1 | !> @file lpm_droplet_condensation.f90 |
---|
2 | !------------------------------------------------------------------------------! |
---|
3 | ! This file is part of PALM. |
---|
4 | ! |
---|
5 | ! PALM is free software: you can redistribute it and/or modify it under the |
---|
6 | ! terms of the GNU General Public License as published by the Free Software |
---|
7 | ! Foundation, either version 3 of the License, or (at your option) any later |
---|
8 | ! version. |
---|
9 | ! |
---|
10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
13 | ! |
---|
14 | ! You should have received a copy of the GNU General Public License along with |
---|
15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
16 | ! |
---|
17 | ! Copyright 1997-2017 Leibniz Universitaet Hannover |
---|
18 | !------------------------------------------------------------------------------! |
---|
19 | ! |
---|
20 | ! Current revisions: |
---|
21 | ! ------------------ |
---|
22 | ! |
---|
23 | ! |
---|
24 | ! Former revisions: |
---|
25 | ! ----------------- |
---|
26 | ! $Id: lpm_droplet_condensation.f90 2312 2017-07-14 20:26:51Z Giersch $ |
---|
27 | ! Rosenbrock scheme improved. Gas-kinetic effect added. |
---|
28 | ! |
---|
29 | ! 2000 2016-08-20 18:09:15Z knoop |
---|
30 | ! Forced header and separation lines into 80 columns |
---|
31 | ! |
---|
32 | ! 1890 2016-04-22 08:52:11Z hoffmann |
---|
33 | ! Some improvements of the Rosenbrock method. If the Rosenbrock method needs more |
---|
34 | ! than 40 iterations to find a sufficient time setp, the model is not aborted. |
---|
35 | ! This might lead to small erros. But they can be assumend as negligible, since |
---|
36 | ! the maximum timesetp of the Rosenbrock method after 40 iterations will be |
---|
37 | ! smaller than 10^-16 s. |
---|
38 | ! |
---|
39 | ! 1871 2016-04-15 11:46:09Z hoffmann |
---|
40 | ! Initialization of aerosols added. |
---|
41 | ! |
---|
42 | ! 1849 2016-04-08 11:33:18Z hoffmann |
---|
43 | ! Interpolation of supersaturation has been removed because it is not in |
---|
44 | ! accordance with the release/depletion of latent heat/water vapor in |
---|
45 | ! interaction_droplets_ptq. |
---|
46 | ! Calculation of particle Reynolds number has been corrected. |
---|
47 | ! eps_ros added from modules. |
---|
48 | ! |
---|
49 | ! 1831 2016-04-07 13:15:51Z hoffmann |
---|
50 | ! curvature_solution_effects moved to particle_attributes |
---|
51 | ! |
---|
52 | ! 1822 2016-04-07 07:49:42Z hoffmann |
---|
53 | ! Unused variables removed. |
---|
54 | ! |
---|
55 | ! 1682 2015-10-07 23:56:08Z knoop |
---|
56 | ! Code annotations made doxygen readable |
---|
57 | ! |
---|
58 | ! 1359 2014-04-11 17:15:14Z hoffmann |
---|
59 | ! New particle structure integrated. |
---|
60 | ! Kind definition added to all floating point numbers. |
---|
61 | ! |
---|
62 | ! 1346 2014-03-27 13:18:20Z heinze |
---|
63 | ! Bugfix: REAL constants provided with KIND-attribute especially in call of |
---|
64 | ! intrinsic function like MAX, MIN, SIGN |
---|
65 | ! |
---|
66 | ! 1322 2014-03-20 16:38:49Z raasch |
