1 | MODULE microphysics_mod |
---|
2 | |
---|
3 | !--------------------------------------------------------------------------------! |
---|
4 | ! This file is part of PALM. |
---|
5 | ! |
---|
6 | ! PALM is free software: you can redistribute it and/or modify it under the terms |
---|
7 | ! of the GNU General Public License as published by the Free Software Foundation, |
---|
8 | ! either version 3 of the License, or (at your option) any later version. |
---|
9 | ! |
---|
10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
13 | ! |
---|
14 | ! You should have received a copy of the GNU General Public License along with |
---|
15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
16 | ! |
---|
17 | ! Copyright 1997-2012 Leibniz University Hannover |
---|
18 | !--------------------------------------------------------------------------------! |
---|
19 | ! |
---|
20 | ! Current revisions: |
---|
21 | ! ------------------ |
---|
22 | ! |
---|
23 | ! |
---|
24 | ! Former revisions: |
---|
25 | ! ----------------- |
---|
26 | ! $Id: microphysics.f90 1242 2013-10-30 11:50:11Z witha $ |
---|
27 | ! |
---|
28 | ! 1241 2013-10-30 11:36:58Z heinze |
---|
29 | ! hyp and rho have to be calculated at each time step if data from external |
---|
30 | ! file LSF_DATA are used |
---|
31 | ! |
---|
32 | ! 1115 2013-03-26 18:16:16Z hoffmann |
---|
33 | ! microphyical tendencies are calculated in microphysics_control in an optimized |
---|
34 | ! way; unrealistic values are prevented; bugfix in evaporation; some reformatting |
---|
35 | ! |
---|
36 | ! 1106 2013-03-04 05:31:38Z raasch |
---|
37 | ! small changes in code formatting |
---|
38 | ! |
---|
39 | ! 1092 2013-02-02 11:24:22Z raasch |
---|
40 | ! unused variables removed |
---|
41 | ! file put under GPL |
---|
42 | ! |
---|
43 | ! 1065 2012-11-22 17:42:36Z hoffmann |
---|
44 | ! Sedimentation process implemented according to Stevens and Seifert (2008). |
---|
45 | ! Turbulence effects on autoconversion and accretion added (Seifert, Nuijens |
---|
46 | ! and Stevens, 2010). |
---|
47 | ! |
---|
48 | ! 1053 2012-11-13 17:11:03Z hoffmann |
---|
49 | ! initial revision |
---|
50 | ! |
---|
51 | ! Description: |
---|
52 | ! ------------ |
---|
53 | ! Calculate cloud microphysics according to the two moment bulk |
---|
54 | ! scheme by Seifert and Beheng (2006). |
---|
55 | !------------------------------------------------------------------------------! |
---|
56 | |
---|
57 | PRIVATE |
---|
58 | PUBLIC microphysics_control |
---|
59 | |
---|
60 | INTERFACE microphysics_control |
---|
61 | MODULE PROCEDURE microphysics_control |
---|
62 | MODULE PROCEDURE microphysics_control_ij |
---|
63 | END INTERFACE microphysics_control |
---|
64 | |
---|
65 | INTERFACE adjust_cloud |
---|
66 | MODULE PROCEDURE adjust_cloud |
---|
67 | MODULE PROCEDURE adjust_cloud_ij |
---|
68 | END INTERFACE adjust_cloud |
---|
69 | |
---|
70 | INTERFACE autoconversion |
---|
71 | MODULE PROCEDURE autoconversion |
---|
72 | MODULE PROCEDURE autoconversion_ij |
---|
73 | END INTERFACE autoconversion |
---|
74 | |
---|
75 | INTERFACE accretion |
---|
76 | MODULE PROCEDURE accretion |
---|
77 | MODULE PROCEDURE accretion_ij |
---|
78 | END INTERFACE accretion |
---|
79 | |
---|
80 | INTERFACE selfcollection_breakup |
---|
81 | MODULE PROCEDURE selfcollection_breakup |
---|
82 | MODULE PROCEDURE selfcollection_breakup_ij |
---|
83 | END INTERFACE selfcollection_breakup |
---|
84 | |
---|
85 | INTERFACE evaporation_rain |
---|
86 | MODULE PROCEDURE evaporation_rain |
---|
87 | MODULE PROCEDURE evaporation_rain_ij |
---|
88 | END INTERFACE evaporation_rain |
---|
89 | |
---|
90 | INTERFACE sedimentation_cloud |
---|
91 | MODULE PROCEDURE sedimentation_cloud |
---|
92 | MODULE PROCEDURE sedimentation_cloud_ij |
---|
93 | END INTERFACE sedimentation_cloud |
---|
94 | |
---|
95 | INTERFACE sedimentation_rain |
---|
96 | MODULE PROCEDURE sedimentation_rain |
---|
97 | MODULE PROCEDURE sedimentation_rain_ij |
---|
98 | END INTERFACE sedimentation_rain |
---|
99 | |
---|
100 | CONTAINS |
---|
101 | |
---|
102 | |
---|
103 | !------------------------------------------------------------------------------! |
