[1000] | 1 | MODULE microphysics_mod |
---|
| 2 | |
---|
| 3 | !------------------------------------------------------------------------------! |
---|
| 4 | ! Current revisions: |
---|
| 5 | ! ----------------- |
---|
| 6 | ! |
---|
| 7 | ! Former revisions: |
---|
| 8 | ! ----------------- |
---|
[1052] | 9 | ! $Id$ |
---|
[1054] | 10 | ! |
---|
| 11 | ! 1053 2012-11-13 17:11:03Z hoffmann |
---|
| 12 | ! initial revision |
---|
[1000] | 13 | ! |
---|
| 14 | ! Description: |
---|
| 15 | ! ------------ |
---|
| 16 | ! Calculate cloud microphysics according to the two moment bulk |
---|
| 17 | ! scheme by Seifert and Beheng (2006). |
---|
| 18 | !------------------------------------------------------------------------------! |
---|
| 19 | |
---|
| 20 | PRIVATE |
---|
[1022] | 21 | PUBLIC dsd_properties, autoconversion, accretion, selfcollection_breakup, & |
---|
[1012] | 22 | evaporation_rain, sedimentation_cloud, sedimentation_rain |
---|
[1000] | 23 | |
---|
[1022] | 24 | INTERFACE dsd_properties |
---|
| 25 | MODULE PROCEDURE dsd_properties |
---|
| 26 | MODULE PROCEDURE dsd_properties_ij |
---|
| 27 | END INTERFACE dsd_properties |
---|
| 28 | |
---|
[1000] | 29 | INTERFACE autoconversion |
---|
| 30 | MODULE PROCEDURE autoconversion |
---|
| 31 | MODULE PROCEDURE autoconversion_ij |
---|
| 32 | END INTERFACE autoconversion |
---|
| 33 | |
---|
| 34 | INTERFACE accretion |
---|
| 35 | MODULE PROCEDURE accretion |
---|
| 36 | MODULE PROCEDURE accretion_ij |
---|
| 37 | END INTERFACE accretion |
---|
[1005] | 38 | |
---|
| 39 | INTERFACE selfcollection_breakup |
---|
| 40 | MODULE PROCEDURE selfcollection_breakup |
---|
| 41 | MODULE PROCEDURE selfcollection_breakup_ij |
---|
| 42 | END INTERFACE selfcollection_breakup |
---|
[1012] | 43 | |
---|
| 44 | INTERFACE evaporation_rain |
---|
| 45 | MODULE PROCEDURE evaporation_rain |
---|
| 46 | MODULE PROCEDURE evaporation_rain_ij |
---|
| 47 | END INTERFACE evaporation_rain |
---|
| 48 | |
---|
| 49 | INTERFACE sedimentation_cloud |
---|
| 50 | MODULE PROCEDURE sedimentation_cloud |
---|
| 51 | MODULE PROCEDURE sedimentation_cloud_ij |
---|
| 52 | END INTERFACE sedimentation_cloud |
---|
[1000] | 53 | |
---|
[1012] | 54 | INTERFACE sedimentation_rain |
---|
| 55 | MODULE PROCEDURE sedimentation_rain |
---|
| 56 | MODULE PROCEDURE sedimentation_rain_ij |
---|
| 57 | END INTERFACE sedimentation_rain |
---|
| 58 | |
---|
[1000] | 59 | CONTAINS |
---|
| 60 | |
---|
| 61 | |
---|
| 62 | !------------------------------------------------------------------------------! |
---|
| 63 | ! Call for all grid points |
---|
| 64 | !------------------------------------------------------------------------------! |
---|
[1022] | 65 | SUBROUTINE dsd_properties |
---|
| 66 | |
---|
| 67 | USE arrays_3d |
---|
| 68 | USE cloud_parameters |
---|
| 69 | USE constants |
---|
| 70 | USE indices |
---|
| 71 | |
---|
| 72 | IMPLICIT NONE |
---|
| 73 | |
---|
| 74 | INTEGER :: i, j, k |
---|
| 75 | REAL :: dqdt_precip |
---|
| 76 | |
---|
| 77 | |
---|
| 78 | DO i = nxl, nxr |
---|
| 79 | DO j = nys, nyn |
---|
| 80 | DO k = nzb_2d(j,i)+1, nzt |