---|
67 | ! REAL constants defined as wp-kind |
---|
68 | ! |
---|
69 | ! 1320 2014-03-20 08:40:49Z raasch |
---|
70 | ! ONLY-attribute added to USE-statements, |
---|
71 | ! kind-parameters added to all INTEGER and REAL declaration statements, |
---|
72 | ! kinds are defined in new module kinds, |
---|
73 | ! comment fields (!:) to be used for variable explanations added to |
---|
74 | ! all variable declaration statements |
---|
75 | ! |
---|
76 | ! 1318 2014-03-17 13:35:16Z raasch |
---|
77 | ! module interfaces removed |
---|
78 | ! |
---|
79 | ! 1092 2013-02-02 11:24:22Z raasch |
---|
80 | ! unused variables removed |
---|
81 | ! |
---|
82 | ! 1071 2012-11-29 16:54:55Z franke |
---|
83 | ! Ventilation effect for evaporation of large droplets included |
---|
84 | ! Check for unreasonable results included in calculation of Rosenbrock method |
---|
85 | ! since physically unlikely results were observed and for the same |
---|
86 | ! reason the first internal time step in Rosenbrock method should be < 1.0E02 in |
---|
87 | ! case of evaporation |
---|
88 | ! Unnecessary calculation of ql_int removed |
---|
89 | ! Unnecessary calculations in Rosenbrock method (d2rdt2, drdt_m, dt_ros_last) |
---|
90 | ! removed |
---|
91 | ! Bugfix: factor in calculation of surface tension changed from 0.00155 to |
---|
92 | ! 0.000155 |
---|
93 | ! |
---|
94 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
95 | ! code put under GPL (PALM 3.9) |
---|
96 | ! |
---|
97 | ! 849 2012-03-15 10:35:09Z raasch |
---|
98 | ! initial revision (former part of advec_particles) |
---|
99 | ! |
---|
100 | ! |
---|
101 | ! Description: |
---|
102 | ! ------------ |
---|
103 | !> Calculates change in droplet radius by condensation/evaporation, using |
---|
104 | !> either an analytic formula or by numerically integrating the radius growth |
---|
105 | !> equation including curvature and solution effects using Rosenbrocks method |
---|
106 | !> (see Numerical recipes in FORTRAN, 2nd edition, p. 731). |
---|
107 | !> The analytical formula and growth equation follow those given in |
---|
108 | !> Rogers and Yau (A short course in cloud physics, 3rd edition, p. 102/103). |
---|
109 | !------------------------------------------------------------------------------! |
---|
110 | SUBROUTINE lpm_droplet_condensation (ip,jp,kp) |
---|
111 | |
---|
112 | |
---|
113 | USE arrays_3d, & |
---|
114 | ONLY: hyp, pt, q, ql_c, ql_v |
---|
115 | |
---|
116 | USE cloud_parameters, & |
---|
117 | ONLY: l_d_rv, l_v, rho_l, r_v |
---|
118 | |
---|
119 | USE constants, & |
---|
120 | ONLY: pi |
---|
121 | |
---|
122 | USE control_parameters, & |
---|
123 | ONLY: dt_3d, dz, message_string, molecular_viscosity, rho_surface |
---|
124 | |
---|
125 | USE cpulog, & |
---|
126 | ONLY: cpu_log, log_point_s |
---|
127 | |
---|
128 | USE grid_variables, & |
---|
129 | ONLY: dx, dy |
---|
130 | |
---|
131 | USE lpm_collision_kernels_mod, & |
---|
132 | ONLY: rclass_lbound, rclass_ubound |
---|
133 | |
---|
134 | USE kinds |
---|
135 | |
---|
136 | USE particle_attributes, & |
