[1000] | 1 | MODULE microphysics_mod |
---|
| 2 | |
---|
[1093] | 3 | !--------------------------------------------------------------------------------! |
---|
| 4 | ! This file is part of PALM. |
---|
| 5 | ! |
---|
| 6 | ! PALM is free software: you can redistribute it and/or modify it under the terms |
---|
| 7 | ! of the GNU General Public License as published by the Free Software Foundation, |
---|
| 8 | ! either version 3 of the License, or (at your option) any later version. |
---|
| 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
[1310] | 17 | ! Copyright 1997-2014 Leibniz Universitaet Hannover |
---|
[1093] | 18 | !--------------------------------------------------------------------------------! |
---|
| 19 | ! |
---|
[1000] | 20 | ! Current revisions: |
---|
[1092] | 21 | ! ------------------ |
---|
[1335] | 22 | ! |
---|
[1647] | 23 | ! |
---|
[1321] | 24 | ! Former revisions: |
---|
| 25 | ! ----------------- |
---|
| 26 | ! $Id: microphysics.f90 1647 2015-09-02 16:01:24Z raasch $ |
---|
| 27 | ! |
---|
[1647] | 28 | ! 1646 2015-09-02 16:00:10Z hoffmann |
---|
| 29 | ! Bugfix: Wrong computation of d_mean. |
---|
| 30 | ! |
---|
[1362] | 31 | ! 1361 2014-04-16 15:17:48Z hoffmann |
---|
| 32 | ! Bugfix in sedimentation_rain: Index corrected. |
---|
| 33 | ! Vectorized version of adjust_cloud added. |
---|
| 34 | ! Little reformatting of the code. |
---|
| 35 | ! |
---|
[1354] | 36 | ! 1353 2014-04-08 15:21:23Z heinze |
---|
| 37 | ! REAL constants provided with KIND-attribute |
---|
| 38 | ! |
---|
[1347] | 39 | ! 1346 2014-03-27 13:18:20Z heinze |
---|
| 40 | ! Bugfix: REAL constants provided with KIND-attribute especially in call of |
---|
| 41 | ! intrinsic function like MAX, MIN, SIGN |
---|
| 42 | ! |
---|
[1335] | 43 | ! 1334 2014-03-25 12:21:40Z heinze |
---|
| 44 | ! Bugfix: REAL constants provided with KIND-attribute |
---|
| 45 | ! |
---|
[1323] | 46 | ! 1322 2014-03-20 16:38:49Z raasch |
---|
| 47 | ! REAL constants defined as wp-kind |
---|
| 48 | ! |
---|
[1321] | 49 | ! 1320 2014-03-20 08:40:49Z raasch |
---|
[1320] | 50 | ! ONLY-attribute added to USE-statements, |
---|
| 51 | ! kind-parameters added to all INTEGER and REAL declaration statements, |
---|
| 52 | ! kinds are defined in new module kinds, |
---|
| 53 | ! comment fields (!:) to be used for variable explanations added to |
---|
| 54 | ! all variable declaration statements |
---|
[1000] | 55 | ! |
---|
[1242] | 56 | ! 1241 2013-10-30 11:36:58Z heinze |
---|
| 57 | ! hyp and rho have to be calculated at each time step if data from external |
---|
| 58 | ! file LSF_DATA are used |
---|
| 59 | ! |
---|
[1116] | 60 | ! 1115 2013-03-26 18:16:16Z hoffmann |
---|
| 61 | ! microphyical tendencies are calculated in microphysics_control in an optimized |
---|
| 62 | ! way; unrealistic values are prevented; bugfix in evaporation; some reformatting |
---|
| 63 | ! |
---|
[1107] | 64 | ! 1106 2013-03-04 05:31:38Z raasch |
---|
| 65 | ! small changes in code formatting |
---|
| 66 | ! |
---|
[1093] | 67 | ! 1092 2013-02-02 11:24:22Z raasch |
---|
| 68 | ! unused variables removed |
---|
| 69 | ! file put under GPL |
---|
| 70 | ! |
---|
[1066] | 71 | ! 1065 2012-11-22 17:42:36Z hoffmann |
---|
| 72 | ! Sedimentation process implemented according to Stevens and Seifert (2008). |
---|
[1115] | 73 | ! Turbulence effects on autoconversion and accretion added (Seifert, Nuijens |
---|
[1066] | 74 | ! and Stevens, 2010). |
---|
| 75 | ! |
---|
[1054] | 76 | ! 1053 2012-11-13 17:11:03Z hoffmann |
---|
| 77 | ! initial revision |
---|
[1000] | 78 | ! |
---|
| 79 | ! Description: |
---|
| 80 | ! ------------ |
---|
| 81 | ! Calculate cloud microphysics according to the two moment bulk |
---|
| 82 | ! scheme by Seifert and Beheng (2006). |
---|
| 83 | !------------------------------------------------------------------------------! |
---|
| 84 | |
---|
| 85 | PRIVATE |
---|
[1115] | 86 | PUBLIC microphysics_control |
---|
[1000] | 87 | |
---|
[1115] | 88 | INTERFACE microphysics_control |
---|
| 89 | MODULE PROCEDURE microphysics_control |
---|
| 90 | MODULE PROCEDURE microphysics_control_ij |
---|
| 91 | END INTERFACE microphysics_control |
---|
[1022] | 92 | |
---|
[1115] | 93 | INTERFACE adjust_cloud |
---|
| 94 | MODULE PROCEDURE adjust_cloud |
---|
| 95 | MODULE PROCEDURE adjust_cloud_ij |
---|
| 96 | END INTERFACE adjust_cloud |
---|
| 97 | |
---|
[1000] | 98 | INTERFACE autoconversion |
---|
| 99 | MODULE PROCEDURE autoconversion |
---|
| 100 | MODULE PROCEDURE autoconversion_ij |
---|
| 101 | END INTERFACE autoconversion |
---|
| 102 | |
---|
| 103 | INTERFACE accretion |
---|
| 104 | MODULE PROCEDURE accretion |
---|
| 105 | MODULE PROCEDURE accretion_ij |
---|
| 106 | END INTERFACE accretion |
---|
[1005] | 107 | |
---|
| 108 | INTERFACE selfcollection_breakup |
---|
| 109 | MODULE PROCEDURE selfcollection_breakup |
---|
| 110 | MODULE PROCEDURE selfcollection_breakup_ij |
---|
| 111 | END INTERFACE selfcollection_breakup |
---|
[1012] | 112 | |
---|
| 113 | INTERFACE evaporation_rain |
---|
| 114 | MODULE PROCEDURE evaporation_rain |
---|
| 115 | MODULE PROCEDURE evaporation_rain_ij |
---|
| 116 | END INTERFACE evaporation_rain |
---|
| 117 | |
---|
| 118 | INTERFACE sedimentation_cloud |
---|
| 119 | MODULE PROCEDURE sedimentation_cloud |
---|
| 120 | MODULE PROCEDURE sedimentation_cloud_ij |
---|
| 121 | END INTERFACE sedimentation_cloud |
---|
[1000] | 122 | |
---|
[1012] | 123 | INTERFACE sedimentation_rain |
---|
| 124 | MODULE PROCEDURE sedimentation_rain |
---|
| 125 | MODULE PROCEDURE sedimentation_rain_ij |
---|
| 126 | END INTERFACE sedimentation_rain |
---|
| 127 | |
---|
[1000] | 128 | CONTAINS |
---|
| 129 | |
---|
| 130 | |
---|
| 131 | !------------------------------------------------------------------------------! |
---|
| 132 | ! Call for all grid points |
---|
| 133 | !------------------------------------------------------------------------------! |
---|
[1115] | 134 | SUBROUTINE microphysics_control |
---|
[1022] | 135 | |
---|
[1361] | 136 | USE arrays_3d, & |
---|
| 137 | ONLY: hyp, nr, pt, pt_init, q, qc, qr, zu |
---|
| 138 | |
---|
| 139 | USE cloud_parameters, & |
---|
| 140 | ONLY: cp, hyrho, nc_const, pt_d_t, r_d, t_d_pt |
---|
| 141 | |
---|
| 142 | USE control_parameters, & |
---|
| 143 | ONLY: call_microphysics_at_all_substeps, drizzle, dt_3d, dt_micro, & |
---|
| 144 | g, intermediate_timestep_count, & |
---|
| 145 | large_scale_forcing, lsf_surf, precipitation, pt_surface, & |
---|
| 146 | rho_surface,surface_pressure |
---|
| 147 | |
---|
| 148 | USE indices, & |
---|
| 149 | ONLY: nzb, nzt |
---|
| 150 | |
---|
[1320] | 151 | USE kinds |
---|
[1115] | 152 | |
---|
[1361] | 153 | USE statistics, & |
---|
| 154 | ONLY: weight_pres |
---|
| 155 | |
---|
[1115] | 156 | IMPLICIT NONE |
---|
| 157 | |
---|
[1320] | 158 | INTEGER(iwp) :: i !: |
---|
| 159 | INTEGER(iwp) :: j !: |
---|
| 160 | INTEGER(iwp) :: k !: |
---|
[1115] | 161 | |
---|
[1361] | 162 | REAL(wp) :: t_surface !: |
---|
| 163 | |
---|
| 164 | IF ( large_scale_forcing .AND. lsf_surf ) THEN |
---|
| 165 | ! |
---|
| 166 | !-- Calculate: |
---|
| 167 | !-- pt / t : ratio of potential and actual temperature (pt_d_t) |
---|
| 168 | !-- t / pt : ratio of actual and potential temperature (t_d_pt) |
---|
| 169 | !-- p_0(z) : vertical profile of the hydrostatic pressure (hyp) |
---|
| 170 | t_surface = pt_surface * ( surface_pressure / 1000.0_wp )**0.286_wp |
---|
| 171 | DO k = nzb, nzt+1 |
---|
| 172 | hyp(k) = surface_pressure * 100.0_wp * & |
---|
| 173 | ( ( t_surface - g / cp * zu(k) ) / & |
---|
| 174 | t_surface )**(1.0_wp / 0.286_wp) |
---|
| 175 | pt_d_t(k) = ( 100000.0_wp / hyp(k) )**0.286_wp |
---|
| 176 | t_d_pt(k) = 1.0_wp / pt_d_t(k) |
---|
| 177 | hyrho(k) = hyp(k) / ( r_d * t_d_pt(k) * pt_init(k) ) |
---|
[1115] | 178 | ENDDO |
---|
[1361] | 179 | ! |
---|
| 180 | !-- Compute reference density |
---|
| 181 | rho_surface = surface_pressure * 100.0_wp / ( r_d * t_surface ) |
---|
| 182 | ENDIF |
---|
[1115] | 183 | |
---|
[1361] | 184 | ! |
---|
| 185 | !-- Compute length of time step |
---|
| 186 | IF ( call_microphysics_at_all_substeps ) THEN |
---|
| 187 | dt_micro = dt_3d * weight_pres(intermediate_timestep_count) |
---|
| 188 | ELSE |
---|
| 189 | dt_micro = dt_3d |
---|
| 190 | ENDIF |
---|
| 191 | |
---|
| 192 | ! |
---|
| 193 | !-- Compute cloud physics |
---|
| 194 | IF ( precipitation ) THEN |
---|
| 195 | CALL adjust_cloud |
---|
| 196 | CALL autoconversion |
---|
| 197 | CALL accretion |
---|
| 198 | CALL selfcollection_breakup |
---|
| 199 | CALL evaporation_rain |
---|
| 200 | CALL sedimentation_rain |
---|
| 201 | ENDIF |
---|
| 202 | |
---|
| 203 | IF ( drizzle ) CALL sedimentation_cloud |
---|
| 204 | |
---|
[1115] | 205 | END SUBROUTINE microphysics_control |
---|
| 206 | |
---|
| 207 | SUBROUTINE adjust_cloud |
---|
| 208 | |
---|
[1361] | 209 | USE arrays_3d, & |
---|
| 210 | ONLY: qr, nr |
---|
| 211 | |
---|
| 212 | USE cloud_parameters, & |
---|
| 213 | ONLY: eps_sb, xrmin, xrmax, hyrho, k_cc, x0 |
---|
| 214 | |
---|
| 215 | USE cpulog, & |
---|
| 216 | ONLY: cpu_log, log_point_s |
---|
| 217 | |
---|
| 218 | USE indices, & |
---|
| 219 | ONLY: nxl, nxr, nys, nyn, nzb, nzb_s_inner, nzt |
---|
| 220 | |
---|
[1320] | 221 | USE kinds |
---|
[1022] | 222 | |
---|
| 223 | IMPLICIT NONE |
---|
| 224 | |
---|
[1320] | 225 | INTEGER(iwp) :: i !: |
---|
| 226 | INTEGER(iwp) :: j !: |
---|
| 227 | INTEGER(iwp) :: k !: |
---|
[1022] | 228 | |
---|
[1361] | 229 | CALL cpu_log( log_point_s(54), 'adjust_cloud', 'start' ) |
