[1000] | 1 | MODULE microphysics_mod |
---|
| 2 | |
---|
[1093] | 3 | !--------------------------------------------------------------------------------! |
---|
| 4 | ! This file is part of PALM. |
---|
| 5 | ! |
---|
| 6 | ! PALM is free software: you can redistribute it and/or modify it under the terms |
---|
| 7 | ! of the GNU General Public License as published by the Free Software Foundation, |
---|
| 8 | ! either version 3 of the License, or (at your option) any later version. |
---|
| 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
[1310] | 17 | ! Copyright 1997-2014 Leibniz Universitaet Hannover |
---|
[1093] | 18 | !--------------------------------------------------------------------------------! |
---|
| 19 | ! |
---|
[1000] | 20 | ! Current revisions: |
---|
[1092] | 21 | ! ------------------ |
---|
[1335] | 22 | ! |
---|
| 23 | ! |
---|
[1321] | 24 | ! Former revisions: |
---|
| 25 | ! ----------------- |
---|
| 26 | ! $Id: microphysics.f90 1335 2014-03-25 12:23:36Z raasch $ |
---|
| 27 | ! |
---|
[1335] | 28 | ! 1334 2014-03-25 12:21:40Z heinze |
---|
| 29 | ! Bugfix: REAL constants provided with KIND-attribute |
---|
| 30 | ! |
---|
[1323] | 31 | ! 1322 2014-03-20 16:38:49Z raasch |
---|
| 32 | ! REAL constants defined as wp-kind |
---|
| 33 | ! |
---|
[1321] | 34 | ! 1320 2014-03-20 08:40:49Z raasch |
---|
[1320] | 35 | ! ONLY-attribute added to USE-statements, |
---|
| 36 | ! kind-parameters added to all INTEGER and REAL declaration statements, |
---|
| 37 | ! kinds are defined in new module kinds, |
---|
| 38 | ! comment fields (!:) to be used for variable explanations added to |
---|
| 39 | ! all variable declaration statements |
---|
[1000] | 40 | ! |
---|
[1242] | 41 | ! 1241 2013-10-30 11:36:58Z heinze |
---|
| 42 | ! hyp and rho have to be calculated at each time step if data from external |
---|
| 43 | ! file LSF_DATA are used |
---|
| 44 | ! |
---|
[1116] | 45 | ! 1115 2013-03-26 18:16:16Z hoffmann |
---|
| 46 | ! microphyical tendencies are calculated in microphysics_control in an optimized |
---|
| 47 | ! way; unrealistic values are prevented; bugfix in evaporation; some reformatting |
---|
| 48 | ! |
---|
[1107] | 49 | ! 1106 2013-03-04 05:31:38Z raasch |
---|
| 50 | ! small changes in code formatting |
---|
| 51 | ! |
---|
[1093] | 52 | ! 1092 2013-02-02 11:24:22Z raasch |
---|
| 53 | ! unused variables removed |
---|
| 54 | ! file put under GPL |
---|
| 55 | ! |
---|
[1066] | 56 | ! 1065 2012-11-22 17:42:36Z hoffmann |
---|
| 57 | ! Sedimentation process implemented according to Stevens and Seifert (2008). |
---|
[1115] | 58 | ! Turbulence effects on autoconversion and accretion added (Seifert, Nuijens |
---|
[1066] | 59 | ! and Stevens, 2010). |
---|
| 60 | ! |
---|
[1054] | 61 | ! 1053 2012-11-13 17:11:03Z hoffmann |
---|
| 62 | ! initial revision |
---|
[1000] | 63 | ! |
---|
| 64 | ! Description: |
---|
| 65 | ! ------------ |
---|
| 66 | ! Calculate cloud microphysics according to the two moment bulk |
---|
| 67 | ! scheme by Seifert and Beheng (2006). |
---|
| 68 | !------------------------------------------------------------------------------! |
---|
| 69 | |
---|
| 70 | PRIVATE |
---|
[1115] | 71 | PUBLIC microphysics_control |
---|
[1000] | 72 | |
---|
[1115] | 73 | INTERFACE microphysics_control |
---|
| 74 | MODULE PROCEDURE microphysics_control |
---|
| 75 | MODULE PROCEDURE microphysics_control_ij |
---|
| 76 | END INTERFACE microphysics_control |
---|
[1022] | 77 | |
---|
[1115] | 78 | INTERFACE adjust_cloud |
---|
| 79 | MODULE PROCEDURE adjust_cloud |
---|
| 80 | MODULE PROCEDURE adjust_cloud_ij |
---|
| 81 | END INTERFACE adjust_cloud |
---|
| 82 | |
---|
[1000] | 83 | INTERFACE autoconversion |
---|
| 84 | MODULE PROCEDURE autoconversion |
---|
| 85 | MODULE PROCEDURE autoconversion_ij |
---|
| 86 | END INTERFACE autoconversion |
---|
| 87 | |
---|
| 88 | INTERFACE accretion |
---|
| 89 | MODULE PROCEDURE accretion |
---|
| 90 | MODULE PROCEDURE accretion_ij |
---|
| 91 | END INTERFACE accretion |
---|
[1005] | 92 | |
---|
| 93 | INTERFACE selfcollection_breakup |
---|
| 94 | MODULE PROCEDURE selfcollection_breakup |
---|
| 95 | MODULE PROCEDURE selfcollection_breakup_ij |
---|
| 96 | END INTERFACE selfcollection_breakup |
---|
[1012] | 97 | |
---|
| 98 | INTERFACE evaporation_rain |
---|
| 99 | MODULE PROCEDURE evaporation_rain |
---|
| 100 | MODULE PROCEDURE evaporation_rain_ij |
---|
| 101 | END INTERFACE evaporation_rain |
---|
| 102 | |
---|
| 103 | INTERFACE sedimentation_cloud |
---|
| 104 | MODULE PROCEDURE sedimentation_cloud |
---|
| 105 | MODULE PROCEDURE sedimentation_cloud_ij |
---|
| 106 | END INTERFACE sedimentation_cloud |
---|
[1000] | 107 | |
---|
[1012] | 108 | INTERFACE sedimentation_rain |
---|
| 109 | MODULE PROCEDURE sedimentation_rain |
---|
| 110 | MODULE PROCEDURE sedimentation_rain_ij |
---|
| 111 | END INTERFACE sedimentation_rain |
---|
| 112 | |
---|
[1000] | 113 | CONTAINS |
---|
| 114 | |
---|
| 115 | |
---|
| 116 | !------------------------------------------------------------------------------! |
---|
| 117 | ! Call for all grid points |
---|
| 118 | !------------------------------------------------------------------------------! |
---|
[1115] | 119 | SUBROUTINE microphysics_control |
---|
[1022] | 120 | |
---|
| 121 | USE arrays_3d |
---|
[1241] | 122 | USE cloud_parameters |
---|
[1115] | 123 | USE control_parameters |
---|
[1241] | 124 | USE grid_variables |
---|
[1115] | 125 | USE indices |
---|
[1320] | 126 | USE kinds |
---|
[1115] | 127 | USE statistics |
---|
| 128 | |
---|
| 129 | IMPLICIT NONE |
---|
| 130 | |
---|
[1320] | 131 | INTEGER(iwp) :: i !: |
---|
| 132 | INTEGER(iwp) :: j !: |
---|
| 133 | INTEGER(iwp) :: k !: |
