[1000] | 1 | MODULE microphysics_mod |
---|
| 2 | |
---|
[1093] | 3 | !--------------------------------------------------------------------------------! |
---|
| 4 | ! This file is part of PALM. |
---|
| 5 | ! |
---|
| 6 | ! PALM is free software: you can redistribute it and/or modify it under the terms |
---|
| 7 | ! of the GNU General Public License as published by the Free Software Foundation, |
---|
| 8 | ! either version 3 of the License, or (at your option) any later version. |
---|
| 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
[1310] | 17 | ! Copyright 1997-2014 Leibniz Universitaet Hannover |
---|
[1093] | 18 | !--------------------------------------------------------------------------------! |
---|
| 19 | ! |
---|
[1000] | 20 | ! Current revisions: |
---|
[1092] | 21 | ! ------------------ |
---|
[1335] | 22 | ! |
---|
[1362] | 23 | ! |
---|
[1321] | 24 | ! Former revisions: |
---|
| 25 | ! ----------------- |
---|
| 26 | ! $Id: microphysics.f90 1362 2014-04-16 15:19:12Z raasch $ |
---|
| 27 | ! |
---|
[1362] | 28 | ! 1361 2014-04-16 15:17:48Z hoffmann |
---|
| 29 | ! Bugfix in sedimentation_rain: Index corrected. |
---|
| 30 | ! Vectorized version of adjust_cloud added. |
---|
| 31 | ! Little reformatting of the code. |
---|
| 32 | ! |
---|
[1354] | 33 | ! 1353 2014-04-08 15:21:23Z heinze |
---|
| 34 | ! REAL constants provided with KIND-attribute |
---|
| 35 | ! |
---|
[1347] | 36 | ! 1346 2014-03-27 13:18:20Z heinze |
---|
| 37 | ! Bugfix: REAL constants provided with KIND-attribute especially in call of |
---|
| 38 | ! intrinsic function like MAX, MIN, SIGN |
---|
| 39 | ! |
---|
[1335] | 40 | ! 1334 2014-03-25 12:21:40Z heinze |
---|
| 41 | ! Bugfix: REAL constants provided with KIND-attribute |
---|
| 42 | ! |
---|
[1323] | 43 | ! 1322 2014-03-20 16:38:49Z raasch |
---|
| 44 | ! REAL constants defined as wp-kind |
---|
| 45 | ! |
---|
[1321] | 46 | ! 1320 2014-03-20 08:40:49Z raasch |
---|
[1320] | 47 | ! ONLY-attribute added to USE-statements, |
---|
| 48 | ! kind-parameters added to all INTEGER and REAL declaration statements, |
---|
| 49 | ! kinds are defined in new module kinds, |
---|
| 50 | ! comment fields (!:) to be used for variable explanations added to |
---|
| 51 | ! all variable declaration statements |
---|
[1000] | 52 | ! |
---|
[1242] | 53 | ! 1241 2013-10-30 11:36:58Z heinze |
---|
| 54 | ! hyp and rho have to be calculated at each time step if data from external |
---|
| 55 | ! file LSF_DATA are used |
---|
| 56 | ! |
---|
[1116] | 57 | ! 1115 2013-03-26 18:16:16Z hoffmann |
---|
| 58 | ! microphyical tendencies are calculated in microphysics_control in an optimized |
---|
| 59 | ! way; unrealistic values are prevented; bugfix in evaporation; some reformatting |
---|
| 60 | ! |
---|
[1107] | 61 | ! 1106 2013-03-04 05:31:38Z raasch |
---|
| 62 | ! small changes in code formatting |
---|
| 63 | ! |
---|
[1093] | 64 | ! 1092 2013-02-02 11:24:22Z raasch |
---|
| 65 | ! unused variables removed |
---|
| 66 | ! file put under GPL |
---|
| 67 | ! |
---|
[1066] | 68 | ! 1065 2012-11-22 17:42:36Z hoffmann |
---|
| 69 | ! Sedimentation process implemented according to Stevens and Seifert (2008). |
---|
[1115] | 70 | ! Turbulence effects on autoconversion and accretion added (Seifert, Nuijens |
---|
[1066] | 71 | ! and Stevens, 2010). |
---|
| 72 | ! |
---|
[1054] | 73 | ! 1053 2012-11-13 17:11:03Z hoffmann |
---|
| 74 | ! initial revision |
---|
[1000] | 75 | ! |
---|
| 76 | ! Description: |
---|
| 77 | ! ------------ |
---|
| 78 | ! Calculate cloud microphysics according to the two moment bulk |
---|
| 79 | ! scheme by Seifert and Beheng (2006). |
---|
| 80 | !------------------------------------------------------------------------------! |
---|
| 81 | |
---|
| 82 | PRIVATE |
---|
[1115] | 83 | PUBLIC microphysics_control |
---|
[1000] | 84 | |
---|
[1115] | 85 | INTERFACE microphysics_control |
---|
| 86 | MODULE PROCEDURE microphysics_control |
---|
| 87 | MODULE PROCEDURE microphysics_control_ij |
---|
| 88 | END INTERFACE microphysics_control |
---|
[1022] | 89 | |
---|
[1115] | 90 | INTERFACE adjust_cloud |
---|
| 91 | MODULE PROCEDURE adjust_cloud |
---|
| 92 | MODULE PROCEDURE adjust_cloud_ij |
---|
| 93 | END INTERFACE adjust_cloud |
---|
| 94 | |
---|
[1000] | 95 | INTERFACE autoconversion |
---|
| 96 | MODULE PROCEDURE autoconversion |
---|
| 97 | MODULE PROCEDURE autoconversion_ij |
---|
| 98 | END INTERFACE autoconversion |
---|
| 99 | |
---|
| 100 | INTERFACE accretion |
---|
| 101 | MODULE PROCEDURE accretion |
---|
| 102 | MODULE PROCEDURE accretion_ij |
---|
| 103 | END INTERFACE accretion |
---|
[1005] | 104 | |
---|
| 105 | INTERFACE selfcollection_breakup |
---|
| 106 | MODULE PROCEDURE selfcollection_breakup |
---|
| 107 | MODULE PROCEDURE selfcollection_breakup_ij |
---|
| 108 | END INTERFACE selfcollection_breakup |
---|
[1012] | 109 | |
---|
| 110 | INTERFACE evaporation_rain |
---|
| 111 | MODULE PROCEDURE evaporation_rain |
---|
| 112 | MODULE PROCEDURE evaporation_rain_ij |
---|
| 113 | END INTERFACE evaporation_rain |
---|
| 114 | |
---|
| 115 | INTERFACE sedimentation_cloud |
---|
| 116 | MODULE PROCEDURE sedimentation_cloud |
---|
| 117 | MODULE PROCEDURE sedimentation_cloud_ij |
---|
| 118 | END INTERFACE sedimentation_cloud |
---|
[1000] | 119 | |
---|
[1012] | 120 | INTERFACE sedimentation_rain |
---|
| 121 | MODULE PROCEDURE sedimentation_rain |
---|
| 122 | MODULE PROCEDURE sedimentation_rain_ij |
---|
| 123 | END INTERFACE sedimentation_rain |
---|
| 124 | |
---|
[1000] | 125 | CONTAINS |
---|
| 126 | |
---|
| 127 | |
---|
| 128 | !------------------------------------------------------------------------------! |
---|
| 129 | ! Call for all grid points |
---|
| 130 | !------------------------------------------------------------------------------! |
---|
[1115] | 131 | SUBROUTINE microphysics_control |
---|
[1022] | 132 | |
---|
[1361] | 133 | USE arrays_3d, & |
---|
| 134 | ONLY: hyp, nr, pt, pt_init, q, qc, qr, zu |
---|
| 135 | |
---|
| 136 | USE cloud_parameters, & |
---|
| 137 | ONLY: cp, hyrho, nc_const, pt_d_t, r_d, t_d_pt |
---|
| 138 | |
---|
| 139 | USE control_parameters, & |
---|
| 140 | ONLY: call_microphysics_at_all_substeps, drizzle, dt_3d, dt_micro, & |
---|
| 141 | g, intermediate_timestep_count, & |
---|
| 142 | large_scale_forcing, lsf_surf, precipitation, pt_surface, & |
---|
| 143 | rho_surface,surface_pressure |
---|
| 144 | |
---|
| 145 | USE indices, & |
---|
| 146 | ONLY: nzb, nzt |
---|
| 147 | |
---|
[1320] | 148 | USE kinds |
---|
[1115] | 149 | |
---|
[1361] | 150 | USE statistics, & |
---|
| 151 | ONLY: weight_pres |
---|
| 152 | |
---|
[1115] | 153 | IMPLICIT NONE |
---|
| 154 | |
---|
[1320] | 155 | INTEGER(iwp) :: i !: |
---|
| 156 | INTEGER(iwp) :: j !: |
---|
| 157 | INTEGER(iwp) :: k !: |
---|
[1115] | 158 | |
---|
[1361] | 159 | REAL(wp) :: t_surface !: |
---|
| 160 | |
---|
| 161 | IF ( large_scale_forcing .AND. lsf_surf ) THEN |
---|
| 162 | ! |
---|
| 163 | !-- Calculate: |
---|
| 164 | !-- pt / t : ratio of potential and actual temperature (pt_d_t) |
---|
| 165 | !-- t / pt : ratio of actual and potential temperature (t_d_pt) |
---|
| 166 | !-- p_0(z) : vertical profile of the hydrostatic pressure (hyp) |
---|
| 167 | t_surface = pt_surface * ( surface_pressure / 1000.0_wp )**0.286_wp |
---|
| 168 | DO k = nzb, nzt+1 |
---|
| 169 | hyp(k) = surface_pressure * 100.0_wp * & |
---|
| 170 | ( ( t_surface - g / cp * zu(k) ) / & |
---|
| 171 | t_surface )**(1.0_wp / 0.286_wp) |
---|
| 172 | pt_d_t(k) = ( 100000.0_wp / hyp(k) )**0.286_wp |
---|
| 173 | t_d_pt(k) = 1.0_wp / pt_d_t(k) |
---|
| 174 | hyrho(k) = hyp(k) / ( r_d * t_d_pt(k) * pt_init(k) ) |
---|
[1115] | 175 | ENDDO |
---|
[1361] | 176 | ! |
---|
| 177 | !-- Compute reference density |
---|
| 178 | rho_surface = surface_pressure * 100.0_wp / ( r_d * t_surface ) |
---|
| 179 | ENDIF |
---|
[1115] | 180 | |
---|
[1361] | 181 | ! |
---|
| 182 | !-- Compute length of time step |
---|
| 183 | IF ( call_microphysics_at_all_substeps ) THEN |
---|
| 184 | dt_micro = dt_3d * weight_pres(intermediate_timestep_count) |
---|
| 185 | ELSE |
---|
| 186 | dt_micro = dt_3d |
---|
| 187 | ENDIF |
---|
| 188 | |
---|
| 189 | ! |
---|
| 190 | !-- Compute cloud physics |
---|
| 191 | IF ( precipitation ) THEN |
---|
| 192 | CALL adjust_cloud |
---|
| 193 | CALL autoconversion |
---|
| 194 | CALL accretion |
---|
| 195 | CALL selfcollection_breakup |
---|
| 196 | CALL evaporation_rain |
---|
| 197 | CALL sedimentation_rain |
---|
| 198 | ENDIF |
---|
| 199 | |
---|
| 200 | IF ( drizzle ) CALL sedimentation_cloud |
---|
| 201 | |
---|
[1115] | 202 | END SUBROUTINE microphysics_control |
---|
| 203 | |
---|
| 204 | SUBROUTINE adjust_cloud |
---|
| 205 | |
---|
[1361] | 206 | USE arrays_3d, & |
---|
| 207 | ONLY: qr, nr |
---|
| 208 | |
---|
| 209 | USE cloud_parameters, & |
---|
| 210 | ONLY: eps_sb, xrmin, xrmax, hyrho, k_cc, x0 |
---|
| 211 | |
---|
| 212 | USE cpulog, & |
---|
| 213 | ONLY: cpu_log, log_point_s |
---|
| 214 | |
---|
| 215 | USE indices, & |
---|
| 216 | ONLY: nxl, nxr, nys, nyn, nzb, nzb_s_inner, nzt |
---|
| 217 | |
---|
[1320] | 218 | USE kinds |
---|
[1022] | 219 | |
---|
| 220 | IMPLICIT NONE |
---|
| 221 | |
---|
[1320] | 222 | INTEGER(iwp) :: i !: |
---|
| 223 | INTEGER(iwp) :: j !: |
---|
| 224 | INTEGER(iwp) :: k !: |
---|
[1022] | 225 | |
---|
[1361] | 226 | CALL cpu_log( log_point_s(54), 'adjust_cloud', 'start' ) |
---|
| 227 | |
---|
[1022] | 228 | DO i = nxl, nxr |
---|
| 229 | DO j = nys, nyn |
---|
