[1000] | 1 | MODULE microphysics_mod |
---|
| 2 | |
---|
[1093] | 3 | !--------------------------------------------------------------------------------! |
---|
| 4 | ! This file is part of PALM. |
---|
| 5 | ! |
---|
| 6 | ! PALM is free software: you can redistribute it and/or modify it under the terms |
---|
| 7 | ! of the GNU General Public License as published by the Free Software Foundation, |
---|
| 8 | ! either version 3 of the License, or (at your option) any later version. |
---|
| 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
| 17 | ! Copyright 1997-2012 Leibniz University Hannover |
---|
| 18 | !--------------------------------------------------------------------------------! |
---|
| 19 | ! |
---|
[1000] | 20 | ! Current revisions: |
---|
[1092] | 21 | ! ------------------ |
---|
[1000] | 22 | ! |
---|
[1116] | 23 | ! |
---|
[1000] | 24 | ! Former revisions: |
---|
| 25 | ! ----------------- |
---|
[1052] | 26 | ! $Id: microphysics.f90 1116 2013-03-26 18:49:55Z witha $ |
---|
[1054] | 27 | ! |
---|
[1116] | 28 | ! 1115 2013-03-26 18:16:16Z hoffmann |
---|
| 29 | ! microphyical tendencies are calculated in microphysics_control in an optimized |
---|
| 30 | ! way; unrealistic values are prevented; bugfix in evaporation; some reformatting |
---|
| 31 | ! |
---|
[1107] | 32 | ! 1106 2013-03-04 05:31:38Z raasch |
---|
| 33 | ! small changes in code formatting |
---|
| 34 | ! |
---|
[1093] | 35 | ! 1092 2013-02-02 11:24:22Z raasch |
---|
| 36 | ! unused variables removed |
---|
| 37 | ! file put under GPL |
---|
| 38 | ! |
---|
[1066] | 39 | ! 1065 2012-11-22 17:42:36Z hoffmann |
---|
| 40 | ! Sedimentation process implemented according to Stevens and Seifert (2008). |
---|
[1115] | 41 | ! Turbulence effects on autoconversion and accretion added (Seifert, Nuijens |
---|
[1066] | 42 | ! and Stevens, 2010). |
---|
| 43 | ! |
---|
[1054] | 44 | ! 1053 2012-11-13 17:11:03Z hoffmann |
---|
| 45 | ! initial revision |
---|
[1000] | 46 | ! |
---|
| 47 | ! Description: |
---|
| 48 | ! ------------ |
---|
| 49 | ! Calculate cloud microphysics according to the two moment bulk |
---|
| 50 | ! scheme by Seifert and Beheng (2006). |
---|
| 51 | !------------------------------------------------------------------------------! |
---|
| 52 | |
---|
| 53 | PRIVATE |
---|
[1115] | 54 | PUBLIC microphysics_control |
---|
[1000] | 55 | |
---|
[1115] | 56 | INTERFACE microphysics_control |
---|
| 57 | MODULE PROCEDURE microphysics_control |
---|
| 58 | MODULE PROCEDURE microphysics_control_ij |
---|
| 59 | END INTERFACE microphysics_control |
---|
[1022] | 60 | |
---|
[1115] | 61 | INTERFACE adjust_cloud |
---|
| 62 | MODULE PROCEDURE adjust_cloud |
---|
| 63 | MODULE PROCEDURE adjust_cloud_ij |
---|
| 64 | END INTERFACE adjust_cloud |
---|
| 65 | |
---|
[1000] | 66 | INTERFACE autoconversion |
---|
| 67 | MODULE PROCEDURE autoconversion |
---|
| 68 | MODULE PROCEDURE autoconversion_ij |
---|
| 69 | END INTERFACE autoconversion |
---|
| 70 | |
---|
| 71 | INTERFACE accretion |
---|
| 72 | MODULE PROCEDURE accretion |
---|
| 73 | MODULE PROCEDURE accretion_ij |
---|
| 74 | END INTERFACE accretion |
---|
[1005] | 75 | |
---|
| 76 | INTERFACE selfcollection_breakup |
---|
| 77 | MODULE PROCEDURE selfcollection_breakup |
---|
| 78 | MODULE PROCEDURE selfcollection_breakup_ij |
---|
| 79 | END INTERFACE selfcollection_breakup |
---|
[1012] | 80 | |
---|
| 81 | INTERFACE evaporation_rain |
---|
| 82 | MODULE PROCEDURE evaporation_rain |
---|
| 83 | MODULE PROCEDURE evaporation_rain_ij |
---|
| 84 | END INTERFACE evaporation_rain |
---|
| 85 | |
---|
| 86 | INTERFACE sedimentation_cloud |
---|
| 87 | MODULE PROCEDURE sedimentation_cloud |
---|
| 88 | MODULE PROCEDURE sedimentation_cloud_ij |
---|
| 89 | END INTERFACE sedimentation_cloud |
---|
[1000] | 90 | |
---|
[1012] | 91 | INTERFACE sedimentation_rain |
---|
| 92 | MODULE PROCEDURE sedimentation_rain |
---|
| 93 | MODULE PROCEDURE sedimentation_rain_ij |
---|
| 94 | END INTERFACE sedimentation_rain |
---|
| 95 | |
---|
[1000] | 96 | CONTAINS |
---|
| 97 | |
---|
| 98 | |
---|
| 99 | !------------------------------------------------------------------------------! |
---|
| 100 | ! Call for all grid points |
---|
| 101 | !------------------------------------------------------------------------------! |
---|
[1115] | 102 | SUBROUTINE microphysics_control |
---|
[1022] | 103 | |
---|
| 104 | USE arrays_3d |
---|
[1115] | 105 | USE control_parameters |
---|
| 106 | USE indices |
---|
| 107 | USE statistics |
