------------------------! |
---|
1440 | SUBROUTINE evaporation_rain_ij( i, j ) |
---|
1441 | |
---|
1442 | USE arrays_3d, & |
---|
1443 | ONLY: hyp, nr_1d, pt_1d, q_1d, qc_1d, qr_1d |
---|
1444 | |
---|
1445 | USE cloud_parameters, & |
---|
1446 | ONLY: a_term, a_vent, b_term, b_vent, c_evap, c_term, diff_coeff_l,& |
---|
1447 | dpirho_l, eps_sb, hyrho, kin_vis_air, k_st, l_d_cp, l_d_r, & |
---|
1448 | l_v, rho_l, r_v, schmidt_p_1d3, thermal_conductivity_l, & |
---|
1449 | t_d_pt, ventilation_effect |
---|
1450 | |
---|
1451 | USE constants, & |
---|
1452 | ONLY: pi |
---|
1453 | |
---|
1454 | USE control_parameters, & |
---|
1455 | ONLY: dt_micro |
---|
1456 | |
---|
1457 | USE indices, & |
---|
1458 | ONLY: nzb, nzb_s_inner, nzt |
---|
1459 | |
---|
1460 | USE kinds |
---|
1461 | |
---|
1462 | IMPLICIT NONE |
---|
1463 | |
---|
1464 | INTEGER(iwp) :: i !< |
---|
1465 | INTEGER(iwp) :: j !< |
---|
1466 | INTEGER(iwp) :: k !< |
---|
1467 | |
---|
1468 | REAL(wp) :: alpha !< |
---|
1469 | REAL(wp) :: dr !< |
---|
1470 | REAL(wp) :: e_s !< |
---|
1471 | REAL(wp) :: evap !< |
---|
1472 | REAL(wp) :: evap_nr !< |
---|
1473 | REAL(wp) :: f_vent !< |
---|
1474 | REAL(wp) :: g_evap !< |
---|
1475 | REAL(wp) :: lambda_r !< |
---|
1476 | REAL(wp) :: mu_r !< |
---|
1477 | REAL(wp) :: mu_r_2 !< |
---|
1478 | REAL(wp) :: mu_r_5d2 !< |
---|
1479 | REAL(wp) :: nr_0 !< |
---|
1480 | REAL(wp) :: q_s !< |
---|
1481 | REAL(wp) :: sat !< |
---|
1482 | REAL(wp) :: t_l !< |
---|
1483 | REAL(wp) :: temp !< |
---|
1484 | REAL(wp) :: xr !< |
---|
1485 | |
---|
1486 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1487 | IF ( qr_1d(k) > eps_sb ) THEN |
---|
1488 | ! |
---|
1489 | !-- Actual liquid water temperature: |
---|
1490 | t_l = t_d_pt(k) * pt_1d(k) |
---|
1491 | ! |
---|
1492 | !-- Saturation vapor pressure at t_l: |
---|
1493 | e_s = 610.78_wp * EXP( 17.269_wp * ( t_l - 273.16_wp ) / & |
---|
1494 | ( t_l - 35.86_wp ) & |
---|
1495 | ) |
---|
1496 | ! |
---|
1497 | !-- Computation of saturation humidity: |
---|
1498 | q_s = 0.622_wp * e_s / ( hyp(k) - 0.378_wp * e_s ) |
---|
1499 | alpha = 0.622_wp * l_d_r * l_d_cp / ( t_l * t_l ) |
---|
1500 | q_s = q_s * ( 1.0_wp + alpha * q_1d(k) ) / ( 1.0_wp + alpha * q_s ) |
---|
1501 | ! |
---|
1502 | !-- Supersaturation: |
---|
1503 | sat = ( q_1d(k) - qr_1d(k) - qc_1d(k) ) / q_s - 1.0_wp |
---|
1504 | ! |
---|
1505 | !-- Evaporation needs only to be calculated in subsaturated regions |
---|
1506 | IF ( sat < 0.0_wp ) THEN |
---|
1507 | ! |
---|
1508 | !-- Actual temperature: |
---|
1509 | temp = t_l + l_d_cp * ( qc_1d(k) + qr_1d(k) ) |
---|
1510 | |
---|