---|
| 81 | |
---|
| 82 | ENDDO |
---|
| 83 | ENDDO |
---|
| 84 | ENDDO |
---|
| 85 | |
---|
| 86 | END SUBROUTINE dsd_properties |
---|
| 87 | |
---|
[1000] | 88 | SUBROUTINE autoconversion |
---|
| 89 | |
---|
| 90 | USE arrays_3d |
---|
| 91 | USE cloud_parameters |
---|
| 92 | USE constants |
---|
| 93 | USE indices |
---|
| 94 | |
---|
| 95 | IMPLICIT NONE |
---|
| 96 | |
---|
| 97 | INTEGER :: i, j, k |
---|
| 98 | REAL :: dqdt_precip |
---|
| 99 | |
---|
| 100 | |
---|
| 101 | DO i = nxl, nxr |
---|
| 102 | DO j = nys, nyn |
---|
| 103 | DO k = nzb_2d(j,i)+1, nzt |
---|
| 104 | |
---|
| 105 | ENDDO |
---|
| 106 | ENDDO |
---|
| 107 | ENDDO |
---|
| 108 | |
---|
| 109 | END SUBROUTINE autoconversion |
---|
| 110 | |
---|
[1005] | 111 | SUBROUTINE accretion |
---|
[1000] | 112 | |
---|
| 113 | USE arrays_3d |
---|
| 114 | USE cloud_parameters |
---|
| 115 | USE constants |
---|
| 116 | USE indices |
---|
[1005] | 117 | |
---|
[1000] | 118 | IMPLICIT NONE |
---|
| 119 | |
---|
| 120 | INTEGER :: i, j, k |
---|
[1005] | 121 | REAL :: dqdt_precip |
---|
[1000] | 122 | |
---|
[1005] | 123 | |
---|
| 124 | DO i = nxl, nxr |
---|
| 125 | DO j = nys, nyn |
---|
| 126 | DO k = nzb_2d(j,i)+1, nzt |
---|
[1000] | 127 | |
---|
[1005] | 128 | ENDDO |
---|
| 129 | ENDDO |
---|
[1000] | 130 | ENDDO |
---|
| 131 | |
---|
[1005] | 132 | END SUBROUTINE accretion |
---|
[1000] | 133 | |
---|
[1005] | 134 | SUBROUTINE selfcollection_breakup |
---|
[1000] | 135 | |
---|
| 136 | USE arrays_3d |
---|
| 137 | USE cloud_parameters |
---|
| 138 | USE constants |
---|
| 139 | USE indices |
---|
| 140 | |
---|
| 141 | IMPLICIT NONE |
---|
| 142 | |
---|
| 143 | INTEGER :: i, j, k |
---|
| 144 | REAL :: dqdt_precip |
---|
| 145 | |
---|
| 146 | |
---|
| 147 | DO i = nxl, nxr |
---|
| 148 | DO j = nys, nyn |
---|
| 149 | DO k = nzb_2d(j,i)+1, nzt |
---|
| 150 | |
---|
| 151 | ENDDO |
---|
| 152 | ENDDO |
---|
| 153 | ENDDO |
---|
| 154 | |
---|
[1005] | 155 | END SUBROUTINE selfcollection_breakup |
---|
[1000] | 156 | |
---|
[1012] | 157 | SUBROUTINE evaporation_rain |
---|
[1000] | 158 | |
---|
[1012] | 159 | USE arrays_3d |
---|
| 160 | USE cloud_parameters |
---|
| 161 | USE constants |
---|
| 162 | USE indices |
---|
| 163 | |
---|
| 164 | IMPLICIT NONE |
---|
| 165 | |
---|
| 166 | INTEGER :: i, j, k |
---|
| 167 | REAL :: dqdt_precip |
---|
| 168 | |
---|
| 169 | |
---|
| 170 | DO i = nxl, nxr |
---|
| 171 | DO j = nys, nyn |
---|
| 172 | DO k = nzb_2d(j,i)+1, nzt |
---|
| 173 | |
---|
| 174 | ENDDO |
---|
| 175 | ENDDO |
---|
| 176 | ENDDO |
---|
| 177 | |
---|
| 178 | END SUBROUTINE evaporation_rain |
---|
| 179 | |
---|
| 180 | SUBROUTINE sedimentation_cloud |
---|
| 181 | |
---|
| 182 | USE arrays_3d |
---|
| 183 | USE cloud_parameters |
---|
| 184 | USE constants |
---|
| 185 | USE indices |
---|
| 186 | |
---|
| 187 | IMPLICIT NONE |
---|
| 188 | |
---|
| 189 | INTEGER :: i, j, k |
---|
| 190 | REAL :: dqdt_precip |
---|
| 191 | |
---|
| 192 | |
---|
| 193 | DO i = nxl, nxr |
---|
| 194 | DO j = nys, nyn |
---|
| 195 | DO k = nzb_2d(j,i)+1, nzt |
---|
| 196 | |
---|
| 197 | ENDDO |