---|
| 230 | |
---|
[1022] | 231 | DO i = nxl, nxr |
---|
| 232 | DO j = nys, nyn |
---|
[1115] | 233 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1361] | 234 | IF ( qr(k,j,i) <= eps_sb ) THEN |
---|
| 235 | qr(k,j,i) = 0.0_wp |
---|
| 236 | nr(k,j,i) = 0.0_wp |
---|
| 237 | ELSE |
---|
| 238 | ! |
---|
| 239 | !-- Adjust number of raindrops to avoid nonlinear effects in |
---|
| 240 | !-- sedimentation and evaporation of rain drops due to too small |
---|
| 241 | !-- or too big weights of rain drops (Stevens and Seifert, 2008). |
---|
| 242 | IF ( nr(k,j,i) * xrmin > qr(k,j,i) * hyrho(k) ) THEN |
---|
| 243 | nr(k,j,i) = qr(k,j,i) * hyrho(k) / xrmin |
---|
| 244 | ELSEIF ( nr(k,j,i) * xrmax < qr(k,j,i) * hyrho(k) ) THEN |
---|
| 245 | nr(k,j,i) = qr(k,j,i) * hyrho(k) / xrmax |
---|
| 246 | ENDIF |
---|
[1022] | 247 | |
---|
[1361] | 248 | ENDIF |
---|
[1022] | 249 | ENDDO |
---|
| 250 | ENDDO |
---|
| 251 | ENDDO |
---|
| 252 | |
---|
[1361] | 253 | CALL cpu_log( log_point_s(54), 'adjust_cloud', 'stop' ) |
---|
| 254 | |
---|
[1115] | 255 | END SUBROUTINE adjust_cloud |
---|
[1022] | 256 | |
---|
[1106] | 257 | |
---|
[1000] | 258 | SUBROUTINE autoconversion |
---|
| 259 | |
---|
[1361] | 260 | USE arrays_3d, & |
---|
| 261 | ONLY: diss, dzu, nr, qc, qr |
---|
| 262 | |
---|
| 263 | USE cloud_parameters, & |
---|
| 264 | ONLY: a_1, a_2, a_3, b_1, b_2, b_3, beta_cc, c_1, c_2, c_3, & |
---|
| 265 | c_const, dpirho_l, eps_sb, hyrho, k_cc, kin_vis_air, & |
---|
| 266 | nc_const, x0 |
---|
| 267 | |
---|
| 268 | USE control_parameters, & |
---|
| 269 | ONLY: dt_micro, rho_surface, turbulence |
---|
| 270 | |
---|
| 271 | USE cpulog, & |
---|
| 272 | ONLY: cpu_log, log_point_s |
---|
| 273 | |
---|
| 274 | USE grid_variables, & |
---|
| 275 | ONLY: dx, dy |
---|
| 276 | |
---|
| 277 | USE indices, & |
---|
| 278 | ONLY: nxl, nxr, nys, nyn, nzb, nzb_s_inner, nzt |
---|
| 279 | |
---|
[1320] | 280 | USE kinds |
---|
[1000] | 281 | |
---|
| 282 | IMPLICIT NONE |
---|
| 283 | |
---|
[1320] | 284 | INTEGER(iwp) :: i !: |
---|
| 285 | INTEGER(iwp) :: j !: |
---|
| 286 | INTEGER(iwp) :: k !: |
---|
[1000] | 287 | |
---|
[1361] | 288 | REAL(wp) :: alpha_cc !: |
---|
| 289 | REAL(wp) :: autocon !: |
---|
| 290 | REAL(wp) :: dissipation !: |
---|
| 291 | REAL(wp) :: k_au !: |
---|
| 292 | REAL(wp) :: l_mix !: |
---|
| 293 | REAL(wp) :: nu_c !: |
---|
| 294 | REAL(wp) :: phi_au !: |
---|
| 295 | REAL(wp) :: r_cc !: |
---|
| 296 | REAL(wp) :: rc !: |
---|
| 297 | REAL(wp) :: re_lambda !: |
---|
| 298 | REAL(wp) :: selfcoll !: |
---|
| 299 | REAL(wp) :: sigma_cc !: |
---|
| 300 | REAL(wp) :: tau_cloud !: |
---|
| 301 | REAL(wp) :: xc !: |
---|
| 302 | |
---|
| 303 | CALL cpu_log( log_point_s(55), 'autoconversion', 'start' ) |
---|
| 304 | |
---|
[1000] | 305 | DO i = nxl, nxr |
---|
| 306 | DO j = nys, nyn |
---|
[1115] | 307 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1000] | 308 | |
---|
[1361] | 309 | IF ( qc(k,j,i) > eps_sb ) THEN |
---|
| 310 | |
---|
| 311 | k_au = k_cc / ( 20.0_wp * x0 ) |
---|
| 312 | ! |
---|
| 313 | !-- Intern time scale of coagulation (Seifert and Beheng, 2006): |
---|
| 314 | !-- (1.0_wp - qc(k,j,i) / ( qc(k,j,i) + qr(k,j,i) )) |
---|
| 315 | tau_cloud = 1.0_wp - qc(k,j,i) / ( qr(k,j,i) + qc(k,j,i) ) |
---|
| 316 | ! |
---|
| 317 | !-- Universal function for autoconversion process |
---|
| 318 | !-- (Seifert and Beheng, 2006): |
---|
| 319 | phi_au = 600.0_wp * tau_cloud**0.68_wp * & |
---|
| 320 | ( 1.0_wp - tau_cloud**0.68_wp )**3 |
---|
| 321 | ! |
---|
| 322 | !-- Shape parameter of gamma distribution (Geoffroy et al., 2010): |
---|
| 323 | !-- (Use constant nu_c = 1.0_wp instead?) |
---|
| 324 | nu_c = 1.0_wp !MAX( 0.0_wp, 1580.0_wp * hyrho(k) * qc(k,j,i) - 0.28_wp ) |
---|
| 325 | ! |
---|
| 326 | !-- Mean weight of cloud droplets: |
---|
| 327 | xc = hyrho(k) * qc(k,j,i) / nc_const |
---|
| 328 | ! |
---|
| 329 | !-- Parameterized turbulence effects on autoconversion (Seifert, |
---|
| 330 | !-- Nuijens and Stevens, 2010) |
---|
| 331 | IF ( turbulence ) THEN |
---|
| 332 | ! |
---|
| 333 | !-- Weight averaged radius of cloud droplets: |
---|
| 334 | rc = 0.5_wp * ( xc * dpirho_l )**( 1.0_wp / 3.0_wp ) |
---|
| 335 | |
---|
| 336 | alpha_cc = ( a_1 + a_2 * nu_c ) / ( 1.0_wp + a_3 * nu_c ) |
---|
| 337 | r_cc = ( b_1 + b_2 * nu_c ) / ( 1.0_wp + b_3 * nu_c ) |
---|
| 338 | sigma_cc = ( c_1 + c_2 * nu_c ) / ( 1.0_wp + c_3 * nu_c ) |
---|
| 339 | ! |
---|
| 340 | !-- Mixing length (neglecting distance to ground and |
---|
| 341 | !-- stratification) |
---|
| 342 | l_mix = ( dx * dy * dzu(k) )**( 1.0_wp / 3.0_wp ) |
---|
| 343 | ! |
---|
| 344 | !-- Limit dissipation rate according to Seifert, Nuijens and |
---|
| 345 | !-- Stevens (2010) |
---|
| 346 | dissipation = MIN( 0.06_wp, diss(k,j,i) ) |
---|
| 347 | ! |
---|
| 348 | !-- Compute Taylor-microscale Reynolds number: |
---|
| 349 | re_lambda = 6.0_wp / 11.0_wp * & |
---|
| 350 | ( l_mix / c_const )**( 2.0_wp / 3.0_wp ) * & |
---|
| 351 | SQRT( 15.0_wp / kin_vis_air ) * & |
---|
| 352 | dissipation**( 1.0_wp / 6.0_wp ) |
---|
| 353 | ! |
---|
| 354 | !-- The factor of 1.0E4 is needed to convert the dissipation |
---|
| 355 | !-- rate from m2 s-3 to cm2 s-3. |
---|
| 356 | k_au = k_au * ( 1.0_wp + & |
---|
| 357 | dissipation * 1.0E4_wp * & |
---|
| 358 | ( re_lambda * 1.0E-3_wp )**0.25_wp * & |
---|
| 359 | ( alpha_cc * EXP( -1.0_wp * ( ( rc - & |
---|
| 360 | r_cc ) / & |
---|
| 361 | sigma_cc )**2 & |
---|
| 362 | ) + beta_cc & |
---|
| 363 | ) & |
---|
| 364 | ) |
---|
| 365 | ENDIF |
---|
| 366 | ! |
---|
| 367 | !-- Autoconversion rate (Seifert and Beheng, 2006): |
---|
| 368 | autocon = k_au * ( nu_c + 2.0_wp ) * ( nu_c + 4.0_wp ) / & |
---|
| 369 | ( nu_c + 1.0_wp )**2 * qc(k,j,i)**2 * xc**2 * & |
---|
| 370 | ( 1.0_wp + phi_au / ( 1.0_wp - tau_cloud )**2 ) * & |
---|
| 371 | rho_surface |
---|
| 372 | autocon = MIN( autocon, qc(k,j,i) / dt_micro ) |
---|
| 373 | |
---|
| 374 | qr(k,j,i) = qr(k,j,i) + autocon * dt_micro |
---|
| 375 | qc(k,j,i) = qc(k,j,i) - autocon * dt_micro |
---|
| 376 | nr(k,j,i) = nr(k,j,i) + autocon / x0 * hyrho(k) * dt_micro |
---|
| 377 | |
---|
| 378 | ENDIF |
---|
| 379 | |
---|
[1000] | 380 | ENDDO |
---|
| 381 | ENDDO |
---|
| 382 | ENDDO |
---|
| 383 | |
---|
[1361] | 384 | CALL cpu_log( log_point_s(55), 'autoconversion', 'stop' ) |
---|
| 385 | |
---|
[1000] | 386 | END SUBROUTINE autoconversion |
---|
| 387 | |
---|
[1106] | 388 | |
---|
[1005] | 389 | SUBROUTINE accretion |
---|
[1000] | 390 | |
---|
[1361] | 391 | USE arrays_3d, & |
---|
| 392 | ONLY: diss, qc, qr |
---|
| 393 | |
---|
| 394 | USE cloud_parameters, & |
---|
| 395 | ONLY: eps_sb, hyrho, k_cr0 |
---|
| 396 | |
---|
| 397 | USE control_parameters, & |
---|
| 398 | ONLY: dt_micro, rho_surface, turbulence |
---|
| 399 | |
---|
| 400 | USE cpulog, & |
---|
| 401 | ONLY: cpu_log, log_point_s |
---|
| 402 | |
---|
| 403 | USE indices, & |
---|
| 404 | ONLY: nxl, nxr, nys, nyn, nzb, nzb_s_inner, nzt |
---|
| 405 | |
---|
[1320] | 406 | USE kinds |
---|
[1005] | 407 | |
---|
[1000] | 408 | IMPLICIT NONE |
---|
| 409 | |
---|
[1320] | 410 | INTEGER(iwp) :: i !: |
---|
| 411 | INTEGER(iwp) :: j !: |
---|
| 412 | INTEGER(iwp) :: k !: |
---|
[1000] | 413 | |
---|
[1361] | 414 | REAL(wp) :: accr !: |
---|
| 415 | REAL(wp) :: k_cr !: |
---|
| 416 | REAL(wp) :: phi_ac !: |
---|
| 417 | REAL(wp) :: tau_cloud !: |
---|
| 418 | REAL(wp) :: xc !: |
---|
| 419 | |
---|
| 420 | CALL cpu_log( log_point_s(56), 'accretion', 'start' ) |
---|
| 421 | |
---|
[1005] | 422 | DO i = nxl, nxr |
---|
| 423 | DO j = nys, nyn |
---|
[1115] | 424 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1000] | 425 | |
---|
[1361] | 426 | IF ( ( qc(k,j,i) > eps_sb ) .AND. ( qr(k,j,i) > eps_sb ) ) THEN |
---|
| 427 | ! |
---|
| 428 | !-- Intern time scale of coagulation (Seifert and Beheng, 2006): |
---|
| 429 | tau_cloud = 1.0_wp - qc(k,j,i) / ( qc(k,j,i) + qr(k,j,i) ) |
---|
| 430 | ! |
---|
| 431 | !-- Universal function for accretion process (Seifert and |
---|
| 432 | !-- Beheng, 2001): |
---|
| 433 | phi_ac = ( tau_cloud / ( tau_cloud + 5.0E-5_wp ) )**4 |
---|
| 434 | ! |
---|
| 435 | !-- Parameterized turbulence effects on autoconversion (Seifert, |
---|
| 436 | !-- Nuijens and Stevens, 2010). The factor of 1.0E4 is needed to |
---|
| 437 | !-- convert the dissipation rate (diss) from m2 s-3 to cm2 s-3. |
---|
| 438 | IF ( turbulence ) THEN |
---|
| 439 | k_cr = k_cr0 * ( 1.0_wp + 0.05_wp * & |
---|
| 440 | MIN( 600.0_wp, & |
---|
| 441 | diss(k,j,i) * 1.0E4_wp )**0.25_wp & |
---|
| 442 | ) |
---|
| 443 | ELSE |
---|
| 444 | k_cr = k_cr0 |
---|
| 445 | ENDIF |
---|
| 446 | ! |
---|
| 447 | !-- Accretion rate (Seifert and Beheng, 2006): |
---|
| 448 | accr = k_cr * qc(k,j,i) * qr(k,j,i) * phi_ac * & |
---|
| 449 | SQRT( rho_surface * hyrho(k) ) |
---|
| 450 | accr = MIN( accr, qc(k,j,i) / dt_micro ) |
---|
| 451 | |
---|
| 452 | qr(k,j,i) = qr(k,j,i) + accr * dt_micro |
---|
| 453 | qc(k,j,i) = qc(k,j,i) - accr * dt_micro |
---|
| 454 | |
---|
| 455 | ENDIF |
---|
| 456 | |
---|
[1005] | 457 | ENDDO |
---|
| 458 | ENDDO |
---|
[1000] | 459 | ENDDO |
---|
| 460 | |
---|
[1361] | 461 | CALL cpu_log( log_point_s(56), 'accretion', 'stop' ) |
---|
| 462 | |
---|
[1005] | 463 | END SUBROUTINE accretion |
---|
[1000] | 464 | |
---|
[1106] | 465 | |
---|
[1005] | 466 | SUBROUTINE selfcollection_breakup |
---|
[1000] | 467 | |
---|
[1361] | 468 | USE arrays_3d, & |
---|
| 469 | ONLY: nr, qr |
---|
| 470 | |
---|
| 471 | USE cloud_parameters, & |