1511 | g_evap = 1.0_wp / ( ( l_v / ( r_v * temp ) - 1.0_wp ) * l_v / & |
---|
1512 | ( thermal_conductivity_l * temp ) + & |
---|
1513 | r_v * temp / ( diff_coeff_l * e_s ) & |
---|
1514 | ) |
---|
1515 | ! |
---|
1516 | !-- Mean weight of rain drops |
---|
1517 | xr = hyrho(k) * qr_1d(k) / nr_1d(k) |
---|
1518 | ! |
---|
1519 | !-- Weight averaged diameter of rain drops: |
---|
1520 | dr = ( xr * dpirho_l )**( 1.0_wp / 3.0_wp ) |
---|
1521 | ! |
---|
1522 | !-- Compute ventilation factor and intercept parameter |
---|
1523 | !-- (Seifert and Beheng, 2006; Seifert, 2008): |
---|
1524 | IF ( ventilation_effect ) THEN |
---|
1525 | ! |
---|
1526 | !-- Shape parameter of gamma distribution (Milbrandt and Yau, 2005; |
---|
1527 | !-- Stevens and Seifert, 2008): |
---|
1528 | mu_r = 10.0_wp * ( 1.0_wp + TANH( 1.2E3_wp * ( dr - 1.4E-3_wp ) ) ) |
---|
1529 | ! |
---|
1530 | !-- Slope parameter of gamma distribution (Seifert, 2008): |
---|
1531 | lambda_r = ( ( mu_r + 3.0_wp ) * ( mu_r + 2.0_wp ) * & |
---|
1532 | ( mu_r + 1.0_wp ) & |
---|
1533 | )**( 1.0_wp / 3.0_wp ) / dr |
---|
1534 | |
---|
1535 | mu_r_2 = mu_r + 2.0_wp |
---|
1536 | mu_r_5d2 = mu_r + 2.5_wp |
---|
1537 | |
---|
1538 | f_vent = a_vent * gamm( mu_r_2 ) * lambda_r**( -mu_r_2 ) + & |
---|
1539 | b_vent * schmidt_p_1d3 * & |
---|
1540 | SQRT( a_term / kin_vis_air ) * gamm( mu_r_5d2 ) * & |
---|
1541 | lambda_r**( -mu_r_5d2 ) * & |
---|
1542 | ( 1.0_wp - & |
---|
1543 | 0.5_wp * ( b_term / a_term ) * & |
---|
1544 | ( lambda_r / ( c_term + lambda_r ) & |
---|
1545 | )**mu_r_5d2 - & |
---|
1546 | 0.125_wp * ( b_term / a_term )**2 * & |
---|
1547 | ( lambda_r / ( 2.0_wp * c_term + lambda_r ) & |
---|
1548 | )**mu_r_5d2 - & |
---|
1549 | 0.0625_wp * ( b_term / a_term )**3 * & |
---|
1550 | ( lambda_r / ( 3.0_wp * c_term + lambda_r ) & |
---|
1551 | )**mu_r_5d2 - & |
---|
1552 | 0.0390625_wp * ( b_term / a_term )**4 * & |
---|
1553 | ( lambda_r / ( 4.0_wp * c_term + lambda_r ) & |
---|
1554 | )**mu_r_5d2 & |
---|
1555 | ) |
---|
1556 | |
---|
1557 | nr_0 = nr_1d(k) * lambda_r**( mu_r + 1.0_wp ) / & |
---|
1558 | gamm( mu_r + 1.0_wp ) |
---|
1559 | ELSE |
---|
1560 | f_vent = 1.0_wp |
---|
1561 | nr_0 = nr_1d(k) * dr |
---|
1562 | ENDIF |
---|
1563 | ! |
---|
1564 | !-- Evaporation rate of rain water content (Seifert and Beheng, 2006): |
---|
1565 | evap = 2.0_wp * pi * nr_0 * g_evap * f_vent * sat / hyrho(k) |
---|
1566 | evap = MAX( evap, -qr_1d(k) / dt_micro ) |
---|
1567 | evap_nr = MAX( c_evap * evap / xr * hyrho(k), & |
---|
1568 | -nr_1d(k) / dt_micro ) |
---|
1569 | |
---|
1570 | qr_1d(k) = qr_1d(k) + evap * dt_micro |
---|
1571 | nr_1d(k) = nr_1d(k) + evap_nr * dt_micro |