---|
[1115] | 134 | |
---|
| 135 | DO i = nxl, nxr |
---|
| 136 | DO j = nys, nyn |
---|
| 137 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 138 | |
---|
| 139 | ENDDO |
---|
| 140 | ENDDO |
---|
| 141 | ENDDO |
---|
| 142 | |
---|
| 143 | END SUBROUTINE microphysics_control |
---|
| 144 | |
---|
| 145 | SUBROUTINE adjust_cloud |
---|
| 146 | |
---|
| 147 | USE arrays_3d |
---|
[1022] | 148 | USE cloud_parameters |
---|
| 149 | USE indices |
---|
[1320] | 150 | USE kinds |
---|
[1022] | 151 | |
---|
| 152 | IMPLICIT NONE |
---|
| 153 | |
---|
[1320] | 154 | INTEGER(iwp) :: i !: |
---|
| 155 | INTEGER(iwp) :: j !: |
---|
| 156 | INTEGER(iwp) :: k !: |
---|
[1022] | 157 | |
---|
| 158 | |
---|
| 159 | DO i = nxl, nxr |
---|
| 160 | DO j = nys, nyn |
---|
[1115] | 161 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1022] | 162 | |
---|
| 163 | ENDDO |
---|
| 164 | ENDDO |
---|
| 165 | ENDDO |
---|
| 166 | |
---|
[1115] | 167 | END SUBROUTINE adjust_cloud |
---|
[1022] | 168 | |
---|
[1106] | 169 | |
---|
[1000] | 170 | SUBROUTINE autoconversion |
---|
| 171 | |
---|
| 172 | USE arrays_3d |
---|
| 173 | USE cloud_parameters |
---|
[1115] | 174 | USE control_parameters |
---|
| 175 | USE grid_variables |
---|
[1000] | 176 | USE indices |
---|
[1320] | 177 | USE kinds |
---|
[1000] | 178 | |
---|
| 179 | IMPLICIT NONE |
---|
| 180 | |
---|
[1320] | 181 | INTEGER(iwp) :: i !: |
---|
| 182 | INTEGER(iwp) :: j !: |
---|
| 183 | INTEGER(iwp) :: k !: |
---|
[1000] | 184 | |
---|
| 185 | DO i = nxl, nxr |
---|
| 186 | DO j = nys, nyn |
---|
[1115] | 187 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1000] | 188 | |
---|
| 189 | ENDDO |
---|
| 190 | ENDDO |
---|
| 191 | ENDDO |
---|
| 192 | |
---|
| 193 | END SUBROUTINE autoconversion |
---|
| 194 | |
---|
[1106] | 195 | |
---|
[1005] | 196 | SUBROUTINE accretion |
---|
[1000] | 197 | |
---|
| 198 | USE arrays_3d |
---|
| 199 | USE cloud_parameters |
---|
[1115] | 200 | USE control_parameters |
---|
[1000] | 201 | USE indices |
---|
[1320] | 202 | USE kinds |
---|
[1005] | 203 | |
---|
[1000] | 204 | IMPLICIT NONE |
---|
| 205 | |
---|
[1320] | 206 | INTEGER(iwp) :: i !: |
---|
| 207 | INTEGER(iwp) :: j !: |
---|
| 208 | INTEGER(iwp) :: k !: |
---|
[1000] | 209 | |
---|
[1005] | 210 | DO i = nxl, nxr |
---|
| 211 | DO j = nys, nyn |
---|
[1115] | 212 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1000] | 213 | |
---|
[1005] | 214 | ENDDO |
---|
| 215 | ENDDO |
---|
[1000] | 216 | ENDDO |
---|
| 217 | |
---|
[1005] | 218 | END SUBROUTINE accretion |
---|
[1000] | 219 | |
---|
[1106] | 220 | |
---|
[1005] | 221 | SUBROUTINE selfcollection_breakup |
---|
[1000] | 222 | |
---|
| 223 | USE arrays_3d |
---|
| 224 | USE cloud_parameters |
---|
[1115] | 225 | USE control_parameters |
---|
[1000] | 226 | USE indices |
---|
[1320] | 227 | USE kinds |
---|
[1000] | 228 | |
---|
| 229 | IMPLICIT NONE |
---|
| 230 | |
---|
[1320] | 231 | INTEGER(iwp) :: i !: |
---|
| 232 | INTEGER(iwp) :: j !: |
---|
| 233 | INTEGER(iwp) :: k !: |
---|
[1000] | 234 | |
---|
| 235 | |
---|
| 236 | DO i = nxl, nxr |
---|
| 237 | DO j = nys, nyn |
---|
[1115] | 238 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1000] | 239 | |
---|
| 240 | ENDDO |
---|
| 241 | ENDDO |
---|
| 242 | ENDDO |
---|
| 243 | |
---|
[1005] | 244 | END SUBROUTINE selfcollection_breakup |
---|
[1000] | 245 | |
---|
[1106] | 246 | |
---|
[1012] | 247 | SUBROUTINE evaporation_rain |
---|
[1000] | 248 | |
---|
[1012] | 249 | USE arrays_3d |
---|
| 250 | USE cloud_parameters |
---|
| 251 | USE constants |
---|
[1115] | 252 | USE control_parameters |
---|
[1012] | 253 | USE indices |
---|
[1320] | 254 | USE kinds |
---|
[1012] | 255 | |
---|
| 256 | IMPLICIT NONE |
---|
| 257 | |
---|
[1320] | 258 | INTEGER(iwp) :: i !: |
---|
| 259 | INTEGER(iwp) :: j !: |
---|
| 260 | INTEGER(iwp) :: k !: |
---|
[1012] | 261 | |
---|
| 262 | DO i = nxl, nxr |
---|
| 263 | DO j = nys, nyn |
---|
[1115] | 264 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1012] | 265 | |
---|
| 266 | ENDDO |
---|
| 267 | ENDDO |
---|
| 268 | ENDDO |
---|
| 269 | |
---|
| 270 | END SUBROUTINE evaporation_rain |
---|
| 271 | |
---|
[1106] | 272 | |
---|
[1012] | 273 | SUBROUTINE sedimentation_cloud |
---|
| 274 | |
---|
| 275 | USE arrays_3d |
---|
| 276 | USE cloud_parameters |
---|
| 277 | USE constants |
---|
[1115] | 278 | USE control_parameters |
---|
[1012] | 279 | USE indices |
---|
[1320] | 280 | USE kinds |
---|
[1012] | 281 | |
---|
| 282 | IMPLICIT NONE |
---|
| 283 | |
---|
[1320] | 284 | INTEGER(iwp) :: i !: |
---|
| 285 | INTEGER(iwp) :: j !: |
---|
| 286 | INTEGER(iwp) :: k !: |
---|
[1012] | 287 | |
---|
| 288 | DO i = nxl, nxr |
---|
| 289 | DO j = nys, nyn |
---|
[1115] | 290 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1012] | 291 | |
---|
| 292 | ENDDO |
---|
| 293 | ENDDO |
---|
| 294 | ENDDO |
---|
| 295 | |
---|
| 296 | END SUBROUTINE sedimentation_cloud |
---|
| 297 | |
---|
[1106] | 298 | |
---|
[1012] | 299 | SUBROUTINE sedimentation_rain |
---|
| 300 | |
---|
| 301 | USE arrays_3d |
---|
| 302 | USE cloud_parameters |
---|
| 303 | USE constants |
---|
[1115] | 304 | USE control_parameters |
---|
[1012] | 305 | USE indices |
---|
[1320] | 306 | USE kinds |
---|
[1115] | 307 | USE statistics |
---|
[1012] | 308 | |
---|
| 309 | IMPLICIT NONE |
---|
| 310 | |
---|
[1320] | 311 | INTEGER(iwp) :: i !: |
---|
| 312 | INTEGER(iwp) :: j !: |
---|
| 313 | INTEGER(iwp) :: k !: |
---|
[1012] | 314 | |
---|
| 315 | DO i = nxl, nxr |
---|
| 316 | DO j = nys, nyn |
---|
[1115] | 317 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1012] | 318 | |
---|
| 319 | ENDDO |
---|
| 320 | ENDDO |
---|
| 321 | ENDDO |
---|