[1115] | 230 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1361] | 231 | IF ( qr(k,j,i) <= eps_sb ) THEN |
---|
| 232 | qr(k,j,i) = 0.0_wp |
---|
| 233 | nr(k,j,i) = 0.0_wp |
---|
| 234 | ELSE |
---|
| 235 | ! |
---|
| 236 | !-- Adjust number of raindrops to avoid nonlinear effects in |
---|
| 237 | !-- sedimentation and evaporation of rain drops due to too small |
---|
| 238 | !-- or too big weights of rain drops (Stevens and Seifert, 2008). |
---|
| 239 | IF ( nr(k,j,i) * xrmin > qr(k,j,i) * hyrho(k) ) THEN |
---|
| 240 | nr(k,j,i) = qr(k,j,i) * hyrho(k) / xrmin |
---|
| 241 | ELSEIF ( nr(k,j,i) * xrmax < qr(k,j,i) * hyrho(k) ) THEN |
---|
| 242 | nr(k,j,i) = qr(k,j,i) * hyrho(k) / xrmax |
---|
| 243 | ENDIF |
---|
[1022] | 244 | |
---|
[1361] | 245 | ENDIF |
---|
[1022] | 246 | ENDDO |
---|
| 247 | ENDDO |
---|
| 248 | ENDDO |
---|
| 249 | |
---|
[1361] | 250 | CALL cpu_log( log_point_s(54), 'adjust_cloud', 'stop' ) |
---|
| 251 | |
---|
[1115] | 252 | END SUBROUTINE adjust_cloud |
---|
[1022] | 253 | |
---|
[1106] | 254 | |
---|
[1000] | 255 | SUBROUTINE autoconversion |
---|
| 256 | |
---|
[1361] | 257 | USE arrays_3d, & |
---|
| 258 | ONLY: diss, dzu, nr, qc, qr |
---|
| 259 | |
---|
| 260 | USE cloud_parameters, & |
---|
| 261 | ONLY: a_1, a_2, a_3, b_1, b_2, b_3, beta_cc, c_1, c_2, c_3, & |
---|
| 262 | c_const, dpirho_l, eps_sb, hyrho, k_cc, kin_vis_air, & |
---|
| 263 | nc_const, x0 |
---|
| 264 | |
---|
| 265 | USE control_parameters, & |
---|
| 266 | ONLY: dt_micro, rho_surface, turbulence |
---|
| 267 | |
---|
| 268 | USE cpulog, & |
---|
| 269 | ONLY: cpu_log, log_point_s |
---|
| 270 | |
---|
| 271 | USE grid_variables, & |
---|
| 272 | ONLY: dx, dy |
---|
| 273 | |
---|
| 274 | USE indices, & |
---|
| 275 | ONLY: nxl, nxr, nys, nyn, nzb, nzb_s_inner, nzt |
---|
| 276 | |
---|
[1320] | 277 | USE kinds |
---|
[1000] | 278 | |
---|
| 279 | IMPLICIT NONE |
---|
| 280 | |
---|
[1320] | 281 | INTEGER(iwp) :: i !: |
---|
| 282 | INTEGER(iwp) :: j !: |
---|
| 283 | INTEGER(iwp) :: k !: |
---|
[1000] | 284 | |
---|
[1361] | 285 | REAL(wp) :: alpha_cc !: |
---|
| 286 | REAL(wp) :: autocon !: |
---|
| 287 | REAL(wp) :: dissipation !: |
---|
| 288 | REAL(wp) :: k_au !: |
---|
| 289 | REAL(wp) :: l_mix !: |
---|
| 290 | REAL(wp) :: nu_c !: |
---|
| 291 | REAL(wp) :: phi_au !: |
---|
| 292 | REAL(wp) :: r_cc !: |
---|
| 293 | REAL(wp) :: rc !: |
---|
| 294 | REAL(wp) :: re_lambda !: |
---|
| 295 | REAL(wp) :: selfcoll !: |
---|
| 296 | REAL(wp) :: sigma_cc !: |
---|
| 297 | REAL(wp) :: tau_cloud !: |
---|
| 298 | REAL(wp) :: xc !: |
---|
| 299 | |
---|
| 300 | CALL cpu_log( log_point_s(55), 'autoconversion', 'start' ) |
---|
| 301 | |
---|
[1000] | 302 | DO i = nxl, nxr |
---|
| 303 | DO j = nys, nyn |
---|
[1115] | 304 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1000] | 305 | |
---|
[1361] | 306 | IF ( qc(k,j,i) > eps_sb ) THEN |
---|
| 307 | |
---|
| 308 | k_au = k_cc / ( 20.0_wp * x0 ) |
---|
| 309 | ! |
---|
| 310 | !-- Intern time scale of coagulation (Seifert and Beheng, 2006): |
---|
| 311 | !-- (1.0_wp - qc(k,j,i) / ( qc(k,j,i) + qr(k,j,i) )) |
---|
| 312 | tau_cloud = 1.0_wp - qc(k,j,i) / ( qr(k,j,i) + qc(k,j,i) ) |
---|
| 313 | ! |
---|
| 314 | !-- Universal function for autoconversion process |
---|
| 315 | !-- (Seifert and Beheng, 2006): |
---|
| 316 | phi_au = 600.0_wp * tau_cloud**0.68_wp * & |
---|
| 317 | ( 1.0_wp - tau_cloud**0.68_wp )**3 |
---|
| 318 | ! |
---|
| 319 | !-- Shape parameter of gamma distribution (Geoffroy et al., 2010): |
---|
| 320 | !-- (Use constant nu_c = 1.0_wp instead?) |
---|
| 321 | nu_c = 1.0_wp !MAX( 0.0_wp, 1580.0_wp * hyrho(k) * qc(k,j,i) - 0.28_wp ) |
---|
| 322 | ! |
---|
| 323 | !-- Mean weight of cloud droplets: |
---|
| 324 | xc = hyrho(k) * qc(k,j,i) / nc_const |
---|
| 325 | ! |
---|
| 326 | !-- Parameterized turbulence effects on autoconversion (Seifert, |
---|
| 327 | !-- Nuijens and Stevens, 2010) |
---|
| 328 | IF ( turbulence ) THEN |
---|
| 329 | ! |
---|
| 330 | !-- Weight averaged radius of cloud droplets: |
---|
| 331 | rc = 0.5_wp * ( xc * dpirho_l )**( 1.0_wp / 3.0_wp ) |
---|
| 332 | |
---|
| 333 | alpha_cc = ( a_1 + a_2 * nu_c ) / ( 1.0_wp + a_3 * nu_c ) |
---|
| 334 | r_cc = ( b_1 + b_2 * nu_c ) / ( 1.0_wp + b_3 * nu_c ) |
---|
| 335 | sigma_cc = ( c_1 + c_2 * nu_c ) / ( 1.0_wp + c_3 * nu_c ) |
---|
| 336 | ! |
---|
| 337 | !-- Mixing length (neglecting distance to ground and |
---|
| 338 | !-- stratification) |
---|
| 339 | l_mix = ( dx * dy * dzu(k) )**( 1.0_wp / 3.0_wp ) |
---|
| 340 | ! |
---|
| 341 | !-- Limit dissipation rate according to Seifert, Nuijens and |
---|
| 342 | !-- Stevens (2010) |
---|
| 343 | dissipation = MIN( 0.06_wp, diss(k,j,i) ) |
---|
| 344 | ! |
---|
| 345 | !-- Compute Taylor-microscale Reynolds number: |
---|
| 346 | re_lambda = 6.0_wp / 11.0_wp * & |
---|
| 347 | ( l_mix / c_const )**( 2.0_wp / 3.0_wp ) * & |
---|
| 348 | SQRT( 15.0_wp / kin_vis_air ) * & |
---|
| 349 | dissipation**( 1.0_wp / 6.0_wp ) |
---|
| 350 | ! |
---|
| 351 | !-- The factor of 1.0E4 is needed to convert the dissipation |
---|
| 352 | !-- rate from m2 s-3 to cm2 s-3. |
---|
| 353 | k_au = k_au * ( 1.0_wp + & |
---|
| 354 | dissipation * 1.0E4_wp * & |
---|
| 355 | ( re_lambda * 1.0E-3_wp )**0.25_wp * & |
---|
| 356 | ( alpha_cc * EXP( -1.0_wp * ( ( rc - & |
---|
| 357 | r_cc ) / & |
---|
| 358 | sigma_cc )**2 & |
---|
| 359 | ) + beta_cc & |
---|
| 360 | ) & |
---|
| 361 | ) |
---|
| 362 | ENDIF |
---|
| 363 | ! |
---|
| 364 | !-- Autoconversion rate (Seifert and Beheng, 2006): |
---|
| 365 | autocon = k_au * ( nu_c + 2.0_wp ) * ( nu_c + 4.0_wp ) / & |
---|
| 366 | ( nu_c + 1.0_wp )**2 * qc(k,j,i)**2 * xc**2 * & |
---|
| 367 | ( 1.0_wp + phi_au / ( 1.0_wp - tau_cloud )**2 ) * & |
---|
| 368 | rho_surface |
---|
| 369 | autocon = MIN( autocon, qc(k,j,i) / dt_micro ) |
---|
| 370 | |
---|
| 371 | qr(k,j,i) = qr(k,j,i) + autocon * dt_micro |
---|
| 372 | qc(k,j,i) = qc(k,j,i) - autocon * dt_micro |
---|
| 373 | nr(k,j,i) = nr(k,j,i) + autocon / x0 * hyrho(k) * dt_micro |
---|
| 374 | |
---|
| 375 | ENDIF |
---|
| 376 | |
---|
[1000] | 377 | ENDDO |
---|
| 378 | ENDDO |
---|
| 379 | ENDDO |
---|
| 380 | |
---|
[1361] | 381 | CALL cpu_log( log_point_s(55), 'autoconversion', 'stop' ) |
---|
| 382 | |
---|
[1000] | 383 | END SUBROUTINE autoconversion |
---|
| 384 | |
---|
[1106] | 385 | |
---|
[1005] | 386 | SUBROUTINE accretion |
---|
[1000] | 387 | |
---|
[1361] | 388 | USE arrays_3d, & |
---|
| 389 | ONLY: diss, qc, qr |
---|
| 390 | |
---|
| 391 | USE cloud_parameters, & |
---|
| 392 | ONLY: eps_sb, hyrho, k_cr0 |
---|
| 393 | |
---|
| 394 | USE control_parameters, & |
---|
| 395 | ONLY: dt_micro, rho_surface, turbulence |
---|
| 396 | |
---|
| 397 | USE cpulog, & |
---|
| 398 | ONLY: cpu_log, log_point_s |
---|
| 399 | |
---|
| 400 | USE indices, & |
---|
| 401 | ONLY: nxl, nxr, nys, nyn, nzb, nzb_s_inner, nzt |
---|
| 402 | |
---|
[1320] | 403 | USE kinds |
---|
[1005] | 404 | |
---|
[1000] | 405 | IMPLICIT NONE |
---|
| 406 | |
---|
[1320] | 407 | INTEGER(iwp) :: i !: |
---|
| 408 | INTEGER(iwp) :: j !: |
---|
| 409 | INTEGER(iwp) :: k !: |
---|
[1000] | 410 | |
---|
[1361] | 411 | REAL(wp) :: accr !: |
---|
| 412 | REAL(wp) :: k_cr !: |
---|
| 413 | REAL(wp) :: phi_ac !: |
---|
| 414 | REAL(wp) :: tau_cloud !: |
---|
| 415 | REAL(wp) :: xc !: |
---|
| 416 | |
---|
| 417 | CALL cpu_log( log_point_s(56), 'accretion', 'start' ) |
---|
| 418 | |
---|
[1005] | 419 | DO i = nxl, nxr |
---|
| 420 | DO j = nys, nyn |
---|
[1115] | 421 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1000] | 422 | |
---|
[1361] | 423 | IF ( ( qc(k,j,i) > eps_sb ) .AND. ( qr(k,j,i) > eps_sb ) ) THEN |
---|
| 424 | ! |
---|
| 425 | !-- Intern time scale of coagulation (Seifert and Beheng, 2006): |
---|
| 426 | tau_cloud = 1.0_wp - qc(k,j,i) / ( qc(k,j,i) + qr(k,j,i) ) |
---|
| 427 | ! |
---|
| 428 | !-- Universal function for accretion process (Seifert and |
---|
| 429 | !-- Beheng, 2001): |
---|
| 430 | phi_ac = ( tau_cloud / ( tau_cloud + 5.0E-5_wp ) )**4 |
---|
| 431 | ! |
---|
| 432 | !-- Parameterized turbulence effects on autoconversion (Seifert, |
---|
| 433 | !-- Nuijens and Stevens, 2010). The factor of 1.0E4 is needed to |
---|
| 434 | !-- convert the dissipation rate (diss) from m2 s-3 to cm2 s-3. |
---|
| 435 | IF ( turbulence ) THEN |
---|
| 436 | k_cr = k_cr0 * ( 1.0_wp + 0.05_wp * & |
---|
| 437 | MIN( 600.0_wp, & |
---|
| 438 | diss(k,j,i) * 1.0E4_wp )**0.25_wp & |
---|
| 439 | ) |
---|
| 440 | ELSE |
---|
| 441 | k_cr = k_cr0 |
---|
| 442 | ENDIF |
---|
| 443 | ! |
---|
| 444 | !-- Accretion rate (Seifert and Beheng, 2006): |
---|
| 445 | accr = k_cr * qc(k,j,i) * qr(k,j,i) * phi_ac * & |
---|
| 446 | SQRT( rho_surface * hyrho(k) ) |
---|
| 447 | accr = MIN( accr, qc(k,j,i) / dt_micro ) |
---|
| 448 | |
---|
| 449 | qr(k,j,i) = qr(k,j,i) + accr * dt_micro |
---|
| 450 | qc(k,j,i) = qc(k,j,i) - accr * dt_micro |
---|
| 451 | |
---|
| 452 | ENDIF |
---|
| 453 | |
---|
[1005] | 454 | ENDDO |
---|
| 455 | ENDDO |
---|
[1000] | 456 | ENDDO |
---|
| 457 | |
---|
[1361] | 458 | CALL cpu_log( log_point_s(56), 'accretion', 'stop' ) |
---|
| 459 | |
---|
[1005] | 460 | END SUBROUTINE accretion |
---|
[1000] | 461 | |
---|
[1106] | 462 | |
---|
[1005] | 463 | SUBROUTINE selfcollection_breakup |
---|
[1000] | 464 | |
---|
[1361] | 465 | USE arrays_3d, & |
---|
| 466 | ONLY: nr, qr |
---|
| 467 | |
---|
| 468 | USE cloud_parameters, & |
---|
| 469 | ONLY: dpirho_l, eps_sb, hyrho, k_br, k_rr |
---|
| 470 | |
---|