---|
| 472 | ONLY: dpirho_l, eps_sb, hyrho, k_br, k_rr |
---|
| 473 | |
---|
| 474 | USE control_parameters, & |
---|
| 475 | ONLY: dt_micro, rho_surface |
---|
| 476 | |
---|
| 477 | USE cpulog, & |
---|
| 478 | ONLY: cpu_log, log_point_s |
---|
| 479 | |
---|
| 480 | USE indices, & |
---|
| 481 | ONLY: nxl, nxr, nys, nyn, nzb, nzb_s_inner, nzt |
---|
| 482 | |
---|
[1320] | 483 | USE kinds |
---|
[1361] | 484 | |
---|
[1000] | 485 | IMPLICIT NONE |
---|
| 486 | |
---|
[1320] | 487 | INTEGER(iwp) :: i !: |
---|
| 488 | INTEGER(iwp) :: j !: |
---|
| 489 | INTEGER(iwp) :: k !: |
---|
[1000] | 490 | |
---|
[1361] | 491 | REAL(wp) :: breakup !: |
---|
| 492 | REAL(wp) :: dr !: |
---|
| 493 | REAL(wp) :: phi_br !: |
---|
| 494 | REAL(wp) :: selfcoll !: |
---|
| 495 | |
---|
| 496 | CALL cpu_log( log_point_s(57), 'selfcollection', 'start' ) |
---|
| 497 | |
---|
[1000] | 498 | DO i = nxl, nxr |
---|
| 499 | DO j = nys, nyn |
---|
[1115] | 500 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1361] | 501 | IF ( qr(k,j,i) > eps_sb ) THEN |
---|
| 502 | ! |
---|
| 503 | !-- Selfcollection rate (Seifert and Beheng, 2001): |
---|
| 504 | selfcoll = k_rr * nr(k,j,i) * qr(k,j,i) * & |
---|
| 505 | SQRT( hyrho(k) * rho_surface ) |
---|
| 506 | ! |
---|
| 507 | !-- Weight averaged diameter of rain drops: |
---|
| 508 | dr = ( hyrho(k) * qr(k,j,i) / & |
---|
| 509 | nr(k,j,i) * dpirho_l )**( 1.0_wp / 3.0_wp ) |
---|
| 510 | ! |
---|
| 511 | !-- Collisional breakup rate (Seifert, 2008): |
---|
| 512 | IF ( dr >= 0.3E-3_wp ) THEN |
---|
| 513 | phi_br = k_br * ( dr - 1.1E-3_wp ) |
---|
| 514 | breakup = selfcoll * ( phi_br + 1.0_wp ) |
---|
| 515 | ELSE |
---|
| 516 | breakup = 0.0_wp |
---|
| 517 | ENDIF |
---|
[1000] | 518 | |
---|
[1361] | 519 | selfcoll = MAX( breakup - selfcoll, -nr(k,j,i) / dt_micro ) |
---|
| 520 | nr(k,j,i) = nr(k,j,i) + selfcoll * dt_micro |
---|
| 521 | |
---|
| 522 | ENDIF |
---|
[1000] | 523 | ENDDO |
---|
| 524 | ENDDO |
---|
| 525 | ENDDO |
---|
| 526 | |
---|
[1361] | 527 | CALL cpu_log( log_point_s(57), 'selfcollection', 'stop' ) |
---|
| 528 | |
---|
[1005] | 529 | END SUBROUTINE selfcollection_breakup |
---|
[1000] | 530 | |
---|
[1106] | 531 | |
---|
[1012] | 532 | SUBROUTINE evaporation_rain |
---|
[1000] | 533 | |
---|
[1361] | 534 | ! |
---|
| 535 | !-- Evaporation of precipitable water. Condensation is neglected for |
---|
| 536 | !-- precipitable water. |
---|
| 537 | |
---|
| 538 | USE arrays_3d, & |
---|
| 539 | ONLY: hyp, nr, pt, q, qc, qr |
---|
| 540 | |
---|
| 541 | USE cloud_parameters, & |
---|
| 542 | ONLY: a_term, a_vent, b_term, b_vent, c_evap, c_term, diff_coeff_l,& |
---|
| 543 | dpirho_l, eps_sb, hyrho, kin_vis_air, k_st, l_d_cp, l_d_r, & |
---|
| 544 | l_v, rho_l, r_v, schmidt_p_1d3, thermal_conductivity_l, & |
---|
| 545 | t_d_pt, ventilation_effect |
---|
| 546 | |
---|
| 547 | USE constants, & |
---|
| 548 | ONLY: pi |
---|
| 549 | |
---|
| 550 | USE control_parameters, & |
---|
| 551 | ONLY: dt_micro |
---|
| 552 | |
---|
| 553 | USE cpulog, & |
---|
| 554 | ONLY: cpu_log, log_point_s |
---|
| 555 | |
---|
| 556 | USE indices, & |
---|
| 557 | ONLY: nxl, nxr, nys, nyn, nzb, nzb_s_inner, nzt |
---|
| 558 | |
---|
[1320] | 559 | USE kinds |
---|
[1012] | 560 | |
---|
| 561 | IMPLICIT NONE |
---|
| 562 | |
---|
[1320] | 563 | INTEGER(iwp) :: i !: |
---|
| 564 | INTEGER(iwp) :: j !: |
---|
| 565 | INTEGER(iwp) :: k !: |
---|
[1361] | 566 | |
---|
| 567 | REAL(wp) :: alpha !: |
---|
| 568 | REAL(wp) :: dr !: |
---|
| 569 | REAL(wp) :: e_s !: |
---|
| 570 | REAL(wp) :: evap !: |
---|
| 571 | REAL(wp) :: evap_nr !: |
---|
| 572 | REAL(wp) :: f_vent !: |
---|
| 573 | REAL(wp) :: g_evap !: |
---|
| 574 | REAL(wp) :: lambda_r !: |
---|
| 575 | REAL(wp) :: mu_r !: |
---|
| 576 | REAL(wp) :: mu_r_2 !: |
---|
| 577 | REAL(wp) :: mu_r_5d2 !: |
---|
| 578 | REAL(wp) :: nr_0 !: |
---|
| 579 | REAL(wp) :: q_s !: |
---|
| 580 | REAL(wp) :: sat !: |
---|
| 581 | REAL(wp) :: t_l !: |
---|
| 582 | REAL(wp) :: temp !: |
---|
| 583 | REAL(wp) :: xr !: |
---|
| 584 | |
---|
| 585 | CALL cpu_log( log_point_s(58), 'evaporation', 'start' ) |
---|
| 586 | |
---|
[1012] | 587 | DO i = nxl, nxr |
---|
| 588 | DO j = nys, nyn |
---|
[1115] | 589 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1361] | 590 | IF ( qr(k,j,i) > eps_sb ) THEN |
---|
| 591 | ! |
---|
| 592 | !-- Actual liquid water temperature: |
---|
| 593 | t_l = t_d_pt(k) * pt(k,j,i) |
---|
| 594 | ! |
---|
| 595 | !-- Saturation vapor pressure at t_l: |
---|
| 596 | e_s = 610.78_wp * EXP( 17.269_wp * ( t_l - 273.16_wp ) / & |
---|
| 597 | ( t_l - 35.86_wp ) & |
---|
| 598 | ) |
---|
| 599 | ! |
---|
| 600 | !-- Computation of saturation humidity: |
---|
| 601 | q_s = 0.622_wp * e_s / ( hyp(k) - 0.378_wp * e_s ) |
---|
| 602 | alpha = 0.622_wp * l_d_r * l_d_cp / ( t_l * t_l ) |
---|
| 603 | q_s = q_s * ( 1.0_wp + alpha * q(k,j,i) ) / & |
---|
| 604 | ( 1.0_wp + alpha * q_s ) |
---|
| 605 | ! |
---|
| 606 | !-- Supersaturation: |
---|
| 607 | sat = ( q(k,j,i) - qr(k,j,i) - qc(k,j,i) ) / q_s - 1.0_wp |
---|
| 608 | ! |
---|
| 609 | !-- Evaporation needs only to be calculated in subsaturated regions |
---|
| 610 | IF ( sat < 0.0_wp ) THEN |
---|
| 611 | ! |
---|
| 612 | !-- Actual temperature: |
---|
| 613 | temp = t_l + l_d_cp * ( qc(k,j,i) + qr(k,j,i) ) |
---|
| 614 | |
---|
| 615 | g_evap = 1.0_wp / ( ( l_v / ( r_v * temp ) - 1.0_wp ) * & |
---|
| 616 | l_v / ( thermal_conductivity_l * temp ) & |
---|
| 617 | + r_v * temp / ( diff_coeff_l * e_s ) & |
---|
| 618 | ) |
---|
| 619 | ! |
---|
| 620 | !-- Mean weight of rain drops |
---|
| 621 | xr = hyrho(k) * qr(k,j,i) / nr(k,j,i) |
---|
| 622 | ! |
---|
| 623 | !-- Weight averaged diameter of rain drops: |
---|
| 624 | dr = ( xr * dpirho_l )**( 1.0_wp / 3.0_wp ) |
---|
| 625 | ! |
---|
| 626 | !-- Compute ventilation factor and intercept parameter |
---|
| 627 | !-- (Seifert and Beheng, 2006; Seifert, 2008): |
---|
| 628 | IF ( ventilation_effect ) THEN |
---|
| 629 | ! |
---|
| 630 | !-- Shape parameter of gamma distribution (Milbrandt and Yau, |
---|
| 631 | !-- 2005; Stevens and Seifert, 2008): |
---|
| 632 | mu_r = 10.0_wp * ( 1.0_wp + TANH( 1.2E3_wp * & |
---|
| 633 | ( dr - 1.4E-3_wp ) ) ) |
---|
| 634 | ! |
---|
| 635 | !-- Slope parameter of gamma distribution (Seifert, 2008): |
---|
| 636 | lambda_r = ( ( mu_r + 3.0_wp ) * ( mu_r + 2.0_wp ) * & |
---|
| 637 | ( mu_r + 1.0_wp ) & |
---|
| 638 | )**( 1.0_wp / 3.0_wp ) / dr |
---|
[1012] | 639 | |
---|
[1361] | 640 | mu_r_2 = mu_r + 2.0_wp |
---|
| 641 | mu_r_5d2 = mu_r + 2.5_wp |
---|
| 642 | |
---|
| 643 | f_vent = a_vent * gamm( mu_r_2 ) * & |
---|
| 644 | lambda_r**( -mu_r_2 ) + b_vent * & |
---|
| 645 | schmidt_p_1d3 * SQRT( a_term / kin_vis_air ) *& |
---|
| 646 | gamm( mu_r_5d2 ) * lambda_r**( -mu_r_5d2 ) * & |
---|
| 647 | ( 1.0_wp - & |
---|
| 648 | 0.5_wp * ( b_term / a_term ) * & |
---|
| 649 | ( lambda_r / ( c_term + lambda_r ) & |
---|
| 650 | )**mu_r_5d2 - & |
---|
| 651 | 0.125_wp * ( b_term / a_term )**2 * & |
---|
| 652 | ( lambda_r / ( 2.0_wp * c_term + lambda_r ) & |
---|
| 653 | )**mu_r_5d2 - & |
---|
| 654 | 0.0625_wp * ( b_term / a_term )**3 * & |
---|
| 655 | ( lambda_r / ( 3.0_wp * c_term + lambda_r ) & |
---|
| 656 | )**mu_r_5d2 - & |
---|
| 657 | 0.0390625_wp * ( b_term / a_term )**4 * & |
---|
| 658 | ( lambda_r / ( 4.0_wp * c_term + lambda_r ) & |
---|
| 659 | )**mu_r_5d2 & |
---|
| 660 | ) |
---|
| 661 | |
---|
| 662 | nr_0 = nr(k,j,i) * lambda_r**( mu_r + 1.0_wp ) / & |
---|
| 663 | gamm( mu_r + 1.0_wp ) |
---|
| 664 | ELSE |
---|
| 665 | f_vent = 1.0_wp |
---|
| 666 | nr_0 = nr(k,j,i) * dr |
---|
| 667 | ENDIF |
---|
| 668 | ! |
---|
| 669 | !-- Evaporation rate of rain water content (Seifert and |
---|
| 670 | !-- Beheng, 2006): |
---|
| 671 | evap = 2.0_wp * pi * nr_0 * g_evap * f_vent * sat / & |
---|
| 672 | hyrho(k) |
---|
| 673 | evap = MAX( evap, -qr(k,j,i) / dt_micro ) |
---|
| 674 | evap_nr = MAX( c_evap * evap / xr * hyrho(k), & |
---|
| 675 | -nr(k,j,i) / dt_micro ) |
---|
| 676 | |
---|
| 677 | qr(k,j,i) = qr(k,j,i) + evap * dt_micro |
---|
| 678 | nr(k,j,i) = nr(k,j,i) + evap_nr * dt_micro |
---|
| 679 | |
---|
| 680 | ENDIF |
---|
| 681 | ENDIF |
---|
| 682 | |
---|
[1012] | 683 | ENDDO |
---|
| 684 | ENDDO |
---|
| 685 | ENDDO |
---|
| 686 | |
---|
[1361] | 687 | CALL cpu_log( log_point_s(58), 'evaporation', 'stop' ) |
---|
| 688 | |
---|
[1012] | 689 | END SUBROUTINE evaporation_rain |
---|
| 690 | |
---|
[1106] | 691 | |
---|
[1012] | 692 | SUBROUTINE sedimentation_cloud |
---|
| 693 | |
---|
[1361] | 694 | USE arrays_3d, & |
---|
| 695 | ONLY: ddzu, dzu, pt, q, qc |
---|
| 696 | |
---|
| 697 | USE cloud_parameters, & |
---|
| 698 | ONLY: eps_sb, hyrho, l_d_cp, nc_const, pt_d_t, sed_qc_const |
---|
| 699 | |
---|
| 700 | USE constants, & |
---|
| 701 | ONLY: pi |
---|
| 702 | |
---|
| 703 | USE control_parameters, & |
---|
| 704 | ONLY: dt_do2d_xy, dt_micro, intermediate_timestep_count |
---|
| 705 | |
---|
| 706 | USE cpulog, & |
---|
| 707 | ONLY: cpu_log, log_point_s |
---|
| 708 | |
---|
| 709 | USE indices, & |
---|
| 710 | ONLY: nxl, nxr, nys, nyn, nzb, nzb_s_inner, nzt |
---|
| 711 | |
---|
[1320] | 712 | USE kinds |
---|
[1361] | 713 | |
---|
[1012] | 714 | IMPLICIT NONE |
---|
| 715 | |
---|
[1320] | 716 | INTEGER(iwp) :: i !: |
---|
| 717 | INTEGER(iwp) :: j !: |
---|
| 718 | INTEGER(iwp) :: k !: |
---|
[1361] | 719 | |
---|
| 720 | REAL(wp), DIMENSION(nzb:nzt+1) :: sed_qc !: |
---|
| 721 | |
---|
| 722 | CALL cpu_log( log_point_s(59), 'sed_cloud', 'start' ) |