---|
137 | ONLY: curvature_solution_effects, hall_kernel, & |
---|
138 | molecular_weight_of_solute, molecular_weight_of_water, & |
---|
139 | number_of_particles, particles, radius_classes, rho_s, & |
---|
140 | use_kernel_tables, vanthoff, wang_kernel |
---|
141 | |
---|
142 | IMPLICIT NONE |
---|
143 | |
---|
144 | INTEGER(iwp) :: ip !< |
---|
145 | INTEGER(iwp) :: jp !< |
---|
146 | INTEGER(iwp) :: kp !< |
---|
147 | INTEGER(iwp) :: n !< |
---|
148 | |
---|
149 | REAL(wp) :: afactor !< curvature effects |
---|
150 | REAL(wp) :: arg !< |
---|
151 | REAL(wp) :: bfactor !< solute effects |
---|
152 | REAL(wp) :: ddenom !< |
---|
153 | REAL(wp) :: delta_r !< |
---|
154 | REAL(wp) :: diameter !< diameter of cloud droplets |
---|
155 | REAL(wp) :: diff_coeff !< diffusivity for water vapor |
---|
156 | REAL(wp) :: drdt !< |
---|
157 | REAL(wp) :: dt_ros !< |
---|
158 | REAL(wp) :: dt_ros_sum !< |
---|
159 | REAL(wp) :: d2rdtdr !< |
---|
160 | REAL(wp) :: e_a !< current vapor pressure |
---|
161 | REAL(wp) :: e_s !< current saturation vapor pressure |
---|
162 | REAL(wp) :: error !< local truncation error in Rosenbrock |
---|
163 | REAL(wp) :: k1 !< |
---|
164 | REAL(wp) :: k2 !< |
---|
165 | REAL(wp) :: r_err !< First order estimate of Rosenbrock radius |
---|
166 | REAL(wp) :: r_ros !< Rosenbrock radius |
---|
167 | REAL(wp) :: r_ros_ini !< initial Rosenbrock radius |
---|
168 | REAL(wp) :: r0 !< gas-kinetic lengthscale |
---|
169 | REAL(wp) :: sigma !< surface tension of water |
---|
170 | REAL(wp) :: thermal_conductivity !< thermal conductivity for water |
---|
171 | REAL(wp) :: t_int !< temperature |
---|
172 | REAL(wp) :: w_s !< terminal velocity of droplets |
---|
173 | REAL(wp) :: re_p !< particle Reynolds number |
---|
174 | ! |
---|
175 | !-- Parameters for Rosenbrock method (see Verwer et al., 1999) |
---|
176 | REAL(wp), PARAMETER :: prec = 1.0E-3_wp !< precision of Rosenbrock solution |
---|
177 | REAL(wp), PARAMETER :: q_increase = 1.5_wp !< increase factor in timestep |
---|
178 | REAL(wp), PARAMETER :: q_decrease = 0.9_wp !< decrease factor in timestep |
---|
179 | REAL(wp), PARAMETER :: gamma = 0.292893218814_wp !< = 1.0 - 1.0 / SQRT(2.0) |
---|
180 | ! |
---|
181 | !-- Parameters for terminal velocity |
---|
182 | REAL(wp), PARAMETER :: a_rog = 9.65_wp !< parameter for fall velocity |
---|
183 | REAL(wp), PARAMETER :: b_rog = 10.43_wp !< parameter for fall velocity |
---|
184 | REAL(wp), PARAMETER :: c_rog = 0.6_wp !< parameter for fall velocity |
---|
185 | REAL(wp), PARAMETER :: k_cap_rog = 4.0_wp !< parameter for fall velocity |
---|
186 | REAL(wp), PARAMETER :: k_low_rog = 12.0_wp !< parameter for fall velocity |
---|
187 | REAL(wp), PARAMETER :: d0_rog = 0.745_wp !< separation diameter |
---|
188 | |
---|
189 | REAL(wp), DIMENSION(number_of_particles) :: ventilation_effect !< |
---|
190 | REAL(wp), DIMENSION(number_of_particles) :: new_r !< |
---|
191 | |
---|
192 | CALL cpu_log( log_point_s(42), 'lpm_droplet_condens', 'start' ) |
---|
193 | |
---|
194 | ! |
---|
195 | !-- Absolute temperature |
---|