| 322 | |
---|
| 323 | END SUBROUTINE sedimentation_rain |
---|
| 324 | |
---|
| 325 | |
---|
[1000] | 326 | !------------------------------------------------------------------------------! |
---|
| 327 | ! Call for grid point i,j |
---|
| 328 | !------------------------------------------------------------------------------! |
---|
[1022] | 329 | |
---|
[1115] | 330 | SUBROUTINE microphysics_control_ij( i, j ) |
---|
| 331 | |
---|
[1320] | 332 | USE arrays_3d, & |
---|
| 333 | ONLY: hyp, nc_1d, nr, nr_1d, pt, pt_init, pt_1d, q, q_1d, qc, & |
---|
| 334 | qc_1d, qr, qr_1d, tend_nr, tend_pt, tend_q, tend_qr, zu |
---|
[1115] | 335 | |
---|
[1320] | 336 | USE cloud_parameters, & |
---|
| 337 | ONLY: cp, hyrho, nc_const, pt_d_t, r_d, t_d_pt |
---|
| 338 | |
---|
| 339 | USE control_parameters, & |
---|
| 340 | ONLY: drizzle, dt_3d, dt_micro, g, intermediate_timestep_count, & |
---|
| 341 | large_scale_forcing, lsf_surf, precipitation, pt_surface, & |
---|
| 342 | rho_surface,surface_pressure |
---|
| 343 | |
---|
| 344 | USE indices, & |
---|
| 345 | ONLY: nzb, nzt |
---|
| 346 | |
---|
| 347 | USE kinds |
---|
| 348 | |
---|
| 349 | USE statistics, & |
---|
| 350 | ONLY: weight_pres |
---|
| 351 | |
---|
[1022] | 352 | IMPLICIT NONE |
---|
| 353 | |
---|
[1320] | 354 | INTEGER(iwp) :: i !: |
---|
| 355 | INTEGER(iwp) :: j !: |
---|
| 356 | INTEGER(iwp) :: k !: |
---|
[1115] | 357 | |
---|
[1320] | 358 | REAL(wp) :: t_surface !: |
---|
| 359 | |
---|
[1241] | 360 | IF ( large_scale_forcing .AND. lsf_surf ) THEN |
---|
| 361 | ! |
---|
| 362 | !-- Calculate: |
---|
| 363 | !-- pt / t : ratio of potential and actual temperature (pt_d_t) |
---|
| 364 | !-- t / pt : ratio of actual and potential temperature (t_d_pt) |
---|
| 365 | !-- p_0(z) : vertical profile of the hydrostatic pressure (hyp) |
---|
[1334] | 366 | t_surface = pt_surface * ( surface_pressure / 1000.0 )**0.286_wp |
---|
[1241] | 367 | DO k = nzb, nzt+1 |
---|
| 368 | hyp(k) = surface_pressure * 100.0 * & |
---|
[1334] | 369 | ( (t_surface - g/cp * zu(k)) / t_surface )**(1.0_wp/0.286_wp) |
---|
| 370 | pt_d_t(k) = ( 100000.0 / hyp(k) )**0.286_wp |
---|
[1241] | 371 | t_d_pt(k) = 1.0 / pt_d_t(k) |
---|
| 372 | hyrho(k) = hyp(k) / ( r_d * t_d_pt(k) * pt_init(k) ) |
---|
| 373 | ENDDO |
---|
| 374 | ! |
---|
| 375 | !-- Compute reference density |
---|
| 376 | rho_surface = surface_pressure * 100.0 / ( r_d * t_surface ) |
---|
| 377 | ENDIF |
---|
| 378 | |
---|
| 379 | |
---|
[1115] | 380 | dt_micro = dt_3d * weight_pres(intermediate_timestep_count) |
---|
| 381 | ! |
---|
| 382 | !-- Adjust unrealistic values |
---|
| 383 | IF ( precipitation ) CALL adjust_cloud( i,j ) |
---|
| 384 | ! |
---|
| 385 | !-- Use 1-d arrays |
---|
| 386 | q_1d(:) = q(:,j,i) |
---|
| 387 | pt_1d(:) = pt(:,j,i) |
---|
| 388 | qc_1d(:) = qc(:,j,i) |
---|
| 389 | nc_1d(:) = nc_const |
---|
| 390 | IF ( precipitation ) THEN |
---|
| 391 | qr_1d(:) = qr(:,j,i) |
---|
| 392 | nr_1d(:) = nr(:,j,i) |
---|
| 393 | ENDIF |
---|
| 394 | ! |
---|
| 395 | !-- Compute cloud physics |
---|
| 396 | IF ( precipitation ) THEN |
---|
| 397 | CALL autoconversion( i,j ) |
---|
| 398 | CALL accretion( i,j ) |
---|
| 399 | CALL selfcollection_breakup( i,j ) |
---|
| 400 | CALL evaporation_rain( i,j ) |
---|
| 401 | CALL sedimentation_rain( i,j ) |
---|
| 402 | ENDIF |
---|
| 403 | |
---|
| 404 | IF ( drizzle ) CALL sedimentation_cloud( i,j ) |
---|
| 405 | ! |
---|
| 406 | !-- Derive tendencies |
---|
| 407 | tend_q(:,j,i) = ( q_1d(:) - q(:,j,i) ) / dt_micro |
---|
| 408 | tend_pt(:,j,i) = ( pt_1d(:) - pt(:,j,i) ) / dt_micro |
---|
| 409 | IF ( precipitation ) THEN |
---|
| 410 | tend_qr(:,j,i) = ( qr_1d(:) - qr(:,j,i) ) / dt_micro |
---|
| 411 | tend_nr(:,j,i) = ( nr_1d(:) - nr(:,j,i) ) / dt_micro |
---|
| 412 | ENDIF |
---|
| 413 | |
---|
| 414 | END SUBROUTINE microphysics_control_ij |
---|
| 415 | |
---|
| 416 | SUBROUTINE adjust_cloud_ij( i, j ) |
---|
| 417 | |
---|
[1320] | 418 | USE arrays_3d, & |
---|
| 419 | ONLY: qr, nr |
---|
[1115] | 420 | |
---|
[1320] | 421 | USE cloud_parameters, & |
---|
| 422 | ONLY: eps_sb, xrmin, xrmax, hyrho, k_cc, x0 |
---|
| 423 | |
---|
| 424 | USE indices, & |
---|
| 425 | ONLY: nzb, nzb_s_inner, nzt |
---|
| 426 | |
---|
| 427 | USE kinds |
---|
| 428 | |
---|
[1115] | 429 | IMPLICIT NONE |
---|
| 430 | |
---|
[1320] | 431 | INTEGER(iwp) :: i !: |
---|
| 432 | INTEGER(iwp) :: j !: |
---|
| 433 | INTEGER(iwp) :: k !: |
---|
[1115] | 434 | ! |
---|
| 435 | !-- Adjust number of raindrops to avoid nonlinear effects in |
---|
| 436 | !-- sedimentation and evaporation of rain drops due to too small or |
---|
| 437 | !-- too big weights of rain drops (Stevens and Seifert, 2008). |
---|
| 438 | !-- The same procedure is applied to cloud droplets if they are determined |
---|
| 439 | !-- prognostically. |
---|
| 440 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1022] | 441 | |
---|
[1065] | 442 | IF ( qr(k,j,i) <= eps_sb ) THEN |
---|
| 443 | qr(k,j,i) = 0.0 |
---|
[1115] | 444 | nr(k,j,i) = 0.0 |
---|
[1065] | 445 | ELSE |
---|
[1022] | 446 | ! |
---|
[1048] | 447 | !-- Adjust number of raindrops to avoid nonlinear effects in |
---|
| 448 | !-- sedimentation and evaporation of rain drops due to too small or |
---|
[1065] | 449 | !-- too big weights of rain drops (Stevens and Seifert, 2008). |
---|
| 450 | IF ( nr(k,j,i) * xrmin > qr(k,j,i) * hyrho(k) ) THEN |
---|
| 451 | nr(k,j,i) = qr(k,j,i) * hyrho(k) / xrmin |
---|
| 452 | ELSEIF ( nr(k,j,i) * xrmax < qr(k,j,i) * hyrho(k) ) THEN |
---|
| 453 | nr(k,j,i) = qr(k,j,i) * hyrho(k) / xrmax |
---|
[1048] | 454 | ENDIF |
---|
[1115] | 455 | |
---|
[1022] | 456 | ENDIF |
---|
[1115] | 457 | |
---|
[1022] | 458 | ENDDO |
---|