---|
104 | ! Call for all grid points |
---|
105 | !------------------------------------------------------------------------------! |
---|
106 | SUBROUTINE microphysics_control |
---|
107 | |
---|
108 | USE arrays_3d |
---|
109 | USE cloud_parameters |
---|
110 | USE control_parameters |
---|
111 | USE grid_variables |
---|
112 | USE indices |
---|
113 | USE statistics |
---|
114 | |
---|
115 | IMPLICIT NONE |
---|
116 | |
---|
117 | INTEGER :: i, j, k |
---|
118 | |
---|
119 | |
---|
120 | DO i = nxl, nxr |
---|
121 | DO j = nys, nyn |
---|
122 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
123 | |
---|
124 | ENDDO |
---|
125 | ENDDO |
---|
126 | ENDDO |
---|
127 | |
---|
128 | END SUBROUTINE microphysics_control |
---|
129 | |
---|
130 | SUBROUTINE adjust_cloud |
---|
131 | |
---|
132 | USE arrays_3d |
---|
133 | USE cloud_parameters |
---|
134 | USE indices |
---|
135 | |
---|
136 | IMPLICIT NONE |
---|
137 | |
---|
138 | INTEGER :: i, j, k |
---|
139 | |
---|
140 | |
---|
141 | DO i = nxl, nxr |
---|
142 | DO j = nys, nyn |
---|
143 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
144 | |
---|
145 | ENDDO |
---|
146 | ENDDO |
---|
147 | ENDDO |
---|
148 | |
---|
149 | END SUBROUTINE adjust_cloud |
---|
150 | |
---|
151 | |
---|
152 | SUBROUTINE autoconversion |
---|
153 | |
---|
154 | USE arrays_3d |
---|
155 | USE cloud_parameters |
---|
156 | USE control_parameters |
---|
157 | USE grid_variables |
---|
158 | USE indices |
---|
159 | |
---|
160 | IMPLICIT NONE |
---|
161 | |
---|
162 | INTEGER :: i, j, k |
---|
163 | |
---|
164 | |
---|
165 | DO i = nxl, nxr |
---|
166 | DO j = nys, nyn |
---|
167 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
168 | |
---|
169 | ENDDO |
---|
170 | ENDDO |
---|
171 | ENDDO |
---|
172 | |
---|
173 | END SUBROUTINE autoconversion |
---|
174 | |
---|
175 | |
---|
176 | SUBROUTINE accretion |
---|
177 | |
---|
178 | USE arrays_3d |
---|
179 | USE cloud_parameters |
---|
180 | USE control_parameters |
---|
181 | USE indices |
---|
182 | |
---|
183 | IMPLICIT NONE |
---|
184 | |
---|
185 | INTEGER :: i, j, k |
---|
186 | |
---|
187 | |
---|
188 | DO i = nxl, nxr |
---|
189 | DO j = nys, nyn |
---|
190 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
191 | |
---|
192 | ENDDO |
---|
193 | ENDDO |
---|
194 | ENDDO |
---|
195 | |
---|
196 | END SUBROUTINE accretion |
---|
197 | |
---|
198 | |
---|
199 | SUBROUTINE selfcollection_breakup |
---|
200 | |
---|
201 | USE arrays_3d |
---|
202 | USE cloud_parameters |
---|
203 | USE control_parameters |
---|
204 | USE indices |
---|
205 | |
---|
206 | IMPLICIT NONE |
---|
207 | |
---|
208 | INTEGER :: i, j, k |
---|
209 | |
---|
210 | |
---|
211 | DO i = nxl, nxr |
---|
212 | DO j = nys, nyn |
---|
213 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
214 | |
---|
215 | ENDDO |
---|
216 | ENDDO |
---|
217 | ENDDO |
---|
218 | |
---|
219 | END SUBROUTINE selfcollection_breakup |
---|
220 | |
---|
221 | |
---|
222 | SUBROUTINE evaporation_rain |
---|
223 | |
---|
224 | USE arrays_3d |
---|
225 | USE cloud_parameters |
---|
226 | USE constants |
---|
227 | USE control_parameters |
---|
228 | USE indices |
---|
229 | |
---|
230 | IMPLICIT NONE |
---|
231 | |
---|
232 | INTEGER :: i, j, k |
---|
233 | |
---|
234 | |
---|
235 | DO i = nxl, nxr |
---|
236 | DO j = nys, nyn |
---|
237 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
238 | |
---|
239 | ENDDO |
---|
240 | ENDDO |
---|
241 | ENDDO |
---|
242 | |
---|
243 | END SUBROUTINE evaporation_rain |
---|
244 | |
---|
245 | |
---|
246 | SUBROUTINE sedimentation_cloud |
---|
247 | |
---|
248 | USE arrays_3d |
---|
249 | USE cloud_parameters |
---|
250 | USE constants |
---|
251 | USE control_parameters |
---|
252 | USE indices |
---|
253 | |
---|
254 | IMPLICIT NONE |
---|
255 | |
---|
256 | INTEGER :: i, j, k |
---|
257 | |
---|
258 | |
---|
259 | DO i = nxl, nxr |
---|
260 | DO j = nys, nyn |
---|
261 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
262 | |
---|
263 | ENDDO |
---|
264 | ENDDO |
---|
265 | ENDDO |
---|
266 | |
---|
267 | END SUBROUTINE sedimentation_cloud |
---|
268 | |
---|
269 | |
---|
270 | SUBROUTINE sedimentation_rain |
---|
271 | |