196 | t_int = pt(kp,jp,ip) * ( hyp(kp) / 100000.0_wp )**0.286_wp |
---|
197 | ! |
---|
198 | !-- Saturation vapor pressure (Eq. 10 in Bolton, 1980) |
---|
199 | e_s = 611.2_wp * EXP( 17.62_wp * ( t_int - 273.15_wp ) / ( t_int - 29.65_wp ) ) |
---|
200 | ! |
---|
201 | !-- Current vapor pressure |
---|
202 | e_a = q(kp,jp,ip) * hyp(kp) / ( q(kp,jp,ip) + 0.622_wp ) |
---|
203 | ! |
---|
204 | !-- Thermal conductivity for water (from Rogers and Yau, Table 7.1) |
---|
205 | thermal_conductivity = 7.94048E-05_wp * t_int + 0.00227011_wp |
---|
206 | ! |
---|
207 | !-- Moldecular diffusivity of water vapor in air (Hall und Pruppacher, 1976) |
---|
208 | diff_coeff = 0.211E-4_wp * ( t_int / 273.15_wp )**1.94_wp * & |
---|
209 | ( 101325.0_wp / hyp(kp) ) |
---|
210 | ! |
---|
211 | !-- Lengthscale for gas-kinetic effects (from Mordy, 1959, p. 23): |
---|
212 | r0 = diff_coeff / 0.036_wp * SQRT( 2.0_wp * pi / ( r_v * t_int ) ) |
---|
213 | ! |
---|
214 | !-- Calculate effects of heat conductivity and diffusion of water vapor on the |
---|
215 | !-- diffusional growth process (usually known as 1.0 / (F_k + F_d) ) |
---|
216 | ddenom = 1.0_wp / ( rho_l * r_v * t_int / ( e_s * diff_coeff ) + & |
---|
217 | ( l_v / ( r_v * t_int ) - 1.0_wp ) * rho_l * & |
---|
218 | l_v / ( thermal_conductivity * t_int ) & |
---|
219 | ) |
---|
220 | new_r = 0.0_wp |
---|
221 | ! |
---|
222 | !-- Determine ventilation effect on evaporation of large drops |
---|
223 | DO n = 1, number_of_particles |
---|
224 | |
---|
225 | IF ( particles(n)%radius >= 4.0E-5_wp .AND. e_a / e_s < 1.0_wp ) THEN |
---|
226 | ! |
---|
227 | !-- Terminal velocity is computed for vertical direction (Rogers et al., |
---|
228 | !-- 1993, J. Appl. Meteorol.) |
---|
229 | diameter = particles(n)%radius * 2000.0_wp !diameter in mm |
---|
230 | IF ( diameter <= d0_rog ) THEN |
---|
231 | w_s = k_cap_rog * diameter * ( 1.0_wp - EXP( -k_low_rog * diameter ) ) |
---|
232 | ELSE |
---|
233 | w_s = a_rog - b_rog * EXP( -c_rog * diameter ) |
---|
234 | ENDIF |
---|
235 | ! |
---|
236 | !-- Calculate droplet's Reynolds number |
---|
237 | re_p = 2.0_wp * particles(n)%radius * w_s / molecular_viscosity |
---|
238 | ! |
---|
239 | !-- Ventilation coefficient (Rogers and Yau, 1989): |
---|
240 | IF ( re_p > 2.5_wp ) THEN |
---|
241 | ventilation_effect(n) = 0.78_wp + 0.28_wp * SQRT( re_p ) |
---|
242 | ELSE |
---|
243 | ventilation_effect(n) = 1.0_wp + 0.09_wp * re_p |
---|
244 | ENDIF |
---|
245 | ELSE |
---|
246 | ! |
---|
247 | !-- For small droplets or in supersaturated environments, the ventilation |
---|
248 | !-- effect does not play a role |
---|
249 | ventilation_effect(n) = 1.0_wp |
---|
250 | ENDIF |
---|
251 | ENDDO |
---|
252 | |
---|
253 | IF( .NOT. curvature_solution_effects ) then |
---|
254 | ! |
---|
255 | !-- Use analytic model for diffusional growth including gas-kinetic |
---|
256 | !-- effects (Mordy, 1959) but without the impact of aerosols. |
---|
257 | DO n = 1, number_of_particles |
---|
258 | arg = ( particles(n)%radius + r0 )**2 + 2.0_wp * dt_3d * ddenom * & |