| 459 | |
---|
[1115] | 460 | END SUBROUTINE adjust_cloud_ij |
---|
[1022] | 461 | |
---|
[1106] | 462 | |
---|
[1005] | 463 | SUBROUTINE autoconversion_ij( i, j ) |
---|
[1000] | 464 | |
---|
[1320] | 465 | USE arrays_3d, & |
---|
| 466 | ONLY: diss, dzu, nc_1d, nr_1d, qc_1d, qr_1d |
---|
[1115] | 467 | |
---|
[1320] | 468 | USE cloud_parameters, & |
---|
| 469 | ONLY: a_1, a_2, a_3, b_1, b_2, b_3, beta_cc, c_1, c_2, c_3, & |
---|
| 470 | c_const, dpirho_l, eps_sb, hyrho, k_cc, kin_vis_air, x0 |
---|
| 471 | |
---|
| 472 | USE control_parameters, & |
---|
| 473 | ONLY: dt_micro, rho_surface, turbulence |
---|
| 474 | |
---|
| 475 | USE grid_variables, & |
---|
| 476 | ONLY: dx, dy |
---|
| 477 | |
---|
| 478 | USE indices, & |
---|
| 479 | ONLY: nzb, nzb_s_inner, nzt |
---|
| 480 | |
---|
| 481 | USE kinds |
---|
| 482 | |
---|
[1000] | 483 | IMPLICIT NONE |
---|
| 484 | |
---|
[1320] | 485 | INTEGER(iwp) :: i !: |
---|
| 486 | INTEGER(iwp) :: j !: |
---|
| 487 | INTEGER(iwp) :: k !: |
---|
[1000] | 488 | |
---|
[1320] | 489 | REAL(wp) :: alpha_cc !: |
---|
| 490 | REAL(wp) :: autocon !: |
---|
| 491 | REAL(wp) :: epsilon !: |
---|
| 492 | REAL(wp) :: k_au !: |
---|
| 493 | REAL(wp) :: l_mix !: |
---|
| 494 | REAL(wp) :: nu_c !: |
---|
| 495 | REAL(wp) :: phi_au !: |
---|
| 496 | REAL(wp) :: r_cc !: |
---|
| 497 | REAL(wp) :: rc !: |
---|
| 498 | REAL(wp) :: re_lambda !: |
---|
| 499 | REAL(wp) :: selfcoll !: |
---|
| 500 | REAL(wp) :: sigma_cc !: |
---|
| 501 | REAL(wp) :: tau_cloud !: |
---|
| 502 | REAL(wp) :: xc !: |
---|
[1106] | 503 | |
---|
[1005] | 504 | k_au = k_cc / ( 20.0 * x0 ) |
---|
| 505 | |
---|
[1115] | 506 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1000] | 507 | |
---|
[1115] | 508 | IF ( qc_1d(k) > eps_sb ) THEN |
---|
[1012] | 509 | ! |
---|
[1048] | 510 | !-- Intern time scale of coagulation (Seifert and Beheng, 2006): |
---|
[1115] | 511 | !-- (1.0 - qc(k,j,i) / ( qc(k,j,i) + qr_1d(k) )) |
---|
| 512 | tau_cloud = 1.0 - qc_1d(k) / ( qr_1d(k) + qc_1d(k) ) |
---|
[1012] | 513 | ! |
---|
| 514 | !-- Universal function for autoconversion process |
---|
| 515 | !-- (Seifert and Beheng, 2006): |
---|
[1334] | 516 | phi_au = 600.0 * tau_cloud**0.68_wp * ( 1.0 - tau_cloud**0.68_wp )**3 |
---|
[1012] | 517 | ! |
---|
| 518 | !-- Shape parameter of gamma distribution (Geoffroy et al., 2010): |
---|
| 519 | !-- (Use constant nu_c = 1.0 instead?) |
---|
[1334] | 520 | nu_c = 1.0 !MAX( 0.0_wp, 1580.0 * hyrho(k) * qc(k,j,i) - 0.28_wp ) |
---|
[1012] | 521 | ! |
---|
| 522 | !-- Mean weight of cloud droplets: |
---|
[1115] | 523 | xc = hyrho(k) * qc_1d(k) / nc_1d(k) |
---|
[1012] | 524 | ! |
---|
[1065] | 525 | !-- Parameterized turbulence effects on autoconversion (Seifert, |
---|
| 526 | !-- Nuijens and Stevens, 2010) |
---|
| 527 | IF ( turbulence ) THEN |
---|
| 528 | ! |
---|
| 529 | !-- Weight averaged radius of cloud droplets: |
---|
[1334] | 530 | rc = 0.5 * ( xc * dpirho_l )**( 1.0_wp / 3.0_wp ) |
---|
[1065] | 531 | |
---|
| 532 | alpha_cc = ( a_1 + a_2 * nu_c ) / ( 1.0 + a_3 * nu_c ) |
---|
| 533 | r_cc = ( b_1 + b_2 * nu_c ) / ( 1.0 + b_3 * nu_c ) |
---|
| 534 | sigma_cc = ( c_1 + c_2 * nu_c ) / ( 1.0 + c_3 * nu_c ) |
---|
| 535 | ! |
---|
| 536 | !-- Mixing length (neglecting distance to ground and stratification) |
---|
[1334] | 537 | l_mix = ( dx * dy * dzu(k) )**( 1.0_wp / 3.0_wp ) |
---|
[1065] | 538 | ! |
---|
| 539 | !-- Limit dissipation rate according to Seifert, Nuijens and |
---|
| 540 | !-- Stevens (2010) |
---|
[1334] | 541 | epsilon = MIN( 0.06_wp, diss(k,j,i) ) |
---|
[1065] | 542 | ! |
---|
| 543 | !-- Compute Taylor-microscale Reynolds number: |
---|
[1334] | 544 | re_lambda = 6.0 / 11.0 * ( l_mix / c_const )**( 2.0_wp / 3.0_wp ) * & |
---|
| 545 | SQRT( 15.0 / kin_vis_air ) * epsilon**( 1.0_wp / 6.0_wp ) |
---|
[1065] | 546 | ! |
---|
| 547 | !-- The factor of 1.0E4 is needed to convert the dissipation rate |
---|
| 548 | !-- from m2 s-3 to cm2 s-3. |
---|
[1334] | 549 | k_au = k_au * ( 1.0_wp + & |
---|
| 550 | epsilon * 1.0E4 * ( re_lambda * 1.0E-3 )**0.25_wp * & |
---|
[1065] | 551 | ( alpha_cc * EXP( -1.0 * ( ( rc - r_cc ) / & |
---|
| 552 | sigma_cc )**2 ) + beta_cc ) ) |
---|
| 553 | ENDIF |
---|
| 554 | ! |
---|
[1012] | 555 | !-- Autoconversion rate (Seifert and Beheng, 2006): |
---|
[1115] | 556 | autocon = k_au * ( nu_c + 2.0 ) * ( nu_c + 4.0 ) / & |
---|
[1334] | 557 | ( nu_c + 1.0 )**2.0_wp * qc_1d(k)**2.0_wp * xc**2.0_wp * & |
---|
| 558 | ( 1.0 + phi_au / ( 1.0 - tau_cloud )**2.0_wp ) * & |
---|
[1115] | 559 | rho_surface |
---|
| 560 | autocon = MIN( autocon, qc_1d(k) / dt_micro ) |
---|
[1106] | 561 | |
---|
[1115] | 562 | qr_1d(k) = qr_1d(k) + autocon * dt_micro |
---|
| 563 | qc_1d(k) = qc_1d(k) - autocon * dt_micro |
---|
| 564 | nr_1d(k) = nr_1d(k) + autocon / x0 * hyrho(k) * dt_micro |
---|
| 565 | |
---|
[1005] | 566 | ENDIF |
---|
[1000] | 567 | |
---|
| 568 | ENDDO |
---|
| 569 | |
---|
[1005] | 570 | END SUBROUTINE autoconversion_ij |
---|
| 571 | |
---|
[1106] | 572 | |
---|
[1005] | 573 | SUBROUTINE accretion_ij( i, j ) |
---|
| 574 | |
---|
[1320] | 575 | USE arrays_3d, & |
---|
| 576 | ONLY: diss, qc_1d, qr_1d |
---|
[1115] | 577 | |
---|
[1320] | 578 | USE cloud_parameters, & |
---|
| 579 | ONLY: eps_sb, hyrho, k_cr0 |
---|
| 580 | |
---|
| 581 | USE control_parameters, & |
---|
| 582 | ONLY: dt_micro, rho_surface, turbulence |
---|
| 583 | |
---|
| 584 | USE indices, & |
---|
| 585 | ONLY: nzb, nzb_s_inner, nzt |
---|
| 586 | |
---|
| 587 | USE kinds |
---|
| 588 | |
---|
[1005] | 589 | IMPLICIT NONE |
---|
| 590 | |
---|
[1320] | 591 | INTEGER(iwp) :: i !: |
---|
| 592 | INTEGER(iwp) :: j !: |
---|
| 593 | INTEGER(iwp) :: k !: |
---|