---|
| 723 | |
---|
| 724 | ! |
---|
| 725 | !-- Sedimentation of cloud droplets (Ackermann et al., 2009, MWR): |
---|
| 726 | sed_qc(nzt+1) = 0.0_wp |
---|
| 727 | |
---|
[1012] | 728 | DO i = nxl, nxr |
---|
| 729 | DO j = nys, nyn |
---|
[1361] | 730 | DO k = nzt, nzb_s_inner(j,i)+1, -1 |
---|
[1012] | 731 | |
---|
[1361] | 732 | IF ( qc(k,j,i) > eps_sb ) THEN |
---|
| 733 | sed_qc(k) = sed_qc_const * nc_const**( -2.0_wp / 3.0_wp ) * & |
---|
| 734 | ( qc(k,j,i) * hyrho(k) )**( 5.0_wp / 3.0_wp ) |
---|
| 735 | ELSE |
---|
| 736 | sed_qc(k) = 0.0_wp |
---|
| 737 | ENDIF |
---|
| 738 | |
---|
| 739 | sed_qc(k) = MIN( sed_qc(k), hyrho(k) * dzu(k+1) * q(k,j,i) / & |
---|
| 740 | dt_micro + sed_qc(k+1) & |
---|
| 741 | ) |
---|
| 742 | |
---|
| 743 | q(k,j,i) = q(k,j,i) + ( sed_qc(k+1) - sed_qc(k) ) * & |
---|
| 744 | ddzu(k+1) / hyrho(k) * dt_micro |
---|
| 745 | qc(k,j,i) = qc(k,j,i) + ( sed_qc(k+1) - sed_qc(k) ) * & |
---|
| 746 | ddzu(k+1) / hyrho(k) * dt_micro |
---|
| 747 | pt(k,j,i) = pt(k,j,i) - ( sed_qc(k+1) - sed_qc(k) ) * & |
---|
| 748 | ddzu(k+1) / hyrho(k) * l_d_cp * & |
---|
| 749 | pt_d_t(k) * dt_micro |
---|
| 750 | |
---|
[1012] | 751 | ENDDO |
---|
| 752 | ENDDO |
---|
| 753 | ENDDO |
---|
| 754 | |
---|
[1361] | 755 | CALL cpu_log( log_point_s(59), 'sed_cloud', 'stop' ) |
---|
| 756 | |
---|
[1012] | 757 | END SUBROUTINE sedimentation_cloud |
---|
| 758 | |
---|
[1106] | 759 | |
---|
[1012] | 760 | SUBROUTINE sedimentation_rain |
---|
| 761 | |
---|
[1361] | 762 | USE arrays_3d, & |
---|
| 763 | ONLY: ddzu, dzu, nr, pt, q, qr |
---|
| 764 | |
---|
| 765 | USE cloud_parameters, & |
---|
| 766 | ONLY: a_term, b_term, c_term, cof, dpirho_l, eps_sb, hyrho, & |
---|
| 767 | limiter_sedimentation, l_d_cp, precipitation_amount, prr, & |
---|
| 768 | pt_d_t, stp |
---|
| 769 | |
---|
| 770 | USE control_parameters, & |
---|
| 771 | ONLY: call_microphysics_at_all_substeps, dt_do2d_xy, dt_micro, & |
---|
| 772 | dt_3d, intermediate_timestep_count, & |
---|
| 773 | intermediate_timestep_count_max, & |
---|
| 774 | precipitation_amount_interval, time_do2d_xy |
---|
| 775 | |
---|
| 776 | USE cpulog, & |
---|
| 777 | ONLY: cpu_log, log_point_s |
---|
| 778 | |
---|
| 779 | USE indices, & |
---|
| 780 | ONLY: nxl, nxr, nys, nyn, nzb, nzb_s_inner, nzt |
---|
| 781 | |
---|
[1320] | 782 | USE kinds |
---|
[1012] | 783 | |
---|
[1361] | 784 | USE statistics, & |
---|
| 785 | ONLY: weight_substep |
---|
| 786 | |
---|
[1012] | 787 | IMPLICIT NONE |
---|
| 788 | |
---|
[1361] | 789 | INTEGER(iwp) :: i !: |
---|
| 790 | INTEGER(iwp) :: j !: |
---|
| 791 | INTEGER(iwp) :: k !: |
---|
| 792 | INTEGER(iwp) :: k_run !: |
---|
| 793 | |
---|
| 794 | REAL(wp) :: c_run !: |
---|
| 795 | REAL(wp) :: d_max !: |
---|
| 796 | REAL(wp) :: d_mean !: |
---|
| 797 | REAL(wp) :: d_min !: |
---|
| 798 | REAL(wp) :: dr !: |
---|
| 799 | REAL(wp) :: dt_sedi !: |
---|
| 800 | REAL(wp) :: flux !: |
---|
| 801 | REAL(wp) :: lambda_r !: |
---|
| 802 | REAL(wp) :: mu_r !: |
---|
| 803 | REAL(wp) :: z_run !: |
---|
| 804 | |
---|
| 805 | REAL(wp), DIMENSION(nzb:nzt+1) :: c_nr !: |
---|
| 806 | REAL(wp), DIMENSION(nzb:nzt+1) :: c_qr !: |
---|
| 807 | REAL(wp), DIMENSION(nzb:nzt+1) :: d_nr !: |
---|
| 808 | REAL(wp), DIMENSION(nzb:nzt+1) :: d_qr !: |
---|
| 809 | REAL(wp), DIMENSION(nzb:nzt+1) :: nr_slope !: |
---|
| 810 | REAL(wp), DIMENSION(nzb:nzt+1) :: qr_slope !: |
---|
| 811 | REAL(wp), DIMENSION(nzb:nzt+1) :: sed_nr !: |
---|
| 812 | REAL(wp), DIMENSION(nzb:nzt+1) :: sed_qr !: |
---|
| 813 | REAL(wp), DIMENSION(nzb:nzt+1) :: w_nr !: |
---|
| 814 | REAL(wp), DIMENSION(nzb:nzt+1) :: w_qr !: |
---|
| 815 | |
---|
| 816 | CALL cpu_log( log_point_s(60), 'sed_rain', 'start' ) |
---|
| 817 | ! |
---|
| 818 | !-- Computation of sedimentation flux. Implementation according to Stevens |
---|
| 819 | !-- and Seifert (2008). Code is based on UCLA-LES. |
---|
| 820 | IF ( intermediate_timestep_count == 1 ) prr(:,:,:) = 0.0_wp |
---|
| 821 | ! |
---|
| 822 | !-- Compute velocities |
---|
[1012] | 823 | DO i = nxl, nxr |
---|
| 824 | DO j = nys, nyn |
---|
[1115] | 825 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1361] | 826 | IF ( qr(k,j,i) > eps_sb ) THEN |
---|
| 827 | ! |
---|
| 828 | !-- Weight averaged diameter of rain drops: |
---|
| 829 | dr = ( hyrho(k) * qr(k,j,i) / & |
---|
| 830 | nr(k,j,i) * dpirho_l )**( 1.0_wp / 3.0_wp ) |
---|
| 831 | ! |
---|
| 832 | !-- Shape parameter of gamma distribution (Milbrandt and Yau, 2005; |
---|
| 833 | !-- Stevens and Seifert, 2008): |
---|
| 834 | mu_r = 10.0_wp * ( 1.0_wp + TANH( 1.2E3_wp * & |
---|
| 835 | ( dr - 1.4E-3_wp ) ) ) |
---|
| 836 | ! |
---|
| 837 | !-- Slope parameter of gamma distribution (Seifert, 2008): |
---|
| 838 | lambda_r = ( ( mu_r + 3.0_wp ) * ( mu_r + 2.0_wp ) * & |
---|
| 839 | ( mu_r + 1.0_wp ) )**( 1.0_wp / 3.0_wp ) / dr |
---|
[1012] | 840 | |
---|
[1361] | 841 | w_nr(k) = MAX( 0.1_wp, MIN( 20.0_wp, & |
---|
| 842 | a_term - b_term * ( 1.0_wp + & |
---|
| 843 | c_term / & |
---|
| 844 | lambda_r )**( -1.0_wp * & |
---|
| 845 | ( mu_r + 1.0_wp ) ) & |
---|
| 846 | ) & |
---|
| 847 | ) |
---|
| 848 | |
---|
| 849 | w_qr(k) = MAX( 0.1_wp, MIN( 20.0_wp, & |
---|
| 850 | a_term - b_term * ( 1.0_wp + & |
---|
| 851 | c_term / & |
---|
| 852 | lambda_r )**( -1.0_wp * & |
---|
| 853 | ( mu_r + 4.0_wp ) ) & |
---|
| 854 | ) & |
---|
| 855 | ) |
---|
| 856 | ELSE |
---|
| 857 | w_nr(k) = 0.0_wp |
---|
| 858 | w_qr(k) = 0.0_wp |
---|
| 859 | ENDIF |
---|
[1012] | 860 | ENDDO |
---|
[1361] | 861 | ! |
---|
| 862 | !-- Adjust boundary values |
---|
| 863 | w_nr(nzb_s_inner(j,i)) = w_nr(nzb_s_inner(j,i)+1) |
---|
| 864 | w_qr(nzb_s_inner(j,i)) = w_qr(nzb_s_inner(j,i)+1) |
---|
| 865 | w_nr(nzt+1) = 0.0_wp |
---|
| 866 | w_qr(nzt+1) = 0.0_wp |
---|
| 867 | ! |
---|
| 868 | !-- Compute Courant number |
---|
| 869 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 870 | c_nr(k) = 0.25_wp * ( w_nr(k-1) + & |
---|
| 871 | 2.0_wp * w_nr(k) + w_nr(k+1) ) * & |
---|
| 872 | dt_micro * ddzu(k) |
---|
| 873 | c_qr(k) = 0.25_wp * ( w_qr(k-1) + & |
---|
| 874 | 2.0_wp * w_qr(k) + w_qr(k+1) ) * & |
---|
| 875 | dt_micro * ddzu(k) |
---|
| 876 | ENDDO |
---|
| 877 | ! |
---|
| 878 | !-- Limit slopes with monotonized centered (MC) limiter (van Leer, 1977): |
---|
| 879 | IF ( limiter_sedimentation ) THEN |
---|
| 880 | |
---|
| 881 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1646] | 882 | d_mean = 0.5_wp * ( qr(k+1,j,i) - qr(k-1,j,i) ) |
---|
[1361] | 883 | d_min = qr(k,j,i) - MIN( qr(k+1,j,i), qr(k,j,i), qr(k-1,j,i) ) |
---|
| 884 | d_max = MAX( qr(k+1,j,i), qr(k,j,i), qr(k-1,j,i) ) - qr(k,j,i) |
---|
| 885 | |
---|
| 886 | qr_slope(k) = SIGN(1.0_wp, d_mean) * MIN ( 2.0_wp * d_min, & |
---|
| 887 | 2.0_wp * d_max, & |
---|
| 888 | ABS( d_mean ) ) |
---|
| 889 | |
---|
[1646] | 890 | d_mean = 0.5_wp * ( nr(k+1,j,i) - nr(k-1,j,i) ) |
---|
[1361] | 891 | d_min = nr(k,j,i) - MIN( nr(k+1,j,i), nr(k,j,i), nr(k-1,j,i) ) |
---|
| 892 | d_max = MAX( nr(k+1,j,i), nr(k,j,i), nr(k-1,j,i) ) - nr(k,j,i) |
---|
| 893 | |
---|
| 894 | nr_slope(k) = SIGN(1.0_wp, d_mean) * MIN ( 2.0_wp * d_min, & |
---|
| 895 | 2.0_wp * d_max, & |
---|
| 896 | ABS( d_mean ) ) |
---|
| 897 | ENDDO |
---|
| 898 | |
---|
| 899 | ELSE |
---|
| 900 | |
---|
| 901 | nr_slope = 0.0_wp |
---|
| 902 | qr_slope = 0.0_wp |
---|
| 903 | |
---|
| 904 | ENDIF |
---|
| 905 | |
---|
| 906 | sed_nr(nzt+1) = 0.0_wp |
---|
| 907 | sed_qr(nzt+1) = 0.0_wp |
---|
| 908 | ! |
---|
| 909 | !-- Compute sedimentation flux |
---|
| 910 | DO k = nzt, nzb_s_inner(j,i)+1, -1 |
---|
| 911 | ! |
---|
| 912 | !-- Sum up all rain drop number densities which contribute to the flux |
---|
| 913 | !-- through k-1/2 |
---|
| 914 | flux = 0.0_wp |
---|
| 915 | z_run = 0.0_wp ! height above z(k) |
---|
| 916 | k_run = k |
---|
| 917 | c_run = MIN( 1.0_wp, c_nr(k) ) |
---|
| 918 | DO WHILE ( c_run > 0.0_wp .AND. k_run <= nzt ) |
---|
| 919 | flux = flux + hyrho(k_run) * & |
---|
| 920 | ( nr(k_run,j,i) + nr_slope(k_run) * & |
---|
| 921 | ( 1.0_wp - c_run ) * 0.5_wp ) * c_run * dzu(k_run) |
---|
| 922 | z_run = z_run + dzu(k_run) |
---|
| 923 | k_run = k_run + 1 |
---|
| 924 | c_run = MIN( 1.0_wp, c_nr(k_run) - z_run * ddzu(k_run) ) |
---|
| 925 | ENDDO |
---|
| 926 | ! |
---|
| 927 | !-- It is not allowed to sediment more rain drop number density than |
---|
| 928 | !-- available |
---|
| 929 | flux = MIN( flux, & |
---|
| 930 | hyrho(k) * dzu(k+1) * nr(k,j,i) + sed_nr(k+1) * & |
---|
| 931 | dt_micro & |
---|
| 932 | ) |
---|
| 933 | |
---|
| 934 | sed_nr(k) = flux / dt_micro |
---|
| 935 | nr(k,j,i) = nr(k,j,i) + ( sed_nr(k+1) - sed_nr(k) ) * & |
---|
| 936 | ddzu(k+1) / hyrho(k) * dt_micro |
---|
| 937 | ! |
---|
| 938 | !-- Sum up all rain water content which contributes to the flux |
---|
| 939 | !-- through k-1/2 |
---|
| 940 | flux = 0.0_wp |
---|
| 941 | z_run = 0.0_wp ! height above z(k) |
---|
| 942 | k_run = k |
---|
| 943 | c_run = MIN( 1.0_wp, c_qr(k) ) |
---|
| 944 | |
---|
| 945 | DO WHILE ( c_run > 0.0_wp .AND. k_run <= nzt ) |
---|
| 946 | |
---|
| 947 | flux = flux + hyrho(k_run) * ( qr(k_run,j,i) + & |
---|
| 948 | qr_slope(k_run) * ( 1.0_wp - c_run ) * & |
---|
| 949 | 0.5_wp ) * c_run * dzu(k_run) |
---|
| 950 | z_run = z_run + dzu(k_run) |
---|
| 951 | k_run = k_run + 1 |
---|
| 952 | c_run = MIN( 1.0_wp, c_qr(k_run) - z_run * ddzu(k_run) ) |
---|
| 953 | |
---|
| 954 | ENDDO |
---|
| 955 | ! |
---|
| 956 | !-- It is not allowed to sediment more rain water content than |
---|
| 957 | !-- available |