---|
| 198 | ENDDO |
---|
| 199 | ENDDO |
---|
| 200 | |
---|
| 201 | END SUBROUTINE sedimentation_cloud |
---|
| 202 | |
---|
| 203 | SUBROUTINE sedimentation_rain |
---|
| 204 | |
---|
| 205 | USE arrays_3d |
---|
| 206 | USE cloud_parameters |
---|
| 207 | USE constants |
---|
| 208 | USE indices |
---|
| 209 | |
---|
| 210 | IMPLICIT NONE |
---|
| 211 | |
---|
| 212 | INTEGER :: i, j, k |
---|
| 213 | REAL :: dqdt_precip |
---|
| 214 | |
---|
| 215 | |
---|
| 216 | DO i = nxl, nxr |
---|
| 217 | DO j = nys, nyn |
---|
| 218 | DO k = nzb_2d(j,i)+1, nzt |
---|
| 219 | |
---|
| 220 | ENDDO |
---|
| 221 | ENDDO |
---|
| 222 | ENDDO |
---|
| 223 | |
---|
| 224 | |
---|
| 225 | END SUBROUTINE sedimentation_rain |
---|
| 226 | |
---|
| 227 | |
---|
[1000] | 228 | !------------------------------------------------------------------------------! |
---|
| 229 | ! Call for grid point i,j |
---|
| 230 | !------------------------------------------------------------------------------! |
---|
[1022] | 231 | SUBROUTINE dsd_properties_ij( i, j ) |
---|
| 232 | |
---|
| 233 | USE arrays_3d |
---|
| 234 | USE cloud_parameters |
---|
| 235 | USE constants |
---|
| 236 | USE indices |
---|
| 237 | USE control_parameters |
---|
[1048] | 238 | USE user |
---|
[1022] | 239 | |
---|
| 240 | IMPLICIT NONE |
---|
| 241 | |
---|
| 242 | INTEGER :: i, j, k |
---|
[1048] | 243 | REAL :: dr_min = 2.0E-6, dr_max = 1.0E-3 |
---|
[1022] | 244 | |
---|
| 245 | DO k = nzb_2d(j,i)+1, nzt |
---|
[1048] | 246 | IF ( ( qr(k,j,i) > eps_sb ) .AND. ( nr(k,j,i) > eps_sb ) ) THEN |
---|
[1022] | 247 | ! |
---|
[1048] | 248 | !-- Weight averaged diameter of rain drops: |
---|
[1049] | 249 | dr(k) = ( hyrho(k) * qr(k,j,i) / nr(k,j,i) * & |
---|
| 250 | dpirho_l )**( 1.0 / 3.0 ) |
---|
[1022] | 251 | ! |
---|
[1048] | 252 | !-- Adjust number of raindrops to avoid nonlinear effects in |
---|
| 253 | !-- sedimentation and evaporation of rain drops due to too small or |
---|
| 254 | !-- big diameters of rain drops (Stevens and Seifert, 2008). |
---|
| 255 | IF ( dr(k) < dr_min ) THEN |
---|
| 256 | nr(k,j,i) = qr(k,j,i) * hyrho(k) / dr_min**3 * dpirho_l |
---|
| 257 | dr(k) = dr_min |
---|
| 258 | ELSEIF ( dr(k) > dr_max ) THEN |
---|
| 259 | nr(k,j,i) = qr(k,j,i) * hyrho(k) / dr_max**3 * dpirho_l |
---|
| 260 | dr(k) = dr_max |
---|
| 261 | ENDIF |
---|
[1022] | 262 | ! |
---|
[1049] | 263 | !-- Mean weight of rain drops (Seifert and Beheng, 2006): |
---|
| 264 | xr(k) = MIN( MAX( hyrho(k) * qr(k,j,i) / nr(k,j,i), xrmin ), xrmax) |
---|
[1048] | 265 | ! |
---|
[1049] | 266 | !-- Shape parameter of gamma distribution (Milbrandt and Yau, 2005; |
---|
| 267 | !-- Stevens and Seifert, 2008): |
---|
| 268 | IF ( .NOT. mu_constant ) THEN |
---|
| 269 | mu_r(k) = 10.0 * ( 1.0 + TANH( 1.2E3 * ( dr(k) - 1.4E-3 ) ) ) |
---|
| 270 | ELSE |
---|
| 271 | mu_r(k) = mu_constant_value |
---|
| 272 | ENDIF |
---|
| 273 | ! |
---|
[1022] | 274 | !-- Slope parameter of gamma distribution (Seifert, 2008): |
---|
[1048] | 275 | lambda_r(k) = ( ( mu_r(k) + 3.0 ) * ( mu_r(k) + 2.0 ) * & |
---|
| 276 | ( mu_r(k) + 1.0 ) )**( 1.0 / 3.0 ) / dr(k) |