---|
| 108 | |
---|
| 109 | IMPLICIT NONE |
---|
| 110 | |
---|
| 111 | INTEGER :: i, j, k |
---|
| 112 | |
---|
| 113 | |
---|
| 114 | DO i = nxl, nxr |
---|
| 115 | DO j = nys, nyn |
---|
| 116 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 117 | |
---|
| 118 | ENDDO |
---|
| 119 | ENDDO |
---|
| 120 | ENDDO |
---|
| 121 | |
---|
| 122 | END SUBROUTINE microphysics_control |
---|
| 123 | |
---|
| 124 | SUBROUTINE adjust_cloud |
---|
| 125 | |
---|
| 126 | USE arrays_3d |
---|
[1022] | 127 | USE cloud_parameters |
---|
| 128 | USE indices |
---|
| 129 | |
---|
| 130 | IMPLICIT NONE |
---|
| 131 | |
---|
| 132 | INTEGER :: i, j, k |
---|
| 133 | |
---|
| 134 | |
---|
| 135 | DO i = nxl, nxr |
---|
| 136 | DO j = nys, nyn |
---|
[1115] | 137 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1022] | 138 | |
---|
| 139 | ENDDO |
---|
| 140 | ENDDO |
---|
| 141 | ENDDO |
---|
| 142 | |
---|
[1115] | 143 | END SUBROUTINE adjust_cloud |
---|
[1022] | 144 | |
---|
[1106] | 145 | |
---|
[1000] | 146 | SUBROUTINE autoconversion |
---|
| 147 | |
---|
| 148 | USE arrays_3d |
---|
| 149 | USE cloud_parameters |
---|
[1115] | 150 | USE control_parameters |
---|
| 151 | USE grid_variables |
---|
[1000] | 152 | USE indices |
---|
| 153 | |
---|
| 154 | IMPLICIT NONE |
---|
| 155 | |
---|
| 156 | INTEGER :: i, j, k |
---|
| 157 | |
---|
| 158 | |
---|
| 159 | DO i = nxl, nxr |
---|
| 160 | DO j = nys, nyn |
---|
[1115] | 161 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1000] | 162 | |
---|
| 163 | ENDDO |
---|
| 164 | ENDDO |
---|
| 165 | ENDDO |
---|
| 166 | |
---|
| 167 | END SUBROUTINE autoconversion |
---|
| 168 | |
---|
[1106] | 169 | |
---|
[1005] | 170 | SUBROUTINE accretion |
---|
[1000] | 171 | |
---|
| 172 | USE arrays_3d |
---|
| 173 | USE cloud_parameters |
---|
[1115] | 174 | USE control_parameters |
---|
[1000] | 175 | USE indices |
---|
[1005] | 176 | |
---|
[1000] | 177 | IMPLICIT NONE |
---|
| 178 | |
---|
| 179 | INTEGER :: i, j, k |
---|
| 180 | |
---|
[1005] | 181 | |
---|
| 182 | DO i = nxl, nxr |
---|
| 183 | DO j = nys, nyn |
---|
[1115] | 184 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1000] | 185 | |
---|
[1005] | 186 | ENDDO |
---|
| 187 | ENDDO |
---|
[1000] | 188 | ENDDO |
---|
| 189 | |
---|
[1005] | 190 | END SUBROUTINE accretion |
---|
[1000] | 191 | |
---|
[1106] | 192 | |
---|
[1005] | 193 | SUBROUTINE selfcollection_breakup |
---|
[1000] | 194 | |
---|
| 195 | USE arrays_3d |
---|
| 196 | USE cloud_parameters |
---|
[1115] | 197 | USE control_parameters |
---|
[1000] | 198 | USE indices |
---|
| 199 | |
---|
| 200 | IMPLICIT NONE |
---|
| 201 | |
---|
| 202 | INTEGER :: i, j, k |
---|
| 203 | |
---|
| 204 | |
---|
| 205 | DO i = nxl, nxr |
---|
| 206 | DO j = nys, nyn |
---|
[1115] | 207 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1000] | 208 | |
---|
| 209 | ENDDO |
---|
| 210 | ENDDO |
---|
| 211 | ENDDO |
---|
| 212 | |
---|
[1005] | 213 | END SUBROUTINE selfcollection_breakup |
---|
[1000] | 214 | |
---|
[1106] | 215 | |
---|
[1012] | 216 | SUBROUTINE evaporation_rain |
---|
[1000] | 217 | |
---|
[1012] | 218 | USE arrays_3d |
---|
| 219 | USE cloud_parameters |
---|
| 220 | USE constants |
---|
[1115] | 221 | USE control_parameters |
---|
[1012] | 222 | USE indices |
---|
| 223 | |
---|
| 224 | IMPLICIT NONE |
---|
| 225 | |
---|
| 226 | INTEGER :: i, j, k |
---|
| 227 | |
---|
| 228 | |
---|
| 229 | DO i = nxl, nxr |
---|
| 230 | DO j = nys, nyn |
---|
[1115] | 231 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1012] | 232 | |
---|
| 233 | ENDDO |
---|
| 234 | ENDDO |
---|
| 235 | ENDDO |
---|
| 236 | |
---|
| 237 | END SUBROUTINE evaporation_rain |
---|
| 238 | |
---|
[1106] | 239 | |
---|
[1012] | 240 | SUBROUTINE sedimentation_cloud |
---|
| 241 | |
---|
| 242 | USE arrays_3d |
---|
| 243 | USE cloud_parameters |
---|
| 244 | USE constants |
---|
[1115] | 245 | USE control_parameters |
---|
[1012] | 246 | USE indices |
---|
| 247 | |
---|
| 248 | IMPLICIT NONE |
---|
| 249 | |
---|
| 250 | INTEGER :: i, j, k |
---|
| 251 | |
---|
| 252 | |
---|
| 253 | DO i = nxl, nxr |
---|
| 254 | DO j = nys, nyn |
---|
[1115] | 255 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1012] | 256 | |
---|
| 257 | ENDDO |
---|
| 258 | ENDDO |
---|
| 259 | ENDDO |
---|
| 260 | |
---|
| 261 | END SUBROUTINE sedimentation_cloud |
---|
| 262 | |
---|
[1106] | 263 | |
---|
[1012] | 264 | SUBROUTINE sedimentation_rain |
---|
| 265 | |
---|
| 266 | USE arrays_3d |
---|
| 267 | USE cloud_parameters |