[1005] | 594 | |
---|
[1320] | 595 | REAL(wp) :: accr !: |
---|
| 596 | REAL(wp) :: k_cr !: |
---|
| 597 | REAL(wp) :: phi_ac !: |
---|
| 598 | REAL(wp) :: tau_cloud !: |
---|
| 599 | REAL(wp) :: xc !: |
---|
| 600 | |
---|
[1115] | 601 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 602 | IF ( ( qc_1d(k) > eps_sb ) .AND. ( qr_1d(k) > eps_sb ) ) THEN |
---|
[1012] | 603 | ! |
---|
[1048] | 604 | !-- Intern time scale of coagulation (Seifert and Beheng, 2006): |
---|
[1115] | 605 | tau_cloud = 1.0 - qc_1d(k) / ( qc_1d(k) + qr_1d(k) ) |
---|
[1012] | 606 | ! |
---|
| 607 | !-- Universal function for accretion process |
---|
[1048] | 608 | !-- (Seifert and Beheng, 2001): |
---|
[1065] | 609 | phi_ac = tau_cloud / ( tau_cloud + 5.0E-5 ) |
---|
[1334] | 610 | phi_ac = ( phi_ac**2.0_wp )**2.0_wp |
---|
[1012] | 611 | ! |
---|
[1065] | 612 | !-- Parameterized turbulence effects on autoconversion (Seifert, |
---|
| 613 | !-- Nuijens and Stevens, 2010). The factor of 1.0E4 is needed to |
---|
| 614 | !-- convert the dissipation (diss) from m2 s-3 to cm2 s-3. |
---|
| 615 | IF ( turbulence ) THEN |
---|
[1115] | 616 | k_cr = k_cr0 * ( 1.0 + 0.05 * & |
---|
[1334] | 617 | MIN( 600.0_wp, diss(k,j,i) * 1.0E4 )**0.25_wp ) |
---|
[1065] | 618 | ELSE |
---|
| 619 | k_cr = k_cr0 |
---|
| 620 | ENDIF |
---|
| 621 | ! |
---|
[1012] | 622 | !-- Accretion rate (Seifert and Beheng, 2006): |
---|
[1115] | 623 | accr = k_cr * qc_1d(k) * qr_1d(k) * phi_ac * & |
---|
[1065] | 624 | SQRT( rho_surface * hyrho(k) ) |
---|
[1115] | 625 | accr = MIN( accr, qc_1d(k) / dt_micro ) |
---|
[1106] | 626 | |
---|
[1115] | 627 | qr_1d(k) = qr_1d(k) + accr * dt_micro |
---|
| 628 | qc_1d(k) = qc_1d(k) - accr * dt_micro |
---|
| 629 | |
---|
[1005] | 630 | ENDIF |
---|
[1106] | 631 | |
---|
[1005] | 632 | ENDDO |
---|
| 633 | |
---|
[1000] | 634 | END SUBROUTINE accretion_ij |
---|
| 635 | |
---|
[1005] | 636 | |
---|
| 637 | SUBROUTINE selfcollection_breakup_ij( i, j ) |
---|
| 638 | |
---|
[1320] | 639 | USE arrays_3d, & |
---|
| 640 | ONLY: nr_1d, qr_1d |
---|
| 641 | |
---|
| 642 | USE cloud_parameters, & |
---|
| 643 | ONLY: dpirho_l, eps_sb, hyrho, k_br, k_rr |
---|
| 644 | |
---|
| 645 | USE control_parameters, & |
---|
| 646 | ONLY: dt_micro, rho_surface |
---|
| 647 | |
---|
| 648 | USE indices, & |
---|
| 649 | ONLY: nzb, nzb_s_inner, nzt |
---|
| 650 | |
---|
| 651 | USE kinds |
---|
[1005] | 652 | |
---|
| 653 | IMPLICIT NONE |
---|
| 654 | |
---|
[1320] | 655 | INTEGER(iwp) :: i !: |
---|
| 656 | INTEGER(iwp) :: j !: |
---|
| 657 | INTEGER(iwp) :: k !: |
---|
[1005] | 658 | |
---|
[1320] | 659 | REAL(wp) :: breakup !: |
---|
| 660 | REAL(wp) :: dr !: |
---|
| 661 | REAL(wp) :: phi_br !: |
---|
| 662 | REAL(wp) :: selfcoll !: |
---|
| 663 | |
---|
[1115] | 664 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 665 | IF ( qr_1d(k) > eps_sb ) THEN |
---|
[1012] | 666 | ! |
---|
[1115] | 667 | !-- Selfcollection rate (Seifert and Beheng, 2001): |
---|
| 668 | selfcoll = k_rr * nr_1d(k) * qr_1d(k) * & |
---|
[1005] | 669 | SQRT( hyrho(k) * rho_surface ) |
---|
[1012] | 670 | ! |
---|
[1115] | 671 | !-- Weight averaged diameter of rain drops: |
---|
[1334] | 672 | dr = ( hyrho(k) * qr_1d(k) / nr_1d(k) * dpirho_l )**( 1.0_wp / 3.0_wp ) |
---|
[1115] | 673 | ! |
---|
[1048] | 674 | !-- Collisional breakup rate (Seifert, 2008): |
---|
[1115] | 675 | IF ( dr >= 0.3E-3 ) THEN |
---|
| 676 | phi_br = k_br * ( dr - 1.1E-3 ) |
---|
[1005] | 677 | breakup = selfcoll * ( phi_br + 1.0 ) |
---|
| 678 | ELSE |
---|
| 679 | breakup = 0.0 |
---|
| 680 | ENDIF |
---|
[1048] | 681 | |
---|
[1115] | 682 | selfcoll = MAX( breakup - selfcoll, -nr_1d(k) / dt_micro ) |
---|
| 683 | nr_1d(k) = nr_1d(k) + selfcoll * dt_micro |
---|
[1106] | 684 | |
---|
[1005] | 685 | ENDIF |
---|
| 686 | ENDDO |
---|
| 687 | |
---|
| 688 | END SUBROUTINE selfcollection_breakup_ij |
---|
| 689 | |
---|
[1106] | 690 | |
---|
[1012] | 691 | SUBROUTINE evaporation_rain_ij( i, j ) |
---|
[1022] | 692 | ! |
---|
| 693 | !-- Evaporation of precipitable water. Condensation is neglected for |
---|
| 694 | !-- precipitable water. |
---|
[1012] | 695 | |
---|
[1320] | 696 | USE arrays_3d, & |
---|
| 697 | ONLY: hyp, nr_1d, pt_1d, q_1d, qc_1d, qr_1d |
---|
[1048] | 698 | |
---|
[1320] | 699 | USE cloud_parameters, & |
---|
| 700 | ONLY: a_term, a_vent, b_term, b_vent, c_evap, c_term, diff_coeff_l,& |
---|
| 701 | dpirho_l, eps_sb, hyrho, kin_vis_air, k_st, l_d_cp, l_d_r, & |
---|
| 702 | l_v, rho_l, r_v, schmidt_p_1d3, thermal_conductivity_l, & |
---|
| 703 | t_d_pt, ventilation_effect |
---|
| 704 | |
---|
| 705 | USE constants, & |
---|
| 706 | ONLY: pi |
---|
| 707 | |
---|
| 708 | USE control_parameters, & |
---|
| 709 | ONLY: dt_micro |
---|
| 710 | |
---|
| 711 | USE indices, & |
---|
| 712 | ONLY: nzb, nzb_s_inner, nzt |
---|
| 713 | |
---|
| 714 | USE kinds |
---|
| 715 | |
---|
[1012] | 716 | IMPLICIT NONE |
---|
| 717 | |
---|
[1320] | 718 | INTEGER(iwp) :: i !: |
---|
| 719 | INTEGER(iwp) :: j !: |
---|
| 720 | INTEGER(iwp) :: k !: |
---|
[1012] | 721 | |
---|
[1320] | 722 | REAL(wp) :: alpha !: |
---|
| 723 | REAL(wp) :: dr !: |
---|
| 724 | REAL(wp) :: e_s !: |
---|
| 725 | REAL(wp) :: evap !: |
---|
| 726 | REAL(wp) :: evap_nr !: |
---|
| 727 | REAL(wp) :: f_vent !: |
---|
| 728 | REAL(wp) :: g_evap !: |
---|
| 729 | REAL(wp) :: lambda_r !: |
---|
| 730 | REAL(wp) :: mu_r !: |
---|
| 731 | REAL(wp) :: mu_r_2 !: |
---|
| 732 | REAL(wp) :: mu_r_5d2 !: |
---|
| 733 | REAL(wp) :: nr_0 !: |
---|
| 734 | REAL(wp) :: q_s !: |
---|
| 735 | REAL(wp) :: sat !: |
---|
| 736 | REAL(wp) :: t_l !: |
---|
| 737 | REAL(wp) :: temp !: |
---|
| 738 | REAL(wp) :: xr !: |
---|
| 739 | |
---|