---|
272 | USE arrays_3d |
---|
273 | USE cloud_parameters |
---|
274 | USE constants |
---|
275 | USE control_parameters |
---|
276 | USE indices |
---|
277 | USE statistics |
---|
278 | |
---|
279 | IMPLICIT NONE |
---|
280 | |
---|
281 | INTEGER :: i, j, k |
---|
282 | |
---|
283 | |
---|
284 | DO i = nxl, nxr |
---|
285 | DO j = nys, nyn |
---|
286 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
287 | |
---|
288 | ENDDO |
---|
289 | ENDDO |
---|
290 | ENDDO |
---|
291 | |
---|
292 | END SUBROUTINE sedimentation_rain |
---|
293 | |
---|
294 | |
---|
295 | !------------------------------------------------------------------------------! |
---|
296 | ! Call for grid point i,j |
---|
297 | !------------------------------------------------------------------------------! |
---|
298 | |
---|
299 | SUBROUTINE microphysics_control_ij( i, j ) |
---|
300 | |
---|
301 | USE arrays_3d |
---|
302 | USE cloud_parameters |
---|
303 | USE control_parameters |
---|
304 | USE grid_variables |
---|
305 | USE indices |
---|
306 | USE statistics |
---|
307 | |
---|
308 | IMPLICIT NONE |
---|
309 | |
---|
310 | INTEGER :: i, j, k |
---|
311 | REAL :: t_surface |
---|
312 | |
---|
313 | IF ( large_scale_forcing .AND. lsf_surf ) THEN |
---|
314 | ! |
---|
315 | !-- Calculate: |
---|
316 | !-- pt / t : ratio of potential and actual temperature (pt_d_t) |
---|
317 | !-- t / pt : ratio of actual and potential temperature (t_d_pt) |
---|
318 | !-- p_0(z) : vertical profile of the hydrostatic pressure (hyp) |
---|
319 | t_surface = pt_surface * ( surface_pressure / 1000.0 )**0.286 |
---|
320 | DO k = nzb, nzt+1 |
---|
321 | hyp(k) = surface_pressure * 100.0 * & |
---|
322 | ( (t_surface - g/cp * zu(k)) / t_surface )**(1.0/0.286) |
---|
323 | pt_d_t(k) = ( 100000.0 / hyp(k) )**0.286 |
---|
324 | t_d_pt(k) = 1.0 / pt_d_t(k) |
---|
325 | hyrho(k) = hyp(k) / ( r_d * t_d_pt(k) * pt_init(k) ) |
---|
326 | ENDDO |
---|
327 | ! |
---|
328 | !-- Compute reference density |
---|
329 | rho_surface = surface_pressure * 100.0 / ( r_d * t_surface ) |
---|
330 | ENDIF |
---|
331 | |
---|
332 | |
---|
333 | dt_micro = dt_3d * weight_pres(intermediate_timestep_count) |
---|
334 | ! |
---|
335 | !-- Adjust unrealistic values |
---|
336 | IF ( precipitation ) CALL adjust_cloud( i,j ) |
---|
337 | ! |
---|
338 | !-- Use 1-d arrays |
---|
339 | q_1d(:) = q(:,j,i) |
---|
340 | pt_1d(:) = pt(:,j,i) |
---|
341 | qc_1d(:) = qc(:,j,i) |
---|
342 | nc_1d(:) = nc_const |
---|
343 | IF ( precipitation ) THEN |
---|
344 | qr_1d(:) = qr(:,j,i) |
---|
345 | nr_1d(:) = nr(:,j,i) |
---|
346 | ENDIF |
---|
347 | ! |
---|
348 | !-- Compute cloud physics |
---|
349 | IF ( precipitation ) THEN |
---|
350 | CALL autoconversion( i,j ) |
---|
351 | CALL accretion( i,j ) |
---|
352 | CALL selfcollection_breakup( i,j ) |
---|
353 | CALL evaporation_rain( i,j ) |
---|
354 | CALL sedimentation_rain( i,j ) |
---|
355 | ENDIF |
---|
356 | |
---|
357 | IF ( drizzle ) CALL sedimentation_cloud( i,j ) |
---|
358 | ! |
---|
359 | !-- Derive tendencies |
---|
360 | tend_q(:,j,i) = ( q_1d(:) - q(:,j,i) ) / dt_micro |
---|
361 | tend_pt(:,j,i) = ( pt_1d(:) - pt(:,j,i) ) / dt_micro |
---|
362 | IF ( precipitation ) THEN |
---|
363 | tend_qr(:,j,i) = ( qr_1d(:) - qr(:,j,i) ) / dt_micro |
---|
364 | tend_nr(:,j,i) = ( nr_1d(:) - nr(:,j,i) ) / dt_micro |
---|
365 | ENDIF |
---|
366 | |
---|
367 | END SUBROUTINE microphysics_control_ij |
---|
368 | |
---|
369 | SUBROUTINE adjust_cloud_ij( i, j ) |
---|
370 | |
---|
371 | USE arrays_3d |
---|
372 | USE cloud_parameters |
---|
373 | USE indices |
---|
374 | |
---|
375 | IMPLICIT NONE |
---|
376 | |
---|
377 | INTEGER :: i, j, k |
---|
378 | ! |
---|
379 | !-- Adjust number of raindrops to avoid nonlinear effects in |
---|
380 | !-- sedimentation and evaporation of rain drops due to too small or |
---|
381 | !-- too big weights of rain drops (Stevens and Seifert, 2008). |
---|
382 | !-- The same procedure is applied to cloud droplets if they are determined |
---|
383 | !-- prognostically. |
---|
384 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
385 | |
---|
386 | IF ( qr(k,j,i) <= eps_sb ) THEN |
---|
387 | qr(k,j,i) = 0.0 |
---|