---|
| 268 | USE constants |
---|
[1115] | 269 | USE control_parameters |
---|
[1012] | 270 | USE indices |
---|
[1115] | 271 | USE statistics |
---|
[1012] | 272 | |
---|
| 273 | IMPLICIT NONE |
---|
| 274 | |
---|
| 275 | INTEGER :: i, j, k |
---|
| 276 | |
---|
| 277 | |
---|
| 278 | DO i = nxl, nxr |
---|
| 279 | DO j = nys, nyn |
---|
[1115] | 280 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1012] | 281 | |
---|
| 282 | ENDDO |
---|
| 283 | ENDDO |
---|
| 284 | ENDDO |
---|
| 285 | |
---|
| 286 | END SUBROUTINE sedimentation_rain |
---|
| 287 | |
---|
| 288 | |
---|
[1000] | 289 | !------------------------------------------------------------------------------! |
---|
| 290 | ! Call for grid point i,j |
---|
| 291 | !------------------------------------------------------------------------------! |
---|
[1022] | 292 | |
---|
[1115] | 293 | SUBROUTINE microphysics_control_ij( i, j ) |
---|
| 294 | |
---|
[1022] | 295 | USE arrays_3d |
---|
| 296 | USE cloud_parameters |
---|
| 297 | USE control_parameters |
---|
[1115] | 298 | USE statistics |
---|
| 299 | |
---|
[1022] | 300 | IMPLICIT NONE |
---|
| 301 | |
---|
[1115] | 302 | INTEGER :: i, j |
---|
| 303 | |
---|
| 304 | dt_micro = dt_3d * weight_pres(intermediate_timestep_count) |
---|
| 305 | ! |
---|
| 306 | !-- Adjust unrealistic values |
---|
| 307 | IF ( precipitation ) CALL adjust_cloud( i,j ) |
---|
| 308 | ! |
---|
| 309 | !-- Use 1-d arrays |
---|
| 310 | q_1d(:) = q(:,j,i) |
---|
| 311 | pt_1d(:) = pt(:,j,i) |
---|
| 312 | qc_1d(:) = qc(:,j,i) |
---|
| 313 | nc_1d(:) = nc_const |
---|
| 314 | IF ( precipitation ) THEN |
---|
| 315 | qr_1d(:) = qr(:,j,i) |
---|
| 316 | nr_1d(:) = nr(:,j,i) |
---|
| 317 | ENDIF |
---|
| 318 | ! |
---|
| 319 | !-- Compute cloud physics |
---|
| 320 | IF ( precipitation ) THEN |
---|
| 321 | CALL autoconversion( i,j ) |
---|
| 322 | CALL accretion( i,j ) |
---|
| 323 | CALL selfcollection_breakup( i,j ) |
---|
| 324 | CALL evaporation_rain( i,j ) |
---|
| 325 | CALL sedimentation_rain( i,j ) |
---|
| 326 | ENDIF |
---|
| 327 | |
---|
| 328 | IF ( drizzle ) CALL sedimentation_cloud( i,j ) |
---|
| 329 | ! |
---|
| 330 | !-- Derive tendencies |
---|
| 331 | tend_q(:,j,i) = ( q_1d(:) - q(:,j,i) ) / dt_micro |
---|
| 332 | tend_pt(:,j,i) = ( pt_1d(:) - pt(:,j,i) ) / dt_micro |
---|
| 333 | IF ( precipitation ) THEN |
---|
| 334 | tend_qr(:,j,i) = ( qr_1d(:) - qr(:,j,i) ) / dt_micro |
---|
| 335 | tend_nr(:,j,i) = ( nr_1d(:) - nr(:,j,i) ) / dt_micro |
---|
| 336 | ENDIF |
---|
| 337 | |
---|
| 338 | END SUBROUTINE microphysics_control_ij |
---|
| 339 | |
---|
| 340 | SUBROUTINE adjust_cloud_ij( i, j ) |
---|
| 341 | |
---|
| 342 | USE arrays_3d |
---|
| 343 | USE cloud_parameters |
---|
| 344 | USE indices |
---|
| 345 | |
---|
| 346 | IMPLICIT NONE |
---|
| 347 | |
---|
[1022] | 348 | INTEGER :: i, j, k |
---|
[1115] | 349 | ! |
---|
| 350 | !-- Adjust number of raindrops to avoid nonlinear effects in |
---|
| 351 | !-- sedimentation and evaporation of rain drops due to too small or |
---|
| 352 | !-- too big weights of rain drops (Stevens and Seifert, 2008). |
---|
| 353 | !-- The same procedure is applied to cloud droplets if they are determined |
---|
| 354 | !-- prognostically. |
---|
| 355 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1022] | 356 | |
---|
[1065] | 357 | IF ( qr(k,j,i) <= eps_sb ) THEN |
---|
| 358 | qr(k,j,i) = 0.0 |
---|
[1115] | 359 | nr(k,j,i) = 0.0 |
---|
[1065] | 360 | ELSE |
---|
[1022] | 361 | ! |
---|
[1048] | 362 | !-- Adjust number of raindrops to avoid nonlinear effects in |
---|
| 363 | !-- sedimentation and evaporation of rain drops due to too small or |
---|
[1065] | 364 | !-- too big weights of rain drops (Stevens and Seifert, 2008). |
---|
| 365 | IF ( nr(k,j,i) * xrmin > qr(k,j,i) * hyrho(k) ) THEN |
---|
| 366 | nr(k,j,i) = qr(k,j,i) * hyrho(k) / xrmin |
---|
| 367 | ELSEIF ( nr(k,j,i) * xrmax < qr(k,j,i) * hyrho(k) ) THEN |
---|
| 368 | nr(k,j,i) = qr(k,j,i) * hyrho(k) / xrmax |
---|
[1048] | 369 | ENDIF |
---|
[1115] | 370 | |
---|
[1022] | 371 | ENDIF |
---|
[1115] | 372 | |
---|
[1022] | 373 | ENDDO |
---|
| 374 | |
---|
[1115] | 375 | END SUBROUTINE adjust_cloud_ij |
---|
[1022] | 376 | |
---|
[1106] | 377 | |
---|
[1005] | 378 | SUBROUTINE autoconversion_ij( i, j ) |
---|
[1000] | 379 | |
---|
| 380 | USE arrays_3d |
---|
| 381 | USE cloud_parameters |
---|
[1005] | 382 | USE control_parameters |
---|
[1065] | 383 | USE grid_variables |
---|
[1115] | 384 | USE indices |
---|