[1115] | 740 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 741 | IF ( qr_1d(k) > eps_sb ) THEN |
---|
[1012] | 742 | ! |
---|
| 743 | !-- Actual liquid water temperature: |
---|
[1115] | 744 | t_l = t_d_pt(k) * pt_1d(k) |
---|
[1012] | 745 | ! |
---|
| 746 | !-- Saturation vapor pressure at t_l: |
---|
| 747 | e_s = 610.78 * EXP( 17.269 * ( t_l - 273.16 ) / ( t_l - 35.86 ) ) |
---|
| 748 | ! |
---|
| 749 | !-- Computation of saturation humidity: |
---|
| 750 | q_s = 0.622 * e_s / ( hyp(k) - 0.378 * e_s ) |
---|
| 751 | alpha = 0.622 * l_d_r * l_d_cp / ( t_l * t_l ) |
---|
[1115] | 752 | q_s = q_s * ( 1.0 + alpha * q_1d(k) ) / ( 1.0 + alpha * q_s ) |
---|
[1012] | 753 | ! |
---|
[1106] | 754 | !-- Supersaturation: |
---|
[1334] | 755 | sat = MIN( 0.0_wp, ( q_1d(k) - qr_1d(k) - qc_1d(k) ) / q_s - 1.0 ) |
---|
[1012] | 756 | ! |
---|
| 757 | !-- Actual temperature: |
---|
[1115] | 758 | temp = t_l + l_d_cp * ( qc_1d(k) + qr_1d(k) ) |
---|
| 759 | |
---|
| 760 | g_evap = 1.0 / ( ( l_v / ( r_v * temp ) - 1.0 ) * l_v / & |
---|
| 761 | ( thermal_conductivity_l * temp ) + r_v * temp / & |
---|
| 762 | ( diff_coeff_l * e_s ) ) |
---|
[1012] | 763 | ! |
---|
[1115] | 764 | !-- Mean weight of rain drops |
---|
| 765 | xr = hyrho(k) * qr_1d(k) / nr_1d(k) |
---|
[1012] | 766 | ! |
---|
[1115] | 767 | !-- Weight averaged diameter of rain drops: |
---|
[1334] | 768 | dr = ( xr * dpirho_l )**( 1.0_wp / 3.0_wp ) |
---|
[1115] | 769 | ! |
---|
[1049] | 770 | !-- Compute ventilation factor and intercept parameter |
---|
| 771 | !-- (Seifert and Beheng, 2006; Seifert, 2008): |
---|
[1048] | 772 | IF ( ventilation_effect ) THEN |
---|
[1115] | 773 | ! |
---|
| 774 | !-- Shape parameter of gamma distribution (Milbrandt and Yau, 2005; |
---|
| 775 | !-- Stevens and Seifert, 2008): |
---|
| 776 | mu_r = 10.0 * ( 1.0 + TANH( 1.2E3 * ( dr - 1.4E-3 ) ) ) |
---|
| 777 | ! |
---|
| 778 | !-- Slope parameter of gamma distribution (Seifert, 2008): |
---|
| 779 | lambda_r = ( ( mu_r + 3.0 ) * ( mu_r + 2.0 ) * & |
---|
[1334] | 780 | ( mu_r + 1.0 ) )**( 1.0_wp / 3.0_wp ) / dr |
---|
[1115] | 781 | |
---|
| 782 | mu_r_2 = mu_r + 2.0 |
---|
| 783 | mu_r_5d2 = mu_r + 2.5 |
---|
[1048] | 784 | f_vent = a_vent * gamm( mu_r_2 ) * & |
---|
[1115] | 785 | lambda_r**( -mu_r_2 ) + & |
---|
[1048] | 786 | b_vent * schmidt_p_1d3 * & |
---|
| 787 | SQRT( a_term / kin_vis_air ) * gamm( mu_r_5d2 ) * & |
---|
[1115] | 788 | lambda_r**( -mu_r_5d2 ) * & |
---|
[1048] | 789 | ( 1.0 - 0.5 * ( b_term / a_term ) * & |
---|
[1115] | 790 | ( lambda_r / & |
---|
| 791 | ( c_term + lambda_r ) )**mu_r_5d2 - & |
---|
[1334] | 792 | 0.125 * ( b_term / a_term )**2.0_wp * & |
---|
[1115] | 793 | ( lambda_r / & |
---|
| 794 | ( 2.0 * c_term + lambda_r ) )**mu_r_5d2 - & |
---|
[1334] | 795 | 0.0625 * ( b_term / a_term )**3.0_wp * & |
---|
[1115] | 796 | ( lambda_r / & |
---|
| 797 | ( 3.0 * c_term + lambda_r ) )**mu_r_5d2 - & |
---|
[1334] | 798 | 0.0390625 * ( b_term / a_term )**4.0_wp * & |
---|
[1115] | 799 | ( lambda_r / & |
---|
| 800 | ( 4.0 * c_term + lambda_r ) )**mu_r_5d2 ) |
---|
| 801 | nr_0 = nr_1d(k) * lambda_r**( mu_r + 1.0 ) / & |
---|
| 802 | gamm( mu_r + 1.0 ) |
---|
[1048] | 803 | ELSE |
---|
| 804 | f_vent = 1.0 |
---|
[1115] | 805 | nr_0 = nr_1d(k) * dr |
---|
[1048] | 806 | ENDIF |
---|
[1012] | 807 | ! |
---|
[1048] | 808 | !-- Evaporation rate of rain water content (Seifert and Beheng, 2006): |
---|
[1049] | 809 | evap = 2.0 * pi * nr_0 * g_evap * f_vent * sat / & |
---|
[1048] | 810 | hyrho(k) |
---|
[1106] | 811 | |
---|
[1115] | 812 | evap = MAX( evap, -qr_1d(k) / dt_micro ) |
---|
| 813 | evap_nr = MAX( c_evap * evap / xr * hyrho(k), & |
---|
| 814 | -nr_1d(k) / dt_micro ) |
---|
| 815 | |
---|
| 816 | qr_1d(k) = qr_1d(k) + evap * dt_micro |
---|
| 817 | nr_1d(k) = nr_1d(k) + evap_nr * dt_micro |
---|
[1012] | 818 | ENDIF |
---|
[1106] | 819 | |
---|
[1012] | 820 | ENDDO |
---|
| 821 | |
---|
| 822 | END SUBROUTINE evaporation_rain_ij |
---|
| 823 | |
---|
[1106] | 824 | |
---|
[1012] | 825 | SUBROUTINE sedimentation_cloud_ij( i, j ) |
---|
| 826 | |
---|
[1320] | 827 | USE arrays_3d, & |
---|
| 828 | ONLY: ddzu, dzu, nc_1d, pt_1d, q_1d, qc_1d |
---|
| 829 | |
---|
| 830 | USE cloud_parameters, & |
---|
| 831 | ONLY: eps_sb, hyrho, k_st, l_d_cp, prr, pt_d_t, rho_l, sigma_gc |
---|
| 832 | |
---|
| 833 | USE constants, & |
---|
| 834 | ONLY: pi |
---|
| 835 | |
---|
| 836 | USE control_parameters, & |
---|
| 837 | ONLY: dt_do2d_xy, dt_micro, intermediate_timestep_count |
---|
| 838 | |
---|
| 839 | USE indices, & |
---|
| 840 | ONLY: nzb, nzb_s_inner, nzt |
---|
| 841 | |
---|
| 842 | USE kinds |
---|
[1012] | 843 | |
---|
| 844 | IMPLICIT NONE |
---|
| 845 | |
---|
[1320] | 846 | INTEGER(iwp) :: i !: |
---|
| 847 | INTEGER(iwp) :: j !: |
---|
| 848 | INTEGER(iwp) :: k !: |
---|
[1106] | 849 | |
---|
[1320] | 850 | REAL(wp) :: sed_qc_const !: |
---|
[1115] | 851 | |
---|
[1320] | 852 | |
---|
| 853 | REAL(wp), DIMENSION(nzb:nzt+1) :: sed_qc |
---|
| 854 | |
---|
[1012] | 855 | ! |
---|
| 856 | !-- Sedimentation of cloud droplets (Heus et al., 2010): |
---|
[1334] | 857 | sed_qc_const = k_st * ( 3.0 / ( 4.0 * pi * rho_l ))**( 2.0_wp / 3.0_wp ) * & |
---|
[1048] | 858 | EXP( 5.0 * LOG( sigma_gc )**2 ) |
---|
[1012] | 859 | |
---|
[1115] | 860 | sed_qc(nzt+1) = 0.0 |
---|
[1012] | 861 | |
---|
[1115] | 862 | DO k = nzt, nzb_s_inner(j,i)+1, -1 |
---|
| 863 | IF ( qc_1d(k) > eps_sb ) THEN |
---|
[1334] | 864 | sed_qc(k) = sed_qc_const * nc_1d(k)**( -2.0_wp / 3.0_wp ) * & |
---|
| 865 | ( qc_1d(k) * hyrho(k) )**( 5.0_wp / 3.0_wp ) |
---|
[1115] | 866 | ELSE |
---|
| 867 | sed_qc(k) = 0.0 |
---|
[1012] | 868 | ENDIF |
---|
[1115] | 869 | |
---|