388 | nr(k,j,i) = 0.0 |
---|
389 | ELSE |
---|
390 | ! |
---|
391 | !-- Adjust number of raindrops to avoid nonlinear effects in |
---|
392 | !-- sedimentation and evaporation of rain drops due to too small or |
---|
393 | !-- too big weights of rain drops (Stevens and Seifert, 2008). |
---|
394 | IF ( nr(k,j,i) * xrmin > qr(k,j,i) * hyrho(k) ) THEN |
---|
395 | nr(k,j,i) = qr(k,j,i) * hyrho(k) / xrmin |
---|
396 | ELSEIF ( nr(k,j,i) * xrmax < qr(k,j,i) * hyrho(k) ) THEN |
---|
397 | nr(k,j,i) = qr(k,j,i) * hyrho(k) / xrmax |
---|
398 | ENDIF |
---|
399 | |
---|
400 | ENDIF |
---|
401 | |
---|
402 | ENDDO |
---|
403 | |
---|
404 | END SUBROUTINE adjust_cloud_ij |
---|
405 | |
---|
406 | |
---|
407 | SUBROUTINE autoconversion_ij( i, j ) |
---|
408 | |
---|
409 | USE arrays_3d |
---|
410 | USE cloud_parameters |
---|
411 | USE control_parameters |
---|
412 | USE grid_variables |
---|
413 | USE indices |
---|
414 | |
---|
415 | IMPLICIT NONE |
---|
416 | |
---|
417 | INTEGER :: i, j, k |
---|
418 | REAL :: alpha_cc, autocon, epsilon, k_au, l_mix, nu_c, phi_au, & |
---|
419 | r_cc, rc, re_lambda, selfcoll, sigma_cc, tau_cloud, xc |
---|
420 | |
---|
421 | |
---|
422 | k_au = k_cc / ( 20.0 * x0 ) |
---|
423 | |
---|
424 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
425 | |
---|
426 | IF ( qc_1d(k) > eps_sb ) THEN |
---|
427 | ! |
---|
428 | !-- Intern time scale of coagulation (Seifert and Beheng, 2006): |
---|
429 | !-- (1.0 - qc(k,j,i) / ( qc(k,j,i) + qr_1d(k) )) |
---|
430 | tau_cloud = 1.0 - qc_1d(k) / ( qr_1d(k) + qc_1d(k) ) |
---|
431 | ! |
---|
432 | !-- Universal function for autoconversion process |
---|
433 | !-- (Seifert and Beheng, 2006): |
---|
434 | phi_au = 600.0 * tau_cloud**0.68 * ( 1.0 - tau_cloud**0.68 )**3 |
---|
435 | ! |
---|
436 | !-- Shape parameter of gamma distribution (Geoffroy et al., 2010): |
---|
437 | !-- (Use constant nu_c = 1.0 instead?) |
---|
438 | nu_c = 1.0 !MAX( 0.0, 1580.0 * hyrho(k) * qc(k,j,i) - 0.28 ) |
---|
439 | ! |
---|
440 | !-- Mean weight of cloud droplets: |
---|
441 | xc = hyrho(k) * qc_1d(k) / nc_1d(k) |
---|
442 | ! |
---|
443 | !-- Parameterized turbulence effects on autoconversion (Seifert, |
---|
444 | !-- Nuijens and Stevens, 2010) |
---|
445 | IF ( turbulence ) THEN |
---|
446 | ! |
---|
447 | !-- Weight averaged radius of cloud droplets: |
---|
448 | rc = 0.5 * ( xc * dpirho_l )**( 1.0 / 3.0 ) |
---|
449 | |
---|
450 | alpha_cc = ( a_1 + a_2 * nu_c ) / ( 1.0 + a_3 * nu_c ) |
---|
451 | r_cc = ( b_1 + b_2 * nu_c ) / ( 1.0 + b_3 * nu_c ) |
---|
452 | sigma_cc = ( c_1 + c_2 * nu_c ) / ( 1.0 + c_3 * nu_c ) |
---|
453 | ! |
---|
454 | !-- Mixing length (neglecting distance to ground and stratification) |
---|
455 | l_mix = ( dx * dy * dzu(k) )**( 1.0 / 3.0 ) |
---|
456 | ! |
---|
457 | !-- Limit dissipation rate according to Seifert, Nuijens and |
---|
458 | !-- Stevens (2010) |
---|
459 | epsilon = MIN( 0.06, diss(k,j,i) ) |
---|
460 | ! |
---|
461 | !-- Compute Taylor-microscale Reynolds number: |
---|
462 | re_lambda = 6.0 / 11.0 * ( l_mix / c_const )**( 2.0 / 3.0 ) * & |
---|
463 | SQRT( 15.0 / kin_vis_air ) * epsilon**( 1.0 / 6.0 ) |
---|
464 | ! |
---|
465 | !-- The factor of 1.0E4 is needed to convert the dissipation rate |
---|
466 | !-- from m2 s-3 to cm2 s-3. |
---|
467 | k_au = k_au * ( 1.0 + & |
---|
468 | epsilon * 1.0E4 * ( re_lambda * 1.0E-3 )**0.25 * & |
---|
469 | ( alpha_cc * EXP( -1.0 * ( ( rc - r_cc ) / & |
---|
470 | sigma_cc )**2 ) + beta_cc ) ) |
---|
471 | ENDIF |
---|
472 | ! |
---|
473 | !-- Autoconversion rate (Seifert and Beheng, 2006): |
---|
474 | autocon = k_au * ( nu_c + 2.0 ) * ( nu_c + 4.0 ) / & |
---|
475 | ( nu_c + 1.0 )**2 * qc_1d(k)**2 * xc**2 * & |
---|
476 | ( 1.0 + phi_au / ( 1.0 - tau_cloud )**2 ) * & |
---|
477 | rho_surface |
---|
478 | autocon = MIN( autocon, qc_1d(k) / dt_micro ) |
---|
479 | |
---|
480 | qr_1d(k) = qr_1d(k) + autocon * dt_micro |
---|
481 | qc_1d(k) = qc_1d(k) - autocon * dt_micro |
---|
482 | nr_1d(k) = nr_1d(k) + autocon / x0 * hyrho(k) * dt_micro |
---|
483 | |
---|
484 | ENDIF |
---|
485 | |
---|
486 | ENDDO |
---|
487 | |
---|
488 | END SUBROUTINE autoconversion_ij |
---|
489 | |