| 385 | |
---|
[1000] | 386 | IMPLICIT NONE |
---|
| 387 | |
---|
| 388 | INTEGER :: i, j, k |
---|
[1115] | 389 | REAL :: alpha_cc, autocon, epsilon, k_au, l_mix, nu_c, phi_au, & |
---|
| 390 | r_cc, rc, re_lambda, selfcoll, sigma_cc, tau_cloud, xc |
---|
[1000] | 391 | |
---|
[1106] | 392 | |
---|
[1005] | 393 | k_au = k_cc / ( 20.0 * x0 ) |
---|
| 394 | |
---|
[1115] | 395 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1000] | 396 | |
---|
[1115] | 397 | IF ( qc_1d(k) > eps_sb ) THEN |
---|
[1012] | 398 | ! |
---|
[1048] | 399 | !-- Intern time scale of coagulation (Seifert and Beheng, 2006): |
---|
[1115] | 400 | !-- (1.0 - qc(k,j,i) / ( qc(k,j,i) + qr_1d(k) )) |
---|
| 401 | tau_cloud = 1.0 - qc_1d(k) / ( qr_1d(k) + qc_1d(k) ) |
---|
[1012] | 402 | ! |
---|
| 403 | !-- Universal function for autoconversion process |
---|
| 404 | !-- (Seifert and Beheng, 2006): |
---|
[1048] | 405 | phi_au = 600.0 * tau_cloud**0.68 * ( 1.0 - tau_cloud**0.68 )**3 |
---|
[1012] | 406 | ! |
---|
| 407 | !-- Shape parameter of gamma distribution (Geoffroy et al., 2010): |
---|
| 408 | !-- (Use constant nu_c = 1.0 instead?) |
---|
[1115] | 409 | nu_c = 1.0 !MAX( 0.0, 1580.0 * hyrho(k) * qc(k,j,i) - 0.28 ) |
---|
[1012] | 410 | ! |
---|
| 411 | !-- Mean weight of cloud droplets: |
---|
[1115] | 412 | xc = hyrho(k) * qc_1d(k) / nc_1d(k) |
---|
[1012] | 413 | ! |
---|
[1065] | 414 | !-- Parameterized turbulence effects on autoconversion (Seifert, |
---|
| 415 | !-- Nuijens and Stevens, 2010) |
---|
| 416 | IF ( turbulence ) THEN |
---|
| 417 | ! |
---|
| 418 | !-- Weight averaged radius of cloud droplets: |
---|
| 419 | rc = 0.5 * ( xc * dpirho_l )**( 1.0 / 3.0 ) |
---|
| 420 | |
---|
| 421 | alpha_cc = ( a_1 + a_2 * nu_c ) / ( 1.0 + a_3 * nu_c ) |
---|
| 422 | r_cc = ( b_1 + b_2 * nu_c ) / ( 1.0 + b_3 * nu_c ) |
---|
| 423 | sigma_cc = ( c_1 + c_2 * nu_c ) / ( 1.0 + c_3 * nu_c ) |
---|
| 424 | ! |
---|
| 425 | !-- Mixing length (neglecting distance to ground and stratification) |
---|
| 426 | l_mix = ( dx * dy * dzu(k) )**( 1.0 / 3.0 ) |
---|
| 427 | ! |
---|
| 428 | !-- Limit dissipation rate according to Seifert, Nuijens and |
---|
| 429 | !-- Stevens (2010) |
---|
| 430 | epsilon = MIN( 0.06, diss(k,j,i) ) |
---|
| 431 | ! |
---|
| 432 | !-- Compute Taylor-microscale Reynolds number: |
---|
| 433 | re_lambda = 6.0 / 11.0 * ( l_mix / c_const )**( 2.0 / 3.0 ) * & |
---|
| 434 | SQRT( 15.0 / kin_vis_air ) * epsilon**( 1.0 / 6.0 ) |
---|
| 435 | ! |
---|
| 436 | !-- The factor of 1.0E4 is needed to convert the dissipation rate |
---|
| 437 | !-- from m2 s-3 to cm2 s-3. |
---|
| 438 | k_au = k_au * ( 1.0 + & |
---|
| 439 | epsilon * 1.0E4 * ( re_lambda * 1.0E-3 )**0.25 * & |
---|
| 440 | ( alpha_cc * EXP( -1.0 * ( ( rc - r_cc ) / & |
---|
| 441 | sigma_cc )**2 ) + beta_cc ) ) |
---|
| 442 | ENDIF |
---|
| 443 | ! |
---|
[1012] | 444 | !-- Autoconversion rate (Seifert and Beheng, 2006): |
---|
[1115] | 445 | autocon = k_au * ( nu_c + 2.0 ) * ( nu_c + 4.0 ) / & |
---|
| 446 | ( nu_c + 1.0 )**2 * qc_1d(k)**2 * xc**2 * & |
---|
| 447 | ( 1.0 + phi_au / ( 1.0 - tau_cloud )**2 ) * & |
---|
| 448 | rho_surface |
---|
| 449 | autocon = MIN( autocon, qc_1d(k) / dt_micro ) |
---|
[1106] | 450 | |
---|
[1115] | 451 | qr_1d(k) = qr_1d(k) + autocon * dt_micro |
---|
| 452 | qc_1d(k) = qc_1d(k) - autocon * dt_micro |
---|
| 453 | nr_1d(k) = nr_1d(k) + autocon / x0 * hyrho(k) * dt_micro |
---|
| 454 | |
---|
[1005] | 455 | ENDIF |
---|
[1000] | 456 | |
---|
| 457 | ENDDO |
---|
| 458 | |
---|
[1005] | 459 | END SUBROUTINE autoconversion_ij |
---|
| 460 | |
---|
[1106] | 461 | |
---|
[1005] | 462 | SUBROUTINE accretion_ij( i, j ) |
---|
| 463 | |
---|
| 464 | USE arrays_3d |
---|
| 465 | USE cloud_parameters |
---|
[1115] | 466 | USE control_parameters |
---|
[1005] | 467 | USE indices |
---|
[1115] | 468 | |
---|
[1005] | 469 | IMPLICIT NONE |
---|
| 470 | |
---|
| 471 | INTEGER :: i, j, k |
---|
[1115] | 472 | REAL :: accr, k_cr, phi_ac, tau_cloud, xc |
---|
[1005] | 473 | |
---|
[1115] | 474 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 475 | IF ( ( qc_1d(k) > eps_sb ) .AND. ( qr_1d(k) > eps_sb ) ) THEN |
---|
[1012] | 476 | ! |
---|
[1048] | 477 | !-- Intern time scale of coagulation (Seifert and Beheng, 2006): |
---|
[1115] | 478 | tau_cloud = 1.0 - qc_1d(k) / ( qc_1d(k) + qr_1d(k) ) |
---|
[1012] | 479 | ! |
---|
| 480 | !-- Universal function for accretion process |
---|
[1048] | 481 | !-- (Seifert and Beheng, 2001): |
---|
[1065] | 482 | phi_ac = tau_cloud / ( tau_cloud + 5.0E-5 ) |