| 870 | sed_qc(k) = MIN( sed_qc(k), hyrho(k) * dzu(k+1) * q_1d(k) / & |
---|
| 871 | dt_micro + sed_qc(k+1) ) |
---|
| 872 | |
---|
| 873 | q_1d(k) = q_1d(k) + ( sed_qc(k+1) - sed_qc(k) ) * ddzu(k+1) / & |
---|
| 874 | hyrho(k) * dt_micro |
---|
| 875 | qc_1d(k) = qc_1d(k) + ( sed_qc(k+1) - sed_qc(k) ) * ddzu(k+1) / & |
---|
| 876 | hyrho(k) * dt_micro |
---|
| 877 | pt_1d(k) = pt_1d(k) - ( sed_qc(k+1) - sed_qc(k) ) * ddzu(k+1) / & |
---|
| 878 | hyrho(k) * l_d_cp * pt_d_t(k) * dt_micro |
---|
| 879 | |
---|
[1012] | 880 | ENDDO |
---|
| 881 | |
---|
| 882 | END SUBROUTINE sedimentation_cloud_ij |
---|
| 883 | |
---|
[1106] | 884 | |
---|
[1012] | 885 | SUBROUTINE sedimentation_rain_ij( i, j ) |
---|
| 886 | |
---|
[1320] | 887 | USE arrays_3d, & |
---|
| 888 | ONLY: ddzu, dzu, nr_1d, pt_1d, q_1d, qr_1d |
---|
| 889 | |
---|
| 890 | USE cloud_parameters, & |
---|
| 891 | ONLY: a_term, b_term, c_term, cof, dpirho_l, eps_sb, hyrho, & |
---|
| 892 | limiter_sedimentation, l_d_cp, precipitation_amount, prr, & |
---|
| 893 | pt_d_t, stp |
---|
| 894 | |
---|
| 895 | USE control_parameters, & |
---|
| 896 | ONLY: dt_do2d_xy, dt_micro, dt_3d, intermediate_timestep_count, & |
---|
| 897 | intermediate_timestep_count_max, & |
---|
| 898 | precipitation_amount_interval, time_do2d_xy |
---|
| 899 | |
---|
| 900 | USE indices, & |
---|
| 901 | ONLY: nzb, nzb_s_inner, nzt |
---|
| 902 | |
---|
| 903 | USE kinds |
---|
| 904 | |
---|
| 905 | USE statistics, & |
---|
| 906 | ONLY: weight_substep |
---|
[1012] | 907 | |
---|
| 908 | IMPLICIT NONE |
---|
| 909 | |
---|
[1320] | 910 | INTEGER(iwp) :: i !: |
---|
| 911 | INTEGER(iwp) :: j !: |
---|
| 912 | INTEGER(iwp) :: k !: |
---|
| 913 | INTEGER(iwp) :: k_run !: |
---|
[1012] | 914 | |
---|
[1320] | 915 | REAL(wp) :: c_run !: |
---|
| 916 | REAL(wp) :: d_max !: |
---|
| 917 | REAL(wp) :: d_mean !: |
---|
| 918 | REAL(wp) :: d_min !: |
---|
| 919 | REAL(wp) :: dr !: |
---|
| 920 | REAL(wp) :: dt_sedi !: |
---|
| 921 | REAL(wp) :: flux !: |
---|
| 922 | REAL(wp) :: lambda_r !: |
---|
| 923 | REAL(wp) :: mu_r !: |
---|
| 924 | REAL(wp) :: z_run !: |
---|
| 925 | |
---|
| 926 | REAL(wp), DIMENSION(nzb:nzt+1) :: c_nr !: |
---|
| 927 | REAL(wp), DIMENSION(nzb:nzt+1) :: c_qr !: |
---|
| 928 | REAL(wp), DIMENSION(nzb:nzt+1) :: d_nr !: |
---|
| 929 | REAL(wp), DIMENSION(nzb:nzt+1) :: d_qr !: |
---|
| 930 | REAL(wp), DIMENSION(nzb:nzt+1) :: nr_slope !: |
---|
| 931 | REAL(wp), DIMENSION(nzb:nzt+1) :: qr_slope !: |
---|
| 932 | REAL(wp), DIMENSION(nzb:nzt+1) :: sed_nr !: |
---|
| 933 | REAL(wp), DIMENSION(nzb:nzt+1) :: sed_qr !: |
---|
| 934 | REAL(wp), DIMENSION(nzb:nzt+1) :: w_nr !: |
---|
| 935 | REAL(wp), DIMENSION(nzb:nzt+1) :: w_qr !: |
---|
| 936 | |
---|
| 937 | |
---|
[1065] | 938 | ! |
---|
| 939 | !-- Computation of sedimentation flux. Implementation according to Stevens |
---|
| 940 | !-- and Seifert (2008). |
---|
[1048] | 941 | IF ( intermediate_timestep_count == 1 ) prr(:,j,i) = 0.0 |
---|
[1012] | 942 | ! |
---|
[1065] | 943 | !-- Compute velocities |
---|
| 944 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1115] | 945 | IF ( qr_1d(k) > eps_sb ) THEN |
---|
| 946 | ! |
---|
| 947 | !-- Weight averaged diameter of rain drops: |
---|
[1334] | 948 | dr = ( hyrho(k) * qr_1d(k) / nr_1d(k) * dpirho_l )**( 1.0_wp / 3.0_wp ) |
---|
[1115] | 949 | ! |
---|
| 950 | !-- Shape parameter of gamma distribution (Milbrandt and Yau, 2005; |
---|
| 951 | !-- Stevens and Seifert, 2008): |
---|
| 952 | mu_r = 10.0 * ( 1.0 + TANH( 1.2E3 * ( dr - 1.4E-3 ) ) ) |
---|
| 953 | ! |
---|
| 954 | !-- Slope parameter of gamma distribution (Seifert, 2008): |
---|
| 955 | lambda_r = ( ( mu_r + 3.0 ) * ( mu_r + 2.0 ) * & |
---|
[1334] | 956 | ( mu_r + 1.0 ) )**( 1.0_wp / 3.0_wp ) / dr |
---|
[1115] | 957 | |
---|
[1334] | 958 | w_nr(k) = MAX( 0.1_wp, MIN( 20.0_wp, a_term - b_term * ( 1.0 + & |
---|
[1115] | 959 | c_term / lambda_r )**( -1.0 * ( mu_r + 1.0 ) ) ) ) |
---|
[1334] | 960 | w_qr(k) = MAX( 0.1_wp, MIN( 20.0_wp, a_term - b_term * ( 1.0 + & |
---|
[1115] | 961 | c_term / lambda_r )**( -1.0 * ( mu_r + 4.0 ) ) ) ) |
---|
[1065] | 962 | ELSE |
---|
| 963 | w_nr(k) = 0.0 |
---|
| 964 | w_qr(k) = 0.0 |
---|
| 965 | ENDIF |
---|
| 966 | ENDDO |
---|
[1048] | 967 | ! |
---|
[1065] | 968 | !-- Adjust boundary values |
---|
[1115] | 969 | w_nr(nzb_s_inner(j,i)) = w_nr(nzb_s_inner(j,i)+1) |
---|
| 970 | w_qr(nzb_s_inner(j,i)) = w_qr(nzb_s_inner(j,i)+1) |
---|
| 971 | w_nr(nzt+1) = 0.0 |
---|
| 972 | w_qr(nzt+1) = 0.0 |
---|
[1065] | 973 | ! |
---|
| 974 | !-- Compute Courant number |
---|
[1115] | 975 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1065] | 976 | c_nr(k) = 0.25 * ( w_nr(k-1) + 2.0 * w_nr(k) + w_nr(k+1) ) * & |
---|
[1115] | 977 | dt_micro * ddzu(k) |
---|
[1065] | 978 | c_qr(k) = 0.25 * ( w_qr(k-1) + 2.0 * w_qr(k) + w_qr(k+1) ) * & |
---|
[1115] | 979 | dt_micro * ddzu(k) |
---|
| 980 | ENDDO |
---|
[1065] | 981 | ! |
---|
| 982 | !-- Limit slopes with monotonized centered (MC) limiter (van Leer, 1977): |
---|
| 983 | IF ( limiter_sedimentation ) THEN |
---|
| 984 | |
---|
[1115] | 985 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 986 | d_mean = 0.5 * ( qr_1d(k+1) + qr_1d(k-1) ) |
---|
| 987 | d_min = qr_1d(k) - MIN( qr_1d(k+1), qr_1d(k), qr_1d(k-1) ) |
---|
| 988 | d_max = MAX( qr_1d(k+1), qr_1d(k), qr_1d(k-1) ) - qr_1d(k) |
---|
[1065] | 989 | |
---|
| 990 | qr_slope(k) = SIGN(1.0, d_mean) * MIN ( 2.0 * d_min, 2.0 * d_max, & |
---|
| 991 | ABS( d_mean ) ) |
---|
| 992 | |
---|
[1115] | 993 | d_mean = 0.5 * ( nr_1d(k+1) + nr_1d(k-1) ) |
---|
| 994 | d_min = nr_1d(k) - MIN( nr_1d(k+1), nr_1d(k), nr_1d(k-1) ) |
---|
| 995 | d_max = MAX( nr_1d(k+1), nr_1d(k), nr_1d(k-1) ) - nr_1d(k) |
---|