---|
490 | |
---|
491 | SUBROUTINE accretion_ij( i, j ) |
---|
492 | |
---|
493 | USE arrays_3d |
---|
494 | USE cloud_parameters |
---|
495 | USE control_parameters |
---|
496 | USE indices |
---|
497 | |
---|
498 | IMPLICIT NONE |
---|
499 | |
---|
500 | INTEGER :: i, j, k |
---|
501 | REAL :: accr, k_cr, phi_ac, tau_cloud, xc |
---|
502 | |
---|
503 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
504 | IF ( ( qc_1d(k) > eps_sb ) .AND. ( qr_1d(k) > eps_sb ) ) THEN |
---|
505 | ! |
---|
506 | !-- Intern time scale of coagulation (Seifert and Beheng, 2006): |
---|
507 | tau_cloud = 1.0 - qc_1d(k) / ( qc_1d(k) + qr_1d(k) ) |
---|
508 | ! |
---|
509 | !-- Universal function for accretion process |
---|
510 | !-- (Seifert and Beheng, 2001): |
---|
511 | phi_ac = tau_cloud / ( tau_cloud + 5.0E-5 ) |
---|
512 | phi_ac = ( phi_ac**2 )**2 |
---|
513 | ! |
---|
514 | !-- Parameterized turbulence effects on autoconversion (Seifert, |
---|
515 | !-- Nuijens and Stevens, 2010). The factor of 1.0E4 is needed to |
---|
516 | !-- convert the dissipation (diss) from m2 s-3 to cm2 s-3. |
---|
517 | IF ( turbulence ) THEN |
---|
518 | k_cr = k_cr0 * ( 1.0 + 0.05 * & |
---|
519 | MIN( 600.0, diss(k,j,i) * 1.0E4 )**0.25 ) |
---|
520 | ELSE |
---|
521 | k_cr = k_cr0 |
---|
522 | ENDIF |
---|
523 | ! |
---|
524 | !-- Accretion rate (Seifert and Beheng, 2006): |
---|
525 | accr = k_cr * qc_1d(k) * qr_1d(k) * phi_ac * & |
---|
526 | SQRT( rho_surface * hyrho(k) ) |
---|
527 | accr = MIN( accr, qc_1d(k) / dt_micro ) |
---|
528 | |
---|
529 | qr_1d(k) = qr_1d(k) + accr * dt_micro |
---|
530 | qc_1d(k) = qc_1d(k) - accr * dt_micro |
---|
531 | |
---|
532 | ENDIF |
---|
533 | |
---|
534 | ENDDO |
---|
535 | |
---|
536 | END SUBROUTINE accretion_ij |
---|
537 | |
---|
538 | |
---|
539 | SUBROUTINE selfcollection_breakup_ij( i, j ) |
---|
540 | |
---|
541 | USE arrays_3d |
---|
542 | USE cloud_parameters |
---|
543 | USE control_parameters |
---|
544 | USE indices |
---|
545 | |
---|
546 | IMPLICIT NONE |
---|
547 | |
---|
548 | INTEGER :: i, j, k |
---|
549 | REAL :: breakup, dr, phi_br, selfcoll |
---|
550 | |
---|
551 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
552 | IF ( qr_1d(k) > eps_sb ) THEN |
---|
553 | ! |
---|
554 | !-- Selfcollection rate (Seifert and Beheng, 2001): |
---|
555 | selfcoll = k_rr * nr_1d(k) * qr_1d(k) * & |
---|
556 | SQRT( hyrho(k) * rho_surface ) |
---|
557 | ! |
---|
558 | !-- Weight averaged diameter of rain drops: |
---|
559 | dr = ( hyrho(k) * qr_1d(k) / nr_1d(k) * dpirho_l )**( 1.0 / 3.0 ) |
---|
560 | ! |
---|
561 | !-- Collisional breakup rate (Seifert, 2008): |
---|
562 | IF ( dr >= 0.3E-3 ) THEN |
---|
563 | phi_br = k_br * ( dr - 1.1E-3 ) |
---|
564 | breakup = selfcoll * ( phi_br + 1.0 ) |
---|
565 | ELSE |
---|
566 | breakup = 0.0 |
---|
567 | ENDIF |
---|
568 | |
---|
569 | selfcoll = MAX( breakup - selfcoll, -nr_1d(k) / dt_micro ) |
---|
570 | nr_1d(k) = nr_1d(k) + selfcoll * dt_micro |
---|
571 | |
---|
572 | ENDIF |
---|
573 | ENDDO |
---|
574 | |
---|
575 | END SUBROUTINE selfcollection_breakup_ij |
---|
576 | |
---|
577 | |
---|
578 | SUBROUTINE evaporation_rain_ij( i, j ) |
---|
579 | ! |
---|
580 | !-- Evaporation of precipitable water. Condensation is neglected for |
---|
581 | !-- precipitable water. |
---|
582 | |
---|
583 | USE arrays_3d |
---|
584 | USE cloud_parameters |
---|
585 | USE constants |
---|
586 | USE control_parameters |
---|
587 | USE indices |
---|
588 | |
---|
589 | IMPLICIT NONE |
---|
590 | |
---|
591 | INTEGER :: i, j, k |
---|
592 | REAL :: alpha, dr, e_s, evap, evap_nr, f_vent, g_evap, lambda_r, & |
---|
593 | mu_r, mu_r_2, mu_r_5d2, nr_0, q_s, sat, t_l, temp, xr |
---|
594 | |
---|
595 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
596 | IF ( qr_1d(k) > eps_sb ) THEN |
---|
597 | ! |
---|
598 | !-- Actual liquid water temperature: |
---|
599 | t_l = t_d_pt(k) * pt_1d(k) |
---|
600 | ! |
---|
601 | !-- Saturation vapor pressure at t_l: |
---|
602 | e_s = 610.78 * EXP( 17.269 * ( t_l - 273.16 ) / ( t_l - 35.86 ) ) |
---|
603 | ! |
---|
604 | !-- Computation of saturation humidity: |
---|
605 | q_s = 0.622 * e_s / ( hyp(k) - 0.378 * e_s ) |