| 471 | USE control_parameters, & |
---|
| 472 | ONLY: dt_micro, rho_surface |
---|
| 473 | |
---|
| 474 | USE cpulog, & |
---|
| 475 | ONLY: cpu_log, log_point_s |
---|
| 476 | |
---|
| 477 | USE indices, & |
---|
| 478 | ONLY: nxl, nxr, nys, nyn, nzb, nzb_s_inner, nzt |
---|
| 479 | |
---|
[1320] | 480 | USE kinds |
---|
[1361] | 481 | |
---|
[1000] | 482 | IMPLICIT NONE |
---|
| 483 | |
---|
[1320] | 484 | INTEGER(iwp) :: i !: |
---|
| 485 | INTEGER(iwp) :: j !: |
---|
| 486 | INTEGER(iwp) :: k !: |
---|
[1000] | 487 | |
---|
[1361] | 488 | REAL(wp) :: breakup !: |
---|
| 489 | REAL(wp) :: dr !: |
---|
| 490 | REAL(wp) :: phi_br !: |
---|
| 491 | REAL(wp) :: selfcoll !: |
---|
| 492 | |
---|
| 493 | CALL cpu_log( log_point_s(57), 'selfcollection', 'start' ) |
---|
| 494 | |
---|
[1000] | 495 | DO i = nxl, nxr |
---|
| 496 | DO j = nys, nyn |
---|
[1115] | 497 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1361] | 498 | IF ( qr(k,j,i) > eps_sb ) THEN |
---|
| 499 | ! |
---|
| 500 | !-- Selfcollection rate (Seifert and Beheng, 2001): |
---|
| 501 | selfcoll = k_rr * nr(k,j,i) * qr(k,j,i) * & |
---|
| 502 | SQRT( hyrho(k) * rho_surface ) |
---|
| 503 | ! |
---|
| 504 | !-- Weight averaged diameter of rain drops: |
---|
| 505 | dr = ( hyrho(k) * qr(k,j,i) / & |
---|
| 506 | nr(k,j,i) * dpirho_l )**( 1.0_wp / 3.0_wp ) |
---|
| 507 | ! |
---|
| 508 | !-- Collisional breakup rate (Seifert, 2008): |
---|
| 509 | IF ( dr >= 0.3E-3_wp ) THEN |
---|
| 510 | phi_br = k_br * ( dr - 1.1E-3_wp ) |
---|
| 511 | breakup = selfcoll * ( phi_br + 1.0_wp ) |
---|
| 512 | ELSE |
---|
| 513 | breakup = 0.0_wp |
---|
| 514 | ENDIF |
---|
[1000] | 515 | |
---|
[1361] | 516 | selfcoll = MAX( breakup - selfcoll, -nr(k,j,i) / dt_micro ) |
---|
| 517 | nr(k,j,i) = nr(k,j,i) + selfcoll * dt_micro |
---|
| 518 | |
---|
| 519 | ENDIF |
---|
[1000] | 520 | ENDDO |
---|
| 521 | ENDDO |
---|
| 522 | ENDDO |
---|
| 523 | |
---|
[1361] | 524 | CALL cpu_log( log_point_s(57), 'selfcollection', 'stop' ) |
---|
| 525 | |
---|
[1005] | 526 | END SUBROUTINE selfcollection_breakup |
---|
[1000] | 527 | |
---|
[1106] | 528 | |
---|
[1012] | 529 | SUBROUTINE evaporation_rain |
---|
[1000] | 530 | |
---|
[1361] | 531 | ! |
---|
| 532 | !-- Evaporation of precipitable water. Condensation is neglected for |
---|
| 533 | !-- precipitable water. |
---|
| 534 | |
---|
| 535 | USE arrays_3d, & |
---|
| 536 | ONLY: hyp, nr, pt, q, qc, qr |
---|
| 537 | |
---|
| 538 | USE cloud_parameters, & |
---|
| 539 | ONLY: a_term, a_vent, b_term, b_vent, c_evap, c_term, diff_coeff_l,& |
---|
| 540 | dpirho_l, eps_sb, hyrho, kin_vis_air, k_st, l_d_cp, l_d_r, & |
---|
| 541 | l_v, rho_l, r_v, schmidt_p_1d3, thermal_conductivity_l, & |
---|
| 542 | t_d_pt, ventilation_effect |
---|
| 543 | |
---|
| 544 | USE constants, & |
---|
| 545 | ONLY: pi |
---|
| 546 | |
---|
| 547 | USE control_parameters, & |
---|
| 548 | ONLY: dt_micro |
---|
| 549 | |
---|
| 550 | USE cpulog, & |
---|
| 551 | ONLY: cpu_log, log_point_s |
---|
| 552 | |
---|
| 553 | USE indices, & |
---|
| 554 | ONLY: nxl, nxr, nys, nyn, nzb, nzb_s_inner, nzt |
---|
| 555 | |
---|
[1320] | 556 | USE kinds |
---|
[1012] | 557 | |
---|
| 558 | IMPLICIT NONE |
---|
| 559 | |
---|
[1320] | 560 | INTEGER(iwp) :: i !: |
---|
| 561 | INTEGER(iwp) :: j !: |
---|
| 562 | INTEGER(iwp) :: k !: |
---|
[1361] | 563 | |
---|
| 564 | REAL(wp) :: alpha !: |
---|
| 565 | REAL(wp) :: dr !: |
---|
| 566 | REAL(wp) :: e_s !: |
---|
| 567 | REAL(wp) :: evap !: |
---|
| 568 | REAL(wp) :: evap_nr !: |
---|
| 569 | REAL(wp) :: f_vent !: |
---|
| 570 | REAL(wp) :: g_evap !: |
---|
| 571 | REAL(wp) :: lambda_r !: |
---|
| 572 | REAL(wp) :: mu_r !: |
---|
| 573 | REAL(wp) :: mu_r_2 !: |
---|
| 574 | REAL(wp) :: mu_r_5d2 !: |
---|
| 575 | REAL(wp) :: nr_0 !: |
---|
| 576 | REAL(wp) :: q_s !: |
---|
| 577 | REAL(wp) :: sat !: |
---|
| 578 | REAL(wp) :: t_l !: |
---|
| 579 | REAL(wp) :: temp !: |
---|
| 580 | REAL(wp) :: xr !: |
---|
| 581 | |
---|
| 582 | CALL cpu_log( log_point_s(58), 'evaporation', 'start' ) |
---|
| 583 | |
---|
[1012] | 584 | DO i = nxl, nxr |
---|
| 585 | DO j = nys, nyn |
---|
[1115] | 586 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1361] | 587 | IF ( qr(k,j,i) > eps_sb ) THEN |
---|
| 588 | ! |
---|
| 589 | !-- Actual liquid water temperature: |
---|
| 590 | t_l = t_d_pt(k) * pt(k,j,i) |
---|
| 591 | ! |
---|
| 592 | !-- Saturation vapor pressure at t_l: |
---|
| 593 | e_s = 610.78_wp * EXP( 17.269_wp * ( t_l - 273.16_wp ) / & |
---|
| 594 | ( t_l - 35.86_wp ) & |
---|
| 595 | ) |
---|
| 596 | ! |
---|
| 597 | !-- Computation of saturation humidity: |
---|
| 598 | q_s = 0.622_wp * e_s / ( hyp(k) - 0.378_wp * e_s ) |
---|
| 599 | alpha = 0.622_wp * l_d_r * l_d_cp / ( t_l * t_l ) |
---|
| 600 | q_s = q_s * ( 1.0_wp + alpha * q(k,j,i) ) / & |
---|
| 601 | ( 1.0_wp + alpha * q_s ) |
---|
| 602 | ! |
---|
| 603 | !-- Supersaturation: |
---|
| 604 | sat = ( q(k,j,i) - qr(k,j,i) - qc(k,j,i) ) / q_s - 1.0_wp |
---|
| 605 | ! |
---|
| 606 | !-- Evaporation needs only to be calculated in subsaturated regions |
---|
| 607 | IF ( sat < 0.0_wp ) THEN |
---|
| 608 | ! |
---|
| 609 | !-- Actual temperature: |
---|
| 610 | temp = t_l + l_d_cp * ( qc(k,j,i) + qr(k,j,i) ) |
---|
| 611 | |
---|
| 612 | g_evap = 1.0_wp / ( ( l_v / ( r_v * temp ) - 1.0_wp ) * & |
---|
| 613 | l_v / ( thermal_conductivity_l * temp ) & |
---|
| 614 | + r_v * temp / ( diff_coeff_l * e_s ) & |
---|
| 615 | ) |
---|
| 616 | ! |
---|
| 617 | !-- Mean weight of rain drops |
---|
| 618 | xr = hyrho(k) * qr(k,j,i) / nr(k,j,i) |
---|
| 619 | ! |
---|
| 620 | !-- Weight averaged diameter of rain drops: |
---|
| 621 | dr = ( xr * dpirho_l )**( 1.0_wp / 3.0_wp ) |
---|
| 622 | ! |
---|
| 623 | !-- Compute ventilation factor and intercept parameter |
---|
| 624 | !-- (Seifert and Beheng, 2006; Seifert, 2008): |
---|
| 625 | IF ( ventilation_effect ) THEN |
---|
| 626 | ! |
---|
| 627 | !-- Shape parameter of gamma distribution (Milbrandt and Yau, |
---|
| 628 | !-- 2005; Stevens and Seifert, 2008): |
---|
| 629 | mu_r = 10.0_wp * ( 1.0_wp + TANH( 1.2E3_wp * & |
---|
| 630 | ( dr - 1.4E-3_wp ) ) ) |
---|
| 631 | ! |
---|
| 632 | !-- Slope parameter of gamma distribution (Seifert, 2008): |
---|
| 633 | lambda_r = ( ( mu_r + 3.0_wp ) * ( mu_r + 2.0_wp ) * & |
---|
| 634 | ( mu_r + 1.0_wp ) & |
---|
| 635 | )**( 1.0_wp / 3.0_wp ) / dr |
---|
[1012] | 636 | |
---|
[1361] | 637 | mu_r_2 = mu_r + 2.0_wp |
---|
| 638 | mu_r_5d2 = mu_r + 2.5_wp |
---|
| 639 | |
---|
| 640 | f_vent = a_vent * gamm( mu_r_2 ) * & |
---|
| 641 | lambda_r**( -mu_r_2 ) + b_vent * & |
---|
| 642 | schmidt_p_1d3 * SQRT( a_term / kin_vis_air ) *& |
---|
| 643 | gamm( mu_r_5d2 ) * lambda_r**( -mu_r_5d2 ) * & |
---|
| 644 | ( 1.0_wp - & |
---|
| 645 | 0.5_wp * ( b_term / a_term ) * & |
---|
| 646 | ( lambda_r / ( c_term + lambda_r ) & |
---|
| 647 | )**mu_r_5d2 - & |
---|
| 648 | 0.125_wp * ( b_term / a_term )**2 * & |
---|
| 649 | ( lambda_r / ( 2.0_wp * c_term + lambda_r ) & |
---|
| 650 | )**mu_r_5d2 - & |
---|
| 651 | 0.0625_wp * ( b_term / a_term )**3 * & |
---|
| 652 | ( lambda_r / ( 3.0_wp * c_term + lambda_r ) & |
---|
| 653 | )**mu_r_5d2 - & |
---|
| 654 | 0.0390625_wp * ( b_term / a_term )**4 * & |
---|
| 655 | ( lambda_r / ( 4.0_wp * c_term + lambda_r ) & |
---|
| 656 | )**mu_r_5d2 & |
---|
| 657 | ) |
---|
| 658 | |
---|
| 659 | nr_0 = nr(k,j,i) * lambda_r**( mu_r + 1.0_wp ) / & |
---|
| 660 | gamm( mu_r + 1.0_wp ) |
---|
| 661 | ELSE |
---|
| 662 | f_vent = 1.0_wp |
---|
| 663 | nr_0 = nr(k,j,i) * dr |
---|
| 664 | ENDIF |
---|
| 665 | ! |
---|
| 666 | !-- Evaporation rate of rain water content (Seifert and |
---|
| 667 | !-- Beheng, 2006): |
---|
| 668 | evap = 2.0_wp * pi * nr_0 * g_evap * f_vent * sat / & |
---|
| 669 | hyrho(k) |
---|
| 670 | evap = MAX( evap, -qr(k,j,i) / dt_micro ) |
---|
| 671 | evap_nr = MAX( c_evap * evap / xr * hyrho(k), & |
---|
| 672 | -nr(k,j,i) / dt_micro ) |
---|
| 673 | |
---|
| 674 | qr(k,j,i) = qr(k,j,i) + evap * dt_micro |
---|
| 675 | nr(k,j,i) = nr(k,j,i) + evap_nr * dt_micro |
---|
| 676 | |
---|
| 677 | ENDIF |
---|
| 678 | ENDIF |
---|
| 679 | |
---|
[1012] | 680 | ENDDO |
---|
| 681 | ENDDO |
---|
| 682 | ENDDO |
---|
| 683 | |
---|
[1361] | 684 | CALL cpu_log( log_point_s(58), 'evaporation', 'stop' ) |
---|
| 685 | |
---|
[1012] | 686 | END SUBROUTINE evaporation_rain |
---|
| 687 | |
---|
[1106] | 688 | |
---|
[1012] | 689 | SUBROUTINE sedimentation_cloud |
---|
| 690 | |
---|
[1361] | 691 | USE arrays_3d, & |
---|
| 692 | ONLY: ddzu, dzu, pt, q, qc |
---|
| 693 | |
---|
| 694 | USE cloud_parameters, & |
---|
| 695 | ONLY: eps_sb, hyrho, l_d_cp, nc_const, pt_d_t, sed_qc_const |
---|
| 696 | |
---|
| 697 | USE constants, & |
---|
| 698 | ONLY: pi |
---|
| 699 | |
---|
| 700 | USE control_parameters, & |
---|
| 701 | ONLY: dt_do2d_xy, dt_micro, intermediate_timestep_count |
---|
| 702 | |
---|
| 703 | USE cpulog, & |
---|
| 704 | ONLY: cpu_log, log_point_s |
---|
| 705 | |
---|
| 706 | USE indices, & |
---|
| 707 | ONLY: nxl, nxr, nys, nyn, nzb, nzb_s_inner, nzt |
---|
| 708 | |
---|
[1320] | 709 | USE kinds |
---|
[1361] | 710 | |
---|
[1012] | 711 | IMPLICIT NONE |
---|
| 712 | |
---|
[1320] | 713 | INTEGER(iwp) :: i !: |
---|
| 714 | INTEGER(iwp) :: j !: |
---|
| 715 | INTEGER(iwp) :: k !: |
---|
[1361] | 716 | |
---|
| 717 | REAL(wp), DIMENSION(nzb:nzt+1) :: sed_qc !: |
---|
| 718 | |
---|
| 719 | CALL cpu_log( log_point_s(59), 'sed_cloud', 'start' ) |
---|
| 720 | |
---|
| 721 | ! |
---|