---|
1572 | |
---|
1573 | ENDIF |
---|
1574 | ENDIF |
---|
1575 | |
---|
1576 | ENDDO |
---|
1577 | |
---|
1578 | END SUBROUTINE evaporation_rain_ij |
---|
1579 | |
---|
1580 | |
---|
1581 | !------------------------------------------------------------------------------! |
---|
1582 | ! Description: |
---|
1583 | ! ------------ |
---|
1584 | !> Sedimentation of cloud droplets (Ackermann et al., 2009, MWR). |
---|
1585 | !> Call for grid point i,j |
---|
1586 | !------------------------------------------------------------------------------! |
---|
1587 | SUBROUTINE sedimentation_cloud_ij( i, j ) |
---|
1588 | |
---|
1589 | USE arrays_3d, & |
---|
1590 | ONLY: ddzu, dzu, nc_1d, pt_1d, q_1d, qc_1d |
---|
1591 | |
---|
1592 | USE cloud_parameters, & |
---|
1593 | ONLY: eps_sb, hyrho, l_d_cp, pt_d_t, sed_qc_const |
---|
1594 | |
---|
1595 | USE constants, & |
---|
1596 | ONLY: pi |
---|
1597 | |
---|
1598 | USE control_parameters, & |
---|
1599 | ONLY: dt_do2d_xy, dt_micro, intermediate_timestep_count |
---|
1600 | |
---|
1601 | USE indices, & |
---|
1602 | ONLY: nzb, nzb_s_inner, nzt |
---|
1603 | |
---|
1604 | USE kinds |
---|
1605 | |
---|
1606 | IMPLICIT NONE |
---|
1607 | |
---|
1608 | INTEGER(iwp) :: i !< |
---|
1609 | INTEGER(iwp) :: j !< |
---|
1610 | INTEGER(iwp) :: k !< |
---|
1611 | |
---|
1612 | REAL(wp), DIMENSION(nzb:nzt+1) :: sed_qc !< |
---|
1613 | |
---|
1614 | sed_qc(nzt+1) = 0.0_wp |
---|
1615 | |
---|
1616 | DO k = nzt, nzb_s_inner(j,i)+1, -1 |
---|
1617 | IF ( qc_1d(k) > eps_sb ) THEN |
---|
1618 | sed_qc(k) = sed_qc_const * nc_1d(k)**( -2.0_wp / 3.0_wp ) * & |
---|
1619 | ( qc_1d(k) * hyrho(k) )**( 5.0_wp / 3.0_wp ) |
---|
1620 | ELSE |
---|
1621 | sed_qc(k) = 0.0_wp |
---|
1622 | ENDIF |
---|
1623 | |
---|
1624 | sed_qc(k) = MIN( sed_qc(k), hyrho(k) * dzu(k+1) * q_1d(k) / & |
---|
1625 | dt_micro + sed_qc(k+1) & |
---|
1626 | ) |
---|
1627 | |
---|
1628 | q_1d(k) = q_1d(k) + ( sed_qc(k+1) - sed_qc(k) ) * ddzu(k+1) / & |
---|
1629 | hyrho(k) * dt_micro |
---|
1630 | qc_1d(k) = qc_1d(k) + ( sed_qc(k+1) - sed_qc(k) ) * ddzu(k+1) / & |
---|
1631 | hyrho(k) * dt_micro |
---|
1632 | pt_1d(k) = pt_1d(k) - ( sed_qc(k+1) - sed_qc(k) ) * ddzu(k+1) / & |
---|
1633 | hyrho(k) * l_d_cp * pt_d_t(k) * dt_micro |
---|
1634 | |
---|
1635 | ENDDO |
---|
1636 | |
---|
1637 | END SUBROUTINE sedimentation_cloud_ij |
---|
1638 | |
---|
1639 | |
---|
1640 | !------------------------------------------------------------------------------! |
---|
1641 | ! Description: |
---|
1642 | ! ------------ |
---|
1643 | !> Computation of sedimentation flux. Implementation according to Stevens |