---|
| 958 | flux = MIN( flux, & |
---|
| 959 | hyrho(k) * dzu(k) * qr(k,j,i) + sed_qr(k+1) * & |
---|
| 960 | dt_micro & |
---|
| 961 | ) |
---|
| 962 | |
---|
| 963 | sed_qr(k) = flux / dt_micro |
---|
| 964 | |
---|
| 965 | qr(k,j,i) = qr(k,j,i) + ( sed_qr(k+1) - sed_qr(k) ) * & |
---|
| 966 | ddzu(k+1) / hyrho(k) * dt_micro |
---|
| 967 | q(k,j,i) = q(k,j,i) + ( sed_qr(k+1) - sed_qr(k) ) * & |
---|
| 968 | ddzu(k+1) / hyrho(k) * dt_micro |
---|
| 969 | pt(k,j,i) = pt(k,j,i) - ( sed_qr(k+1) - sed_qr(k) ) * & |
---|
| 970 | ddzu(k+1) / hyrho(k) * l_d_cp * & |
---|
| 971 | pt_d_t(k) * dt_micro |
---|
| 972 | ! |
---|
| 973 | !-- Compute the rain rate |
---|
| 974 | IF ( call_microphysics_at_all_substeps ) THEN |
---|
| 975 | prr(k,j,i) = prr(k,j,i) + sed_qr(k) / hyrho(k) * & |
---|
| 976 | weight_substep(intermediate_timestep_count) |
---|
| 977 | ELSE |
---|
| 978 | prr(k,j,i) = sed_qr(k) / hyrho(k) |
---|
| 979 | ENDIF |
---|
| 980 | |
---|
| 981 | ENDDO |
---|
[1012] | 982 | ENDDO |
---|
| 983 | ENDDO |
---|
| 984 | |
---|
[1361] | 985 | ! |
---|
| 986 | !-- Precipitation amount |
---|
| 987 | IF ( intermediate_timestep_count == intermediate_timestep_count_max & |
---|
| 988 | .AND. ( dt_do2d_xy - time_do2d_xy ) < & |
---|
| 989 | precipitation_amount_interval ) THEN |
---|
| 990 | DO i = nxl, nxr |
---|
| 991 | DO j = nys, nyn |
---|
| 992 | precipitation_amount(j,i) = precipitation_amount(j,i) + & |
---|
| 993 | prr(nzb_s_inner(j,i)+1,j,i) * & |
---|
| 994 | hyrho(nzb_s_inner(j,i)+1) * dt_3d |
---|
| 995 | ENDDO |
---|
| 996 | ENDDO |
---|
| 997 | ENDIF |
---|
| 998 | |
---|
| 999 | CALL cpu_log( log_point_s(60), 'sed_rain', 'stop' ) |
---|
| 1000 | |
---|
[1012] | 1001 | END SUBROUTINE sedimentation_rain |
---|
| 1002 | |
---|
| 1003 | |
---|
[1000] | 1004 | !------------------------------------------------------------------------------! |
---|
| 1005 | ! Call for grid point i,j |
---|
| 1006 | !------------------------------------------------------------------------------! |
---|
[1022] | 1007 | |
---|
[1115] | 1008 | SUBROUTINE microphysics_control_ij( i, j ) |
---|
| 1009 | |
---|
[1320] | 1010 | USE arrays_3d, & |
---|
[1361] | 1011 | ONLY: hyp, nc_1d, nr, nr_1d, pt, pt_init, pt_1d, q, q_1d, qc, & |
---|
| 1012 | qc_1d, qr, qr_1d, zu |
---|
[1115] | 1013 | |
---|
[1320] | 1014 | USE cloud_parameters, & |
---|
| 1015 | ONLY: cp, hyrho, nc_const, pt_d_t, r_d, t_d_pt |
---|
| 1016 | |
---|
| 1017 | USE control_parameters, & |
---|
[1361] | 1018 | ONLY: call_microphysics_at_all_substeps, drizzle, dt_3d, dt_micro, & |
---|
| 1019 | g, intermediate_timestep_count, large_scale_forcing, & |
---|
| 1020 | lsf_surf, precipitation, pt_surface, & |
---|
[1320] | 1021 | rho_surface,surface_pressure |
---|
| 1022 | |
---|
| 1023 | USE indices, & |
---|
| 1024 | ONLY: nzb, nzt |
---|
| 1025 | |
---|
| 1026 | USE kinds |
---|
| 1027 | |
---|
| 1028 | USE statistics, & |
---|
| 1029 | ONLY: weight_pres |
---|
| 1030 | |
---|
[1022] | 1031 | IMPLICIT NONE |
---|
| 1032 | |
---|
[1320] | 1033 | INTEGER(iwp) :: i !: |
---|
| 1034 | INTEGER(iwp) :: j !: |
---|
| 1035 | INTEGER(iwp) :: k !: |
---|
[1115] | 1036 | |
---|
[1320] | 1037 | REAL(wp) :: t_surface !: |
---|
| 1038 | |
---|
[1361] | 1039 | IF ( large_scale_forcing .AND. lsf_surf ) THEN |
---|
[1241] | 1040 | ! |
---|
| 1041 | !-- Calculate: |
---|
| 1042 | !-- pt / t : ratio of potential and actual temperature (pt_d_t) |
---|
| 1043 | !-- t / pt : ratio of actual and potential temperature (t_d_pt) |
---|
| 1044 | !-- p_0(z) : vertical profile of the hydrostatic pressure (hyp) |
---|
[1353] | 1045 | t_surface = pt_surface * ( surface_pressure / 1000.0_wp )**0.286_wp |
---|
[1241] | 1046 | DO k = nzb, nzt+1 |
---|
[1353] | 1047 | hyp(k) = surface_pressure * 100.0_wp * & |
---|
[1361] | 1048 | ( ( t_surface - g / cp * zu(k) ) / t_surface )**(1.0_wp / 0.286_wp) |
---|
[1353] | 1049 | pt_d_t(k) = ( 100000.0_wp / hyp(k) )**0.286_wp |
---|
| 1050 | t_d_pt(k) = 1.0_wp / pt_d_t(k) |
---|
[1241] | 1051 | hyrho(k) = hyp(k) / ( r_d * t_d_pt(k) * pt_init(k) ) |
---|
| 1052 | ENDDO |
---|
| 1053 | ! |
---|
| 1054 | !-- Compute reference density |
---|
[1353] | 1055 | rho_surface = surface_pressure * 100.0_wp / ( r_d * t_surface ) |
---|
[1241] | 1056 | ENDIF |
---|
| 1057 | |
---|
[1361] | 1058 | ! |
---|
| 1059 | !-- Compute length of time step |
---|
| 1060 | IF ( call_microphysics_at_all_substeps ) THEN |
---|
| 1061 | dt_micro = dt_3d * weight_pres(intermediate_timestep_count) |
---|
| 1062 | ELSE |
---|
| 1063 | dt_micro = dt_3d |
---|
| 1064 | ENDIF |
---|
[1241] | 1065 | |
---|
[1115] | 1066 | ! |
---|
[1361] | 1067 | !-- Use 1d arrays |
---|
[1115] | 1068 | q_1d(:) = q(:,j,i) |
---|
| 1069 | pt_1d(:) = pt(:,j,i) |
---|
| 1070 | qc_1d(:) = qc(:,j,i) |
---|
| 1071 | nc_1d(:) = nc_const |
---|
| 1072 | IF ( precipitation ) THEN |
---|
| 1073 | qr_1d(:) = qr(:,j,i) |
---|
| 1074 | nr_1d(:) = nr(:,j,i) |
---|
| 1075 | ENDIF |
---|
[1361] | 1076 | |
---|
[1115] | 1077 | ! |
---|
| 1078 | !-- Compute cloud physics |
---|
| 1079 | IF ( precipitation ) THEN |
---|
[1361] | 1080 | CALL adjust_cloud( i,j ) |
---|
[1115] | 1081 | CALL autoconversion( i,j ) |
---|
| 1082 | CALL accretion( i,j ) |
---|
| 1083 | CALL selfcollection_breakup( i,j ) |
---|
| 1084 | CALL evaporation_rain( i,j ) |
---|
| 1085 | CALL sedimentation_rain( i,j ) |
---|
| 1086 | ENDIF |
---|
| 1087 | |
---|
| 1088 | IF ( drizzle ) CALL sedimentation_cloud( i,j ) |
---|
[1361] | 1089 | |
---|
[1115] | 1090 | ! |
---|
[1361] | 1091 | !-- Store results on the 3d arrays |
---|
| 1092 | q(:,j,i) = q_1d(:) |
---|
| 1093 | pt(:,j,i) = pt_1d(:) |
---|
[1115] | 1094 | IF ( precipitation ) THEN |
---|
[1361] | 1095 | qr(:,j,i) = qr_1d(:) |
---|
| 1096 | nr(:,j,i) = nr_1d(:) |
---|
[1115] | 1097 | ENDIF |
---|
| 1098 | |
---|
| 1099 | END SUBROUTINE microphysics_control_ij |
---|
| 1100 | |
---|
| 1101 | SUBROUTINE adjust_cloud_ij( i, j ) |
---|
| 1102 | |
---|
[1320] | 1103 | USE arrays_3d, & |
---|
[1361] | 1104 | ONLY: qr_1d, nr_1d |
---|
[1115] | 1105 | |
---|
[1320] | 1106 | USE cloud_parameters, & |
---|
| 1107 | ONLY: eps_sb, xrmin, xrmax, hyrho, k_cc, x0 |
---|
| 1108 | |
---|
| 1109 | USE indices, & |
---|
| 1110 | ONLY: nzb, nzb_s_inner, nzt |
---|
| 1111 | |
---|
| 1112 | USE kinds |
---|
| 1113 | |
---|
[1115] | 1114 | IMPLICIT NONE |
---|
| 1115 | |
---|
[1320] | 1116 | INTEGER(iwp) :: i !: |
---|
| 1117 | INTEGER(iwp) :: j !: |
---|
| 1118 | INTEGER(iwp) :: k !: |
---|
[1115] | 1119 | ! |
---|
| 1120 | !-- Adjust number of raindrops to avoid nonlinear effects in |
---|
| 1121 | !-- sedimentation and evaporation of rain drops due to too small or |
---|
| 1122 | !-- too big weights of rain drops (Stevens and Seifert, 2008). |
---|
| 1123 | !-- The same procedure is applied to cloud droplets if they are determined |
---|
| 1124 | !-- prognostically. |
---|
| 1125 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1022] | 1126 | |
---|
[1361] | 1127 | IF ( qr_1d(k) <= eps_sb ) THEN |
---|
| 1128 | qr_1d(k) = 0.0_wp |
---|
| 1129 | nr_1d(k) = 0.0_wp |
---|
[1065] | 1130 | ELSE |
---|
[1022] | 1131 | ! |
---|
[1048] | 1132 | !-- Adjust number of raindrops to avoid nonlinear effects in |
---|
| 1133 | !-- sedimentation and evaporation of rain drops due to too small or |
---|
[1065] | 1134 | !-- too big weights of rain drops (Stevens and Seifert, 2008). |
---|
[1361] | 1135 | IF ( nr_1d(k) * xrmin > qr_1d(k) * hyrho(k) ) THEN |
---|
| 1136 | nr_1d(k) = qr_1d(k) * hyrho(k) / xrmin |
---|
| 1137 | ELSEIF ( nr_1d(k) * xrmax < qr_1d(k) * hyrho(k) ) THEN |
---|
| 1138 | nr_1d(k) = qr_1d(k) * hyrho(k) / xrmax |
---|
[1048] | 1139 | ENDIF |
---|
[1115] | 1140 | |
---|
[1022] | 1141 | ENDIF |
---|
[1115] | 1142 | |
---|
[1022] | 1143 | ENDDO |
---|
| 1144 | |
---|
[1115] | 1145 | END SUBROUTINE adjust_cloud_ij |
---|
[1022] | 1146 | |
---|
[1106] | 1147 | |
---|
[1005] | 1148 | SUBROUTINE autoconversion_ij( i, j ) |
---|
[1000] | 1149 | |
---|
[1320] | 1150 | USE arrays_3d, & |
---|
| 1151 | ONLY: diss, dzu, nc_1d, nr_1d, qc_1d, qr_1d |
---|
[1115] | 1152 | |
---|
[1320] | 1153 | USE cloud_parameters, & |
---|
| 1154 | ONLY: a_1, a_2, a_3, b_1, b_2, b_3, beta_cc, c_1, c_2, c_3, & |
---|
| 1155 | c_const, dpirho_l, eps_sb, hyrho, k_cc, kin_vis_air, x0 |
---|
| 1156 | |
---|
| 1157 | USE control_parameters, & |
---|
| 1158 | ONLY: dt_micro, rho_surface, turbulence |
---|
| 1159 | |
---|
| 1160 | USE grid_variables, & |
---|
| 1161 | ONLY: dx, dy |
---|
| 1162 | |
---|
| 1163 | USE indices, & |
---|
| 1164 | ONLY: nzb, nzb_s_inner, nzt |
---|
| 1165 | |
---|
| 1166 | USE kinds |
---|
| 1167 | |
---|
[1000] | 1168 | IMPLICIT NONE |
---|
| 1169 | |
---|
[1320] | 1170 | INTEGER(iwp) :: i !: |
---|
| 1171 | INTEGER(iwp) :: j !: |
---|
| 1172 | INTEGER(iwp) :: k !: |
---|
[1000] | 1173 | |
---|
[1320] | 1174 | REAL(wp) :: alpha_cc !: |
---|
| 1175 | REAL(wp) :: autocon !: |
---|
[1361] | 1176 | REAL(wp) :: dissipation !: |
---|
[1320] | 1177 | REAL(wp) :: k_au !: |
---|
| 1178 | REAL(wp) :: l_mix !: |
---|
| 1179 | REAL(wp) :: nu_c !: |
---|
| 1180 | REAL(wp) :: phi_au !: |
---|
| 1181 | REAL(wp) :: r_cc !: |
---|
| 1182 | REAL(wp) :: rc !: |
---|
| 1183 | REAL(wp) :: re_lambda !: |
---|
| 1184 | REAL(wp) :: selfcoll !: |
---|
| 1185 | REAL(wp) :: sigma_cc !: |
---|
| 1186 | REAL(wp) :: tau_cloud !: |
---|
| 1187 | REAL(wp) :: xc !: |
---|
[1106] | 1188 | |
---|
[1115] | 1189 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1000] | 1190 | |
---|
[1115] | 1191 | IF ( qc_1d(k) > eps_sb ) THEN |
---|