---|
[1022] | 277 | ENDIF |
---|
| 278 | ENDDO |
---|
| 279 | |
---|
| 280 | END SUBROUTINE dsd_properties_ij |
---|
| 281 | |
---|
[1005] | 282 | SUBROUTINE autoconversion_ij( i, j ) |
---|
[1000] | 283 | |
---|
| 284 | USE arrays_3d |
---|
| 285 | USE cloud_parameters |
---|
| 286 | USE constants |
---|
| 287 | USE indices |
---|
[1005] | 288 | USE control_parameters |
---|
[1048] | 289 | USE statistics |
---|
[1000] | 290 | |
---|
| 291 | IMPLICIT NONE |
---|
| 292 | |
---|
| 293 | INTEGER :: i, j, k |
---|
[1048] | 294 | REAL :: k_au, autocon, phi_au, tau_cloud, xc, nu_c |
---|
[1000] | 295 | |
---|
[1005] | 296 | k_au = k_cc / ( 20.0 * x0 ) |
---|
| 297 | |
---|
[1000] | 298 | DO k = nzb_2d(j,i)+1, nzt |
---|
| 299 | |
---|
[1048] | 300 | IF ( ql(k,j,i) > 0.0 ) THEN |
---|
[1012] | 301 | ! |
---|
[1048] | 302 | !-- Intern time scale of coagulation (Seifert and Beheng, 2006): |
---|
[1012] | 303 | !-- (1.0 - ql(k,j,i) / ( ql(k,j,i) + qr(k,j,i) )) |
---|
[1048] | 304 | tau_cloud = 1.0 - ql(k,j,i) / ( ql(k,j,i) + qr(k,j,i) + 1.0E-20 ) |
---|
[1012] | 305 | ! |
---|
| 306 | !-- Universal function for autoconversion process |
---|
| 307 | !-- (Seifert and Beheng, 2006): |
---|
[1048] | 308 | phi_au = 600.0 * tau_cloud**0.68 * ( 1.0 - tau_cloud**0.68 )**3 |
---|
[1012] | 309 | ! |
---|
| 310 | !-- Shape parameter of gamma distribution (Geoffroy et al., 2010): |
---|
| 311 | !-- (Use constant nu_c = 1.0 instead?) |
---|
| 312 | nu_c = 1580.0 * hyrho(k) * ql(k,j,i) - 0.28 |
---|
| 313 | ! |
---|
| 314 | !-- Mean weight of cloud droplets: |
---|
[1005] | 315 | xc = hyrho(k) * ql(k,j,i) / nc |
---|
[1012] | 316 | ! |
---|
| 317 | !-- Autoconversion rate (Seifert and Beheng, 2006): |
---|
[1005] | 318 | autocon = k_au * ( nu_c + 2.0 ) * ( nu_c + 4.0 ) / & |
---|
[1048] | 319 | ( nu_c + 1.0 )**2 * ql(k,j,i)**2 * xc**2 * & |
---|
| 320 | ( 1.0 + phi_au / ( 1.0 - tau_cloud )**2 ) * & |
---|
| 321 | rho_surface |
---|
| 322 | autocon = MIN( autocon, ql(k,j,i) / ( dt_3d * & |
---|
| 323 | weight_substep(intermediate_timestep_count) ) ) |
---|
[1012] | 324 | ! |
---|
[1022] | 325 | !-- Tendencies for q, qr, nr, pt: |
---|
[1005] | 326 | tend_qr(k,j,i) = tend_qr(k,j,i) + autocon |
---|
| 327 | tend_q(k,j,i) = tend_q(k,j,i) - autocon |
---|
| 328 | tend_nr(k,j,i) = tend_nr(k,j,i) + autocon / x0 * hyrho(k) |
---|
[1048] | 329 | tend_pt(k,j,i) = tend_pt(k,j,i) + autocon * l_d_cp * pt_d_t(k) |
---|
[1005] | 330 | ENDIF |
---|
[1000] | 331 | |
---|
| 332 | ENDDO |
---|
| 333 | |
---|
[1005] | 334 | END SUBROUTINE autoconversion_ij |
---|
| 335 | |
---|
| 336 | SUBROUTINE accretion_ij( i, j ) |
---|
| 337 | |
---|
| 338 | USE arrays_3d |
---|
| 339 | USE cloud_parameters |
---|
| 340 | USE constants |
---|
| 341 | USE indices |
---|
| 342 | USE control_parameters |
---|
[1048] | 343 | USE statistics |
---|
[1005] | 344 | |
---|
| 345 | IMPLICIT NONE |
---|
| 346 | |
---|
| 347 | INTEGER :: i, j, k |
---|
[1048] | 348 | REAL :: accr, phi_ac, tau_cloud |
---|
[1005] | 349 | |
---|
| 350 | DO k = nzb_2d(j,i)+1, nzt |
---|
[1048] | 351 | IF ( ( ql(k,j,i) > 0.0 ) .AND. ( qr(k,j,i) > eps_sb ) ) THEN |