---|
| 483 | phi_ac = ( phi_ac**2 )**2 |
---|
[1012] | 484 | ! |
---|
[1065] | 485 | !-- Parameterized turbulence effects on autoconversion (Seifert, |
---|
| 486 | !-- Nuijens and Stevens, 2010). The factor of 1.0E4 is needed to |
---|
| 487 | !-- convert the dissipation (diss) from m2 s-3 to cm2 s-3. |
---|
| 488 | IF ( turbulence ) THEN |
---|
[1115] | 489 | k_cr = k_cr0 * ( 1.0 + 0.05 * & |
---|
[1065] | 490 | MIN( 600.0, diss(k,j,i) * 1.0E4 )**0.25 ) |
---|
| 491 | ELSE |
---|
| 492 | k_cr = k_cr0 |
---|
| 493 | ENDIF |
---|
| 494 | ! |
---|
[1012] | 495 | !-- Accretion rate (Seifert and Beheng, 2006): |
---|
[1115] | 496 | accr = k_cr * qc_1d(k) * qr_1d(k) * phi_ac * & |
---|
[1065] | 497 | SQRT( rho_surface * hyrho(k) ) |
---|
[1115] | 498 | accr = MIN( accr, qc_1d(k) / dt_micro ) |
---|
[1106] | 499 | |
---|
[1115] | 500 | qr_1d(k) = qr_1d(k) + accr * dt_micro |
---|
| 501 | qc_1d(k) = qc_1d(k) - accr * dt_micro |
---|
| 502 | |
---|
[1005] | 503 | ENDIF |
---|
[1106] | 504 | |
---|
[1005] | 505 | ENDDO |
---|
| 506 | |
---|
[1000] | 507 | END SUBROUTINE accretion_ij |
---|
| 508 | |
---|
[1005] | 509 | |
---|
| 510 | SUBROUTINE selfcollection_breakup_ij( i, j ) |
---|
| 511 | |
---|
| 512 | USE arrays_3d |
---|
| 513 | USE cloud_parameters |
---|
[1115] | 514 | USE control_parameters |
---|
[1005] | 515 | USE indices |
---|
| 516 | |
---|
| 517 | IMPLICIT NONE |
---|
| 518 | |
---|
| 519 | INTEGER :: i, j, k |
---|
[1115] | 520 | REAL :: breakup, dr, phi_br, selfcoll |
---|
[1005] | 521 | |
---|
[1115] | 522 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 523 | IF ( qr_1d(k) > eps_sb ) THEN |
---|
[1012] | 524 | ! |
---|
[1115] | 525 | !-- Selfcollection rate (Seifert and Beheng, 2001): |
---|
| 526 | selfcoll = k_rr * nr_1d(k) * qr_1d(k) * & |
---|
[1005] | 527 | SQRT( hyrho(k) * rho_surface ) |
---|
[1012] | 528 | ! |
---|
[1115] | 529 | !-- Weight averaged diameter of rain drops: |
---|
| 530 | dr = ( hyrho(k) * qr_1d(k) / nr_1d(k) * dpirho_l )**( 1.0 / 3.0 ) |
---|
| 531 | ! |
---|
[1048] | 532 | !-- Collisional breakup rate (Seifert, 2008): |
---|
[1115] | 533 | IF ( dr >= 0.3E-3 ) THEN |
---|
| 534 | phi_br = k_br * ( dr - 1.1E-3 ) |
---|
[1005] | 535 | breakup = selfcoll * ( phi_br + 1.0 ) |
---|
| 536 | ELSE |
---|
| 537 | breakup = 0.0 |
---|
| 538 | ENDIF |
---|
[1048] | 539 | |
---|
[1115] | 540 | selfcoll = MAX( breakup - selfcoll, -nr_1d(k) / dt_micro ) |
---|
| 541 | nr_1d(k) = nr_1d(k) + selfcoll * dt_micro |
---|
[1106] | 542 | |
---|
[1005] | 543 | ENDIF |
---|
| 544 | ENDDO |
---|
| 545 | |
---|
| 546 | END SUBROUTINE selfcollection_breakup_ij |
---|
| 547 | |
---|
[1106] | 548 | |
---|
[1012] | 549 | SUBROUTINE evaporation_rain_ij( i, j ) |
---|
[1022] | 550 | ! |
---|
| 551 | !-- Evaporation of precipitable water. Condensation is neglected for |
---|
| 552 | !-- precipitable water. |
---|
[1012] | 553 | |
---|
| 554 | USE arrays_3d |
---|
| 555 | USE cloud_parameters |
---|
| 556 | USE constants |
---|
[1115] | 557 | USE control_parameters |
---|
[1012] | 558 | USE indices |
---|
[1048] | 559 | |
---|
[1012] | 560 | IMPLICIT NONE |
---|
| 561 | |
---|
| 562 | INTEGER :: i, j, k |
---|
[1115] | 563 | REAL :: alpha, dr, e_s, evap, evap_nr, f_vent, g_evap, lambda_r, & |
---|
| 564 | mu_r, mu_r_2, mu_r_5d2, nr_0, q_s, sat, t_l, temp, xr |
---|
[1012] | 565 | |
---|
[1115] | 566 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 567 | IF ( qr_1d(k) > eps_sb ) THEN |
---|
[1012] | 568 | ! |
---|
| 569 | !-- Actual liquid water temperature: |
---|
[1115] | 570 | t_l = t_d_pt(k) * pt_1d(k) |
---|
[1012] | 571 | ! |
---|
| 572 | !-- Saturation vapor pressure at t_l: |
---|
| 573 | e_s = 610.78 * EXP( 17.269 * ( t_l - 273.16 ) / ( t_l - 35.86 ) ) |
---|
| 574 | ! |
---|
| 575 | !-- Computation of saturation humidity: |
---|
| 576 | q_s = 0.622 * e_s / ( hyp(k) - 0.378 * e_s ) |
---|
| 577 | alpha = 0.622 * l_d_r * l_d_cp / ( t_l * t_l ) |
---|
[1115] | 578 | q_s = q_s * ( 1.0 + alpha * q_1d(k) ) / ( 1.0 + alpha * q_s ) |
---|
[1012] | 579 | ! |
---|
[1106] | 580 | !-- Supersaturation: |
---|
[1115] | 581 | sat = MIN( 0.0, ( q_1d(k) - qr_1d(k) - qc_1d(k) ) / q_s - 1.0 ) |
---|
[1012] | 582 | ! |
---|
| 583 | !-- Actual temperature: |
---|
[1115] | 584 | temp = t_l + l_d_cp * ( qc_1d(k) + qr_1d(k) ) |
---|
| 585 | |
---|
| 586 | g_evap = 1.0 / ( ( l_v / ( r_v * temp ) - 1.0 ) * l_v / & |
---|
| 587 | ( thermal_conductivity_l * temp ) + r_v * temp / & |
---|
| 588 | ( diff_coeff_l * e_s ) ) |