[1361] | 1192 | |
---|
| 1193 | k_au = k_cc / ( 20.0_wp * x0 ) |
---|
[1012] | 1194 | ! |
---|
[1048] | 1195 | !-- Intern time scale of coagulation (Seifert and Beheng, 2006): |
---|
[1353] | 1196 | !-- (1.0_wp - qc(k,j,i) / ( qc(k,j,i) + qr_1d(k) )) |
---|
| 1197 | tau_cloud = 1.0_wp - qc_1d(k) / ( qr_1d(k) + qc_1d(k) ) |
---|
[1012] | 1198 | ! |
---|
| 1199 | !-- Universal function for autoconversion process |
---|
| 1200 | !-- (Seifert and Beheng, 2006): |
---|
[1361] | 1201 | phi_au = 600.0_wp * tau_cloud**0.68_wp * ( 1.0_wp - tau_cloud**0.68_wp )**3 |
---|
[1012] | 1202 | ! |
---|
| 1203 | !-- Shape parameter of gamma distribution (Geoffroy et al., 2010): |
---|
[1353] | 1204 | !-- (Use constant nu_c = 1.0_wp instead?) |
---|
[1361] | 1205 | nu_c = 1.0_wp !MAX( 0.0_wp, 1580.0_wp * hyrho(k) * qc_1d(k) - 0.28_wp ) |
---|
[1012] | 1206 | ! |
---|
| 1207 | !-- Mean weight of cloud droplets: |
---|
[1115] | 1208 | xc = hyrho(k) * qc_1d(k) / nc_1d(k) |
---|
[1012] | 1209 | ! |
---|
[1065] | 1210 | !-- Parameterized turbulence effects on autoconversion (Seifert, |
---|
| 1211 | !-- Nuijens and Stevens, 2010) |
---|
| 1212 | IF ( turbulence ) THEN |
---|
| 1213 | ! |
---|
| 1214 | !-- Weight averaged radius of cloud droplets: |
---|
[1353] | 1215 | rc = 0.5_wp * ( xc * dpirho_l )**( 1.0_wp / 3.0_wp ) |
---|
[1065] | 1216 | |
---|
[1353] | 1217 | alpha_cc = ( a_1 + a_2 * nu_c ) / ( 1.0_wp + a_3 * nu_c ) |
---|
| 1218 | r_cc = ( b_1 + b_2 * nu_c ) / ( 1.0_wp + b_3 * nu_c ) |
---|
| 1219 | sigma_cc = ( c_1 + c_2 * nu_c ) / ( 1.0_wp + c_3 * nu_c ) |
---|
[1065] | 1220 | ! |
---|
| 1221 | !-- Mixing length (neglecting distance to ground and stratification) |
---|
[1334] | 1222 | l_mix = ( dx * dy * dzu(k) )**( 1.0_wp / 3.0_wp ) |
---|
[1065] | 1223 | ! |
---|
| 1224 | !-- Limit dissipation rate according to Seifert, Nuijens and |
---|
| 1225 | !-- Stevens (2010) |
---|
[1361] | 1226 | dissipation = MIN( 0.06_wp, diss(k,j,i) ) |
---|
[1065] | 1227 | ! |
---|
| 1228 | !-- Compute Taylor-microscale Reynolds number: |
---|
[1361] | 1229 | re_lambda = 6.0_wp / 11.0_wp * & |
---|
| 1230 | ( l_mix / c_const )**( 2.0_wp / 3.0_wp ) * & |
---|
| 1231 | SQRT( 15.0_wp / kin_vis_air ) * & |
---|
| 1232 | dissipation**( 1.0_wp / 6.0_wp ) |
---|
[1065] | 1233 | ! |
---|
| 1234 | !-- The factor of 1.0E4 is needed to convert the dissipation rate |
---|
| 1235 | !-- from m2 s-3 to cm2 s-3. |
---|
[1361] | 1236 | k_au = k_au * ( 1.0_wp + & |
---|
| 1237 | dissipation * 1.0E4_wp * & |
---|
| 1238 | ( re_lambda * 1.0E-3_wp )**0.25_wp * & |
---|
| 1239 | ( alpha_cc * EXP( -1.0_wp * ( ( rc - r_cc ) / & |
---|
| 1240 | sigma_cc )**2 & |
---|
| 1241 | ) + beta_cc & |
---|
| 1242 | ) & |
---|
| 1243 | ) |
---|
[1065] | 1244 | ENDIF |
---|
| 1245 | ! |
---|
[1012] | 1246 | !-- Autoconversion rate (Seifert and Beheng, 2006): |
---|
[1361] | 1247 | autocon = k_au * ( nu_c + 2.0_wp ) * ( nu_c + 4.0_wp ) / & |
---|
| 1248 | ( nu_c + 1.0_wp )**2 * qc_1d(k)**2 * xc**2 * & |
---|
| 1249 | ( 1.0_wp + phi_au / ( 1.0_wp - tau_cloud )**2 ) * & |
---|
[1115] | 1250 | rho_surface |
---|
| 1251 | autocon = MIN( autocon, qc_1d(k) / dt_micro ) |
---|
[1106] | 1252 | |
---|
[1115] | 1253 | qr_1d(k) = qr_1d(k) + autocon * dt_micro |
---|
| 1254 | qc_1d(k) = qc_1d(k) - autocon * dt_micro |
---|
| 1255 | nr_1d(k) = nr_1d(k) + autocon / x0 * hyrho(k) * dt_micro |
---|
| 1256 | |
---|
[1005] | 1257 | ENDIF |
---|
[1000] | 1258 | |
---|
| 1259 | ENDDO |
---|
| 1260 | |
---|
[1005] | 1261 | END SUBROUTINE autoconversion_ij |
---|
| 1262 | |
---|
[1106] | 1263 | |
---|
[1005] | 1264 | SUBROUTINE accretion_ij( i, j ) |
---|
| 1265 | |
---|
[1320] | 1266 | USE arrays_3d, & |
---|
| 1267 | ONLY: diss, qc_1d, qr_1d |
---|
[1115] | 1268 | |
---|
[1320] | 1269 | USE cloud_parameters, & |
---|
| 1270 | ONLY: eps_sb, hyrho, k_cr0 |
---|
| 1271 | |
---|
| 1272 | USE control_parameters, & |
---|
| 1273 | ONLY: dt_micro, rho_surface, turbulence |
---|
| 1274 | |
---|
| 1275 | USE indices, & |
---|
| 1276 | ONLY: nzb, nzb_s_inner, nzt |
---|
| 1277 | |
---|
| 1278 | USE kinds |
---|
| 1279 | |
---|
[1005] | 1280 | IMPLICIT NONE |
---|
| 1281 | |
---|
[1320] | 1282 | INTEGER(iwp) :: i !: |
---|
| 1283 | INTEGER(iwp) :: j !: |
---|
| 1284 | INTEGER(iwp) :: k !: |
---|
[1005] | 1285 | |
---|
[1320] | 1286 | REAL(wp) :: accr !: |
---|
| 1287 | REAL(wp) :: k_cr !: |
---|
| 1288 | REAL(wp) :: phi_ac !: |
---|
| 1289 | REAL(wp) :: tau_cloud !: |
---|
| 1290 | REAL(wp) :: xc !: |
---|
| 1291 | |
---|
[1115] | 1292 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1293 | IF ( ( qc_1d(k) > eps_sb ) .AND. ( qr_1d(k) > eps_sb ) ) THEN |
---|
[1012] | 1294 | ! |
---|
[1048] | 1295 | !-- Intern time scale of coagulation (Seifert and Beheng, 2006): |
---|
[1353] | 1296 | tau_cloud = 1.0_wp - qc_1d(k) / ( qc_1d(k) + qr_1d(k) ) |
---|
[1012] | 1297 | ! |
---|
| 1298 | !-- Universal function for accretion process |
---|
[1048] | 1299 | !-- (Seifert and Beheng, 2001): |
---|
[1361] | 1300 | phi_ac = ( tau_cloud / ( tau_cloud + 5.0E-5_wp ) )**4 |
---|
[1012] | 1301 | ! |
---|
[1065] | 1302 | !-- Parameterized turbulence effects on autoconversion (Seifert, |
---|
| 1303 | !-- Nuijens and Stevens, 2010). The factor of 1.0E4 is needed to |
---|
[1361] | 1304 | !-- convert the dissipation rate (diss) from m2 s-3 to cm2 s-3. |
---|
[1065] | 1305 | IF ( turbulence ) THEN |
---|
[1361] | 1306 | k_cr = k_cr0 * ( 1.0_wp + 0.05_wp * & |
---|
| 1307 | MIN( 600.0_wp, & |
---|
| 1308 | diss(k,j,i) * 1.0E4_wp )**0.25_wp & |
---|
| 1309 | ) |
---|
[1065] | 1310 | ELSE |
---|
| 1311 | k_cr = k_cr0 |
---|
| 1312 | ENDIF |
---|
| 1313 | ! |
---|
[1012] | 1314 | !-- Accretion rate (Seifert and Beheng, 2006): |
---|
[1361] | 1315 | accr = k_cr * qc_1d(k) * qr_1d(k) * phi_ac * SQRT( rho_surface * hyrho(k) ) |
---|
[1115] | 1316 | accr = MIN( accr, qc_1d(k) / dt_micro ) |
---|
[1106] | 1317 | |
---|
[1115] | 1318 | qr_1d(k) = qr_1d(k) + accr * dt_micro |
---|
| 1319 | qc_1d(k) = qc_1d(k) - accr * dt_micro |
---|
| 1320 | |
---|
[1005] | 1321 | ENDIF |
---|
[1106] | 1322 | |
---|
[1005] | 1323 | ENDDO |
---|
| 1324 | |
---|
[1000] | 1325 | END SUBROUTINE accretion_ij |
---|
| 1326 | |
---|
[1005] | 1327 | |
---|
| 1328 | SUBROUTINE selfcollection_breakup_ij( i, j ) |
---|
| 1329 | |
---|
[1320] | 1330 | USE arrays_3d, & |
---|
| 1331 | ONLY: nr_1d, qr_1d |
---|
| 1332 | |
---|
| 1333 | USE cloud_parameters, & |
---|
| 1334 | ONLY: dpirho_l, eps_sb, hyrho, k_br, k_rr |
---|
| 1335 | |
---|
| 1336 | USE control_parameters, & |
---|
| 1337 | ONLY: dt_micro, rho_surface |
---|
| 1338 | |
---|
| 1339 | USE indices, & |
---|
| 1340 | ONLY: nzb, nzb_s_inner, nzt |
---|
| 1341 | |
---|
| 1342 | USE kinds |
---|
[1005] | 1343 | |
---|
| 1344 | IMPLICIT NONE |
---|
| 1345 | |
---|
[1320] | 1346 | INTEGER(iwp) :: i !: |
---|
| 1347 | INTEGER(iwp) :: j !: |
---|
| 1348 | INTEGER(iwp) :: k !: |
---|
[1005] | 1349 | |
---|
[1320] | 1350 | REAL(wp) :: breakup !: |
---|
| 1351 | REAL(wp) :: dr !: |
---|
| 1352 | REAL(wp) :: phi_br !: |
---|
| 1353 | REAL(wp) :: selfcoll !: |
---|
| 1354 | |
---|
[1115] | 1355 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1356 | IF ( qr_1d(k) > eps_sb ) THEN |
---|
[1012] | 1357 | ! |
---|
[1115] | 1358 | !-- Selfcollection rate (Seifert and Beheng, 2001): |
---|
[1361] | 1359 | selfcoll = k_rr * nr_1d(k) * qr_1d(k) * SQRT( hyrho(k) * rho_surface ) |
---|
[1012] | 1360 | ! |
---|
[1115] | 1361 | !-- Weight averaged diameter of rain drops: |
---|
[1334] | 1362 | dr = ( hyrho(k) * qr_1d(k) / nr_1d(k) * dpirho_l )**( 1.0_wp / 3.0_wp ) |
---|
[1115] | 1363 | ! |
---|
[1048] | 1364 | !-- Collisional breakup rate (Seifert, 2008): |
---|
[1353] | 1365 | IF ( dr >= 0.3E-3_wp ) THEN |
---|
| 1366 | phi_br = k_br * ( dr - 1.1E-3_wp ) |
---|
| 1367 | breakup = selfcoll * ( phi_br + 1.0_wp ) |
---|
[1005] | 1368 | ELSE |
---|
[1353] | 1369 | breakup = 0.0_wp |
---|
[1005] | 1370 | ENDIF |
---|
[1048] | 1371 | |
---|
[1115] | 1372 | selfcoll = MAX( breakup - selfcoll, -nr_1d(k) / dt_micro ) |
---|
| 1373 | nr_1d(k) = nr_1d(k) + selfcoll * dt_micro |
---|
[1106] | 1374 | |
---|
[1005] | 1375 | ENDIF |
---|
| 1376 | ENDDO |
---|
| 1377 | |
---|
| 1378 | END SUBROUTINE selfcollection_breakup_ij |
---|
| 1379 | |
---|
[1106] | 1380 | |
---|
[1012] | 1381 | SUBROUTINE evaporation_rain_ij( i, j ) |
---|
[1022] | 1382 | ! |
---|
| 1383 | !-- Evaporation of precipitable water. Condensation is neglected for |
---|
| 1384 | !-- precipitable water. |
---|
[1012] | 1385 | |
---|
[1320] | 1386 | USE arrays_3d, & |
---|
| 1387 | ONLY: hyp, nr_1d, pt_1d, q_1d, qc_1d, qr_1d |
---|
[1048] | 1388 | |
---|
[1320] | 1389 | USE cloud_parameters, & |
---|
| 1390 | ONLY: a_term, a_vent, b_term, b_vent, c_evap, c_term, diff_coeff_l,& |
---|
| 1391 | dpirho_l, eps_sb, hyrho, kin_vis_air, k_st, l_d_cp, l_d_r, & |
---|
| 1392 | l_v, rho_l, r_v, schmidt_p_1d3, thermal_conductivity_l, & |
---|
| 1393 | t_d_pt, ventilation_effect |
---|
| 1394 | |
---|
| 1395 | USE constants, & |
---|
| 1396 | ONLY: pi |
---|
| 1397 | |
---|
| 1398 | USE control_parameters, & |
---|
| 1399 | ONLY: dt_micro |
---|
| 1400 | |
---|
| 1401 | USE indices, & |
---|
| 1402 | ONLY: nzb, nzb_s_inner, nzt |
---|
| 1403 | |
---|
| 1404 | USE kinds |
---|
| 1405 | |
---|
[1012] | 1406 | IMPLICIT NONE |
---|
| 1407 | |
---|
[1320] | 1408 | INTEGER(iwp) :: i !: |
---|
| 1409 | INTEGER(iwp) :: j !: |
---|
| 1410 | INTEGER(iwp) :: k !: |
---|
[1012] | 1411 | |
---|
[1320] | 1412 | REAL(wp) :: alpha !: |
---|
| 1413 | REAL(wp) :: dr !: |
---|