---|
606 | alpha = 0.622 * l_d_r * l_d_cp / ( t_l * t_l ) |
---|
607 | q_s = q_s * ( 1.0 + alpha * q_1d(k) ) / ( 1.0 + alpha * q_s ) |
---|
608 | ! |
---|
609 | !-- Supersaturation: |
---|
610 | sat = MIN( 0.0, ( q_1d(k) - qr_1d(k) - qc_1d(k) ) / q_s - 1.0 ) |
---|
611 | ! |
---|
612 | !-- Actual temperature: |
---|
613 | temp = t_l + l_d_cp * ( qc_1d(k) + qr_1d(k) ) |
---|
614 | |
---|
615 | g_evap = 1.0 / ( ( l_v / ( r_v * temp ) - 1.0 ) * l_v / & |
---|
616 | ( thermal_conductivity_l * temp ) + r_v * temp / & |
---|
617 | ( diff_coeff_l * e_s ) ) |
---|
618 | ! |
---|
619 | !-- Mean weight of rain drops |
---|
620 | xr = hyrho(k) * qr_1d(k) / nr_1d(k) |
---|
621 | ! |
---|
622 | !-- Weight averaged diameter of rain drops: |
---|
623 | dr = ( xr * dpirho_l )**( 1.0 / 3.0 ) |
---|
624 | ! |
---|
625 | !-- Compute ventilation factor and intercept parameter |
---|
626 | !-- (Seifert and Beheng, 2006; Seifert, 2008): |
---|
627 | IF ( ventilation_effect ) THEN |
---|
628 | ! |
---|
629 | !-- Shape parameter of gamma distribution (Milbrandt and Yau, 2005; |
---|
630 | !-- Stevens and Seifert, 2008): |
---|
631 | mu_r = 10.0 * ( 1.0 + TANH( 1.2E3 * ( dr - 1.4E-3 ) ) ) |
---|
632 | ! |
---|
633 | !-- Slope parameter of gamma distribution (Seifert, 2008): |
---|
634 | lambda_r = ( ( mu_r + 3.0 ) * ( mu_r + 2.0 ) * & |
---|
635 | ( mu_r + 1.0 ) )**( 1.0 / 3.0 ) / dr |
---|
636 | |
---|
637 | mu_r_2 = mu_r + 2.0 |
---|
638 | mu_r_5d2 = mu_r + 2.5 |
---|
639 | f_vent = a_vent * gamm( mu_r_2 ) * & |
---|
640 | lambda_r**( -mu_r_2 ) + & |
---|
641 | b_vent * schmidt_p_1d3 * & |
---|
642 | SQRT( a_term / kin_vis_air ) * gamm( mu_r_5d2 ) * & |
---|
643 | lambda_r**( -mu_r_5d2 ) * & |
---|
644 | ( 1.0 - 0.5 * ( b_term / a_term ) * & |
---|
645 | ( lambda_r / & |
---|
646 | ( c_term + lambda_r ) )**mu_r_5d2 - & |
---|
647 | 0.125 * ( b_term / a_term )**2 * & |
---|
648 | ( lambda_r / & |
---|
649 | ( 2.0 * c_term + lambda_r ) )**mu_r_5d2 - & |
---|
650 | 0.0625 * ( b_term / a_term )**3 * & |
---|
651 | ( lambda_r / & |
---|
652 | ( 3.0 * c_term + lambda_r ) )**mu_r_5d2 - & |
---|
653 | 0.0390625 * ( b_term / a_term )**4 * & |
---|
654 | ( lambda_r / & |
---|
655 | ( 4.0 * c_term + lambda_r ) )**mu_r_5d2 ) |
---|
656 | nr_0 = nr_1d(k) * lambda_r**( mu_r + 1.0 ) / & |
---|
657 | gamm( mu_r + 1.0 ) |
---|
658 | ELSE |
---|
659 | f_vent = 1.0 |
---|
660 | nr_0 = nr_1d(k) * dr |
---|
661 | ENDIF |
---|
662 | ! |
---|
663 | !-- Evaporation rate of rain water content (Seifert and Beheng, 2006): |
---|
664 | evap = 2.0 * pi * nr_0 * g_evap * f_vent * sat / & |
---|
665 | hyrho(k) |
---|
666 | |
---|
667 | evap = MAX( evap, -qr_1d(k) / dt_micro ) |
---|
668 | evap_nr = MAX( c_evap * evap / xr * hyrho(k), & |
---|
669 | -nr_1d(k) / dt_micro ) |
---|
670 | |
---|
671 | qr_1d(k) = qr_1d(k) + evap * dt_micro |
---|
672 | nr_1d(k) = nr_1d(k) + evap_nr * dt_micro |
---|
673 | ENDIF |
---|
674 | |
---|
675 | ENDDO |
---|
676 | |
---|
677 | END SUBROUTINE evaporation_rain_ij |
---|
678 | |
---|
679 | |
---|
680 | SUBROUTINE sedimentation_cloud_ij( i, j ) |
---|
681 | |
---|
682 | USE arrays_3d |
---|
683 | USE cloud_parameters |
---|
684 | USE constants |
---|
685 | USE control_parameters |
---|
686 | USE indices |
---|
687 | |
---|
688 | IMPLICIT NONE |
---|
689 | |
---|
690 | INTEGER :: i, j, k |
---|
691 | REAL :: sed_qc_const |
---|
692 | |
---|
693 | REAL, DIMENSION(nzb:nzt+1) :: sed_qc |
---|
694 | |
---|
695 | ! |
---|
696 | !-- Sedimentation of cloud droplets (Heus et al., 2010): |
---|
697 | sed_qc_const = k_st * ( 3.0 / ( 4.0 * pi * rho_l ))**( 2.0 / 3.0 ) * & |
---|
698 | EXP( 5.0 * LOG( sigma_gc )**2 ) |
---|
699 | |
---|
700 | sed_qc(nzt+1) = 0.0 |
---|
701 | |
---|
702 | DO k = nzt, nzb_s_inner(j,i)+1, -1 |
---|
703 | IF ( qc_1d(k) > eps_sb ) THEN |
---|
704 | sed_qc(k) = sed_qc_const * nc_1d(k)**( -2.0 / 3.0 ) * & |
---|
705 | ( qc_1d(k) * hyrho(k) )**( 5.0 / 3.0 ) |
---|
706 | ELSE |
---|
707 | sed_qc(k) = 0.0 |
---|
708 | ENDIF |
---|
709 | |
---|
710 | sed_qc(k) = MIN( sed_qc(k), hyrho(k) * dzu(k+1) * q_1d(k) / & |
---|
711 | dt_micro + sed_qc(k+1) ) |
---|
712 | |
---|
713 | q_1d(k) = q_1d(k) + ( sed_qc(k+1) - sed_qc(k) ) * ddzu(k+1) / & |