---|
[1012] | 589 | ! |
---|
[1115] | 590 | !-- Mean weight of rain drops |
---|
| 591 | xr = hyrho(k) * qr_1d(k) / nr_1d(k) |
---|
[1012] | 592 | ! |
---|
[1115] | 593 | !-- Weight averaged diameter of rain drops: |
---|
| 594 | dr = ( xr * dpirho_l )**( 1.0 / 3.0 ) |
---|
| 595 | ! |
---|
[1049] | 596 | !-- Compute ventilation factor and intercept parameter |
---|
| 597 | !-- (Seifert and Beheng, 2006; Seifert, 2008): |
---|
[1048] | 598 | IF ( ventilation_effect ) THEN |
---|
[1115] | 599 | ! |
---|
| 600 | !-- Shape parameter of gamma distribution (Milbrandt and Yau, 2005; |
---|
| 601 | !-- Stevens and Seifert, 2008): |
---|
| 602 | mu_r = 10.0 * ( 1.0 + TANH( 1.2E3 * ( dr - 1.4E-3 ) ) ) |
---|
| 603 | ! |
---|
| 604 | !-- Slope parameter of gamma distribution (Seifert, 2008): |
---|
| 605 | lambda_r = ( ( mu_r + 3.0 ) * ( mu_r + 2.0 ) * & |
---|
| 606 | ( mu_r + 1.0 ) )**( 1.0 / 3.0 ) / dr |
---|
| 607 | |
---|
| 608 | mu_r_2 = mu_r + 2.0 |
---|
| 609 | mu_r_5d2 = mu_r + 2.5 |
---|
[1048] | 610 | f_vent = a_vent * gamm( mu_r_2 ) * & |
---|
[1115] | 611 | lambda_r**( -mu_r_2 ) + & |
---|
[1048] | 612 | b_vent * schmidt_p_1d3 * & |
---|
| 613 | SQRT( a_term / kin_vis_air ) * gamm( mu_r_5d2 ) * & |
---|
[1115] | 614 | lambda_r**( -mu_r_5d2 ) * & |
---|
[1048] | 615 | ( 1.0 - 0.5 * ( b_term / a_term ) * & |
---|
[1115] | 616 | ( lambda_r / & |
---|
| 617 | ( c_term + lambda_r ) )**mu_r_5d2 - & |
---|
[1048] | 618 | 0.125 * ( b_term / a_term )**2 * & |
---|
[1115] | 619 | ( lambda_r / & |
---|
| 620 | ( 2.0 * c_term + lambda_r ) )**mu_r_5d2 - & |
---|
[1048] | 621 | 0.0625 * ( b_term / a_term )**3 * & |
---|
[1115] | 622 | ( lambda_r / & |
---|
| 623 | ( 3.0 * c_term + lambda_r ) )**mu_r_5d2 - & |
---|
[1048] | 624 | 0.0390625 * ( b_term / a_term )**4 * & |
---|
[1115] | 625 | ( lambda_r / & |
---|
| 626 | ( 4.0 * c_term + lambda_r ) )**mu_r_5d2 ) |
---|
| 627 | nr_0 = nr_1d(k) * lambda_r**( mu_r + 1.0 ) / & |
---|
| 628 | gamm( mu_r + 1.0 ) |
---|
[1048] | 629 | ELSE |
---|
| 630 | f_vent = 1.0 |
---|
[1115] | 631 | nr_0 = nr_1d(k) * dr |
---|
[1048] | 632 | ENDIF |
---|
[1012] | 633 | ! |
---|
[1048] | 634 | !-- Evaporation rate of rain water content (Seifert and Beheng, 2006): |
---|
[1049] | 635 | evap = 2.0 * pi * nr_0 * g_evap * f_vent * sat / & |
---|
[1048] | 636 | hyrho(k) |
---|
[1106] | 637 | |
---|
[1115] | 638 | evap = MAX( evap, -qr_1d(k) / dt_micro ) |
---|
| 639 | evap_nr = MAX( c_evap * evap / xr * hyrho(k), & |
---|
| 640 | -nr_1d(k) / dt_micro ) |
---|
| 641 | |
---|
| 642 | qr_1d(k) = qr_1d(k) + evap * dt_micro |
---|
| 643 | nr_1d(k) = nr_1d(k) + evap_nr * dt_micro |
---|
[1012] | 644 | ENDIF |
---|
[1106] | 645 | |
---|
[1012] | 646 | ENDDO |
---|
| 647 | |
---|
| 648 | END SUBROUTINE evaporation_rain_ij |
---|
| 649 | |
---|
[1106] | 650 | |
---|
[1012] | 651 | SUBROUTINE sedimentation_cloud_ij( i, j ) |
---|
| 652 | |
---|
| 653 | USE arrays_3d |
---|
| 654 | USE cloud_parameters |
---|
| 655 | USE constants |
---|
[1115] | 656 | USE control_parameters |
---|
[1012] | 657 | USE indices |
---|
| 658 | |
---|
| 659 | IMPLICIT NONE |
---|
| 660 | |
---|
| 661 | INTEGER :: i, j, k |
---|
[1115] | 662 | REAL :: sed_qc_const |
---|
[1106] | 663 | |
---|
[1115] | 664 | REAL, DIMENSION(nzb:nzt+1) :: sed_qc |
---|
| 665 | |
---|
[1012] | 666 | ! |
---|
| 667 | !-- Sedimentation of cloud droplets (Heus et al., 2010): |
---|
[1115] | 668 | sed_qc_const = k_st * ( 3.0 / ( 4.0 * pi * rho_l ))**( 2.0 / 3.0 ) * & |
---|
[1048] | 669 | EXP( 5.0 * LOG( sigma_gc )**2 ) |
---|
[1012] | 670 | |
---|
[1115] | 671 | sed_qc(nzt+1) = 0.0 |
---|
[1012] | 672 | |
---|
[1115] | 673 | DO k = nzt, nzb_s_inner(j,i)+1, -1 |
---|
| 674 | IF ( qc_1d(k) > eps_sb ) THEN |
---|
| 675 | sed_qc(k) = sed_qc_const * nc_1d(k)**( -2.0 / 3.0 ) * & |
---|
| 676 | ( qc_1d(k) * hyrho(k) )**( 5.0 / 3.0 ) |
---|
| 677 | ELSE |
---|
| 678 | sed_qc(k) = 0.0 |
---|
[1012] | 679 | ENDIF |
---|
[1115] | 680 | |
---|
| 681 | sed_qc(k) = MIN( sed_qc(k), hyrho(k) * dzu(k+1) * q_1d(k) / & |
---|
| 682 | dt_micro + sed_qc(k+1) ) |
---|
| 683 | |
---|
| 684 | q_1d(k) = q_1d(k) + ( sed_qc(k+1) - sed_qc(k) ) * ddzu(k+1) / & |
---|
| 685 | hyrho(k) * dt_micro |
---|
| 686 | qc_1d(k) = qc_1d(k) + ( sed_qc(k+1) - sed_qc(k) ) * ddzu(k+1) / & |
---|
| 687 | hyrho(k) * dt_micro |
---|
| 688 | pt_1d(k) = pt_1d(k) - ( sed_qc(k+1) - sed_qc(k) ) * ddzu(k+1) / & |
---|
| 689 | hyrho(k) * l_d_cp * pt_d_t(k) * dt_micro |
---|
| 690 | |
---|
[1012] | 691 | ENDDO |
---|
| 692 | |
---|