---|
1644 | !> and Seifert (2008). Code is based on UCLA-LES. Call for grid point i,j |
---|
1645 | !------------------------------------------------------------------------------! |
---|
1646 | SUBROUTINE sedimentation_rain_ij( i, j ) |
---|
1647 | |
---|
1648 | USE arrays_3d, & |
---|
1649 | ONLY: ddzu, dzu, nr_1d, pt_1d, q_1d, qr_1d |
---|
1650 | |
---|
1651 | USE cloud_parameters, & |
---|
1652 | ONLY: a_term, b_term, c_term, cof, dpirho_l, eps_sb, hyrho, & |
---|
1653 | limiter_sedimentation, l_d_cp, precipitation_amount, prr, & |
---|
1654 | pt_d_t, stp |
---|
1655 | |
---|
1656 | USE control_parameters, & |
---|
1657 | ONLY: call_microphysics_at_all_substeps, dt_do2d_xy, dt_micro, & |
---|
1658 | dt_3d, intermediate_timestep_count, & |
---|
1659 | intermediate_timestep_count_max, & |
---|
1660 | precipitation_amount_interval, time_do2d_xy |
---|
1661 | |
---|
1662 | USE indices, & |
---|
1663 | ONLY: nzb, nzb_s_inner, nzt |
---|
1664 | |
---|
1665 | USE kinds |
---|
1666 | |
---|
1667 | USE statistics, & |
---|
1668 | ONLY: weight_substep |
---|
1669 | |
---|
1670 | IMPLICIT NONE |
---|
1671 | |
---|
1672 | INTEGER(iwp) :: i !< |
---|
1673 | INTEGER(iwp) :: j !< |
---|
1674 | INTEGER(iwp) :: k !< |
---|
1675 | INTEGER(iwp) :: k_run !< |
---|
1676 | |
---|
1677 | REAL(wp) :: c_run !< |
---|
1678 | REAL(wp) :: d_max !< |
---|
1679 | REAL(wp) :: d_mean !< |
---|
1680 | REAL(wp) :: d_min !< |
---|
1681 | REAL(wp) :: dr !< |
---|
1682 | REAL(wp) :: dt_sedi !< |
---|
1683 | REAL(wp) :: flux !< |
---|
1684 | REAL(wp) :: lambda_r !< |
---|
1685 | REAL(wp) :: mu_r !< |
---|
1686 | REAL(wp) :: z_run !< |
---|
1687 | |
---|
1688 | REAL(wp), DIMENSION(nzb:nzt+1) :: c_nr !< |
---|
1689 | REAL(wp), DIMENSION(nzb:nzt+1) :: c_qr !< |
---|
1690 | REAL(wp), DIMENSION(nzb:nzt+1) :: d_nr !< |
---|
1691 | REAL(wp), DIMENSION(nzb:nzt+1) :: d_qr !< |
---|
1692 | REAL(wp), DIMENSION(nzb:nzt+1) :: nr_slope !< |
---|
1693 | REAL(wp), DIMENSION(nzb:nzt+1) :: qr_slope !< |
---|
1694 | REAL(wp), DIMENSION(nzb:nzt+1) :: sed_nr !< |
---|
1695 | REAL(wp), DIMENSION(nzb:nzt+1) :: sed_qr !< |
---|
1696 | REAL(wp), DIMENSION(nzb:nzt+1) :: w_nr !< |
---|
1697 | REAL(wp), DIMENSION(nzb:nzt+1) :: w_qr !< |
---|
1698 | |
---|
1699 | IF ( intermediate_timestep_count == 1 ) prr(:,j,i) = 0.0_wp |
---|
1700 | ! |
---|
1701 | !-- Compute velocities |
---|
1702 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1703 | IF ( qr_1d(k) > eps_sb ) THEN |
---|
1704 | ! |
---|
1705 | !-- Weight averaged diameter of rain drops: |
---|
1706 | dr = ( hyrho(k) * qr_1d(k) / nr_1d(k) * dpirho_l )**( 1.0_wp / 3.0_wp ) |
---|
1707 | ! |
---|