| 722 | !-- Sedimentation of cloud droplets (Ackermann et al., 2009, MWR): |
---|
| 723 | sed_qc(nzt+1) = 0.0_wp |
---|
| 724 | |
---|
[1012] | 725 | DO i = nxl, nxr |
---|
| 726 | DO j = nys, nyn |
---|
[1361] | 727 | DO k = nzt, nzb_s_inner(j,i)+1, -1 |
---|
[1012] | 728 | |
---|
[1361] | 729 | IF ( qc(k,j,i) > eps_sb ) THEN |
---|
| 730 | sed_qc(k) = sed_qc_const * nc_const**( -2.0_wp / 3.0_wp ) * & |
---|
| 731 | ( qc(k,j,i) * hyrho(k) )**( 5.0_wp / 3.0_wp ) |
---|
| 732 | ELSE |
---|
| 733 | sed_qc(k) = 0.0_wp |
---|
| 734 | ENDIF |
---|
| 735 | |
---|
| 736 | sed_qc(k) = MIN( sed_qc(k), hyrho(k) * dzu(k+1) * q(k,j,i) / & |
---|
| 737 | dt_micro + sed_qc(k+1) & |
---|
| 738 | ) |
---|
| 739 | |
---|
| 740 | q(k,j,i) = q(k,j,i) + ( sed_qc(k+1) - sed_qc(k) ) * & |
---|
| 741 | ddzu(k+1) / hyrho(k) * dt_micro |
---|
| 742 | qc(k,j,i) = qc(k,j,i) + ( sed_qc(k+1) - sed_qc(k) ) * & |
---|
| 743 | ddzu(k+1) / hyrho(k) * dt_micro |
---|
| 744 | pt(k,j,i) = pt(k,j,i) - ( sed_qc(k+1) - sed_qc(k) ) * & |
---|
| 745 | ddzu(k+1) / hyrho(k) * l_d_cp * & |
---|
| 746 | pt_d_t(k) * dt_micro |
---|
| 747 | |
---|
[1012] | 748 | ENDDO |
---|
| 749 | ENDDO |
---|
| 750 | ENDDO |
---|
| 751 | |
---|
[1361] | 752 | CALL cpu_log( log_point_s(59), 'sed_cloud', 'stop' ) |
---|
| 753 | |
---|
[1012] | 754 | END SUBROUTINE sedimentation_cloud |
---|
| 755 | |
---|
[1106] | 756 | |
---|
[1012] | 757 | SUBROUTINE sedimentation_rain |
---|
| 758 | |
---|
[1361] | 759 | USE arrays_3d, & |
---|
| 760 | ONLY: ddzu, dzu, nr, pt, q, qr |
---|
| 761 | |
---|
| 762 | USE cloud_parameters, & |
---|
| 763 | ONLY: a_term, b_term, c_term, cof, dpirho_l, eps_sb, hyrho, & |
---|
| 764 | limiter_sedimentation, l_d_cp, precipitation_amount, prr, & |
---|
| 765 | pt_d_t, stp |
---|
| 766 | |
---|
| 767 | USE control_parameters, & |
---|
| 768 | ONLY: call_microphysics_at_all_substeps, dt_do2d_xy, dt_micro, & |
---|
| 769 | dt_3d, intermediate_timestep_count, & |
---|
| 770 | intermediate_timestep_count_max, & |
---|
| 771 | precipitation_amount_interval, time_do2d_xy |
---|
| 772 | |
---|
| 773 | USE cpulog, & |
---|
| 774 | ONLY: cpu_log, log_point_s |
---|
| 775 | |
---|
| 776 | USE indices, & |
---|
| 777 | ONLY: nxl, nxr, nys, nyn, nzb, nzb_s_inner, nzt |
---|
| 778 | |
---|
[1320] | 779 | USE kinds |
---|
[1012] | 780 | |
---|
[1361] | 781 | USE statistics, & |
---|
| 782 | ONLY: weight_substep |
---|
| 783 | |
---|
[1012] | 784 | IMPLICIT NONE |
---|
| 785 | |
---|
[1361] | 786 | INTEGER(iwp) :: i !: |
---|
| 787 | INTEGER(iwp) :: j !: |
---|
| 788 | INTEGER(iwp) :: k !: |
---|
| 789 | INTEGER(iwp) :: k_run !: |
---|
| 790 | |
---|
| 791 | REAL(wp) :: c_run !: |
---|
| 792 | REAL(wp) :: d_max !: |
---|
| 793 | REAL(wp) :: d_mean !: |
---|
| 794 | REAL(wp) :: d_min !: |
---|
| 795 | REAL(wp) :: dr !: |
---|
| 796 | REAL(wp) :: dt_sedi !: |
---|
| 797 | REAL(wp) :: flux !: |
---|
| 798 | REAL(wp) :: lambda_r !: |
---|
| 799 | REAL(wp) :: mu_r !: |
---|
| 800 | REAL(wp) :: z_run !: |
---|
| 801 | |
---|
| 802 | REAL(wp), DIMENSION(nzb:nzt+1) :: c_nr !: |
---|
| 803 | REAL(wp), DIMENSION(nzb:nzt+1) :: c_qr !: |
---|
| 804 | REAL(wp), DIMENSION(nzb:nzt+1) :: d_nr !: |
---|
| 805 | REAL(wp), DIMENSION(nzb:nzt+1) :: d_qr !: |
---|
| 806 | REAL(wp), DIMENSION(nzb:nzt+1) :: nr_slope !: |
---|
| 807 | REAL(wp), DIMENSION(nzb:nzt+1) :: qr_slope !: |
---|
| 808 | REAL(wp), DIMENSION(nzb:nzt+1) :: sed_nr !: |
---|
| 809 | REAL(wp), DIMENSION(nzb:nzt+1) :: sed_qr !: |
---|
| 810 | REAL(wp), DIMENSION(nzb:nzt+1) :: w_nr !: |
---|
| 811 | REAL(wp), DIMENSION(nzb:nzt+1) :: w_qr !: |
---|
| 812 | |
---|
| 813 | CALL cpu_log( log_point_s(60), 'sed_rain', 'start' ) |
---|
| 814 | ! |
---|
| 815 | !-- Computation of sedimentation flux. Implementation according to Stevens |
---|
| 816 | !-- and Seifert (2008). Code is based on UCLA-LES. |
---|
| 817 | IF ( intermediate_timestep_count == 1 ) prr(:,:,:) = 0.0_wp |
---|
| 818 | ! |
---|
| 819 | !-- Compute velocities |
---|
[1012] | 820 | DO i = nxl, nxr |
---|
| 821 | DO j = nys, nyn |
---|
[1115] | 822 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1361] | 823 | IF ( qr(k,j,i) > eps_sb ) THEN |
---|
| 824 | ! |
---|
| 825 | !-- Weight averaged diameter of rain drops: |
---|
| 826 | dr = ( hyrho(k) * qr(k,j,i) / & |
---|
| 827 | nr(k,j,i) * dpirho_l )**( 1.0_wp / 3.0_wp ) |
---|
| 828 | ! |
---|
| 829 | !-- Shape parameter of gamma distribution (Milbrandt and Yau, 2005; |
---|
| 830 | !-- Stevens and Seifert, 2008): |
---|
| 831 | mu_r = 10.0_wp * ( 1.0_wp + TANH( 1.2E3_wp * & |
---|
| 832 | ( dr - 1.4E-3_wp ) ) ) |
---|
| 833 | ! |
---|
| 834 | !-- Slope parameter of gamma distribution (Seifert, 2008): |
---|
| 835 | lambda_r = ( ( mu_r + 3.0_wp ) * ( mu_r + 2.0_wp ) * & |
---|
| 836 | ( mu_r + 1.0_wp ) )**( 1.0_wp / 3.0_wp ) / dr |
---|
[1012] | 837 | |
---|
[1361] | 838 | w_nr(k) = MAX( 0.1_wp, MIN( 20.0_wp, & |
---|
| 839 | a_term - b_term * ( 1.0_wp + & |
---|
| 840 | c_term / & |
---|
| 841 | lambda_r )**( -1.0_wp * & |
---|
| 842 | ( mu_r + 1.0_wp ) ) & |
---|
| 843 | ) & |
---|
| 844 | ) |
---|
| 845 | |
---|
| 846 | w_qr(k) = MAX( 0.1_wp, MIN( 20.0_wp, & |
---|
| 847 | a_term - b_term * ( 1.0_wp + & |
---|
| 848 | c_term / & |
---|
| 849 | lambda_r )**( -1.0_wp * & |
---|
| 850 | ( mu_r + 4.0_wp ) ) & |
---|
| 851 | ) & |
---|
| 852 | ) |
---|
| 853 | ELSE |
---|
| 854 | w_nr(k) = 0.0_wp |
---|
| 855 | w_qr(k) = 0.0_wp |
---|
| 856 | ENDIF |
---|
[1012] | 857 | ENDDO |
---|
[1361] | 858 | ! |
---|
| 859 | !-- Adjust boundary values |
---|
| 860 | w_nr(nzb_s_inner(j,i)) = w_nr(nzb_s_inner(j,i)+1) |
---|
| 861 | w_qr(nzb_s_inner(j,i)) = w_qr(nzb_s_inner(j,i)+1) |
---|
| 862 | w_nr(nzt+1) = 0.0_wp |
---|
| 863 | w_qr(nzt+1) = 0.0_wp |
---|
| 864 | ! |
---|
| 865 | !-- Compute Courant number |
---|
| 866 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 867 | c_nr(k) = 0.25_wp * ( w_nr(k-1) + & |
---|
| 868 | 2.0_wp * w_nr(k) + w_nr(k+1) ) * & |
---|
| 869 | dt_micro * ddzu(k) |
---|
| 870 | c_qr(k) = 0.25_wp * ( w_qr(k-1) + & |
---|
| 871 | 2.0_wp * w_qr(k) + w_qr(k+1) ) * & |
---|
| 872 | dt_micro * ddzu(k) |
---|
| 873 | ENDDO |
---|
| 874 | ! |
---|
| 875 | !-- Limit slopes with monotonized centered (MC) limiter (van Leer, 1977): |
---|
| 876 | IF ( limiter_sedimentation ) THEN |
---|
| 877 | |
---|
| 878 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 879 | d_mean = 0.5_wp * ( qr(k+1,j,i) + qr(k-1,j,i) ) |
---|
| 880 | d_min = qr(k,j,i) - MIN( qr(k+1,j,i), qr(k,j,i), qr(k-1,j,i) ) |
---|
| 881 | d_max = MAX( qr(k+1,j,i), qr(k,j,i), qr(k-1,j,i) ) - qr(k,j,i) |
---|
| 882 | |
---|
| 883 | qr_slope(k) = SIGN(1.0_wp, d_mean) * MIN ( 2.0_wp * d_min, & |
---|
| 884 | 2.0_wp * d_max, & |
---|
| 885 | ABS( d_mean ) ) |
---|
| 886 | |
---|
| 887 | d_mean = 0.5_wp * ( nr(k+1,j,i) + nr(k-1,j,i) ) |
---|
| 888 | d_min = nr(k,j,i) - MIN( nr(k+1,j,i), nr(k,j,i), nr(k-1,j,i) ) |
---|
| 889 | d_max = MAX( nr(k+1,j,i), nr(k,j,i), nr(k-1,j,i) ) - nr(k,j,i) |
---|
| 890 | |
---|
| 891 | nr_slope(k) = SIGN(1.0_wp, d_mean) * MIN ( 2.0_wp * d_min, & |
---|
| 892 | 2.0_wp * d_max, & |
---|
| 893 | ABS( d_mean ) ) |
---|
| 894 | ENDDO |
---|
| 895 | |
---|
| 896 | ELSE |
---|
| 897 | |
---|
| 898 | nr_slope = 0.0_wp |
---|
| 899 | qr_slope = 0.0_wp |
---|
| 900 | |
---|
| 901 | ENDIF |
---|
| 902 | |
---|
| 903 | sed_nr(nzt+1) = 0.0_wp |
---|
| 904 | sed_qr(nzt+1) = 0.0_wp |
---|
| 905 | ! |
---|
| 906 | !-- Compute sedimentation flux |
---|
| 907 | DO k = nzt, nzb_s_inner(j,i)+1, -1 |
---|
| 908 | ! |
---|
| 909 | !-- Sum up all rain drop number densities which contribute to the flux |
---|
| 910 | !-- through k-1/2 |
---|
| 911 | flux = 0.0_wp |
---|
| 912 | z_run = 0.0_wp ! height above z(k) |
---|
| 913 | k_run = k |
---|
| 914 | c_run = MIN( 1.0_wp, c_nr(k) ) |
---|
| 915 | DO WHILE ( c_run > 0.0_wp .AND. k_run <= nzt ) |
---|
| 916 | flux = flux + hyrho(k_run) * & |
---|
| 917 | ( nr(k_run,j,i) + nr_slope(k_run) * & |
---|
| 918 | ( 1.0_wp - c_run ) * 0.5_wp ) * c_run * dzu(k_run) |
---|
| 919 | z_run = z_run + dzu(k_run) |
---|
| 920 | k_run = k_run + 1 |
---|
| 921 | c_run = MIN( 1.0_wp, c_nr(k_run) - z_run * ddzu(k_run) ) |
---|
| 922 | ENDDO |
---|
| 923 | ! |
---|
| 924 | !-- It is not allowed to sediment more rain drop number density than |
---|
| 925 | !-- available |
---|
| 926 | flux = MIN( flux, & |
---|
| 927 | hyrho(k) * dzu(k+1) * nr(k,j,i) + sed_nr(k+1) * & |
---|
| 928 | dt_micro & |
---|
| 929 | ) |
---|
| 930 | |
---|
| 931 | sed_nr(k) = flux / dt_micro |
---|
| 932 | nr(k,j,i) = nr(k,j,i) + ( sed_nr(k+1) - sed_nr(k) ) * & |
---|
| 933 | ddzu(k+1) / hyrho(k) * dt_micro |
---|
| 934 | ! |
---|
| 935 | !-- Sum up all rain water content which contributes to the flux |
---|
| 936 | !-- through k-1/2 |
---|
| 937 | flux = 0.0_wp |
---|
| 938 | z_run = 0.0_wp ! height above z(k) |
---|
| 939 | k_run = k |
---|
| 940 | c_run = MIN( 1.0_wp, c_qr(k) ) |
---|
| 941 | |
---|
| 942 | DO WHILE ( c_run > 0.0_wp .AND. k_run <= nzt ) |
---|
| 943 | |
---|
| 944 | flux = flux + hyrho(k_run) * ( qr(k_run,j,i) + & |
---|
| 945 | qr_slope(k_run) * ( 1.0_wp - c_run ) * & |
---|
| 946 | 0.5_wp ) * c_run * dzu(k_run) |
---|
| 947 | z_run = z_run + dzu(k_run) |
---|
| 948 | k_run = k_run + 1 |
---|
| 949 | c_run = MIN( 1.0_wp, c_qr(k_run) - z_run * ddzu(k_run) ) |
---|
| 950 | |
---|
| 951 | ENDDO |
---|
| 952 | ! |
---|
| 953 | !-- It is not allowed to sediment more rain water content than |
---|
| 954 | !-- available |
---|
| 955 | flux = MIN( flux, & |
---|