---|
[1012] | 352 | ! |
---|
[1048] | 353 | !-- Intern time scale of coagulation (Seifert and Beheng, 2006): |
---|
| 354 | tau_cloud = 1.0 - ql(k,j,i) / ( ql(k,j,i) + qr(k,j,i) + 1.0E-20) |
---|
[1012] | 355 | ! |
---|
| 356 | !-- Universal function for accretion process |
---|
[1048] | 357 | !-- (Seifert and Beheng, 2001): |
---|
| 358 | phi_ac = tau_cloud / ( tau_cloud + 5.0E-5 ) |
---|
| 359 | phi_ac = ( phi_ac**2 )**2 |
---|
[1012] | 360 | ! |
---|
| 361 | !-- Accretion rate (Seifert and Beheng, 2006): |
---|
[1005] | 362 | accr = k_cr * ql(k,j,i) * qr(k,j,i) * phi_ac * & |
---|
| 363 | SQRT( rho_surface * hyrho(k) ) |
---|
[1048] | 364 | accr = MIN( accr, ql(k,j,i) / ( dt_3d * & |
---|
| 365 | weight_substep(intermediate_timestep_count) ) ) |
---|
[1012] | 366 | ! |
---|
[1022] | 367 | !-- Tendencies for q, qr, pt: |
---|
[1005] | 368 | tend_qr(k,j,i) = tend_qr(k,j,i) + accr |
---|
| 369 | tend_q(k,j,i) = tend_q(k,j,i) - accr |
---|
[1048] | 370 | tend_pt(k,j,i) = tend_pt(k,j,i) + accr * l_d_cp * pt_d_t(k) |
---|
[1005] | 371 | ENDIF |
---|
| 372 | ENDDO |
---|
| 373 | |
---|
[1000] | 374 | END SUBROUTINE accretion_ij |
---|
| 375 | |
---|
[1005] | 376 | |
---|
| 377 | SUBROUTINE selfcollection_breakup_ij( i, j ) |
---|
| 378 | |
---|
| 379 | USE arrays_3d |
---|
| 380 | USE cloud_parameters |
---|
| 381 | USE constants |
---|
| 382 | USE indices |
---|
| 383 | USE control_parameters |
---|
[1048] | 384 | USE statistics |
---|
[1005] | 385 | |
---|
| 386 | IMPLICIT NONE |
---|
| 387 | |
---|
| 388 | INTEGER :: i, j, k |
---|
[1048] | 389 | REAL :: selfcoll, breakup, phi_br, phi_sc |
---|
[1005] | 390 | |
---|
| 391 | DO k = nzb_2d(j,i)+1, nzt |
---|
[1048] | 392 | IF ( ( qr(k,j,i) > eps_sb ) .AND. ( nr(k,j,i) > eps_sb ) ) THEN |
---|
[1012] | 393 | ! |
---|
| 394 | !-- Selfcollection rate (Seifert and Beheng, 2006): |
---|
[1048] | 395 | !-- pirho_l**( 1.0 / 3.0 ) is necessary to convert [lambda_r] = m-1 to |
---|
| 396 | !-- kg**( 1.0 / 3.0 ). |
---|
| 397 | phi_sc = ( 1.0 + kappa_rr / lambda_r(k) * & |
---|
| 398 | pirho_l**( 1.0 / 3.0 ) )**( -9 ) |
---|
| 399 | |
---|
| 400 | selfcoll = k_rr * nr(k,j,i) * qr(k,j,i) * phi_sc * & |
---|
[1005] | 401 | SQRT( hyrho(k) * rho_surface ) |
---|
[1012] | 402 | ! |
---|
[1048] | 403 | !-- Collisional breakup rate (Seifert, 2008): |
---|
| 404 | IF ( dr(k) >= 0.3E-3 ) THEN |
---|
| 405 | phi_br = k_br * ( dr(k) - 1.1E-3 ) |
---|
[1005] | 406 | breakup = selfcoll * ( phi_br + 1.0 ) |
---|
| 407 | ELSE |
---|
| 408 | breakup = 0.0 |
---|
| 409 | ENDIF |
---|
[1048] | 410 | |
---|
| 411 | selfcoll = MAX( breakup - selfcoll, -nr(k,j,i) / ( dt_3d * & |
---|
| 412 | weight_substep(intermediate_timestep_count) ) ) |
---|
[1012] | 413 | ! |
---|
| 414 | !-- Tendency for nr: |
---|
[1048] | 415 | tend_nr(k,j,i) = tend_nr(k,j,i) + selfcoll |
---|
[1005] | 416 | ENDIF |
---|
| 417 | ENDDO |
---|
| 418 | |
---|
| 419 | END SUBROUTINE selfcollection_breakup_ij |
---|
| 420 | |
---|
[1012] | 421 | SUBROUTINE evaporation_rain_ij( i, j ) |
---|
[1022] | 422 | ! |
---|