| 1414 | REAL(wp) :: e_s !: |
---|
| 1415 | REAL(wp) :: evap !: |
---|
| 1416 | REAL(wp) :: evap_nr !: |
---|
| 1417 | REAL(wp) :: f_vent !: |
---|
| 1418 | REAL(wp) :: g_evap !: |
---|
| 1419 | REAL(wp) :: lambda_r !: |
---|
| 1420 | REAL(wp) :: mu_r !: |
---|
| 1421 | REAL(wp) :: mu_r_2 !: |
---|
| 1422 | REAL(wp) :: mu_r_5d2 !: |
---|
| 1423 | REAL(wp) :: nr_0 !: |
---|
| 1424 | REAL(wp) :: q_s !: |
---|
| 1425 | REAL(wp) :: sat !: |
---|
| 1426 | REAL(wp) :: t_l !: |
---|
| 1427 | REAL(wp) :: temp !: |
---|
| 1428 | REAL(wp) :: xr !: |
---|
| 1429 | |
---|
[1115] | 1430 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1431 | IF ( qr_1d(k) > eps_sb ) THEN |
---|
[1012] | 1432 | ! |
---|
| 1433 | !-- Actual liquid water temperature: |
---|
[1115] | 1434 | t_l = t_d_pt(k) * pt_1d(k) |
---|
[1012] | 1435 | ! |
---|
| 1436 | !-- Saturation vapor pressure at t_l: |
---|
[1361] | 1437 | e_s = 610.78_wp * EXP( 17.269_wp * ( t_l - 273.16_wp ) / & |
---|
| 1438 | ( t_l - 35.86_wp ) & |
---|
| 1439 | ) |
---|
[1012] | 1440 | ! |
---|
| 1441 | !-- Computation of saturation humidity: |
---|
[1361] | 1442 | q_s = 0.622_wp * e_s / ( hyp(k) - 0.378_wp * e_s ) |
---|
[1353] | 1443 | alpha = 0.622_wp * l_d_r * l_d_cp / ( t_l * t_l ) |
---|
[1361] | 1444 | q_s = q_s * ( 1.0_wp + alpha * q_1d(k) ) / ( 1.0_wp + alpha * q_s ) |
---|
[1012] | 1445 | ! |
---|
[1106] | 1446 | !-- Supersaturation: |
---|
[1361] | 1447 | sat = ( q_1d(k) - qr_1d(k) - qc_1d(k) ) / q_s - 1.0_wp |
---|
[1012] | 1448 | ! |
---|
[1361] | 1449 | !-- Evaporation needs only to be calculated in subsaturated regions |
---|
| 1450 | IF ( sat < 0.0_wp ) THEN |
---|
[1012] | 1451 | ! |
---|
[1361] | 1452 | !-- Actual temperature: |
---|
| 1453 | temp = t_l + l_d_cp * ( qc_1d(k) + qr_1d(k) ) |
---|
| 1454 | |
---|
| 1455 | g_evap = 1.0_wp / ( ( l_v / ( r_v * temp ) - 1.0_wp ) * l_v / & |
---|
| 1456 | ( thermal_conductivity_l * temp ) + & |
---|
| 1457 | r_v * temp / ( diff_coeff_l * e_s ) & |
---|
| 1458 | ) |
---|
[1012] | 1459 | ! |
---|
[1361] | 1460 | !-- Mean weight of rain drops |
---|
| 1461 | xr = hyrho(k) * qr_1d(k) / nr_1d(k) |
---|
[1115] | 1462 | ! |
---|
[1361] | 1463 | !-- Weight averaged diameter of rain drops: |
---|
| 1464 | dr = ( xr * dpirho_l )**( 1.0_wp / 3.0_wp ) |
---|
[1115] | 1465 | ! |
---|
[1361] | 1466 | !-- Compute ventilation factor and intercept parameter |
---|
| 1467 | !-- (Seifert and Beheng, 2006; Seifert, 2008): |
---|
| 1468 | IF ( ventilation_effect ) THEN |
---|
[1115] | 1469 | ! |
---|
[1361] | 1470 | !-- Shape parameter of gamma distribution (Milbrandt and Yau, 2005; |
---|
| 1471 | !-- Stevens and Seifert, 2008): |
---|
| 1472 | mu_r = 10.0_wp * ( 1.0_wp + TANH( 1.2E3_wp * ( dr - 1.4E-3_wp ) ) ) |
---|
| 1473 | ! |
---|
| 1474 | !-- Slope parameter of gamma distribution (Seifert, 2008): |
---|
| 1475 | lambda_r = ( ( mu_r + 3.0_wp ) * ( mu_r + 2.0_wp ) * & |
---|
| 1476 | ( mu_r + 1.0_wp ) & |
---|
| 1477 | )**( 1.0_wp / 3.0_wp ) / dr |
---|
[1115] | 1478 | |
---|
[1361] | 1479 | mu_r_2 = mu_r + 2.0_wp |
---|
| 1480 | mu_r_5d2 = mu_r + 2.5_wp |
---|
| 1481 | |
---|
| 1482 | f_vent = a_vent * gamm( mu_r_2 ) * lambda_r**( -mu_r_2 ) + & |
---|
| 1483 | b_vent * schmidt_p_1d3 * & |
---|
| 1484 | SQRT( a_term / kin_vis_air ) * gamm( mu_r_5d2 ) * & |
---|
| 1485 | lambda_r**( -mu_r_5d2 ) * & |
---|
| 1486 | ( 1.0_wp - & |
---|
| 1487 | 0.5_wp * ( b_term / a_term ) * & |
---|
| 1488 | ( lambda_r / ( c_term + lambda_r ) & |
---|
| 1489 | )**mu_r_5d2 - & |
---|
| 1490 | 0.125_wp * ( b_term / a_term )**2 * & |
---|
| 1491 | ( lambda_r / ( 2.0_wp * c_term + lambda_r ) & |
---|
| 1492 | )**mu_r_5d2 - & |
---|
| 1493 | 0.0625_wp * ( b_term / a_term )**3 * & |
---|
| 1494 | ( lambda_r / ( 3.0_wp * c_term + lambda_r ) & |
---|
| 1495 | )**mu_r_5d2 - & |
---|
| 1496 | 0.0390625_wp * ( b_term / a_term )**4 * & |
---|
| 1497 | ( lambda_r / ( 4.0_wp * c_term + lambda_r ) & |
---|
| 1498 | )**mu_r_5d2 & |
---|
| 1499 | ) |
---|
| 1500 | |
---|
| 1501 | nr_0 = nr_1d(k) * lambda_r**( mu_r + 1.0_wp ) / & |
---|
| 1502 | gamm( mu_r + 1.0_wp ) |
---|
| 1503 | ELSE |
---|
| 1504 | f_vent = 1.0_wp |
---|
| 1505 | nr_0 = nr_1d(k) * dr |
---|
| 1506 | ENDIF |
---|
[1012] | 1507 | ! |
---|
[1361] | 1508 | !-- Evaporation rate of rain water content (Seifert and Beheng, 2006): |
---|
| 1509 | evap = 2.0_wp * pi * nr_0 * g_evap * f_vent * sat / hyrho(k) |
---|
| 1510 | evap = MAX( evap, -qr_1d(k) / dt_micro ) |
---|
| 1511 | evap_nr = MAX( c_evap * evap / xr * hyrho(k), & |
---|
| 1512 | -nr_1d(k) / dt_micro ) |
---|
[1106] | 1513 | |
---|
[1361] | 1514 | qr_1d(k) = qr_1d(k) + evap * dt_micro |
---|
| 1515 | nr_1d(k) = nr_1d(k) + evap_nr * dt_micro |
---|
[1115] | 1516 | |
---|
[1361] | 1517 | ENDIF |
---|
[1012] | 1518 | ENDIF |
---|
[1106] | 1519 | |
---|
[1012] | 1520 | ENDDO |
---|
| 1521 | |
---|
| 1522 | END SUBROUTINE evaporation_rain_ij |
---|
| 1523 | |
---|
[1106] | 1524 | |
---|
[1012] | 1525 | SUBROUTINE sedimentation_cloud_ij( i, j ) |
---|
| 1526 | |
---|
[1320] | 1527 | USE arrays_3d, & |
---|
| 1528 | ONLY: ddzu, dzu, nc_1d, pt_1d, q_1d, qc_1d |
---|
| 1529 | |
---|
| 1530 | USE cloud_parameters, & |
---|
[1361] | 1531 | ONLY: eps_sb, hyrho, l_d_cp, pt_d_t, sed_qc_const |
---|
[1320] | 1532 | |
---|
| 1533 | USE constants, & |
---|
| 1534 | ONLY: pi |
---|
| 1535 | |
---|
| 1536 | USE control_parameters, & |
---|
| 1537 | ONLY: dt_do2d_xy, dt_micro, intermediate_timestep_count |
---|
| 1538 | |
---|
| 1539 | USE indices, & |
---|
| 1540 | ONLY: nzb, nzb_s_inner, nzt |
---|
| 1541 | |
---|
| 1542 | USE kinds |
---|
[1012] | 1543 | |
---|
| 1544 | IMPLICIT NONE |
---|
| 1545 | |
---|
[1320] | 1546 | INTEGER(iwp) :: i !: |
---|
| 1547 | INTEGER(iwp) :: j !: |
---|
| 1548 | INTEGER(iwp) :: k !: |
---|
[1106] | 1549 | |
---|
[1361] | 1550 | REAL(wp), DIMENSION(nzb:nzt+1) :: sed_qc !: |
---|
[1115] | 1551 | |
---|
[1012] | 1552 | ! |
---|
[1361] | 1553 | !-- Sedimentation of cloud droplets (Ackermann et al., 2009, MWR): |
---|
[1353] | 1554 | sed_qc(nzt+1) = 0.0_wp |
---|
[1012] | 1555 | |
---|
[1115] | 1556 | DO k = nzt, nzb_s_inner(j,i)+1, -1 |
---|
| 1557 | IF ( qc_1d(k) > eps_sb ) THEN |
---|
[1361] | 1558 | sed_qc(k) = sed_qc_const * nc_1d(k)**( -2.0_wp / 3.0_wp ) * & |
---|
| 1559 | ( qc_1d(k) * hyrho(k) )**( 5.0_wp / 3.0_wp ) |
---|
[1115] | 1560 | ELSE |
---|
[1353] | 1561 | sed_qc(k) = 0.0_wp |
---|
[1012] | 1562 | ENDIF |
---|
[1115] | 1563 | |
---|
[1361] | 1564 | sed_qc(k) = MIN( sed_qc(k), hyrho(k) * dzu(k+1) * q_1d(k) / & |
---|
| 1565 | dt_micro + sed_qc(k+1) & |
---|
| 1566 | ) |
---|
[1115] | 1567 | |
---|
[1361] | 1568 | q_1d(k) = q_1d(k) + ( sed_qc(k+1) - sed_qc(k) ) * ddzu(k+1) / & |
---|
[1115] | 1569 | hyrho(k) * dt_micro |
---|
[1361] | 1570 | qc_1d(k) = qc_1d(k) + ( sed_qc(k+1) - sed_qc(k) ) * ddzu(k+1) / & |
---|
[1115] | 1571 | hyrho(k) * dt_micro |
---|
[1361] | 1572 | pt_1d(k) = pt_1d(k) - ( sed_qc(k+1) - sed_qc(k) ) * ddzu(k+1) / & |
---|
[1115] | 1573 | hyrho(k) * l_d_cp * pt_d_t(k) * dt_micro |
---|
| 1574 | |
---|
[1012] | 1575 | ENDDO |
---|
| 1576 | |
---|
| 1577 | END SUBROUTINE sedimentation_cloud_ij |
---|
| 1578 | |
---|
[1106] | 1579 | |
---|
[1012] | 1580 | SUBROUTINE sedimentation_rain_ij( i, j ) |
---|
| 1581 | |
---|
[1320] | 1582 | USE arrays_3d, & |
---|
| 1583 | ONLY: ddzu, dzu, nr_1d, pt_1d, q_1d, qr_1d |
---|
| 1584 | |
---|
| 1585 | USE cloud_parameters, & |
---|
| 1586 | ONLY: a_term, b_term, c_term, cof, dpirho_l, eps_sb, hyrho, & |
---|
| 1587 | limiter_sedimentation, l_d_cp, precipitation_amount, prr, & |
---|
| 1588 | pt_d_t, stp |
---|
| 1589 | |
---|
| 1590 | USE control_parameters, & |
---|
[1361] | 1591 | ONLY: call_microphysics_at_all_substeps, dt_do2d_xy, dt_micro, & |
---|
| 1592 | dt_3d, intermediate_timestep_count, & |
---|
[1320] | 1593 | intermediate_timestep_count_max, & |
---|
| 1594 | precipitation_amount_interval, time_do2d_xy |
---|
| 1595 | |
---|
| 1596 | USE indices, & |
---|
| 1597 | ONLY: nzb, nzb_s_inner, nzt |
---|
| 1598 | |
---|
| 1599 | USE kinds |
---|
| 1600 | |
---|
| 1601 | USE statistics, & |
---|
| 1602 | ONLY: weight_substep |
---|
[1012] | 1603 | |
---|
| 1604 | IMPLICIT NONE |
---|
| 1605 | |
---|
[1320] | 1606 | INTEGER(iwp) :: i !: |
---|
| 1607 | INTEGER(iwp) :: j !: |
---|
| 1608 | INTEGER(iwp) :: k !: |
---|
| 1609 | INTEGER(iwp) :: k_run !: |
---|
[1012] | 1610 | |
---|
[1320] | 1611 | REAL(wp) :: c_run !: |
---|
| 1612 | REAL(wp) :: d_max !: |
---|
| 1613 | REAL(wp) :: d_mean !: |
---|
| 1614 | REAL(wp) :: d_min !: |
---|
| 1615 | REAL(wp) :: dr !: |
---|
| 1616 | REAL(wp) :: dt_sedi !: |
---|
| 1617 | REAL(wp) :: flux !: |
---|
| 1618 | REAL(wp) :: lambda_r !: |
---|
| 1619 | REAL(wp) :: mu_r !: |
---|
| 1620 | REAL(wp) :: z_run !: |
---|
| 1621 | |
---|
[1361] | 1622 | REAL(wp), DIMENSION(nzb:nzt+1) :: c_nr !: |
---|
| 1623 | REAL(wp), DIMENSION(nzb:nzt+1) :: c_qr !: |
---|
| 1624 | REAL(wp), DIMENSION(nzb:nzt+1) :: d_nr !: |
---|
| 1625 | REAL(wp), DIMENSION(nzb:nzt+1) :: d_qr !: |
---|
| 1626 | REAL(wp), DIMENSION(nzb:nzt+1) :: nr_slope !: |
---|
| 1627 | REAL(wp), DIMENSION(nzb:nzt+1) :: qr_slope !: |
---|
| 1628 | REAL(wp), DIMENSION(nzb:nzt+1) :: sed_nr !: |
---|
| 1629 | REAL(wp), DIMENSION(nzb:nzt+1) :: sed_qr !: |
---|
| 1630 | REAL(wp), DIMENSION(nzb:nzt+1) :: w_nr !: |
---|
| 1631 | REAL(wp), DIMENSION(nzb:nzt+1) :: w_qr !: |
---|
[1320] | 1632 | |
---|
| 1633 | |
---|
[1065] | 1634 | ! |
---|
| 1635 | !-- Computation of sedimentation flux. Implementation according to Stevens |
---|
[1361] | 1636 | !-- and Seifert (2008). Code is based on UCLA-LES. |