| 956 | hyrho(k) * dzu(k) * qr(k,j,i) + sed_qr(k+1) * & |
---|
| 957 | dt_micro & |
---|
| 958 | ) |
---|
| 959 | |
---|
| 960 | sed_qr(k) = flux / dt_micro |
---|
| 961 | |
---|
| 962 | qr(k,j,i) = qr(k,j,i) + ( sed_qr(k+1) - sed_qr(k) ) * & |
---|
| 963 | ddzu(k+1) / hyrho(k) * dt_micro |
---|
| 964 | q(k,j,i) = q(k,j,i) + ( sed_qr(k+1) - sed_qr(k) ) * & |
---|
| 965 | ddzu(k+1) / hyrho(k) * dt_micro |
---|
| 966 | pt(k,j,i) = pt(k,j,i) - ( sed_qr(k+1) - sed_qr(k) ) * & |
---|
| 967 | ddzu(k+1) / hyrho(k) * l_d_cp * & |
---|
| 968 | pt_d_t(k) * dt_micro |
---|
| 969 | ! |
---|
| 970 | !-- Compute the rain rate |
---|
| 971 | IF ( call_microphysics_at_all_substeps ) THEN |
---|
| 972 | prr(k,j,i) = prr(k,j,i) + sed_qr(k) / hyrho(k) * & |
---|
| 973 | weight_substep(intermediate_timestep_count) |
---|
| 974 | ELSE |
---|
| 975 | prr(k,j,i) = sed_qr(k) / hyrho(k) |
---|
| 976 | ENDIF |
---|
| 977 | |
---|
| 978 | ENDDO |
---|
[1012] | 979 | ENDDO |
---|
| 980 | ENDDO |
---|
| 981 | |
---|
[1361] | 982 | ! |
---|
| 983 | !-- Precipitation amount |
---|
| 984 | IF ( intermediate_timestep_count == intermediate_timestep_count_max & |
---|
| 985 | .AND. ( dt_do2d_xy - time_do2d_xy ) < & |
---|
| 986 | precipitation_amount_interval ) THEN |
---|
| 987 | DO i = nxl, nxr |
---|
| 988 | DO j = nys, nyn |
---|
| 989 | precipitation_amount(j,i) = precipitation_amount(j,i) + & |
---|
| 990 | prr(nzb_s_inner(j,i)+1,j,i) * & |
---|
| 991 | hyrho(nzb_s_inner(j,i)+1) * dt_3d |
---|
| 992 | ENDDO |
---|
| 993 | ENDDO |
---|
| 994 | ENDIF |
---|
| 995 | |
---|
| 996 | CALL cpu_log( log_point_s(60), 'sed_rain', 'stop' ) |
---|
| 997 | |
---|
[1012] | 998 | END SUBROUTINE sedimentation_rain |
---|
| 999 | |
---|
| 1000 | |
---|
[1000] | 1001 | !------------------------------------------------------------------------------! |
---|
| 1002 | ! Call for grid point i,j |
---|
| 1003 | !------------------------------------------------------------------------------! |
---|
[1022] | 1004 | |
---|
[1115] | 1005 | SUBROUTINE microphysics_control_ij( i, j ) |
---|
| 1006 | |
---|
[1320] | 1007 | USE arrays_3d, & |
---|
[1361] | 1008 | ONLY: hyp, nc_1d, nr, nr_1d, pt, pt_init, pt_1d, q, q_1d, qc, & |
---|
| 1009 | qc_1d, qr, qr_1d, zu |
---|
[1115] | 1010 | |
---|
[1320] | 1011 | USE cloud_parameters, & |
---|
| 1012 | ONLY: cp, hyrho, nc_const, pt_d_t, r_d, t_d_pt |
---|
| 1013 | |
---|
| 1014 | USE control_parameters, & |
---|
[1361] | 1015 | ONLY: call_microphysics_at_all_substeps, drizzle, dt_3d, dt_micro, & |
---|
| 1016 | g, intermediate_timestep_count, large_scale_forcing, & |
---|
| 1017 | lsf_surf, precipitation, pt_surface, & |
---|
[1320] | 1018 | rho_surface,surface_pressure |
---|
| 1019 | |
---|
| 1020 | USE indices, & |
---|
| 1021 | ONLY: nzb, nzt |
---|
| 1022 | |
---|
| 1023 | USE kinds |
---|
| 1024 | |
---|
| 1025 | USE statistics, & |
---|
| 1026 | ONLY: weight_pres |
---|
| 1027 | |
---|
[1022] | 1028 | IMPLICIT NONE |
---|
| 1029 | |
---|
[1320] | 1030 | INTEGER(iwp) :: i !: |
---|
| 1031 | INTEGER(iwp) :: j !: |
---|
| 1032 | INTEGER(iwp) :: k !: |
---|
[1115] | 1033 | |
---|
[1320] | 1034 | REAL(wp) :: t_surface !: |
---|
| 1035 | |
---|
[1361] | 1036 | IF ( large_scale_forcing .AND. lsf_surf ) THEN |
---|
[1241] | 1037 | ! |
---|
| 1038 | !-- Calculate: |
---|
| 1039 | !-- pt / t : ratio of potential and actual temperature (pt_d_t) |
---|
| 1040 | !-- t / pt : ratio of actual and potential temperature (t_d_pt) |
---|
| 1041 | !-- p_0(z) : vertical profile of the hydrostatic pressure (hyp) |
---|
[1353] | 1042 | t_surface = pt_surface * ( surface_pressure / 1000.0_wp )**0.286_wp |
---|
[1241] | 1043 | DO k = nzb, nzt+1 |
---|
[1353] | 1044 | hyp(k) = surface_pressure * 100.0_wp * & |
---|
[1361] | 1045 | ( ( t_surface - g / cp * zu(k) ) / t_surface )**(1.0_wp / 0.286_wp) |
---|
[1353] | 1046 | pt_d_t(k) = ( 100000.0_wp / hyp(k) )**0.286_wp |
---|
| 1047 | t_d_pt(k) = 1.0_wp / pt_d_t(k) |
---|
[1241] | 1048 | hyrho(k) = hyp(k) / ( r_d * t_d_pt(k) * pt_init(k) ) |
---|
| 1049 | ENDDO |
---|
| 1050 | ! |
---|
| 1051 | !-- Compute reference density |
---|
[1353] | 1052 | rho_surface = surface_pressure * 100.0_wp / ( r_d * t_surface ) |
---|
[1241] | 1053 | ENDIF |
---|
| 1054 | |
---|
[1361] | 1055 | ! |
---|
| 1056 | !-- Compute length of time step |
---|
| 1057 | IF ( call_microphysics_at_all_substeps ) THEN |
---|
| 1058 | dt_micro = dt_3d * weight_pres(intermediate_timestep_count) |
---|
| 1059 | ELSE |
---|
| 1060 | dt_micro = dt_3d |
---|
| 1061 | ENDIF |
---|
[1241] | 1062 | |
---|
[1115] | 1063 | ! |
---|
[1361] | 1064 | !-- Use 1d arrays |
---|
[1115] | 1065 | q_1d(:) = q(:,j,i) |
---|
| 1066 | pt_1d(:) = pt(:,j,i) |
---|
| 1067 | qc_1d(:) = qc(:,j,i) |
---|
| 1068 | nc_1d(:) = nc_const |
---|
| 1069 | IF ( precipitation ) THEN |
---|
| 1070 | qr_1d(:) = qr(:,j,i) |
---|
| 1071 | nr_1d(:) = nr(:,j,i) |
---|
| 1072 | ENDIF |
---|
[1361] | 1073 | |
---|
[1115] | 1074 | ! |
---|
| 1075 | !-- Compute cloud physics |
---|
| 1076 | IF ( precipitation ) THEN |
---|
[1361] | 1077 | CALL adjust_cloud( i,j ) |
---|
[1115] | 1078 | CALL autoconversion( i,j ) |
---|
| 1079 | CALL accretion( i,j ) |
---|
| 1080 | CALL selfcollection_breakup( i,j ) |
---|
| 1081 | CALL evaporation_rain( i,j ) |
---|
| 1082 | CALL sedimentation_rain( i,j ) |
---|
| 1083 | ENDIF |
---|
| 1084 | |
---|
| 1085 | IF ( drizzle ) CALL sedimentation_cloud( i,j ) |
---|
[1361] | 1086 | |
---|
[1115] | 1087 | ! |
---|
[1361] | 1088 | !-- Store results on the 3d arrays |
---|
| 1089 | q(:,j,i) = q_1d(:) |
---|
| 1090 | pt(:,j,i) = pt_1d(:) |
---|
[1115] | 1091 | IF ( precipitation ) THEN |
---|
[1361] | 1092 | qr(:,j,i) = qr_1d(:) |
---|
| 1093 | nr(:,j,i) = nr_1d(:) |
---|
[1115] | 1094 | ENDIF |
---|
| 1095 | |
---|
| 1096 | END SUBROUTINE microphysics_control_ij |
---|
| 1097 | |
---|
| 1098 | SUBROUTINE adjust_cloud_ij( i, j ) |
---|
| 1099 | |
---|
[1320] | 1100 | USE arrays_3d, & |
---|
[1361] | 1101 | ONLY: qr_1d, nr_1d |
---|
[1115] | 1102 | |
---|
[1320] | 1103 | USE cloud_parameters, & |
---|
| 1104 | ONLY: eps_sb, xrmin, xrmax, hyrho, k_cc, x0 |
---|
| 1105 | |
---|
| 1106 | USE indices, & |
---|
| 1107 | ONLY: nzb, nzb_s_inner, nzt |
---|
| 1108 | |
---|
| 1109 | USE kinds |
---|
| 1110 | |
---|
[1115] | 1111 | IMPLICIT NONE |
---|
| 1112 | |
---|
[1320] | 1113 | INTEGER(iwp) :: i !: |
---|
| 1114 | INTEGER(iwp) :: j !: |
---|
| 1115 | INTEGER(iwp) :: k !: |
---|
[1115] | 1116 | ! |
---|
| 1117 | !-- Adjust number of raindrops to avoid nonlinear effects in |
---|
| 1118 | !-- sedimentation and evaporation of rain drops due to too small or |
---|
| 1119 | !-- too big weights of rain drops (Stevens and Seifert, 2008). |
---|
| 1120 | !-- The same procedure is applied to cloud droplets if they are determined |
---|
| 1121 | !-- prognostically. |
---|
| 1122 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1022] | 1123 | |
---|
[1361] | 1124 | IF ( qr_1d(k) <= eps_sb ) THEN |
---|
| 1125 | qr_1d(k) = 0.0_wp |
---|
| 1126 | nr_1d(k) = 0.0_wp |
---|
[1065] | 1127 | ELSE |
---|
[1022] | 1128 | ! |
---|
[1048] | 1129 | !-- Adjust number of raindrops to avoid nonlinear effects in |
---|
| 1130 | !-- sedimentation and evaporation of rain drops due to too small or |
---|
[1065] | 1131 | !-- too big weights of rain drops (Stevens and Seifert, 2008). |
---|
[1361] | 1132 | IF ( nr_1d(k) * xrmin > qr_1d(k) * hyrho(k) ) THEN |
---|
| 1133 | nr_1d(k) = qr_1d(k) * hyrho(k) / xrmin |
---|
| 1134 | ELSEIF ( nr_1d(k) * xrmax < qr_1d(k) * hyrho(k) ) THEN |
---|
| 1135 | nr_1d(k) = qr_1d(k) * hyrho(k) / xrmax |
---|
[1048] | 1136 | ENDIF |
---|
[1115] | 1137 | |
---|
[1022] | 1138 | ENDIF |
---|
[1115] | 1139 | |
---|
[1022] | 1140 | ENDDO |
---|
| 1141 | |
---|
[1115] | 1142 | END SUBROUTINE adjust_cloud_ij |
---|
[1022] | 1143 | |
---|
[1106] | 1144 | |
---|
[1005] | 1145 | SUBROUTINE autoconversion_ij( i, j ) |
---|
[1000] | 1146 | |
---|
[1320] | 1147 | USE arrays_3d, & |
---|
| 1148 | ONLY: diss, dzu, nc_1d, nr_1d, qc_1d, qr_1d |
---|
[1115] | 1149 | |
---|
[1320] | 1150 | USE cloud_parameters, & |
---|
| 1151 | ONLY: a_1, a_2, a_3, b_1, b_2, b_3, beta_cc, c_1, c_2, c_3, & |
---|
| 1152 | c_const, dpirho_l, eps_sb, hyrho, k_cc, kin_vis_air, x0 |
---|
| 1153 | |
---|
| 1154 | USE control_parameters, & |
---|
| 1155 | ONLY: dt_micro, rho_surface, turbulence |
---|
| 1156 | |
---|
| 1157 | USE grid_variables, & |
---|
| 1158 | ONLY: dx, dy |
---|
| 1159 | |
---|
| 1160 | USE indices, & |
---|
| 1161 | ONLY: nzb, nzb_s_inner, nzt |
---|
| 1162 | |
---|
| 1163 | USE kinds |
---|
| 1164 | |
---|
[1000] | 1165 | IMPLICIT NONE |
---|
| 1166 | |
---|
[1320] | 1167 | INTEGER(iwp) :: i !: |
---|
| 1168 | INTEGER(iwp) :: j !: |
---|
| 1169 | INTEGER(iwp) :: k !: |
---|
[1000] | 1170 | |
---|
[1320] | 1171 | REAL(wp) :: alpha_cc !: |
---|
| 1172 | REAL(wp) :: autocon !: |
---|
[1361] | 1173 | REAL(wp) :: dissipation !: |
---|
[1320] | 1174 | REAL(wp) :: k_au !: |
---|
| 1175 | REAL(wp) :: l_mix !: |
---|
| 1176 | REAL(wp) :: nu_c !: |
---|
| 1177 | REAL(wp) :: phi_au !: |
---|
| 1178 | REAL(wp) :: r_cc !: |
---|
| 1179 | REAL(wp) :: rc !: |
---|
| 1180 | REAL(wp) :: re_lambda !: |
---|
| 1181 | REAL(wp) :: selfcoll !: |
---|
| 1182 | REAL(wp) :: sigma_cc !: |
---|
| 1183 | REAL(wp) :: tau_cloud !: |
---|
| 1184 | REAL(wp) :: xc !: |
---|
[1106] | 1185 | |
---|
[1115] | 1186 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1000] | 1187 | |
---|
[1115] | 1188 | IF ( qc_1d(k) > eps_sb ) THEN |
---|
[1361] | 1189 | |
---|
| 1190 | k_au = k_cc / ( 20.0_wp * x0 ) |