[1065] | 996 | |
---|
| 997 | nr_slope(k) = SIGN(1.0, d_mean) * MIN ( 2.0 * d_min, 2.0 * d_max, & |
---|
| 998 | ABS( d_mean ) ) |
---|
[1022] | 999 | ENDDO |
---|
[1048] | 1000 | |
---|
[1065] | 1001 | ELSE |
---|
[1106] | 1002 | |
---|
[1065] | 1003 | nr_slope = 0.0 |
---|
| 1004 | qr_slope = 0.0 |
---|
[1106] | 1005 | |
---|
[1065] | 1006 | ENDIF |
---|
[1115] | 1007 | |
---|
| 1008 | sed_nr(nzt+1) = 0.0 |
---|
| 1009 | sed_qr(nzt+1) = 0.0 |
---|
[1065] | 1010 | ! |
---|
| 1011 | !-- Compute sedimentation flux |
---|
[1115] | 1012 | DO k = nzt, nzb_s_inner(j,i)+1, -1 |
---|
[1065] | 1013 | ! |
---|
| 1014 | !-- Sum up all rain drop number densities which contribute to the flux |
---|
| 1015 | !-- through k-1/2 |
---|
| 1016 | flux = 0.0 |
---|
| 1017 | z_run = 0.0 ! height above z(k) |
---|
| 1018 | k_run = k |
---|
| 1019 | c_run = MIN( 1.0, c_nr(k) ) |
---|
[1115] | 1020 | DO WHILE ( c_run > 0.0 .AND. k_run <= nzt ) |
---|
[1065] | 1021 | flux = flux + hyrho(k_run) * & |
---|
[1115] | 1022 | ( nr_1d(k_run) + nr_slope(k_run) * ( 1.0 - c_run ) * & |
---|
[1065] | 1023 | 0.5 ) * c_run * dzu(k_run) |
---|
| 1024 | z_run = z_run + dzu(k_run) |
---|
| 1025 | k_run = k_run + 1 |
---|
| 1026 | c_run = MIN( 1.0, c_nr(k_run) - z_run * ddzu(k_run) ) |
---|
[1022] | 1027 | ENDDO |
---|
| 1028 | ! |
---|
[1065] | 1029 | !-- It is not allowed to sediment more rain drop number density than |
---|
| 1030 | !-- available |
---|
| 1031 | flux = MIN( flux, & |
---|
[1115] | 1032 | hyrho(k) * dzu(k+1) * nr_1d(k) + sed_nr(k+1) * dt_micro ) |
---|
[1065] | 1033 | |
---|
[1115] | 1034 | sed_nr(k) = flux / dt_micro |
---|
| 1035 | nr_1d(k) = nr_1d(k) + ( sed_nr(k+1) - sed_nr(k) ) * ddzu(k+1) / & |
---|
| 1036 | hyrho(k) * dt_micro |
---|
[1065] | 1037 | ! |
---|
| 1038 | !-- Sum up all rain water content which contributes to the flux |
---|
| 1039 | !-- through k-1/2 |
---|
| 1040 | flux = 0.0 |
---|
| 1041 | z_run = 0.0 ! height above z(k) |
---|
| 1042 | k_run = k |
---|
| 1043 | c_run = MIN( 1.0, c_qr(k) ) |
---|
[1106] | 1044 | |
---|
[1065] | 1045 | DO WHILE ( c_run > 0.0 .AND. k_run <= nzt-1 ) |
---|
[1106] | 1046 | |
---|
[1065] | 1047 | flux = flux + hyrho(k_run) * & |
---|
[1115] | 1048 | ( qr_1d(k_run) + qr_slope(k_run) * ( 1.0 - c_run ) * & |
---|
[1065] | 1049 | 0.5 ) * c_run * dzu(k_run) |
---|
| 1050 | z_run = z_run + dzu(k_run) |
---|
| 1051 | k_run = k_run + 1 |
---|
| 1052 | c_run = MIN( 1.0, c_qr(k_run) - z_run * ddzu(k_run) ) |
---|
[1106] | 1053 | |
---|
[1065] | 1054 | ENDDO |
---|
| 1055 | ! |
---|
| 1056 | !-- It is not allowed to sediment more rain water content than available |
---|
| 1057 | flux = MIN( flux, & |
---|
[1115] | 1058 | hyrho(k) * dzu(k) * qr_1d(k) + sed_qr(k+1) * dt_micro ) |
---|
[1065] | 1059 | |
---|
[1115] | 1060 | sed_qr(k) = flux / dt_micro |
---|
| 1061 | |
---|
| 1062 | qr_1d(k) = qr_1d(k) + ( sed_qr(k+1) - sed_qr(k) ) * ddzu(k+1) / & |
---|
| 1063 | hyrho(k) * dt_micro |
---|
| 1064 | q_1d(k) = q_1d(k) + ( sed_qr(k+1) - sed_qr(k) ) * ddzu(k+1) / & |
---|
| 1065 | hyrho(k) * dt_micro |
---|
| 1066 | pt_1d(k) = pt_1d(k) - ( sed_qr(k+1) - sed_qr(k) ) * ddzu(k+1) / & |
---|
| 1067 | hyrho(k) * l_d_cp * pt_d_t(k) * dt_micro |
---|
[1065] | 1068 | ! |
---|
| 1069 | !-- Compute the rain rate |
---|
| 1070 | prr(k,j,i) = prr(k,j,i) + sed_qr(k) / hyrho(k) * & |
---|
[1115] | 1071 | weight_substep(intermediate_timestep_count) |
---|
[1065] | 1072 | ENDDO |
---|
[1115] | 1073 | |
---|
[1065] | 1074 | ! |
---|
[1048] | 1075 | !-- Precipitation amount |
---|
| 1076 | IF ( intermediate_timestep_count == intermediate_timestep_count_max & |
---|
| 1077 | .AND. ( dt_do2d_xy - time_do2d_xy ) < & |
---|
| 1078 | precipitation_amount_interval ) THEN |
---|
[1012] | 1079 | |
---|
[1048] | 1080 | precipitation_amount(j,i) = precipitation_amount(j,i) + & |
---|
[1115] | 1081 | prr(nzb_s_inner(j,i)+1,j,i) * & |
---|
| 1082 | hyrho(nzb_s_inner(j,i)+1) * dt_3d |
---|
[1048] | 1083 | ENDIF |
---|
| 1084 | |
---|
[1012] | 1085 | END SUBROUTINE sedimentation_rain_ij |
---|
| 1086 | |
---|
[1106] | 1087 | |
---|
[1012] | 1088 | ! |
---|
| 1089 | !-- This function computes the gamma function (Press et al., 1992). |
---|
| 1090 | !-- The gamma function is needed for the calculation of the evaporation |
---|
| 1091 | !-- of rain drops. |
---|
| 1092 | FUNCTION gamm( xx ) |
---|
[1048] | 1093 | |
---|
[1320] | 1094 | USE cloud_parameters, & |
---|
| 1095 | ONLY: cof, stp |
---|
| 1096 | |
---|
| 1097 | USE kinds |
---|
| 1098 | |
---|
[1012] | 1099 | IMPLICIT NONE |
---|
[1106] | 1100 | |
---|
[1320] | 1101 | INTEGER(iwp) :: j !: |
---|
| 1102 | |
---|
| 1103 | REAL(wp) :: gamm !: |
---|
| 1104 | REAL(wp) :: ser !: |
---|
| 1105 | REAL(wp) :: tmp !: |
---|
| 1106 | REAL(wp) :: x_gamm !: |
---|
| 1107 | REAL(wp) :: xx !: |
---|
| 1108 | REAL(wp) :: y_gamm !: |
---|
| 1109 | |
---|
[1012] | 1110 | x_gamm = xx |
---|
| 1111 | y_gamm = x_gamm |
---|
| 1112 | tmp = x_gamm + 5.5 |
---|
| 1113 | tmp = ( x_gamm + 0.5 ) * LOG( tmp ) - tmp |
---|
[1334] | 1114 | ser = 1.000000000190015_wp |
---|
[1106] | 1115 | |
---|
| 1116 | DO j = 1, 6 |
---|
[1012] | 1117 | y_gamm = y_gamm + 1.0 |
---|
| 1118 | ser = ser + cof( j ) / y_gamm |
---|
[1106] | 1119 | ENDDO |
---|
| 1120 | |
---|
[1012] | 1121 | ! |
---|
| 1122 | !-- Until this point the algorithm computes the logarithm of the gamma |
---|
| 1123 | !-- function. Hence, the exponential function is used. |
---|
| 1124 | ! gamm = EXP( tmp + LOG( stp * ser / x_gamm ) ) |
---|
| 1125 | gamm = EXP( tmp ) * stp * ser / x_gamm |
---|
[1106] | 1126 | |
---|
[1012] | 1127 | RETURN |
---|
| 1128 | |
---|
| 1129 | END FUNCTION gamm |
---|
| 1130 | |
---|
| 1131 | END MODULE microphysics_mod |
---|