1708 | !-- Shape parameter of gamma distribution (Milbrandt and Yau, 2005; |
---|
1709 | !-- Stevens and Seifert, 2008): |
---|
1710 | mu_r = 10.0_wp * ( 1.0_wp + TANH( 1.2E3_wp * ( dr - 1.4E-3_wp ) ) ) |
---|
1711 | ! |
---|
1712 | !-- Slope parameter of gamma distribution (Seifert, 2008): |
---|
1713 | lambda_r = ( ( mu_r + 3.0_wp ) * ( mu_r + 2.0_wp ) * & |
---|
1714 | ( mu_r + 1.0_wp ) )**( 1.0_wp / 3.0_wp ) / dr |
---|
1715 | |
---|
1716 | w_nr(k) = MAX( 0.1_wp, MIN( 20.0_wp, & |
---|
1717 | a_term - b_term * ( 1.0_wp + & |
---|
1718 | c_term / lambda_r )**( -1.0_wp * & |
---|
1719 | ( mu_r + 1.0_wp ) ) & |
---|
1720 | ) & |
---|
1721 | ) |
---|
1722 | w_qr(k) = MAX( 0.1_wp, MIN( 20.0_wp, & |
---|
1723 | a_term - b_term * ( 1.0_wp + & |
---|
1724 | c_term / lambda_r )**( -1.0_wp * & |
---|
1725 | ( mu_r + 4.0_wp ) ) & |
---|
1726 | ) & |
---|
1727 | ) |
---|
1728 | ELSE |
---|
1729 | w_nr(k) = 0.0_wp |
---|
1730 | w_qr(k) = 0.0_wp |
---|
1731 | ENDIF |
---|
1732 | ENDDO |
---|
1733 | ! |
---|
1734 | !-- Adjust boundary values |
---|
1735 | w_nr(nzb_s_inner(j,i)) = w_nr(nzb_s_inner(j,i)+1) |
---|
1736 | w_qr(nzb_s_inner(j,i)) = w_qr(nzb_s_inner(j,i)+1) |
---|
1737 | w_nr(nzt+1) = 0.0_wp |
---|
1738 | w_qr(nzt+1) = 0.0_wp |
---|
1739 | ! |
---|
1740 | !-- Compute Courant number |
---|
1741 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1742 | c_nr(k) = 0.25_wp * ( w_nr(k-1) + 2.0_wp * w_nr(k) + w_nr(k+1) ) * & |
---|
1743 | dt_micro * ddzu(k) |
---|
1744 | c_qr(k) = 0.25_wp * ( w_qr(k-1) + 2.0_wp * w_qr(k) + w_qr(k+1) ) * & |
---|
1745 | dt_micro * ddzu(k) |
---|
1746 | ENDDO |
---|
1747 | ! |
---|
1748 | !-- Limit slopes with monotonized centered (MC) limiter (van Leer, 1977): |
---|
1749 | IF ( limiter_sedimentation ) THEN |
---|
1750 | |
---|
1751 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
1752 | d_mean = 0.5_wp * ( qr_1d(k+1) - qr_1d(k-1) ) |
---|
1753 | d_min = qr_1d(k) - MIN( qr_1d(k+1), qr_1d(k), qr_1d(k-1) ) |
---|
1754 | d_max = MAX( qr_1d(k+1), qr_1d(k), qr_1d(k-1) ) - qr_1d(k) |
---|
1755 | |
---|
1756 | qr_slope(k) = SIGN(1.0_wp, d_mean) * MIN ( 2.0_wp * d_min, & |
---|
1757 | 2.0_wp * d_max, & |
---|
1758 | ABS( d_mean ) ) |
---|
1759 | |
---|
1760 | d_mean = 0.5_wp * ( nr_1d(k+1) - nr_1d(k-1) ) |
---|
1761 | d_min = nr_1d(k) - MIN( nr_1d(k+1), nr_1d(k), nr_1d(k-1) ) |
---|
1762 | d_max = MAX( nr_1d(k+1), nr_1d(k), nr_1d(k-1) ) - nr_1d(k) |
---|
1763 | |
---|
1764 | nr_slope(k) = SIGN(1.0_wp, d_mean) * MIN ( 2.0_wp * d_min, & |
---|
1765 | 2.0_wp * d_max, & |
---|
1766 | ABS( d_mean ) ) |
---|
1767 | ENDDO |
---|
1768 | |
---|
1769 | ELSE |
---|
1770 | |
---|