| 693 | END SUBROUTINE sedimentation_cloud_ij |
---|
| 694 | |
---|
[1106] | 695 | |
---|
[1012] | 696 | SUBROUTINE sedimentation_rain_ij( i, j ) |
---|
| 697 | |
---|
| 698 | USE arrays_3d |
---|
| 699 | USE cloud_parameters |
---|
| 700 | USE constants |
---|
[1115] | 701 | USE control_parameters |
---|
[1012] | 702 | USE indices |
---|
[1048] | 703 | USE statistics |
---|
[1012] | 704 | |
---|
| 705 | IMPLICIT NONE |
---|
| 706 | |
---|
[1092] | 707 | INTEGER :: i, j, k, k_run |
---|
[1115] | 708 | REAL :: c_run, d_max, d_mean, d_min, dr, dt_sedi, flux, lambda_r, & |
---|
| 709 | mu_r, z_run |
---|
[1012] | 710 | |
---|
[1115] | 711 | REAL, DIMENSION(nzb:nzt+1) :: c_nr, c_qr, d_nr, d_qr, nr_slope, & |
---|
| 712 | qr_slope, sed_nr, sed_qr, w_nr, w_qr |
---|
[1065] | 713 | ! |
---|
| 714 | !-- Computation of sedimentation flux. Implementation according to Stevens |
---|
| 715 | !-- and Seifert (2008). |
---|
[1048] | 716 | IF ( intermediate_timestep_count == 1 ) prr(:,j,i) = 0.0 |
---|
[1012] | 717 | ! |
---|
[1065] | 718 | !-- Compute velocities |
---|
| 719 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1115] | 720 | IF ( qr_1d(k) > eps_sb ) THEN |
---|
| 721 | ! |
---|
| 722 | !-- Weight averaged diameter of rain drops: |
---|
| 723 | dr = ( hyrho(k) * qr_1d(k) / nr_1d(k) * dpirho_l )**( 1.0 / 3.0 ) |
---|
| 724 | ! |
---|
| 725 | !-- Shape parameter of gamma distribution (Milbrandt and Yau, 2005; |
---|
| 726 | !-- Stevens and Seifert, 2008): |
---|
| 727 | mu_r = 10.0 * ( 1.0 + TANH( 1.2E3 * ( dr - 1.4E-3 ) ) ) |
---|
| 728 | ! |
---|
| 729 | !-- Slope parameter of gamma distribution (Seifert, 2008): |
---|
| 730 | lambda_r = ( ( mu_r + 3.0 ) * ( mu_r + 2.0 ) * & |
---|
| 731 | ( mu_r + 1.0 ) )**( 1.0 / 3.0 ) / dr |
---|
| 732 | |
---|
[1065] | 733 | w_nr(k) = MAX( 0.1, MIN( 20.0, a_term - b_term * ( 1.0 + & |
---|
[1115] | 734 | c_term / lambda_r )**( -1.0 * ( mu_r + 1.0 ) ) ) ) |
---|
[1065] | 735 | w_qr(k) = MAX( 0.1, MIN( 20.0, a_term - b_term * ( 1.0 + & |
---|
[1115] | 736 | c_term / lambda_r )**( -1.0 * ( mu_r + 4.0 ) ) ) ) |
---|
[1065] | 737 | ELSE |
---|
| 738 | w_nr(k) = 0.0 |
---|
| 739 | w_qr(k) = 0.0 |
---|
| 740 | ENDIF |
---|
| 741 | ENDDO |
---|
[1048] | 742 | ! |
---|
[1065] | 743 | !-- Adjust boundary values |
---|
[1115] | 744 | w_nr(nzb_s_inner(j,i)) = w_nr(nzb_s_inner(j,i)+1) |
---|
| 745 | w_qr(nzb_s_inner(j,i)) = w_qr(nzb_s_inner(j,i)+1) |
---|
| 746 | w_nr(nzt+1) = 0.0 |
---|
| 747 | w_qr(nzt+1) = 0.0 |
---|
[1065] | 748 | ! |
---|
| 749 | !-- Compute Courant number |
---|
[1115] | 750 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
[1065] | 751 | c_nr(k) = 0.25 * ( w_nr(k-1) + 2.0 * w_nr(k) + w_nr(k+1) ) * & |
---|
[1115] | 752 | dt_micro * ddzu(k) |
---|
[1065] | 753 | c_qr(k) = 0.25 * ( w_qr(k-1) + 2.0 * w_qr(k) + w_qr(k+1) ) * & |
---|
[1115] | 754 | dt_micro * ddzu(k) |
---|
| 755 | ENDDO |
---|
[1065] | 756 | ! |
---|
| 757 | !-- Limit slopes with monotonized centered (MC) limiter (van Leer, 1977): |
---|
| 758 | IF ( limiter_sedimentation ) THEN |
---|
| 759 | |
---|
[1115] | 760 | DO k = nzb_s_inner(j,i)+1, nzt |
---|
| 761 | d_mean = 0.5 * ( qr_1d(k+1) + qr_1d(k-1) ) |
---|
| 762 | d_min = qr_1d(k) - MIN( qr_1d(k+1), qr_1d(k), qr_1d(k-1) ) |
---|
| 763 | d_max = MAX( qr_1d(k+1), qr_1d(k), qr_1d(k-1) ) - qr_1d(k) |
---|
[1065] | 764 | |
---|
| 765 | qr_slope(k) = SIGN(1.0, d_mean) * MIN ( 2.0 * d_min, 2.0 * d_max, & |
---|
| 766 | ABS( d_mean ) ) |
---|
| 767 | |
---|
[1115] | 768 | d_mean = 0.5 * ( nr_1d(k+1) + nr_1d(k-1) ) |
---|
| 769 | d_min = nr_1d(k) - MIN( nr_1d(k+1), nr_1d(k), nr_1d(k-1) ) |
---|
| 770 | d_max = MAX( nr_1d(k+1), nr_1d(k), nr_1d(k-1) ) - nr_1d(k) |
---|
[1065] | 771 | |
---|
| 772 | nr_slope(k) = SIGN(1.0, d_mean) * MIN ( 2.0 * d_min, 2.0 * d_max, & |
---|
| 773 | ABS( d_mean ) ) |
---|
[1022] | 774 | ENDDO |
---|
[1048] | 775 | |
---|
[1065] | 776 | ELSE |
---|
[1106] | 777 | |
---|
[1065] | 778 | nr_slope = 0.0 |
---|
| 779 | qr_slope = 0.0 |
---|
[1106] | 780 | |
---|
[1065] | 781 | ENDIF |
---|
[1115] | 782 | |
---|
| 783 | sed_nr(nzt+1) = 0.0 |
---|
| 784 | sed_qr(nzt+1) = 0.0 |
---|
[1065] | 785 | ! |
---|
| 786 | !-- Compute sedimentation flux |
---|
[1115] | 787 | DO k = nzt, nzb_s_inner(j,i)+1, -1 |
---|
[1065] | 788 | ! |
---|
| 789 | !-- Sum up all rain drop number densities which contribute to the flux |
---|
| 790 | !-- through k-1/2 |
---|
| 791 | flux = 0.0 |
---|
| 792 | z_run = 0.0 ! height above z(k) |
---|
| 793 | k_run = k |
---|