---|
[1353] | 1637 | IF ( intermediate_timestep_count == 1 ) prr(:,j,i) = 0.0_wp |
---|
[1012] | 1638 | ! |
---|
[1065] | 1639 | !-- Compute velocities |
---|
| 1640 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1115] | 1641 | IF ( qr_1d(k) > eps_sb ) THEN |
---|
| 1642 | ! |
---|
| 1643 | !-- Weight averaged diameter of rain drops: |
---|
[1334] | 1644 | dr = ( hyrho(k) * qr_1d(k) / nr_1d(k) * dpirho_l )**( 1.0_wp / 3.0_wp ) |
---|
[1115] | 1645 | ! |
---|
| 1646 | !-- Shape parameter of gamma distribution (Milbrandt and Yau, 2005; |
---|
| 1647 | !-- Stevens and Seifert, 2008): |
---|
[1353] | 1648 | mu_r = 10.0_wp * ( 1.0_wp + TANH( 1.2E3_wp * ( dr - 1.4E-3_wp ) ) ) |
---|
[1115] | 1649 | ! |
---|
| 1650 | !-- Slope parameter of gamma distribution (Seifert, 2008): |
---|
[1361] | 1651 | lambda_r = ( ( mu_r + 3.0_wp ) * ( mu_r + 2.0_wp ) * & |
---|
| 1652 | ( mu_r + 1.0_wp ) )**( 1.0_wp / 3.0_wp ) / dr |
---|
[1115] | 1653 | |
---|
[1361] | 1654 | w_nr(k) = MAX( 0.1_wp, MIN( 20.0_wp, & |
---|
| 1655 | a_term - b_term * ( 1.0_wp + & |
---|
| 1656 | c_term / lambda_r )**( -1.0_wp * & |
---|
| 1657 | ( mu_r + 1.0_wp ) ) & |
---|
| 1658 | ) & |
---|
| 1659 | ) |
---|
| 1660 | w_qr(k) = MAX( 0.1_wp, MIN( 20.0_wp, & |
---|
| 1661 | a_term - b_term * ( 1.0_wp + & |
---|
| 1662 | c_term / lambda_r )**( -1.0_wp * & |
---|
| 1663 | ( mu_r + 4.0_wp ) ) & |
---|
| 1664 | ) & |
---|
| 1665 | ) |
---|
[1065] | 1666 | ELSE |
---|
[1353] | 1667 | w_nr(k) = 0.0_wp |
---|
| 1668 | w_qr(k) = 0.0_wp |
---|
[1065] | 1669 | ENDIF |
---|
| 1670 | ENDDO |
---|
[1048] | 1671 | ! |
---|
[1065] | 1672 | !-- Adjust boundary values |
---|
[1115] | 1673 | w_nr(nzb_s_inner(j,i)) = w_nr(nzb_s_inner(j,i)+1) |
---|
| 1674 | w_qr(nzb_s_inner(j,i)) = w_qr(nzb_s_inner(j,i)+1) |
---|
[1353] | 1675 | w_nr(nzt+1) = 0.0_wp |
---|
| 1676 | w_qr(nzt+1) = 0.0_wp |
---|
[1065] | 1677 | ! |
---|
| 1678 | !-- Compute Courant number |
---|
[1115] | 1679 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1361] | 1680 | c_nr(k) = 0.25_wp * ( w_nr(k-1) + 2.0_wp * w_nr(k) + w_nr(k+1) ) * & |
---|
[1115] | 1681 | dt_micro * ddzu(k) |
---|
[1361] | 1682 | c_qr(k) = 0.25_wp * ( w_qr(k-1) + 2.0_wp * w_qr(k) + w_qr(k+1) ) * & |
---|
[1115] | 1683 | dt_micro * ddzu(k) |
---|
| 1684 | ENDDO |
---|
[1065] | 1685 | ! |
---|
| 1686 | !-- Limit slopes with monotonized centered (MC) limiter (van Leer, 1977): |
---|
| 1687 | IF ( limiter_sedimentation ) THEN |
---|
| 1688 | |
---|
[1115] | 1689 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1646] | 1690 | d_mean = 0.5_wp * ( qr_1d(k+1) - qr_1d(k-1) ) |
---|
[1115] | 1691 | d_min = qr_1d(k) - MIN( qr_1d(k+1), qr_1d(k), qr_1d(k-1) ) |
---|
| 1692 | d_max = MAX( qr_1d(k+1), qr_1d(k), qr_1d(k-1) ) - qr_1d(k) |
---|
[1065] | 1693 | |
---|
[1361] | 1694 | qr_slope(k) = SIGN(1.0_wp, d_mean) * MIN ( 2.0_wp * d_min, & |
---|
| 1695 | 2.0_wp * d_max, & |
---|
| 1696 | ABS( d_mean ) ) |
---|
[1065] | 1697 | |
---|
[1646] | 1698 | d_mean = 0.5_wp * ( nr_1d(k+1) - nr_1d(k-1) ) |
---|
[1115] | 1699 | d_min = nr_1d(k) - MIN( nr_1d(k+1), nr_1d(k), nr_1d(k-1) ) |
---|
| 1700 | d_max = MAX( nr_1d(k+1), nr_1d(k), nr_1d(k-1) ) - nr_1d(k) |
---|
[1065] | 1701 | |
---|
[1361] | 1702 | nr_slope(k) = SIGN(1.0_wp, d_mean) * MIN ( 2.0_wp * d_min, & |
---|
| 1703 | 2.0_wp * d_max, & |
---|
| 1704 | ABS( d_mean ) ) |
---|
[1022] | 1705 | ENDDO |
---|
[1048] | 1706 | |
---|
[1065] | 1707 | ELSE |
---|
[1106] | 1708 | |
---|
[1353] | 1709 | nr_slope = 0.0_wp |
---|
| 1710 | qr_slope = 0.0_wp |
---|
[1106] | 1711 | |
---|
[1065] | 1712 | ENDIF |
---|
[1115] | 1713 | |
---|
[1353] | 1714 | sed_nr(nzt+1) = 0.0_wp |
---|
| 1715 | sed_qr(nzt+1) = 0.0_wp |
---|
[1065] | 1716 | ! |
---|
| 1717 | !-- Compute sedimentation flux |
---|
[1115] | 1718 | DO k = nzt, nzb_s_inner(j,i)+1, -1 |
---|
[1065] | 1719 | ! |
---|
| 1720 | !-- Sum up all rain drop number densities which contribute to the flux |
---|
| 1721 | !-- through k-1/2 |
---|
[1353] | 1722 | flux = 0.0_wp |
---|
| 1723 | z_run = 0.0_wp ! height above z(k) |
---|
[1065] | 1724 | k_run = k |
---|
[1346] | 1725 | c_run = MIN( 1.0_wp, c_nr(k) ) |
---|
[1353] | 1726 | DO WHILE ( c_run > 0.0_wp .AND. k_run <= nzt ) |
---|
[1361] | 1727 | flux = flux + hyrho(k_run) * & |
---|
| 1728 | ( nr_1d(k_run) + nr_slope(k_run) * ( 1.0_wp - c_run ) * & |
---|
[1353] | 1729 | 0.5_wp ) * c_run * dzu(k_run) |
---|
[1065] | 1730 | z_run = z_run + dzu(k_run) |
---|
| 1731 | k_run = k_run + 1 |
---|
[1346] | 1732 | c_run = MIN( 1.0_wp, c_nr(k_run) - z_run * ddzu(k_run) ) |
---|
[1022] | 1733 | ENDDO |
---|
| 1734 | ! |
---|
[1065] | 1735 | !-- It is not allowed to sediment more rain drop number density than |
---|
| 1736 | !-- available |
---|
[1361] | 1737 | flux = MIN( flux, & |
---|
[1115] | 1738 | hyrho(k) * dzu(k+1) * nr_1d(k) + sed_nr(k+1) * dt_micro ) |
---|
[1065] | 1739 | |
---|
[1115] | 1740 | sed_nr(k) = flux / dt_micro |
---|
[1361] | 1741 | nr_1d(k) = nr_1d(k) + ( sed_nr(k+1) - sed_nr(k) ) * ddzu(k+1) / & |
---|
| 1742 | hyrho(k) * dt_micro |
---|
[1065] | 1743 | ! |
---|
| 1744 | !-- Sum up all rain water content which contributes to the flux |
---|
| 1745 | !-- through k-1/2 |
---|
[1353] | 1746 | flux = 0.0_wp |
---|
| 1747 | z_run = 0.0_wp ! height above z(k) |
---|
[1065] | 1748 | k_run = k |
---|
[1346] | 1749 | c_run = MIN( 1.0_wp, c_qr(k) ) |
---|
[1106] | 1750 | |
---|
[1361] | 1751 | DO WHILE ( c_run > 0.0_wp .AND. k_run <= nzt ) |
---|
[1106] | 1752 | |
---|
[1361] | 1753 | flux = flux + hyrho(k_run) * & |
---|
| 1754 | ( qr_1d(k_run) + qr_slope(k_run) * ( 1.0_wp - c_run ) * & |
---|
[1353] | 1755 | 0.5_wp ) * c_run * dzu(k_run) |
---|
[1065] | 1756 | z_run = z_run + dzu(k_run) |
---|
| 1757 | k_run = k_run + 1 |
---|
[1346] | 1758 | c_run = MIN( 1.0_wp, c_qr(k_run) - z_run * ddzu(k_run) ) |
---|
[1106] | 1759 | |
---|
[1065] | 1760 | ENDDO |
---|
| 1761 | ! |
---|
| 1762 | !-- It is not allowed to sediment more rain water content than available |
---|
[1361] | 1763 | flux = MIN( flux, & |
---|
[1115] | 1764 | hyrho(k) * dzu(k) * qr_1d(k) + sed_qr(k+1) * dt_micro ) |
---|
[1065] | 1765 | |
---|
[1115] | 1766 | sed_qr(k) = flux / dt_micro |
---|
| 1767 | |
---|
[1361] | 1768 | qr_1d(k) = qr_1d(k) + ( sed_qr(k+1) - sed_qr(k) ) * ddzu(k+1) / & |
---|
[1115] | 1769 | hyrho(k) * dt_micro |
---|
[1361] | 1770 | q_1d(k) = q_1d(k) + ( sed_qr(k+1) - sed_qr(k) ) * ddzu(k+1) / & |
---|
[1115] | 1771 | hyrho(k) * dt_micro |
---|
[1361] | 1772 | pt_1d(k) = pt_1d(k) - ( sed_qr(k+1) - sed_qr(k) ) * ddzu(k+1) / & |
---|
[1115] | 1773 | hyrho(k) * l_d_cp * pt_d_t(k) * dt_micro |
---|
[1065] | 1774 | ! |
---|
| 1775 | !-- Compute the rain rate |
---|
[1361] | 1776 | IF ( call_microphysics_at_all_substeps ) THEN |
---|
| 1777 | prr(k,j,i) = prr(k,j,i) + sed_qr(k) / hyrho(k) * & |
---|
| 1778 | weight_substep(intermediate_timestep_count) |
---|
| 1779 | ELSE |
---|
| 1780 | prr(k,j,i) = sed_qr(k) / hyrho(k) |
---|
| 1781 | ENDIF |
---|
| 1782 | |
---|
[1065] | 1783 | ENDDO |
---|
[1115] | 1784 | |
---|
[1065] | 1785 | ! |
---|
[1048] | 1786 | !-- Precipitation amount |
---|
[1361] | 1787 | IF ( intermediate_timestep_count == intermediate_timestep_count_max & |
---|
| 1788 | .AND. ( dt_do2d_xy - time_do2d_xy ) < & |
---|
| 1789 | precipitation_amount_interval ) THEN |
---|
[1012] | 1790 | |
---|
[1361] | 1791 | precipitation_amount(j,i) = precipitation_amount(j,i) + & |
---|
| 1792 | prr(nzb_s_inner(j,i)+1,j,i) * & |
---|
[1115] | 1793 | hyrho(nzb_s_inner(j,i)+1) * dt_3d |
---|
[1048] | 1794 | ENDIF |
---|
| 1795 | |
---|
[1012] | 1796 | END SUBROUTINE sedimentation_rain_ij |
---|
| 1797 | |
---|
[1361] | 1798 | !------------------------------------------------------------------------------! |
---|
| 1799 | ! Call for all optimizations |
---|
| 1800 | !------------------------------------------------------------------------------! |
---|
[1012] | 1801 | ! |
---|
| 1802 | !-- This function computes the gamma function (Press et al., 1992). |
---|
| 1803 | !-- The gamma function is needed for the calculation of the evaporation |
---|
| 1804 | !-- of rain drops. |
---|
| 1805 | FUNCTION gamm( xx ) |
---|
[1048] | 1806 | |
---|
[1320] | 1807 | USE cloud_parameters, & |
---|
| 1808 | ONLY: cof, stp |
---|
| 1809 | |
---|
| 1810 | USE kinds |
---|
| 1811 | |
---|
[1012] | 1812 | IMPLICIT NONE |
---|
[1106] | 1813 | |
---|
[1320] | 1814 | INTEGER(iwp) :: j !: |
---|
| 1815 | |
---|
| 1816 | REAL(wp) :: gamm !: |
---|
| 1817 | REAL(wp) :: ser !: |
---|
| 1818 | REAL(wp) :: tmp !: |
---|
| 1819 | REAL(wp) :: x_gamm !: |
---|
| 1820 | REAL(wp) :: xx !: |
---|
| 1821 | REAL(wp) :: y_gamm !: |
---|
| 1822 | |
---|
[1012] | 1823 | x_gamm = xx |
---|
| 1824 | y_gamm = x_gamm |
---|
[1353] | 1825 | tmp = x_gamm + 5.5_wp |
---|
| 1826 | tmp = ( x_gamm + 0.5_wp ) * LOG( tmp ) - tmp |
---|
[1334] | 1827 | ser = 1.000000000190015_wp |
---|
[1106] | 1828 | |
---|
| 1829 | DO j = 1, 6 |
---|
[1353] | 1830 | y_gamm = y_gamm + 1.0_wp |
---|
[1012] | 1831 | ser = ser + cof( j ) / y_gamm |
---|
[1106] | 1832 | ENDDO |
---|
| 1833 | |
---|
[1012] | 1834 | ! |
---|
| 1835 | !-- Until this point the algorithm computes the logarithm of the gamma |
---|
| 1836 | !-- function. Hence, the exponential function is used. |
---|
| 1837 | ! gamm = EXP( tmp + LOG( stp * ser / x_gamm ) ) |
---|
| 1838 | gamm = EXP( tmp ) * stp * ser / x_gamm |
---|
[1106] | 1839 | |
---|
[1012] | 1840 | RETURN |
---|
| 1841 | |
---|
| 1842 | END FUNCTION gamm |
---|
| 1843 | |
---|
| 1844 | END MODULE microphysics_mod |
---|