---|
[1012] | 1191 | ! |
---|
[1048] | 1192 | !-- Intern time scale of coagulation (Seifert and Beheng, 2006): |
---|
[1353] | 1193 | !-- (1.0_wp - qc(k,j,i) / ( qc(k,j,i) + qr_1d(k) )) |
---|
| 1194 | tau_cloud = 1.0_wp - qc_1d(k) / ( qr_1d(k) + qc_1d(k) ) |
---|
[1012] | 1195 | ! |
---|
| 1196 | !-- Universal function for autoconversion process |
---|
| 1197 | !-- (Seifert and Beheng, 2006): |
---|
[1361] | 1198 | phi_au = 600.0_wp * tau_cloud**0.68_wp * ( 1.0_wp - tau_cloud**0.68_wp )**3 |
---|
[1012] | 1199 | ! |
---|
| 1200 | !-- Shape parameter of gamma distribution (Geoffroy et al., 2010): |
---|
[1353] | 1201 | !-- (Use constant nu_c = 1.0_wp instead?) |
---|
[1361] | 1202 | nu_c = 1.0_wp !MAX( 0.0_wp, 1580.0_wp * hyrho(k) * qc_1d(k) - 0.28_wp ) |
---|
[1012] | 1203 | ! |
---|
| 1204 | !-- Mean weight of cloud droplets: |
---|
[1115] | 1205 | xc = hyrho(k) * qc_1d(k) / nc_1d(k) |
---|
[1012] | 1206 | ! |
---|
[1065] | 1207 | !-- Parameterized turbulence effects on autoconversion (Seifert, |
---|
| 1208 | !-- Nuijens and Stevens, 2010) |
---|
| 1209 | IF ( turbulence ) THEN |
---|
| 1210 | ! |
---|
| 1211 | !-- Weight averaged radius of cloud droplets: |
---|
[1353] | 1212 | rc = 0.5_wp * ( xc * dpirho_l )**( 1.0_wp / 3.0_wp ) |
---|
[1065] | 1213 | |
---|
[1353] | 1214 | alpha_cc = ( a_1 + a_2 * nu_c ) / ( 1.0_wp + a_3 * nu_c ) |
---|
| 1215 | r_cc = ( b_1 + b_2 * nu_c ) / ( 1.0_wp + b_3 * nu_c ) |
---|
| 1216 | sigma_cc = ( c_1 + c_2 * nu_c ) / ( 1.0_wp + c_3 * nu_c ) |
---|
[1065] | 1217 | ! |
---|
| 1218 | !-- Mixing length (neglecting distance to ground and stratification) |
---|
[1334] | 1219 | l_mix = ( dx * dy * dzu(k) )**( 1.0_wp / 3.0_wp ) |
---|
[1065] | 1220 | ! |
---|
| 1221 | !-- Limit dissipation rate according to Seifert, Nuijens and |
---|
| 1222 | !-- Stevens (2010) |
---|
[1361] | 1223 | dissipation = MIN( 0.06_wp, diss(k,j,i) ) |
---|
[1065] | 1224 | ! |
---|
| 1225 | !-- Compute Taylor-microscale Reynolds number: |
---|
[1361] | 1226 | re_lambda = 6.0_wp / 11.0_wp * & |
---|
| 1227 | ( l_mix / c_const )**( 2.0_wp / 3.0_wp ) * & |
---|
| 1228 | SQRT( 15.0_wp / kin_vis_air ) * & |
---|
| 1229 | dissipation**( 1.0_wp / 6.0_wp ) |
---|
[1065] | 1230 | ! |
---|
| 1231 | !-- The factor of 1.0E4 is needed to convert the dissipation rate |
---|
| 1232 | !-- from m2 s-3 to cm2 s-3. |
---|
[1361] | 1233 | k_au = k_au * ( 1.0_wp + & |
---|
| 1234 | dissipation * 1.0E4_wp * & |
---|
| 1235 | ( re_lambda * 1.0E-3_wp )**0.25_wp * & |
---|
| 1236 | ( alpha_cc * EXP( -1.0_wp * ( ( rc - r_cc ) / & |
---|
| 1237 | sigma_cc )**2 & |
---|
| 1238 | ) + beta_cc & |
---|
| 1239 | ) & |
---|
| 1240 | ) |
---|
[1065] | 1241 | ENDIF |
---|
| 1242 | ! |
---|
[1012] | 1243 | !-- Autoconversion rate (Seifert and Beheng, 2006): |
---|
[1361] | 1244 | autocon = k_au * ( nu_c + 2.0_wp ) * ( nu_c + 4.0_wp ) / & |
---|
| 1245 | ( nu_c + 1.0_wp )**2 * qc_1d(k)**2 * xc**2 * & |
---|
| 1246 | ( 1.0_wp + phi_au / ( 1.0_wp - tau_cloud )**2 ) * & |
---|
[1115] | 1247 | rho_surface |
---|
| 1248 | autocon = MIN( autocon, qc_1d(k) / dt_micro ) |
---|
[1106] | 1249 | |
---|
[1115] | 1250 | qr_1d(k) = qr_1d(k) + autocon * dt_micro |
---|
| 1251 | qc_1d(k) = qc_1d(k) - autocon * dt_micro |
---|
| 1252 | nr_1d(k) = nr_1d(k) + autocon / x0 * hyrho(k) * dt_micro |
---|
| 1253 | |
---|
[1005] | 1254 | ENDIF |
---|
[1000] | 1255 | |
---|
| 1256 | ENDDO |
---|
| 1257 | |
---|
[1005] | 1258 | END SUBROUTINE autoconversion_ij |
---|
| 1259 | |
---|
[1106] | 1260 | |
---|
[1005] | 1261 | SUBROUTINE accretion_ij( i, j ) |
---|
| 1262 | |
---|
[1320] | 1263 | USE arrays_3d, & |
---|
| 1264 | ONLY: diss, qc_1d, qr_1d |
---|
[1115] | 1265 | |
---|
[1320] | 1266 | USE cloud_parameters, & |
---|
| 1267 | ONLY: eps_sb, hyrho, k_cr0 |
---|
| 1268 | |
---|
| 1269 | USE control_parameters, & |
---|
| 1270 | ONLY: dt_micro, rho_surface, turbulence |
---|
| 1271 | |
---|
| 1272 | USE indices, & |
---|
| 1273 | ONLY: nzb, nzb_s_inner, nzt |
---|
| 1274 | |
---|
| 1275 | USE kinds |
---|
| 1276 | |
---|
[1005] | 1277 | IMPLICIT NONE |
---|
| 1278 | |
---|
[1320] | 1279 | INTEGER(iwp) :: i !: |
---|
| 1280 | INTEGER(iwp) :: j !: |
---|
| 1281 | INTEGER(iwp) :: k !: |
---|
[1005] | 1282 | |
---|
[1320] | 1283 | REAL(wp) :: accr !: |
---|
| 1284 | REAL(wp) :: k_cr !: |
---|
| 1285 | REAL(wp) :: phi_ac !: |
---|
| 1286 | REAL(wp) :: tau_cloud !: |
---|
| 1287 | REAL(wp) :: xc !: |
---|
| 1288 | |
---|
[1115] | 1289 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1290 | IF ( ( qc_1d(k) > eps_sb ) .AND. ( qr_1d(k) > eps_sb ) ) THEN |
---|
[1012] | 1291 | ! |
---|
[1048] | 1292 | !-- Intern time scale of coagulation (Seifert and Beheng, 2006): |
---|
[1353] | 1293 | tau_cloud = 1.0_wp - qc_1d(k) / ( qc_1d(k) + qr_1d(k) ) |
---|
[1012] | 1294 | ! |
---|
| 1295 | !-- Universal function for accretion process |
---|
[1048] | 1296 | !-- (Seifert and Beheng, 2001): |
---|
[1361] | 1297 | phi_ac = ( tau_cloud / ( tau_cloud + 5.0E-5_wp ) )**4 |
---|
[1012] | 1298 | ! |
---|
[1065] | 1299 | !-- Parameterized turbulence effects on autoconversion (Seifert, |
---|
| 1300 | !-- Nuijens and Stevens, 2010). The factor of 1.0E4 is needed to |
---|
[1361] | 1301 | !-- convert the dissipation rate (diss) from m2 s-3 to cm2 s-3. |
---|
[1065] | 1302 | IF ( turbulence ) THEN |
---|
[1361] | 1303 | k_cr = k_cr0 * ( 1.0_wp + 0.05_wp * & |
---|
| 1304 | MIN( 600.0_wp, & |
---|
| 1305 | diss(k,j,i) * 1.0E4_wp )**0.25_wp & |
---|
| 1306 | ) |
---|
[1065] | 1307 | ELSE |
---|
| 1308 | k_cr = k_cr0 |
---|
| 1309 | ENDIF |
---|
| 1310 | ! |
---|
[1012] | 1311 | !-- Accretion rate (Seifert and Beheng, 2006): |
---|
[1361] | 1312 | accr = k_cr * qc_1d(k) * qr_1d(k) * phi_ac * SQRT( rho_surface * hyrho(k) ) |
---|
[1115] | 1313 | accr = MIN( accr, qc_1d(k) / dt_micro ) |
---|
[1106] | 1314 | |
---|
[1115] | 1315 | qr_1d(k) = qr_1d(k) + accr * dt_micro |
---|
| 1316 | qc_1d(k) = qc_1d(k) - accr * dt_micro |
---|
| 1317 | |
---|
[1005] | 1318 | ENDIF |
---|
[1106] | 1319 | |
---|
[1005] | 1320 | ENDDO |
---|
| 1321 | |
---|
[1000] | 1322 | END SUBROUTINE accretion_ij |
---|
| 1323 | |
---|
[1005] | 1324 | |
---|
| 1325 | SUBROUTINE selfcollection_breakup_ij( i, j ) |
---|
| 1326 | |
---|
[1320] | 1327 | USE arrays_3d, & |
---|
| 1328 | ONLY: nr_1d, qr_1d |
---|
| 1329 | |
---|
| 1330 | USE cloud_parameters, & |
---|
| 1331 | ONLY: dpirho_l, eps_sb, hyrho, k_br, k_rr |
---|
| 1332 | |
---|
| 1333 | USE control_parameters, & |
---|
| 1334 | ONLY: dt_micro, rho_surface |
---|
| 1335 | |
---|
| 1336 | USE indices, & |
---|
| 1337 | ONLY: nzb, nzb_s_inner, nzt |
---|
| 1338 | |
---|
| 1339 | USE kinds |
---|
[1005] | 1340 | |
---|
| 1341 | IMPLICIT NONE |
---|
| 1342 | |
---|
[1320] | 1343 | INTEGER(iwp) :: i !: |
---|
| 1344 | INTEGER(iwp) :: j !: |
---|
| 1345 | INTEGER(iwp) :: k !: |
---|
[1005] | 1346 | |
---|
[1320] | 1347 | REAL(wp) :: breakup !: |
---|
| 1348 | REAL(wp) :: dr !: |
---|
| 1349 | REAL(wp) :: phi_br !: |
---|
| 1350 | REAL(wp) :: selfcoll !: |
---|
| 1351 | |
---|
[1115] | 1352 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1353 | IF ( qr_1d(k) > eps_sb ) THEN |
---|
[1012] | 1354 | ! |
---|
[1115] | 1355 | !-- Selfcollection rate (Seifert and Beheng, 2001): |
---|
[1361] | 1356 | selfcoll = k_rr * nr_1d(k) * qr_1d(k) * SQRT( hyrho(k) * rho_surface ) |
---|
[1012] | 1357 | ! |
---|
[1115] | 1358 | !-- Weight averaged diameter of rain drops: |
---|
[1334] | 1359 | dr = ( hyrho(k) * qr_1d(k) / nr_1d(k) * dpirho_l )**( 1.0_wp / 3.0_wp ) |
---|
[1115] | 1360 | ! |
---|
[1048] | 1361 | !-- Collisional breakup rate (Seifert, 2008): |
---|
[1353] | 1362 | IF ( dr >= 0.3E-3_wp ) THEN |
---|
| 1363 | phi_br = k_br * ( dr - 1.1E-3_wp ) |
---|
| 1364 | breakup = selfcoll * ( phi_br + 1.0_wp ) |
---|
[1005] | 1365 | ELSE |
---|
[1353] | 1366 | breakup = 0.0_wp |
---|
[1005] | 1367 | ENDIF |
---|
[1048] | 1368 | |
---|
[1115] | 1369 | selfcoll = MAX( breakup - selfcoll, -nr_1d(k) / dt_micro ) |
---|
| 1370 | nr_1d(k) = nr_1d(k) + selfcoll * dt_micro |
---|
[1106] | 1371 | |
---|
[1005] | 1372 | ENDIF |
---|
| 1373 | ENDDO |
---|
| 1374 | |
---|
| 1375 | END SUBROUTINE selfcollection_breakup_ij |
---|
| 1376 | |
---|
[1106] | 1377 | |
---|
[1012] | 1378 | SUBROUTINE evaporation_rain_ij( i, j ) |
---|
[1022] | 1379 | ! |
---|
| 1380 | !-- Evaporation of precipitable water. Condensation is neglected for |
---|
| 1381 | !-- precipitable water. |
---|
[1012] | 1382 | |
---|
[1320] | 1383 | USE arrays_3d, & |
---|
| 1384 | ONLY: hyp, nr_1d, pt_1d, q_1d, qc_1d, qr_1d |
---|
[1048] | 1385 | |
---|
[1320] | 1386 | USE cloud_parameters, & |
---|
| 1387 | ONLY: a_term, a_vent, b_term, b_vent, c_evap, c_term, diff_coeff_l,& |
---|
| 1388 | dpirho_l, eps_sb, hyrho, kin_vis_air, k_st, l_d_cp, l_d_r, & |
---|
| 1389 | l_v, rho_l, r_v, schmidt_p_1d3, thermal_conductivity_l, & |
---|
| 1390 | t_d_pt, ventilation_effect |
---|
| 1391 | |
---|
| 1392 | USE constants, & |
---|
| 1393 | ONLY: pi |
---|
| 1394 | |
---|
| 1395 | USE control_parameters, & |
---|
| 1396 | ONLY: dt_micro |
---|
| 1397 | |
---|
| 1398 | USE indices, & |
---|
| 1399 | ONLY: nzb, nzb_s_inner, nzt |
---|
| 1400 | |
---|
| 1401 | USE kinds |
---|
| 1402 | |
---|
[1012] | 1403 | IMPLICIT NONE |
---|
| 1404 | |
---|
[1320] | 1405 | INTEGER(iwp) :: i !: |
---|
| 1406 | INTEGER(iwp) :: j !: |
---|
| 1407 | INTEGER(iwp) :: k !: |
---|
[1012] | 1408 | |
---|
[1320] | 1409 | REAL(wp) :: alpha !: |
---|
| 1410 | REAL(wp) :: dr !: |
---|
| 1411 | REAL(wp) :: e_s !: |
---|
| 1412 | REAL(wp) :: evap !: |