| 794 | c_run = MIN( 1.0, c_nr(k) ) |
---|
[1115] | 795 | DO WHILE ( c_run > 0.0 .AND. k_run <= nzt ) |
---|
[1065] | 796 | flux = flux + hyrho(k_run) * & |
---|
[1115] | 797 | ( nr_1d(k_run) + nr_slope(k_run) * ( 1.0 - c_run ) * & |
---|
[1065] | 798 | 0.5 ) * c_run * dzu(k_run) |
---|
| 799 | z_run = z_run + dzu(k_run) |
---|
| 800 | k_run = k_run + 1 |
---|
| 801 | c_run = MIN( 1.0, c_nr(k_run) - z_run * ddzu(k_run) ) |
---|
[1022] | 802 | ENDDO |
---|
| 803 | ! |
---|
[1065] | 804 | !-- It is not allowed to sediment more rain drop number density than |
---|
| 805 | !-- available |
---|
| 806 | flux = MIN( flux, & |
---|
[1115] | 807 | hyrho(k) * dzu(k+1) * nr_1d(k) + sed_nr(k+1) * dt_micro ) |
---|
[1065] | 808 | |
---|
[1115] | 809 | sed_nr(k) = flux / dt_micro |
---|
| 810 | nr_1d(k) = nr_1d(k) + ( sed_nr(k+1) - sed_nr(k) ) * ddzu(k+1) / & |
---|
| 811 | hyrho(k) * dt_micro |
---|
[1065] | 812 | ! |
---|
| 813 | !-- Sum up all rain water content which contributes to the flux |
---|
| 814 | !-- through k-1/2 |
---|
| 815 | flux = 0.0 |
---|
| 816 | z_run = 0.0 ! height above z(k) |
---|
| 817 | k_run = k |
---|
| 818 | c_run = MIN( 1.0, c_qr(k) ) |
---|
[1106] | 819 | |
---|
[1065] | 820 | DO WHILE ( c_run > 0.0 .AND. k_run <= nzt-1 ) |
---|
[1106] | 821 | |
---|
[1065] | 822 | flux = flux + hyrho(k_run) * & |
---|
[1115] | 823 | ( qr_1d(k_run) + qr_slope(k_run) * ( 1.0 - c_run ) * & |
---|
[1065] | 824 | 0.5 ) * c_run * dzu(k_run) |
---|
| 825 | z_run = z_run + dzu(k_run) |
---|
| 826 | k_run = k_run + 1 |
---|
| 827 | c_run = MIN( 1.0, c_qr(k_run) - z_run * ddzu(k_run) ) |
---|
[1106] | 828 | |
---|
[1065] | 829 | ENDDO |
---|
| 830 | ! |
---|
| 831 | !-- It is not allowed to sediment more rain water content than available |
---|
| 832 | flux = MIN( flux, & |
---|
[1115] | 833 | hyrho(k) * dzu(k) * qr_1d(k) + sed_qr(k+1) * dt_micro ) |
---|
[1065] | 834 | |
---|
[1115] | 835 | sed_qr(k) = flux / dt_micro |
---|
| 836 | |
---|
| 837 | qr_1d(k) = qr_1d(k) + ( sed_qr(k+1) - sed_qr(k) ) * ddzu(k+1) / & |
---|
| 838 | hyrho(k) * dt_micro |
---|
| 839 | q_1d(k) = q_1d(k) + ( sed_qr(k+1) - sed_qr(k) ) * ddzu(k+1) / & |
---|
| 840 | hyrho(k) * dt_micro |
---|
| 841 | pt_1d(k) = pt_1d(k) - ( sed_qr(k+1) - sed_qr(k) ) * ddzu(k+1) / & |
---|
| 842 | hyrho(k) * l_d_cp * pt_d_t(k) * dt_micro |
---|
[1065] | 843 | ! |
---|
| 844 | !-- Compute the rain rate |
---|
| 845 | prr(k,j,i) = prr(k,j,i) + sed_qr(k) / hyrho(k) * & |
---|
[1115] | 846 | weight_substep(intermediate_timestep_count) |
---|
[1065] | 847 | ENDDO |
---|
[1115] | 848 | |
---|
[1065] | 849 | ! |
---|
[1048] | 850 | !-- Precipitation amount |
---|
| 851 | IF ( intermediate_timestep_count == intermediate_timestep_count_max & |
---|
| 852 | .AND. ( dt_do2d_xy - time_do2d_xy ) < & |
---|
| 853 | precipitation_amount_interval ) THEN |
---|
[1012] | 854 | |
---|
[1048] | 855 | precipitation_amount(j,i) = precipitation_amount(j,i) + & |
---|
[1115] | 856 | prr(nzb_s_inner(j,i)+1,j,i) * & |
---|
| 857 | hyrho(nzb_s_inner(j,i)+1) * dt_3d |
---|
[1048] | 858 | ENDIF |
---|
| 859 | |
---|
[1012] | 860 | END SUBROUTINE sedimentation_rain_ij |
---|
| 861 | |
---|
[1106] | 862 | |
---|
[1012] | 863 | ! |
---|
| 864 | !-- This function computes the gamma function (Press et al., 1992). |
---|
| 865 | !-- The gamma function is needed for the calculation of the evaporation |
---|
| 866 | !-- of rain drops. |
---|
| 867 | FUNCTION gamm( xx ) |
---|
[1048] | 868 | |
---|
| 869 | USE cloud_parameters |
---|
[1012] | 870 | |
---|
| 871 | IMPLICIT NONE |
---|
| 872 | |
---|
[1065] | 873 | REAL :: gamm, ser, tmp, x_gamm, xx, y_gamm |
---|
[1012] | 874 | INTEGER :: j |
---|
[1106] | 875 | |
---|
[1012] | 876 | |
---|
| 877 | x_gamm = xx |
---|
| 878 | y_gamm = x_gamm |
---|
| 879 | tmp = x_gamm + 5.5 |
---|
| 880 | tmp = ( x_gamm + 0.5 ) * LOG( tmp ) - tmp |
---|
| 881 | ser = 1.000000000190015 |
---|
[1106] | 882 | |
---|
| 883 | DO j = 1, 6 |
---|
[1012] | 884 | y_gamm = y_gamm + 1.0 |
---|
| 885 | ser = ser + cof( j ) / y_gamm |
---|
[1106] | 886 | ENDDO |
---|
| 887 | |
---|
[1012] | 888 | ! |
---|
| 889 | !-- Until this point the algorithm computes the logarithm of the gamma |
---|
| 890 | !-- function. Hence, the exponential function is used. |
---|
| 891 | ! gamm = EXP( tmp + LOG( stp * ser / x_gamm ) ) |
---|
| 892 | gamm = EXP( tmp ) * stp * ser / x_gamm |
---|
[1106] | 893 | |
---|
[1012] | 894 | RETURN |
---|
| 895 | |
---|
| 896 | END FUNCTION gamm |
---|
| 897 | |
---|
| 898 | END MODULE microphysics_mod |
---|