| 423 | !-- Evaporation of precipitable water. Condensation is neglected for |
---|
| 424 | !-- precipitable water. |
---|
[1012] | 425 | |
---|
| 426 | USE arrays_3d |
---|
| 427 | USE cloud_parameters |
---|
| 428 | USE constants |
---|
| 429 | USE indices |
---|
| 430 | USE control_parameters |
---|
[1048] | 431 | USE statistics |
---|
| 432 | |
---|
[1012] | 433 | IMPLICIT NONE |
---|
| 434 | |
---|
| 435 | INTEGER :: i, j, k |
---|
| 436 | REAL :: evap, alpha, e_s, q_s, t_l, sat, temp, g_evap, f_vent, & |
---|
[1049] | 437 | mu_r_2, mu_r_5d2, nr_0 |
---|
[1012] | 438 | |
---|
| 439 | DO k = nzb_2d(j,i)+1, nzt |
---|
[1048] | 440 | IF ( ( qr(k,j,i) > eps_sb ) .AND. ( nr(k,j,i) > eps_sb ) ) THEN |
---|
[1012] | 441 | ! |
---|
| 442 | !-- Actual liquid water temperature: |
---|
| 443 | t_l = t_d_pt(k) * pt(k,j,i) |
---|
| 444 | ! |
---|
| 445 | !-- Saturation vapor pressure at t_l: |
---|
| 446 | e_s = 610.78 * EXP( 17.269 * ( t_l - 273.16 ) / ( t_l - 35.86 ) ) |
---|
| 447 | ! |
---|
| 448 | !-- Computation of saturation humidity: |
---|
| 449 | q_s = 0.622 * e_s / ( hyp(k) - 0.378 * e_s ) |
---|
| 450 | alpha = 0.622 * l_d_r * l_d_cp / ( t_l * t_l ) |
---|
| 451 | q_s = q_s * ( 1.0 + alpha * q(k,j,i) ) / ( 1.0 + alpha * q_s ) |
---|
| 452 | ! |
---|
| 453 | !-- Oversaturation: |
---|
| 454 | sat = MIN( 0.0, ( q(k,j,i) - ql(k,j,i) ) / q_s - 1.0 ) |
---|
| 455 | ! |
---|
| 456 | !-- Actual temperature: |
---|
[1048] | 457 | temp = t_l + l_d_cp * ql(k,j,i) |
---|
[1012] | 458 | ! |
---|
| 459 | !-- |
---|
| 460 | g_evap = ( l_v / ( r_v * temp ) - 1.0 ) * l_v / & |
---|
[1048] | 461 | ( thermal_conductivity_l * temp ) + rho_l * r_v * temp /& |
---|
[1022] | 462 | ( diff_coeff_l * e_s ) |
---|
[1012] | 463 | g_evap = 1.0 / g_evap |
---|
| 464 | ! |
---|
[1049] | 465 | !-- Compute ventilation factor and intercept parameter |
---|
| 466 | !-- (Seifert and Beheng, 2006; Seifert, 2008): |
---|
[1048] | 467 | IF ( ventilation_effect ) THEN |
---|
| 468 | mu_r_2 = mu_r(k) + 2.0 |
---|
| 469 | mu_r_5d2 = mu_r(k) + 2.5 |
---|
| 470 | f_vent = a_vent * gamm( mu_r_2 ) * & |
---|
| 471 | lambda_r(k)**( -mu_r_2 ) + & |
---|
| 472 | b_vent * schmidt_p_1d3 * & |
---|
| 473 | SQRT( a_term / kin_vis_air ) * gamm( mu_r_5d2 ) * & |
---|
| 474 | lambda_r(k)**( -mu_r_5d2 ) * & |
---|
| 475 | ( 1.0 - 0.5 * ( b_term / a_term ) * & |
---|
| 476 | ( lambda_r(k) / & |
---|
| 477 | ( c_term + lambda_r(k) ) )**mu_r_5d2 - & |
---|
| 478 | 0.125 * ( b_term / a_term )**2 * & |
---|
| 479 | ( lambda_r(k) / & |
---|
| 480 | ( 2.0 * c_term + lambda_r(k) ) )**mu_r_5d2 - & |
---|
| 481 | 0.0625 * ( b_term / a_term )**3 * & |
---|
| 482 | ( lambda_r(k) / & |
---|
| 483 | ( 3.0 * c_term + lambda_r(k) ) )**mu_r_5d2 - & |
---|
| 484 | 0.0390625 * ( b_term / a_term )**4 * & |
---|
| 485 | ( lambda_r(k) / & |
---|
| 486 | ( 4.0 * c_term + lambda_r(k) ) )**mu_r_5d2 ) |
---|
[1049] | 487 | nr_0 = nr(k,j,i) * lambda_r(k)**( mu_r(k) + 1.0 ) / & |
---|
| 488 | gamm( mu_r(k) + 1.0 ) |
---|
[1048] | 489 | ELSE |
---|
| 490 | f_vent = 1.0 |
---|
[1049] | 491 | nr_0 = nr(k,j,i) * dr(k) |
---|
[1048] | 492 | ENDIF |
---|
[1012] | 493 | ! |
---|