---|
714 | hyrho(k) * dt_micro |
---|
715 | qc_1d(k) = qc_1d(k) + ( sed_qc(k+1) - sed_qc(k) ) * ddzu(k+1) / & |
---|
716 | hyrho(k) * dt_micro |
---|
717 | pt_1d(k) = pt_1d(k) - ( sed_qc(k+1) - sed_qc(k) ) * ddzu(k+1) / & |
---|
718 | hyrho(k) * l_d_cp * pt_d_t(k) * dt_micro |
---|
719 | |
---|
720 | ENDDO |
---|
721 | |
---|
722 | END SUBROUTINE sedimentation_cloud_ij |
---|
723 | |
---|
724 | |
---|
725 | SUBROUTINE sedimentation_rain_ij( i, j ) |
---|
726 | |
---|
727 | USE arrays_3d |
---|
728 | USE cloud_parameters |
---|
729 | USE constants |
---|
730 | USE control_parameters |
---|
731 | USE indices |
---|
732 | USE statistics |
---|
733 | |
---|
734 | IMPLICIT NONE |
---|
735 | |
---|
736 | INTEGER :: i, j, k, k_run |
---|
737 | REAL :: c_run, d_max, d_mean, d_min, dr, dt_sedi, flux, lambda_r, & |
---|
738 | mu_r, z_run |
---|
739 | |
---|
740 | REAL, DIMENSION(nzb:nzt+1) :: c_nr, c_qr, d_nr, d_qr, nr_slope, & |
---|
741 | qr_slope, sed_nr, sed_qr, w_nr, w_qr |
---|
742 | ! |
---|
743 | !-- Computation of sedimentation flux. Implementation according to Stevens |
---|
744 | !-- and Seifert (2008). |
---|
745 | IF ( intermediate_timestep_count == 1 ) prr(:,j,i) = 0.0 |
---|
746 | ! |
---|
747 | !-- Compute velocities |
---|
748 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
749 | IF ( qr_1d(k) > eps_sb ) THEN |
---|
750 | ! |
---|
751 | !-- Weight averaged diameter of rain drops: |
---|
752 | dr = ( hyrho(k) * qr_1d(k) / nr_1d(k) * dpirho_l )**( 1.0 / 3.0 ) |
---|
753 | ! |
---|
754 | !-- Shape parameter of gamma distribution (Milbrandt and Yau, 2005; |
---|
755 | !-- Stevens and Seifert, 2008): |
---|
756 | mu_r = 10.0 * ( 1.0 + TANH( 1.2E3 * ( dr - 1.4E-3 ) ) ) |
---|
757 | ! |
---|
758 | !-- Slope parameter of gamma distribution (Seifert, 2008): |
---|
759 | lambda_r = ( ( mu_r + 3.0 ) * ( mu_r + 2.0 ) * & |
---|
760 | ( mu_r + 1.0 ) )**( 1.0 / 3.0 ) / dr |
---|
761 | |
---|
762 | w_nr(k) = MAX( 0.1, MIN( 20.0, a_term - b_term * ( 1.0 + & |
---|
763 | c_term / lambda_r )**( -1.0 * ( mu_r + 1.0 ) ) ) ) |
---|
764 | w_qr(k) = MAX( 0.1, MIN( 20.0, a_term - b_term * ( 1.0 + & |
---|
765 | c_term / lambda_r )**( -1.0 * ( mu_r + 4.0 ) ) ) ) |
---|
766 | ELSE |
---|
767 | w_nr(k) = 0.0 |
---|
768 | w_qr(k) = 0.0 |
---|
769 | ENDIF |
---|
770 | ENDDO |
---|
771 | ! |
---|
772 | !-- Adjust boundary values |
---|
773 | w_nr(nzb_s_inner(j,i)) = w_nr(nzb_s_inner(j,i)+1) |
---|
774 | w_qr(nzb_s_inner(j,i)) = w_qr(nzb_s_inner(j,i)+1) |
---|
775 | w_nr(nzt+1) = 0.0 |
---|
776 | w_qr(nzt+1) = 0.0 |
---|
777 | ! |
---|
778 | !-- Compute Courant number |
---|
779 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
780 | c_nr(k) = 0.25 * ( w_nr(k-1) + 2.0 * w_nr(k) + w_nr(k+1) ) * & |
---|
781 | dt_micro * ddzu(k) |
---|
782 | c_qr(k) = 0.25 * ( w_qr(k-1) + 2.0 * w_qr(k) + w_qr(k+1) ) * & |
---|
783 | dt_micro * ddzu(k) |
---|
784 | ENDDO |
---|
785 | ! |
---|
786 | !-- Limit slopes with monotonized centered (MC) limiter (van Leer, 1977): |
---|
787 | IF ( limiter_sedimentation ) THEN |
---|
788 | |
---|
789 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
790 | d_mean = 0.5 * ( qr_1d(k+1) + qr_1d(k-1) ) |
---|
791 | d_min = qr_1d(k) - MIN( qr_1d(k+1), qr_1d(k), qr_1d(k-1) ) |
---|
792 | d_max = MAX( qr_1d(k+1), qr_1d(k), qr_1d(k-1) ) - qr_1d(k) |
---|
793 | |
---|
794 | qr_slope(k) = SIGN(1.0, d_mean) * MIN ( 2.0 * d_min, 2.0 * d_max, & |
---|
795 | ABS( d_mean ) ) |
---|
796 | |
---|
797 | d_mean = 0.5 * ( nr_1d(k+1) + nr_1d(k-1) ) |
---|
798 | d_min = nr_1d(k) - MIN( nr_1d(k+1), nr_1d(k), nr_1d(k-1) ) |
---|
799 | d_max = MAX( nr_1d(k+1), nr_1d(k), nr_1d(k-1) ) - nr_1d(k) |
---|
800 | |
---|
801 | nr_slope(k) = SIGN(1.0, d_mean) * MIN ( 2.0 * d_min, 2.0 * d_max, & |
---|
802 | ABS( d_mean ) ) |
---|
803 | ENDDO |
---|
804 | |
---|
805 | ELSE |
---|
806 | |
---|
807 | nr_slope = 0.0 |
---|
808 | qr_slope = 0.0 |
---|
809 | |
---|
810 | ENDIF |
---|
811 | |
---|
812 | sed_nr(nzt+1) = 0.0 |
---|
813 | sed_qr(nzt+1) = 0.0 |
---|
814 | ! |
---|
815 | !-- Compute sedimentation flux |
---|
816 | DO k = nzt, nzb_s_inner(j,i)+1, -1 |
---|
817 | ! |
---|