---|
| 1413 | REAL(wp) :: evap_nr !: |
---|
| 1414 | REAL(wp) :: f_vent !: |
---|
| 1415 | REAL(wp) :: g_evap !: |
---|
| 1416 | REAL(wp) :: lambda_r !: |
---|
| 1417 | REAL(wp) :: mu_r !: |
---|
| 1418 | REAL(wp) :: mu_r_2 !: |
---|
| 1419 | REAL(wp) :: mu_r_5d2 !: |
---|
| 1420 | REAL(wp) :: nr_0 !: |
---|
| 1421 | REAL(wp) :: q_s !: |
---|
| 1422 | REAL(wp) :: sat !: |
---|
| 1423 | REAL(wp) :: t_l !: |
---|
| 1424 | REAL(wp) :: temp !: |
---|
| 1425 | REAL(wp) :: xr !: |
---|
| 1426 | |
---|
[1115] | 1427 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 1428 | IF ( qr_1d(k) > eps_sb ) THEN |
---|
[1012] | 1429 | ! |
---|
| 1430 | !-- Actual liquid water temperature: |
---|
[1115] | 1431 | t_l = t_d_pt(k) * pt_1d(k) |
---|
[1012] | 1432 | ! |
---|
| 1433 | !-- Saturation vapor pressure at t_l: |
---|
[1361] | 1434 | e_s = 610.78_wp * EXP( 17.269_wp * ( t_l - 273.16_wp ) / & |
---|
| 1435 | ( t_l - 35.86_wp ) & |
---|
| 1436 | ) |
---|
[1012] | 1437 | ! |
---|
| 1438 | !-- Computation of saturation humidity: |
---|
[1361] | 1439 | q_s = 0.622_wp * e_s / ( hyp(k) - 0.378_wp * e_s ) |
---|
[1353] | 1440 | alpha = 0.622_wp * l_d_r * l_d_cp / ( t_l * t_l ) |
---|
[1361] | 1441 | q_s = q_s * ( 1.0_wp + alpha * q_1d(k) ) / ( 1.0_wp + alpha * q_s ) |
---|
[1012] | 1442 | ! |
---|
[1106] | 1443 | !-- Supersaturation: |
---|
[1361] | 1444 | sat = ( q_1d(k) - qr_1d(k) - qc_1d(k) ) / q_s - 1.0_wp |
---|
[1012] | 1445 | ! |
---|
[1361] | 1446 | !-- Evaporation needs only to be calculated in subsaturated regions |
---|
| 1447 | IF ( sat < 0.0_wp ) THEN |
---|
[1012] | 1448 | ! |
---|
[1361] | 1449 | !-- Actual temperature: |
---|
| 1450 | temp = t_l + l_d_cp * ( qc_1d(k) + qr_1d(k) ) |
---|
| 1451 | |
---|
| 1452 | g_evap = 1.0_wp / ( ( l_v / ( r_v * temp ) - 1.0_wp ) * l_v / & |
---|
| 1453 | ( thermal_conductivity_l * temp ) + & |
---|
| 1454 | r_v * temp / ( diff_coeff_l * e_s ) & |
---|
| 1455 | ) |
---|
[1012] | 1456 | ! |
---|
[1361] | 1457 | !-- Mean weight of rain drops |
---|
| 1458 | xr = hyrho(k) * qr_1d(k) / nr_1d(k) |
---|
[1115] | 1459 | ! |
---|
[1361] | 1460 | !-- Weight averaged diameter of rain drops: |
---|
| 1461 | dr = ( xr * dpirho_l )**( 1.0_wp / 3.0_wp ) |
---|
[1115] | 1462 | ! |
---|
[1361] | 1463 | !-- Compute ventilation factor and intercept parameter |
---|
| 1464 | !-- (Seifert and Beheng, 2006; Seifert, 2008): |
---|
| 1465 | IF ( ventilation_effect ) THEN |
---|
[1115] | 1466 | ! |
---|
[1361] | 1467 | !-- Shape parameter of gamma distribution (Milbrandt and Yau, 2005; |
---|
| 1468 | !-- Stevens and Seifert, 2008): |
---|
| 1469 | mu_r = 10.0_wp * ( 1.0_wp + TANH( 1.2E3_wp * ( dr - 1.4E-3_wp ) ) ) |
---|
| 1470 | ! |
---|
| 1471 | !-- Slope parameter of gamma distribution (Seifert, 2008): |
---|
| 1472 | lambda_r = ( ( mu_r + 3.0_wp ) * ( mu_r + 2.0_wp ) * & |
---|
| 1473 | ( mu_r + 1.0_wp ) & |
---|
| 1474 | )**( 1.0_wp / 3.0_wp ) / dr |
---|
[1115] | 1475 | |
---|
[1361] | 1476 | mu_r_2 = mu_r + 2.0_wp |
---|
| 1477 | mu_r_5d2 = mu_r + 2.5_wp |
---|
| 1478 | |
---|
| 1479 | f_vent = a_vent * gamm( mu_r_2 ) * lambda_r**( -mu_r_2 ) + & |
---|
| 1480 | b_vent * schmidt_p_1d3 * & |
---|
| 1481 | SQRT( a_term / kin_vis_air ) * gamm( mu_r_5d2 ) * & |
---|
| 1482 | lambda_r**( -mu_r_5d2 ) * & |
---|
| 1483 | ( 1.0_wp - & |
---|
| 1484 | 0.5_wp * ( b_term / a_term ) * & |
---|
| 1485 | ( lambda_r / ( c_term + lambda_r ) & |
---|
| 1486 | )**mu_r_5d2 - & |
---|
| 1487 | 0.125_wp * ( b_term / a_term )**2 * & |
---|
| 1488 | ( lambda_r / ( 2.0_wp * c_term + lambda_r ) & |
---|
| 1489 | )**mu_r_5d2 - & |
---|
| 1490 | 0.0625_wp * ( b_term / a_term )**3 * & |
---|
| 1491 | ( lambda_r / ( 3.0_wp * c_term + lambda_r ) & |
---|
| 1492 | )**mu_r_5d2 - & |
---|
| 1493 | 0.0390625_wp * ( b_term / a_term )**4 * & |
---|
| 1494 | ( lambda_r / ( 4.0_wp * c_term + lambda_r ) & |
---|
| 1495 | )**mu_r_5d2 & |
---|
| 1496 | ) |
---|
| 1497 | |
---|
| 1498 | nr_0 = nr_1d(k) * lambda_r**( mu_r + 1.0_wp ) / & |
---|
| 1499 | gamm( mu_r + 1.0_wp ) |
---|
| 1500 | ELSE |
---|
| 1501 | f_vent = 1.0_wp |
---|
| 1502 | nr_0 = nr_1d(k) * dr |
---|
| 1503 | ENDIF |
---|
[1012] | 1504 | ! |
---|
[1361] | 1505 | !-- Evaporation rate of rain water content (Seifert and Beheng, 2006): |
---|
| 1506 | evap = 2.0_wp * pi * nr_0 * g_evap * f_vent * sat / hyrho(k) |
---|
| 1507 | evap = MAX( evap, -qr_1d(k) / dt_micro ) |
---|
| 1508 | evap_nr = MAX( c_evap * evap / xr * hyrho(k), & |
---|
| 1509 | -nr_1d(k) / dt_micro ) |
---|
[1106] | 1510 | |
---|
[1361] | 1511 | qr_1d(k) = qr_1d(k) + evap * dt_micro |
---|
| 1512 | nr_1d(k) = nr_1d(k) + evap_nr * dt_micro |
---|
[1115] | 1513 | |
---|
[1361] | 1514 | ENDIF |
---|
[1012] | 1515 | ENDIF |
---|
[1106] | 1516 | |
---|
[1012] | 1517 | ENDDO |
---|
| 1518 | |
---|
| 1519 | END SUBROUTINE evaporation_rain_ij |
---|
| 1520 | |
---|
[1106] | 1521 | |
---|
[1012] | 1522 | SUBROUTINE sedimentation_cloud_ij( i, j ) |
---|
| 1523 | |
---|
[1320] | 1524 | USE arrays_3d, & |
---|
| 1525 | ONLY: ddzu, dzu, nc_1d, pt_1d, q_1d, qc_1d |
---|
| 1526 | |
---|
| 1527 | USE cloud_parameters, & |
---|
[1361] | 1528 | ONLY: eps_sb, hyrho, l_d_cp, pt_d_t, sed_qc_const |
---|
[1320] | 1529 | |
---|
| 1530 | USE constants, & |
---|
| 1531 | ONLY: pi |
---|
| 1532 | |
---|
| 1533 | USE control_parameters, & |
---|
| 1534 | ONLY: dt_do2d_xy, dt_micro, intermediate_timestep_count |
---|
| 1535 | |
---|
| 1536 | USE indices, & |
---|
| 1537 | ONLY: nzb, nzb_s_inner, nzt |
---|
| 1538 | |
---|
| 1539 | USE kinds |
---|
[1012] | 1540 | |
---|
| 1541 | IMPLICIT NONE |
---|
| 1542 | |
---|
[1320] | 1543 | INTEGER(iwp) :: i !: |
---|
| 1544 | INTEGER(iwp) :: j !: |
---|
| 1545 | INTEGER(iwp) :: k !: |
---|
[1106] | 1546 | |
---|
[1361] | 1547 | REAL(wp), DIMENSION(nzb:nzt+1) :: sed_qc !: |
---|
[1115] | 1548 | |
---|
[1012] | 1549 | ! |
---|
[1361] | 1550 | !-- Sedimentation of cloud droplets (Ackermann et al., 2009, MWR): |
---|
[1353] | 1551 | sed_qc(nzt+1) = 0.0_wp |
---|
[1012] | 1552 | |
---|
[1115] | 1553 | DO k = nzt, nzb_s_inner(j,i)+1, -1 |
---|
| 1554 | IF ( qc_1d(k) > eps_sb ) THEN |
---|
[1361] | 1555 | sed_qc(k) = sed_qc_const * nc_1d(k)**( -2.0_wp / 3.0_wp ) * & |
---|
| 1556 | ( qc_1d(k) * hyrho(k) )**( 5.0_wp / 3.0_wp ) |
---|
[1115] | 1557 | ELSE |
---|
[1353] | 1558 | sed_qc(k) = 0.0_wp |
---|
[1012] | 1559 | ENDIF |
---|
[1115] | 1560 | |
---|
[1361] | 1561 | sed_qc(k) = MIN( sed_qc(k), hyrho(k) * dzu(k+1) * q_1d(k) / & |
---|
| 1562 | dt_micro + sed_qc(k+1) & |
---|
| 1563 | ) |
---|
[1115] | 1564 | |
---|
[1361] | 1565 | q_1d(k) = q_1d(k) + ( sed_qc(k+1) - sed_qc(k) ) * ddzu(k+1) / & |
---|
[1115] | 1566 | hyrho(k) * dt_micro |
---|
[1361] | 1567 | qc_1d(k) = qc_1d(k) + ( sed_qc(k+1) - sed_qc(k) ) * ddzu(k+1) / & |
---|
[1115] | 1568 | hyrho(k) * dt_micro |
---|
[1361] | 1569 | pt_1d(k) = pt_1d(k) - ( sed_qc(k+1) - sed_qc(k) ) * ddzu(k+1) / & |
---|
[1115] | 1570 | hyrho(k) * l_d_cp * pt_d_t(k) * dt_micro |
---|
| 1571 | |
---|
[1012] | 1572 | ENDDO |
---|
| 1573 | |
---|
| 1574 | END SUBROUTINE sedimentation_cloud_ij |
---|
| 1575 | |
---|
[1106] | 1576 | |
---|
[1012] | 1577 | SUBROUTINE sedimentation_rain_ij( i, j ) |
---|
| 1578 | |
---|
[1320] | 1579 | USE arrays_3d, & |
---|
| 1580 | ONLY: ddzu, dzu, nr_1d, pt_1d, q_1d, qr_1d |
---|
| 1581 | |
---|
| 1582 | USE cloud_parameters, & |
---|
| 1583 | ONLY: a_term, b_term, c_term, cof, dpirho_l, eps_sb, hyrho, & |
---|
| 1584 | limiter_sedimentation, l_d_cp, precipitation_amount, prr, & |
---|
| 1585 | pt_d_t, stp |
---|
| 1586 | |
---|
| 1587 | USE control_parameters, & |
---|
[1361] | 1588 | ONLY: call_microphysics_at_all_substeps, dt_do2d_xy, dt_micro, & |
---|
| 1589 | dt_3d, intermediate_timestep_count, & |
---|
[1320] | 1590 | intermediate_timestep_count_max, & |
---|
| 1591 | precipitation_amount_interval, time_do2d_xy |
---|
| 1592 | |
---|
| 1593 | USE indices, & |
---|
| 1594 | ONLY: nzb, nzb_s_inner, nzt |
---|
| 1595 | |
---|
| 1596 | USE kinds |
---|
| 1597 | |
---|
| 1598 | USE statistics, & |
---|
| 1599 | ONLY: weight_substep |
---|
[1012] | 1600 | |
---|
| 1601 | IMPLICIT NONE |
---|
| 1602 | |
---|
[1320] | 1603 | INTEGER(iwp) :: i !: |
---|
| 1604 | INTEGER(iwp) :: j !: |
---|
| 1605 | INTEGER(iwp) :: k !: |
---|
| 1606 | INTEGER(iwp) :: k_run !: |
---|
[1012] | 1607 | |
---|
[1320] | 1608 | REAL(wp) :: c_run !: |
---|
| 1609 | REAL(wp) :: d_max !: |
---|
| 1610 | REAL(wp) :: d_mean !: |
---|
| 1611 | REAL(wp) :: d_min !: |
---|
| 1612 | REAL(wp) :: dr !: |
---|
| 1613 | REAL(wp) :: dt_sedi !: |
---|
| 1614 | REAL(wp) :: flux !: |
---|
| 1615 | REAL(wp) :: lambda_r !: |
---|
| 1616 | REAL(wp) :: mu_r !: |
---|
| 1617 | REAL(wp) :: z_run !: |
---|
| 1618 | |
---|
[1361] | 1619 | REAL(wp), DIMENSION(nzb:nzt+1) :: c_nr !: |
---|
| 1620 | REAL(wp), DIMENSION(nzb:nzt+1) :: c_qr !: |
---|
| 1621 | REAL(wp), DIMENSION(nzb:nzt+1) :: d_nr !: |
---|
| 1622 | REAL(wp), DIMENSION(nzb:nzt+1) :: d_qr !: |
---|
| 1623 | REAL(wp), DIMENSION(nzb:nzt+1) :: nr_slope !: |
---|
| 1624 | REAL(wp), DIMENSION(nzb:nzt+1) :: qr_slope !: |
---|
| 1625 | REAL(wp), DIMENSION(nzb:nzt+1) :: sed_nr !: |
---|
| 1626 | REAL(wp), DIMENSION(nzb:nzt+1) :: sed_qr !: |
---|
| 1627 | REAL(wp), DIMENSION(nzb:nzt+1) :: w_nr !: |
---|
| 1628 | REAL(wp), DIMENSION(nzb:nzt+1) :: w_qr !: |
---|
[1320] | 1629 | |
---|
| 1630 | |
---|
[1065] | 1631 | ! |
---|
| 1632 | !-- Computation of sedimentation flux. Implementation according to Stevens |
---|
[1361] | 1633 | !-- and Seifert (2008). Code is based on UCLA-LES. |