[1048] | 494 | !-- Evaporation rate of rain water content (Seifert and Beheng, 2006): |
---|
[1049] | 495 | evap = 2.0 * pi * nr_0 * g_evap * f_vent * sat / & |
---|
[1048] | 496 | hyrho(k) |
---|
| 497 | evap = MAX( evap, -qr(k,j,i) / ( dt_3d * & |
---|
| 498 | weight_substep(intermediate_timestep_count) ) ) |
---|
[1012] | 499 | ! |
---|
[1022] | 500 | !-- Tendencies for q, qr, nr, pt: |
---|
[1012] | 501 | tend_qr(k,j,i) = tend_qr(k,j,i) + evap |
---|
| 502 | tend_q(k,j,i) = tend_q(k,j,i) - evap |
---|
[1049] | 503 | tend_nr(k,j,i) = tend_nr(k,j,i) + c_evap * evap / xr(k) * hyrho(k) |
---|
[1048] | 504 | tend_pt(k,j,i) = tend_pt(k,j,i) + evap * l_d_cp * pt_d_t(k) |
---|
[1012] | 505 | ENDIF |
---|
| 506 | ENDDO |
---|
| 507 | |
---|
| 508 | END SUBROUTINE evaporation_rain_ij |
---|
| 509 | |
---|
| 510 | SUBROUTINE sedimentation_cloud_ij( i, j ) |
---|
| 511 | |
---|
| 512 | USE arrays_3d |
---|
| 513 | USE cloud_parameters |
---|
| 514 | USE constants |
---|
| 515 | USE indices |
---|
| 516 | USE control_parameters |
---|
| 517 | |
---|
| 518 | IMPLICIT NONE |
---|
| 519 | |
---|
| 520 | INTEGER :: i, j, k |
---|
[1022] | 521 | REAL :: sed_q_const, sigma_gc = 1.3, k_st = 1.2E8 |
---|
[1012] | 522 | ! |
---|
| 523 | !-- Sedimentation of cloud droplets (Heus et al., 2010): |
---|
[1022] | 524 | sed_q_const = k_st * ( 3.0 / ( 4.0 * pi * rho_l ))**( 2.0 / 3.0 ) * & |
---|
[1048] | 525 | EXP( 5.0 * LOG( sigma_gc )**2 ) |
---|
[1012] | 526 | |
---|
[1022] | 527 | sed_q = 0.0 |
---|
[1012] | 528 | |
---|
| 529 | DO k = nzb_2d(j,i)+1, nzt |
---|
[1048] | 530 | IF ( ql(k,j,i) > 0.0 ) THEN |
---|
[1022] | 531 | sed_q(k) = sed_q_const * nc**( -2.0 / 3.0 ) * & |
---|
[1012] | 532 | ( ql(k,j,i) * hyrho(k) )**( 5.0 / 3.0 ) |
---|
| 533 | ENDIF |
---|
| 534 | ENDDO |
---|
| 535 | ! |
---|
[1022] | 536 | !-- Tendency for q, pt: |
---|
[1012] | 537 | DO k = nzb_2d(j,i)+1, nzt |
---|
[1048] | 538 | tend_q(k,j,i) = tend_q(k,j,i) + ( sed_q(k+1) - sed_q(k) ) * & |
---|
| 539 | ddzu(k+1) / hyrho(k) |
---|
[1022] | 540 | tend_pt(k,j,i) = tend_pt(k,j,i) - ( sed_q(k+1) - sed_q(k) ) * & |
---|
[1048] | 541 | ddzu(k+1) / hyrho(k) * l_d_cp * pt_d_t(k) |
---|
[1012] | 542 | ENDDO |
---|
| 543 | |
---|
| 544 | END SUBROUTINE sedimentation_cloud_ij |
---|
| 545 | |
---|
| 546 | SUBROUTINE sedimentation_rain_ij( i, j ) |
---|
| 547 | |
---|
| 548 | USE arrays_3d |
---|
| 549 | USE cloud_parameters |
---|
| 550 | USE constants |
---|
| 551 | USE indices |
---|
| 552 | USE control_parameters |
---|
[1048] | 553 | USE statistics |
---|
[1012] | 554 | |
---|
| 555 | IMPLICIT NONE |
---|
| 556 | |
---|
[1022] | 557 | INTEGER :: i, j, k, n, n_substep |
---|
[1048] | 558 | REAL :: sed_nr_tend, sed_qr_tend |
---|
[1012] | 559 | |
---|
[1048] | 560 | IF ( intermediate_timestep_count == 1 ) prr(:,j,i) = 0.0 |
---|
[1012] | 561 | |
---|
[1022] | 562 | sed_nr = 0.0 |
---|
| 563 | sed_qr = 0.0 |
---|
| 564 | |
---|
| 565 | DO k = nzb_2d(j,i)+1, nzt |
---|
[1048] | 566 | IF ( ( qr(k,j,i) > eps_sb ) .AND. ( nr(k,j,i) > eps_sb ) ) THEN |
---|
[1012] | 567 | ! |
---|
[1022] | 568 | !-- Sedimentation of rain water content and rain drop concentration |