818 | !-- Sum up all rain drop number densities which contribute to the flux |
---|
819 | !-- through k-1/2 |
---|
820 | flux = 0.0 |
---|
821 | z_run = 0.0 ! height above z(k) |
---|
822 | k_run = k |
---|
823 | c_run = MIN( 1.0, c_nr(k) ) |
---|
824 | DO WHILE ( c_run > 0.0 .AND. k_run <= nzt ) |
---|
825 | flux = flux + hyrho(k_run) * & |
---|
826 | ( nr_1d(k_run) + nr_slope(k_run) * ( 1.0 - c_run ) * & |
---|
827 | 0.5 ) * c_run * dzu(k_run) |
---|
828 | z_run = z_run + dzu(k_run) |
---|
829 | k_run = k_run + 1 |
---|
830 | c_run = MIN( 1.0, c_nr(k_run) - z_run * ddzu(k_run) ) |
---|
831 | ENDDO |
---|
832 | ! |
---|
833 | !-- It is not allowed to sediment more rain drop number density than |
---|
834 | !-- available |
---|
835 | flux = MIN( flux, & |
---|
836 | hyrho(k) * dzu(k+1) * nr_1d(k) + sed_nr(k+1) * dt_micro ) |
---|
837 | |
---|
838 | sed_nr(k) = flux / dt_micro |
---|
839 | nr_1d(k) = nr_1d(k) + ( sed_nr(k+1) - sed_nr(k) ) * ddzu(k+1) / & |
---|
840 | hyrho(k) * dt_micro |
---|
841 | ! |
---|
842 | !-- Sum up all rain water content which contributes to the flux |
---|
843 | !-- through k-1/2 |
---|
844 | flux = 0.0 |
---|
845 | z_run = 0.0 ! height above z(k) |
---|
846 | k_run = k |
---|
847 | c_run = MIN( 1.0, c_qr(k) ) |
---|
848 | |
---|
849 | DO WHILE ( c_run > 0.0 .AND. k_run <= nzt-1 ) |
---|
850 | |
---|
851 | flux = flux + hyrho(k_run) * & |
---|
852 | ( qr_1d(k_run) + qr_slope(k_run) * ( 1.0 - c_run ) * & |
---|
853 | 0.5 ) * c_run * dzu(k_run) |
---|
854 | z_run = z_run + dzu(k_run) |
---|
855 | k_run = k_run + 1 |
---|
856 | c_run = MIN( 1.0, c_qr(k_run) - z_run * ddzu(k_run) ) |
---|
857 | |
---|
858 | ENDDO |
---|
859 | ! |
---|
860 | !-- It is not allowed to sediment more rain water content than available |
---|
861 | flux = MIN( flux, & |
---|
862 | hyrho(k) * dzu(k) * qr_1d(k) + sed_qr(k+1) * dt_micro ) |
---|
863 | |
---|
864 | sed_qr(k) = flux / dt_micro |
---|
865 | |
---|
866 | qr_1d(k) = qr_1d(k) + ( sed_qr(k+1) - sed_qr(k) ) * ddzu(k+1) / & |
---|
867 | hyrho(k) * dt_micro |
---|
868 | q_1d(k) = q_1d(k) + ( sed_qr(k+1) - sed_qr(k) ) * ddzu(k+1) / & |
---|
869 | hyrho(k) * dt_micro |
---|
870 | pt_1d(k) = pt_1d(k) - ( sed_qr(k+1) - sed_qr(k) ) * ddzu(k+1) / & |
---|
871 | hyrho(k) * l_d_cp * pt_d_t(k) * dt_micro |
---|
872 | ! |
---|
873 | !-- Compute the rain rate |
---|
874 | prr(k,j,i) = prr(k,j,i) + sed_qr(k) / hyrho(k) * & |
---|
875 | weight_substep(intermediate_timestep_count) |
---|
876 | ENDDO |
---|
877 | |
---|
878 | ! |
---|
879 | !-- Precipitation amount |
---|
880 | IF ( intermediate_timestep_count == intermediate_timestep_count_max & |
---|
881 | .AND. ( dt_do2d_xy - time_do2d_xy ) < & |
---|
882 | precipitation_amount_interval ) THEN |
---|
883 | |
---|
884 | precipitation_amount(j,i) = precipitation_amount(j,i) + & |
---|
885 | prr(nzb_s_inner(j,i)+1,j,i) * & |
---|
886 | hyrho(nzb_s_inner(j,i)+1) * dt_3d |
---|
887 | ENDIF |
---|
888 | |
---|
889 | END SUBROUTINE sedimentation_rain_ij |
---|
890 | |
---|
891 | |
---|
892 | ! |
---|
893 | !-- This function computes the gamma function (Press et al., 1992). |
---|
894 | !-- The gamma function is needed for the calculation of the evaporation |
---|
895 | !-- of rain drops. |
---|
896 | FUNCTION gamm( xx ) |
---|
897 | |
---|
898 | USE cloud_parameters |
---|
899 | |
---|
900 | IMPLICIT NONE |
---|
901 | |
---|
902 | REAL :: gamm, ser, tmp, x_gamm, xx, y_gamm |
---|
903 | INTEGER :: j |
---|
904 | |
---|
905 | |
---|
906 | x_gamm = xx |
---|
907 | y_gamm = x_gamm |
---|
908 | tmp = x_gamm + 5.5 |
---|
909 | tmp = ( x_gamm + 0.5 ) * LOG( tmp ) - tmp |
---|
910 | ser = 1.000000000190015 |
---|
911 | |
---|
912 | DO j = 1, 6 |
---|
913 | y_gamm = y_gamm + 1.0 |
---|
914 | ser = ser + cof( j ) / y_gamm |
---|
915 | ENDDO |
---|
916 | |
---|
917 | ! |
---|
918 | !-- Until this point the algorithm computes the logarithm of the gamma |
---|
919 | !-- function. Hence, the exponential function is used. |
---|
920 | ! gamm = EXP( tmp + LOG( stp * ser / x_gamm ) ) |
---|
921 | gamm = EXP( tmp ) * stp * ser / x_gamm |
---|
922 | |
---|
923 | RETURN |
---|
924 | |
---|
925 | END FUNCTION gamm |
---|
926 | |
---|
927 | END MODULE microphysics_mod |
---|