1771 | nr_slope = 0.0_wp |
---|
1772 | qr_slope = 0.0_wp |
---|
1773 | |
---|
1774 | ENDIF |
---|
1775 | |
---|
1776 | sed_nr(nzt+1) = 0.0_wp |
---|
1777 | sed_qr(nzt+1) = 0.0_wp |
---|
1778 | ! |
---|
1779 | !-- Compute sedimentation flux |
---|
1780 | DO k = nzt, nzb_s_inner(j,i)+1, -1 |
---|
1781 | ! |
---|
1782 | !-- Sum up all rain drop number densities which contribute to the flux |
---|
1783 | !-- through k-1/2 |
---|
1784 | flux = 0.0_wp |
---|
1785 | z_run = 0.0_wp ! height above z(k) |
---|
1786 | k_run = k |
---|
1787 | c_run = MIN( 1.0_wp, c_nr(k) ) |
---|
1788 | DO WHILE ( c_run > 0.0_wp .AND. k_run <= nzt ) |
---|
1789 | flux = flux + hyrho(k_run) * & |
---|
1790 | ( nr_1d(k_run) + nr_slope(k_run) * ( 1.0_wp - c_run ) * & |
---|
1791 | 0.5_wp ) * c_run * dzu(k_run) |
---|
1792 | z_run = z_run + dzu(k_run) |
---|
1793 | k_run = k_run + 1 |
---|
1794 | c_run = MIN( 1.0_wp, c_nr(k_run) - z_run * ddzu(k_run) ) |
---|
1795 | ENDDO |
---|
1796 | ! |
---|
1797 | !-- It is not allowed to sediment more rain drop number density than |
---|
1798 | !-- available |
---|
1799 | flux = MIN( flux, & |
---|
1800 | hyrho(k) * dzu(k+1) * nr_1d(k) + sed_nr(k+1) * dt_micro ) |
---|
1801 | |
---|
1802 | sed_nr(k) = flux / dt_micro |
---|
1803 | nr_1d(k) = nr_1d(k) + ( sed_nr(k+1) - sed_nr(k) ) * ddzu(k+1) / & |
---|
1804 | hyrho(k) * dt_micro |
---|
1805 | ! |
---|
1806 | !-- Sum up all rain water content which contributes to the flux |
---|
1807 | !-- through k-1/2 |
---|
1808 | flux = 0.0_wp |
---|
1809 | z_run = 0.0_wp ! height above z(k) |
---|
1810 | k_run = k |
---|
1811 | c_run = MIN( 1.0_wp, c_qr(k) ) |
---|
1812 | |
---|
1813 | DO WHILE ( c_run > 0.0_wp .AND. k_run <= nzt ) |
---|
1814 | |
---|
1815 | flux = flux + hyrho(k_run) * & |
---|
1816 | ( qr_1d(k_run) + qr_slope(k_run) * ( 1.0_wp - c_run ) * & |
---|
1817 | 0.5_wp ) * c_run * dzu(k_run) |
---|
1818 | z_run = z_run + dzu(k_run) |
---|
1819 | k_run = k_run + 1 |
---|
1820 | c_run = MIN( 1.0_wp, c_qr(k_run) - z_run * ddzu(k_run) ) |
---|
1821 | |
---|
1822 | ENDDO |
---|
1823 | ! |
---|
1824 | !-- It is not allowed to sediment more rain water content than available |
---|
1825 | flux = MIN( flux, & |
---|
1826 | hyrho(k) * dzu(k) * qr_1d(k) + sed_qr(k+1) * dt_micro ) |
---|
1827 | |
---|
1828 | sed_qr(k) = flux / dt_micro |
---|
1829 | |
---|
1830 | qr_1d(k) = qr_1d(k) + ( sed_qr(k+1) - sed_qr(k) ) * ddzu(k+1) / & |
---|
1831 | hyrho(k) * dt_micro |
---|
1832 | q_1d(k) = q_1d(k) + ( sed_qr(k+1) - sed_qr(k) ) * ddzu(k+1) / & |
---|
1833 | hyrho(k) * dt_micro |
---|
1834 | pt_1d(k) = pt_1d(k) - ( sed_qr(k+1) - sed_qr(k) ) * ddzu(k+1) / & |
---|