---|
| 569 | !-- according to Stevens and Seifert (2008): |
---|
[1048] | 570 | sed_nr(k) = MIN( 20.0, MAX( 0.1, a_term - b_term * ( 1.0 + & |
---|
| 571 | c_term / lambda_r(k) )**( -1.0 * & |
---|
| 572 | ( mu_r(k) + 1.0 ) ) ) ) * nr(k,j,i) |
---|
| 573 | sed_qr(k) = MIN( 20.0, MAX( 0.1, a_term - b_term * ( 1.0 + & |
---|
| 574 | c_term / lambda_r(k) )**( -1.0 * & |
---|
| 575 | ( mu_r(k) + 4.0 ) ) ) ) * qr(k,j,i) * hyrho(k) |
---|
| 576 | ! |
---|
| 577 | !-- Computation of rain rate |
---|
| 578 | prr(k,j,i) = prr(k,j,i) + sed_qr(k) / hyrho(k) * & |
---|
| 579 | weight_substep(intermediate_timestep_count) |
---|
[1022] | 580 | ENDIF |
---|
| 581 | ENDDO |
---|
| 582 | |
---|
| 583 | DO k = nzb_2d(j,i)+1, nzt |
---|
[1048] | 584 | sed_nr_tend = MAX( ( sed_nr(k+1) - sed_nr(k) ) * ddzu(k+1), & |
---|
| 585 | -nr(k,j,i) / ( dt_3d * & |
---|
| 586 | weight_substep(intermediate_timestep_count) ) ) |
---|
| 587 | sed_qr_tend = MAX( ( sed_qr(k+1) - sed_qr(k) ) * ddzu(k+1) / & |
---|
| 588 | hyrho(k), & |
---|
| 589 | -qr(k,j,i) / ( dt_3d * & |
---|
| 590 | weight_substep(intermediate_timestep_count) ) ) |
---|
| 591 | |
---|
| 592 | tend_nr(k,j,i) = tend_nr(k,j,i) + sed_nr_tend |
---|
| 593 | tend_qr(k,j,i) = tend_qr(k,j,i) + sed_qr_tend |
---|
[1022] | 594 | ENDDO |
---|
| 595 | ! |
---|
[1048] | 596 | !-- Precipitation amount |
---|
| 597 | IF ( intermediate_timestep_count == intermediate_timestep_count_max & |
---|
| 598 | .AND. ( dt_do2d_xy - time_do2d_xy ) < & |
---|
| 599 | precipitation_amount_interval ) THEN |
---|
[1012] | 600 | |
---|
[1048] | 601 | precipitation_amount(j,i) = precipitation_amount(j,i) + & |
---|
| 602 | prr(nzb_2d(j,i)+1,j,i) * & |
---|
| 603 | hyrho(nzb_2d(j,i)+1) * dt_3d |
---|
| 604 | ENDIF |
---|
| 605 | |
---|
[1012] | 606 | END SUBROUTINE sedimentation_rain_ij |
---|
| 607 | |
---|
| 608 | ! |
---|
| 609 | !-- This function computes the gamma function (Press et al., 1992). |
---|
| 610 | !-- The gamma function is needed for the calculation of the evaporation |
---|
| 611 | !-- of rain drops. |
---|
| 612 | FUNCTION gamm( xx ) |
---|
[1048] | 613 | |
---|
| 614 | USE cloud_parameters |
---|
[1012] | 615 | |
---|
| 616 | IMPLICIT NONE |
---|
| 617 | |
---|
| 618 | REAL :: gamm, xx, & |
---|
[1048] | 619 | ser, tmp, x_gamm, y_gamm |
---|
[1012] | 620 | INTEGER :: j |
---|
| 621 | |
---|
| 622 | x_gamm = xx |
---|
| 623 | y_gamm = x_gamm |
---|
| 624 | tmp = x_gamm + 5.5 |
---|
| 625 | tmp = ( x_gamm + 0.5 ) * LOG( tmp ) - tmp |
---|
| 626 | ser = 1.000000000190015 |
---|
| 627 | do j = 1, 6 |
---|
| 628 | y_gamm = y_gamm + 1.0 |
---|
| 629 | ser = ser + cof( j ) / y_gamm |
---|
| 630 | enddo |
---|
| 631 | ! |
---|
| 632 | !-- Until this point the algorithm computes the logarithm of the gamma |
---|
| 633 | !-- function. Hence, the exponential function is used. |
---|
| 634 | ! gamm = EXP( tmp + LOG( stp * ser / x_gamm ) ) |
---|
| 635 | gamm = EXP( tmp ) * stp * ser / x_gamm |
---|
| 636 | RETURN |
---|
| 637 | |
---|
| 638 | END FUNCTION gamm |
---|
| 639 | |
---|
| 640 | END MODULE microphysics_mod |
---|