---|
[1353] | 1634 | IF ( intermediate_timestep_count == 1 ) prr(:,j,i) = 0.0_wp |
---|
[1012] | 1635 | ! |
---|
[1065] | 1636 | !-- Compute velocities |
---|
| 1637 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1115] | 1638 | IF ( qr_1d(k) > eps_sb ) THEN |
---|
| 1639 | ! |
---|
| 1640 | !-- Weight averaged diameter of rain drops: |
---|
[1334] | 1641 | dr = ( hyrho(k) * qr_1d(k) / nr_1d(k) * dpirho_l )**( 1.0_wp / 3.0_wp ) |
---|
[1115] | 1642 | ! |
---|
| 1643 | !-- Shape parameter of gamma distribution (Milbrandt and Yau, 2005; |
---|
| 1644 | !-- Stevens and Seifert, 2008): |
---|
[1353] | 1645 | mu_r = 10.0_wp * ( 1.0_wp + TANH( 1.2E3_wp * ( dr - 1.4E-3_wp ) ) ) |
---|
[1115] | 1646 | ! |
---|
| 1647 | !-- Slope parameter of gamma distribution (Seifert, 2008): |
---|
[1361] | 1648 | lambda_r = ( ( mu_r + 3.0_wp ) * ( mu_r + 2.0_wp ) * & |
---|
| 1649 | ( mu_r + 1.0_wp ) )**( 1.0_wp / 3.0_wp ) / dr |
---|
[1115] | 1650 | |
---|
[1361] | 1651 | w_nr(k) = MAX( 0.1_wp, MIN( 20.0_wp, & |
---|
| 1652 | a_term - b_term * ( 1.0_wp + & |
---|
| 1653 | c_term / lambda_r )**( -1.0_wp * & |
---|
| 1654 | ( mu_r + 1.0_wp ) ) & |
---|
| 1655 | ) & |
---|
| 1656 | ) |
---|
| 1657 | w_qr(k) = MAX( 0.1_wp, MIN( 20.0_wp, & |
---|
| 1658 | a_term - b_term * ( 1.0_wp + & |
---|
| 1659 | c_term / lambda_r )**( -1.0_wp * & |
---|
| 1660 | ( mu_r + 4.0_wp ) ) & |
---|
| 1661 | ) & |
---|
| 1662 | ) |
---|
[1065] | 1663 | ELSE |
---|
[1353] | 1664 | w_nr(k) = 0.0_wp |
---|
| 1665 | w_qr(k) = 0.0_wp |
---|
[1065] | 1666 | ENDIF |
---|
| 1667 | ENDDO |
---|
[1048] | 1668 | ! |
---|
[1065] | 1669 | !-- Adjust boundary values |
---|
[1115] | 1670 | w_nr(nzb_s_inner(j,i)) = w_nr(nzb_s_inner(j,i)+1) |
---|
| 1671 | w_qr(nzb_s_inner(j,i)) = w_qr(nzb_s_inner(j,i)+1) |
---|
[1353] | 1672 | w_nr(nzt+1) = 0.0_wp |
---|
| 1673 | w_qr(nzt+1) = 0.0_wp |
---|
[1065] | 1674 | ! |
---|
| 1675 | !-- Compute Courant number |
---|
[1115] | 1676 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1361] | 1677 | c_nr(k) = 0.25_wp * ( w_nr(k-1) + 2.0_wp * w_nr(k) + w_nr(k+1) ) * & |
---|
[1115] | 1678 | dt_micro * ddzu(k) |
---|
[1361] | 1679 | c_qr(k) = 0.25_wp * ( w_qr(k-1) + 2.0_wp * w_qr(k) + w_qr(k+1) ) * & |
---|
[1115] | 1680 | dt_micro * ddzu(k) |
---|
| 1681 | ENDDO |
---|
[1065] | 1682 | ! |
---|
| 1683 | !-- Limit slopes with monotonized centered (MC) limiter (van Leer, 1977): |
---|
| 1684 | IF ( limiter_sedimentation ) THEN |
---|
| 1685 | |
---|
[1115] | 1686 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1353] | 1687 | d_mean = 0.5_wp * ( qr_1d(k+1) + qr_1d(k-1) ) |
---|
[1115] | 1688 | d_min = qr_1d(k) - MIN( qr_1d(k+1), qr_1d(k), qr_1d(k-1) ) |
---|
| 1689 | d_max = MAX( qr_1d(k+1), qr_1d(k), qr_1d(k-1) ) - qr_1d(k) |
---|
[1065] | 1690 | |
---|
[1361] | 1691 | qr_slope(k) = SIGN(1.0_wp, d_mean) * MIN ( 2.0_wp * d_min, & |
---|
| 1692 | 2.0_wp * d_max, & |
---|
| 1693 | ABS( d_mean ) ) |
---|
[1065] | 1694 | |
---|
[1353] | 1695 | d_mean = 0.5_wp * ( nr_1d(k+1) + nr_1d(k-1) ) |
---|
[1115] | 1696 | d_min = nr_1d(k) - MIN( nr_1d(k+1), nr_1d(k), nr_1d(k-1) ) |
---|
| 1697 | d_max = MAX( nr_1d(k+1), nr_1d(k), nr_1d(k-1) ) - nr_1d(k) |
---|
[1065] | 1698 | |
---|
[1361] | 1699 | nr_slope(k) = SIGN(1.0_wp, d_mean) * MIN ( 2.0_wp * d_min, & |
---|
| 1700 | 2.0_wp * d_max, & |
---|
| 1701 | ABS( d_mean ) ) |
---|
[1022] | 1702 | ENDDO |
---|
[1048] | 1703 | |
---|
[1065] | 1704 | ELSE |
---|
[1106] | 1705 | |
---|
[1353] | 1706 | nr_slope = 0.0_wp |
---|
| 1707 | qr_slope = 0.0_wp |
---|
[1106] | 1708 | |
---|
[1065] | 1709 | ENDIF |
---|
[1115] | 1710 | |
---|
[1353] | 1711 | sed_nr(nzt+1) = 0.0_wp |
---|
| 1712 | sed_qr(nzt+1) = 0.0_wp |
---|
[1065] | 1713 | ! |
---|
| 1714 | !-- Compute sedimentation flux |
---|
[1115] | 1715 | DO k = nzt, nzb_s_inner(j,i)+1, -1 |
---|
[1065] | 1716 | ! |
---|
| 1717 | !-- Sum up all rain drop number densities which contribute to the flux |
---|
| 1718 | !-- through k-1/2 |
---|
[1353] | 1719 | flux = 0.0_wp |
---|
| 1720 | z_run = 0.0_wp ! height above z(k) |
---|
[1065] | 1721 | k_run = k |
---|
[1346] | 1722 | c_run = MIN( 1.0_wp, c_nr(k) ) |
---|
[1353] | 1723 | DO WHILE ( c_run > 0.0_wp .AND. k_run <= nzt ) |
---|
[1361] | 1724 | flux = flux + hyrho(k_run) * & |
---|
| 1725 | ( nr_1d(k_run) + nr_slope(k_run) * ( 1.0_wp - c_run ) * & |
---|
[1353] | 1726 | 0.5_wp ) * c_run * dzu(k_run) |
---|
[1065] | 1727 | z_run = z_run + dzu(k_run) |
---|
| 1728 | k_run = k_run + 1 |
---|
[1346] | 1729 | c_run = MIN( 1.0_wp, c_nr(k_run) - z_run * ddzu(k_run) ) |
---|
[1022] | 1730 | ENDDO |
---|
| 1731 | ! |
---|
[1065] | 1732 | !-- It is not allowed to sediment more rain drop number density than |
---|
| 1733 | !-- available |
---|
[1361] | 1734 | flux = MIN( flux, & |
---|
[1115] | 1735 | hyrho(k) * dzu(k+1) * nr_1d(k) + sed_nr(k+1) * dt_micro ) |
---|
[1065] | 1736 | |
---|
[1115] | 1737 | sed_nr(k) = flux / dt_micro |
---|
[1361] | 1738 | nr_1d(k) = nr_1d(k) + ( sed_nr(k+1) - sed_nr(k) ) * ddzu(k+1) / & |
---|
| 1739 | hyrho(k) * dt_micro |
---|
[1065] | 1740 | ! |
---|
| 1741 | !-- Sum up all rain water content which contributes to the flux |
---|
| 1742 | !-- through k-1/2 |
---|
[1353] | 1743 | flux = 0.0_wp |
---|
| 1744 | z_run = 0.0_wp ! height above z(k) |
---|
[1065] | 1745 | k_run = k |
---|
[1346] | 1746 | c_run = MIN( 1.0_wp, c_qr(k) ) |
---|
[1106] | 1747 | |
---|
[1361] | 1748 | DO WHILE ( c_run > 0.0_wp .AND. k_run <= nzt ) |
---|
[1106] | 1749 | |
---|
[1361] | 1750 | flux = flux + hyrho(k_run) * & |
---|
| 1751 | ( qr_1d(k_run) + qr_slope(k_run) * ( 1.0_wp - c_run ) * & |
---|
[1353] | 1752 | 0.5_wp ) * c_run * dzu(k_run) |
---|
[1065] | 1753 | z_run = z_run + dzu(k_run) |
---|
| 1754 | k_run = k_run + 1 |
---|
[1346] | 1755 | c_run = MIN( 1.0_wp, c_qr(k_run) - z_run * ddzu(k_run) ) |
---|
[1106] | 1756 | |
---|
[1065] | 1757 | ENDDO |
---|
| 1758 | ! |
---|
| 1759 | !-- It is not allowed to sediment more rain water content than available |
---|
[1361] | 1760 | flux = MIN( flux, & |
---|
[1115] | 1761 | hyrho(k) * dzu(k) * qr_1d(k) + sed_qr(k+1) * dt_micro ) |
---|
[1065] | 1762 | |
---|
[1115] | 1763 | sed_qr(k) = flux / dt_micro |
---|
| 1764 | |
---|
[1361] | 1765 | qr_1d(k) = qr_1d(k) + ( sed_qr(k+1) - sed_qr(k) ) * ddzu(k+1) / & |
---|
[1115] | 1766 | hyrho(k) * dt_micro |
---|
[1361] | 1767 | q_1d(k) = q_1d(k) + ( sed_qr(k+1) - sed_qr(k) ) * ddzu(k+1) / & |
---|
[1115] | 1768 | hyrho(k) * dt_micro |
---|
[1361] | 1769 | pt_1d(k) = pt_1d(k) - ( sed_qr(k+1) - sed_qr(k) ) * ddzu(k+1) / & |
---|
[1115] | 1770 | hyrho(k) * l_d_cp * pt_d_t(k) * dt_micro |
---|
[1065] | 1771 | ! |
---|
| 1772 | !-- Compute the rain rate |
---|
[1361] | 1773 | IF ( call_microphysics_at_all_substeps ) THEN |
---|
| 1774 | prr(k,j,i) = prr(k,j,i) + sed_qr(k) / hyrho(k) * & |
---|
| 1775 | weight_substep(intermediate_timestep_count) |
---|
| 1776 | ELSE |
---|
| 1777 | prr(k,j,i) = sed_qr(k) / hyrho(k) |
---|
| 1778 | ENDIF |
---|
| 1779 | |
---|
[1065] | 1780 | ENDDO |
---|
[1115] | 1781 | |
---|
[1065] | 1782 | ! |
---|
[1048] | 1783 | !-- Precipitation amount |
---|
[1361] | 1784 | IF ( intermediate_timestep_count == intermediate_timestep_count_max & |
---|
| 1785 | .AND. ( dt_do2d_xy - time_do2d_xy ) < & |
---|
| 1786 | precipitation_amount_interval ) THEN |
---|
[1012] | 1787 | |
---|
[1361] | 1788 | precipitation_amount(j,i) = precipitation_amount(j,i) + & |
---|
| 1789 | prr(nzb_s_inner(j,i)+1,j,i) * & |
---|
[1115] | 1790 | hyrho(nzb_s_inner(j,i)+1) * dt_3d |
---|
[1048] | 1791 | ENDIF |
---|
| 1792 | |
---|
[1012] | 1793 | END SUBROUTINE sedimentation_rain_ij |
---|
| 1794 | |
---|
[1361] | 1795 | !------------------------------------------------------------------------------! |
---|
| 1796 | ! Call for all optimizations |
---|
| 1797 | !------------------------------------------------------------------------------! |
---|
[1012] | 1798 | ! |
---|
| 1799 | !-- This function computes the gamma function (Press et al., 1992). |
---|
| 1800 | !-- The gamma function is needed for the calculation of the evaporation |
---|
| 1801 | !-- of rain drops. |
---|
| 1802 | FUNCTION gamm( xx ) |
---|
[1048] | 1803 | |
---|
[1320] | 1804 | USE cloud_parameters, & |
---|
| 1805 | ONLY: cof, stp |
---|
| 1806 | |
---|
| 1807 | USE kinds |
---|
| 1808 | |
---|
[1012] | 1809 | IMPLICIT NONE |
---|
[1106] | 1810 | |
---|
[1320] | 1811 | INTEGER(iwp) :: j !: |
---|
| 1812 | |
---|
| 1813 | REAL(wp) :: gamm !: |
---|
| 1814 | REAL(wp) :: ser !: |
---|
| 1815 | REAL(wp) :: tmp !: |
---|
| 1816 | REAL(wp) :: x_gamm !: |
---|
| 1817 | REAL(wp) :: xx !: |
---|
| 1818 | REAL(wp) :: y_gamm !: |
---|
| 1819 | |
---|
[1012] | 1820 | x_gamm = xx |
---|
| 1821 | y_gamm = x_gamm |
---|
[1353] | 1822 | tmp = x_gamm + 5.5_wp |
---|
| 1823 | tmp = ( x_gamm + 0.5_wp ) * LOG( tmp ) - tmp |
---|
[1334] | 1824 | ser = 1.000000000190015_wp |
---|
[1106] | 1825 | |
---|
| 1826 | DO j = 1, 6 |
---|
[1353] | 1827 | y_gamm = y_gamm + 1.0_wp |
---|
[1012] | 1828 | ser = ser + cof( j ) / y_gamm |
---|
[1106] | 1829 | ENDDO |
---|
| 1830 | |
---|
[1012] | 1831 | ! |
---|
| 1832 | !-- Until this point the algorithm computes the logarithm of the gamma |
---|
| 1833 | !-- function. Hence, the exponential function is used. |
---|
| 1834 | ! gamm = EXP( tmp + LOG( stp * ser / x_gamm ) ) |
---|
| 1835 | gamm = EXP( tmp ) * stp * ser / x_gamm |
---|
[1106] | 1836 | |
---|
[1012] | 1837 | RETURN |
---|
| 1838 | |
---|
| 1839 | END FUNCTION gamm |
---|
| 1840 | |
---|
| 1841 | END MODULE microphysics_mod |
---|