1835 | hyrho(k) * l_d_cp * pt_d_t(k) * dt_micro |
---|
1836 | ! |
---|
1837 | !-- Compute the rain rate |
---|
1838 | IF ( call_microphysics_at_all_substeps ) THEN |
---|
1839 | prr(k,j,i) = prr(k,j,i) + sed_qr(k) / hyrho(k) * & |
---|
1840 | weight_substep(intermediate_timestep_count) |
---|
1841 | ELSE |
---|
1842 | prr(k,j,i) = sed_qr(k) / hyrho(k) |
---|
1843 | ENDIF |
---|
1844 | |
---|
1845 | ENDDO |
---|
1846 | |
---|
1847 | ! |
---|
1848 | !-- Precipitation amount |
---|
1849 | IF ( intermediate_timestep_count == intermediate_timestep_count_max & |
---|
1850 | .AND. ( dt_do2d_xy - time_do2d_xy ) < & |
---|
1851 | precipitation_amount_interval ) THEN |
---|
1852 | |
---|
1853 | precipitation_amount(j,i) = precipitation_amount(j,i) + & |
---|
1854 | prr(nzb_s_inner(j,i)+1,j,i) * & |
---|
1855 | hyrho(nzb_s_inner(j,i)+1) * dt_3d |
---|
1856 | ENDIF |
---|
1857 | |
---|
1858 | END SUBROUTINE sedimentation_rain_ij |
---|
1859 | |
---|
1860 | |
---|
1861 | !------------------------------------------------------------------------------! |
---|
1862 | ! Description: |
---|
1863 | ! ------------ |
---|
1864 | !> This function computes the gamma function (Press et al., 1992). |
---|
1865 | !> The gamma function is needed for the calculation of the evaporation |
---|
1866 | !> of rain drops. |
---|
1867 | !------------------------------------------------------------------------------! |
---|
1868 | FUNCTION gamm( xx ) |
---|
1869 | |
---|
1870 | USE cloud_parameters, & |
---|
1871 | ONLY: cof, stp |
---|
1872 | |
---|
1873 | USE kinds |
---|
1874 | |
---|
1875 | IMPLICIT NONE |
---|
1876 | |
---|
1877 | INTEGER(iwp) :: j !< |
---|
1878 | |
---|
1879 | REAL(wp) :: gamm !< |
---|
1880 | REAL(wp) :: ser !< |
---|
1881 | REAL(wp) :: tmp !< |
---|
1882 | REAL(wp) :: x_gamm !< |
---|
1883 | REAL(wp) :: xx !< |
---|
1884 | REAL(wp) :: y_gamm !< |
---|
1885 | |
---|
1886 | x_gamm = xx |
---|
1887 | y_gamm = x_gamm |
---|
1888 | tmp = x_gamm + 5.5_wp |
---|
1889 | tmp = ( x_gamm + 0.5_wp ) * LOG( tmp ) - tmp |
---|
1890 | ser = 1.000000000190015_wp |
---|
1891 | |
---|
1892 | DO j = 1, 6 |
---|
1893 | y_gamm = y_gamm + 1.0_wp |
---|
1894 | ser = ser + cof( j ) / y_gamm |
---|
1895 | ENDDO |
---|
1896 | |
---|
1897 | ! |
---|
1898 | !-- Until this point the algorithm computes the logarithm of the gamma |
---|
1899 | !-- function. Hence, the exponential function is used. |
---|
1900 | ! gamm = EXP( tmp + LOG( stp * ser / x_gamm ) ) |
---|
1901 | gamm = EXP( tmp ) * stp * ser / x_gamm |
---|
1902 | |
---|
1903 | RETURN |
---|
1904 | |
---|
1905 | END FUNCTION gamm |
---|
1906 | |
---|
1907 | END MODULE microphysics_mod |
---|