---|
259 | ventilation_effect(n) * & |
---|
260 | ( e_a / e_s - 1.0_wp ) |
---|
261 | arg = MAX( arg, ( 0.01E-6 + r0 )**2 ) |
---|
262 | new_r(n) = SQRT( arg ) - r0 |
---|
263 | ENDDO |
---|
264 | |
---|
265 | ELSE |
---|
266 | ! |
---|
267 | !-- Integrate the diffusional growth including gas-kinetic (Mordy, 1959), |
---|
268 | !-- as well as curvature and solute effects (e.g., Köhler, 1936). |
---|
269 | ! |
---|
270 | !-- Curvature effect (afactor) with surface tension (sigma) by Straka (2009) |
---|
271 | sigma = 0.0761_wp - 0.000155_wp * ( t_int - 273.15_wp ) |
---|
272 | ! |
---|
273 | !-- Solute effect (afactor) |
---|
274 | afactor = 2.0_wp * sigma / ( rho_l * r_v * t_int ) |
---|
275 | |
---|
276 | DO n = 1, number_of_particles |
---|
277 | ! |
---|
278 | !-- Solute effect (bfactor) |
---|
279 | bfactor = vanthoff * rho_s * particles(n)%aux1**3 * & |
---|
280 | molecular_weight_of_water / ( rho_l * molecular_weight_of_solute ) |
---|
281 | |
---|
282 | dt_ros = particles(n)%aux2 ! use previously stored Rosenbrock timestep |
---|
283 | dt_ros_sum = 0.0_wp |
---|
284 | |
---|
285 | r_ros = particles(n)%radius ! initialize Rosenbrock particle radius |
---|
286 | r_ros_ini = r_ros |
---|
287 | ! |
---|
288 | !-- Integrate growth equation using a 2nd-order Rosenbrock method |
---|
289 | !-- (see Verwer et al., 1999, Eq. (3.2)). The Rosenbrock method adjusts |
---|
290 | !-- its with internal timestep to minimize the local truncation error. |
---|
291 | DO WHILE ( dt_ros_sum < dt_3d ) |
---|
292 | |
---|
293 | dt_ros = MIN( dt_ros, dt_3d - dt_ros_sum ) |
---|
294 | |
---|
295 | DO |
---|
296 | |
---|
297 | drdt = ddenom * ventilation_effect(n) * ( e_a / e_s - 1.0 - & |
---|
298 | afactor / r_ros + & |
---|
299 | bfactor / r_ros**3 & |
---|
300 | ) / ( r_ros + r0 ) |
---|
301 | |
---|
302 | d2rdtdr = -ddenom * ventilation_effect(n) * ( & |
---|
303 | (e_a / e_s - 1.0) * r_ros**4 - & |
---|
304 | afactor * r0 * r_ros**2 - & |
---|
305 | 2.0 * afactor * r_ros**3 + & |
---|
306 | 3.0 * bfactor * r0 + & |
---|
307 | 4.0 * bfactor * r_ros & |
---|
308 | ) & |
---|
309 | / ( r_ros**4 * ( r_ros + r0 )**2 ) |
---|
310 | |
---|
311 | k1 = drdt / ( 1.0 - gamma * dt_ros * d2rdtdr ) |
---|
312 | |
---|
313 | r_ros = MAX(r_ros_ini + k1 * dt_ros, particles(n)%aux1) |
---|
314 | r_err = r_ros |
---|
315 | |
---|
316 | drdt = ddenom * ventilation_effect(n) * ( e_a / e_s - 1.0 - & |
---|
317 | afactor / r_ros + & |
---|
318 | bfactor / r_ros**3 & |
---|
319 | ) / ( r_ros + r0 ) |
---|
320 | |
---|
321 | k2 = ( drdt - dt_ros * 2.0 * gamma * d2rdtdr * k1 ) / & |
---|
322 | ( 1.0 - dt_ros * gamma * d2rdtdr ) |
---|
323 | |
---|
324 | r_ros = MAX(r_ros_ini + dt_ros * ( 1.5 * k1 + 0.5 * k2), particles(n)%aux1) |
---|
325 | ! |
---|
326 | !-- Check error of the solution, and reduce dt_ros if necessary. |
---|
327 | error = ABS(r_err - r_ros) / r_ros |
---|
328 | IF ( error .GT. prec ) THEN |
---|
329 | dt_ros = SQRT( q_decrease * prec / error ) * dt_ros |
---|
330 | r_ros = r_ros_ini |
---|
331 | ELSE |
---|
332 | dt_ros_sum = dt_ros_sum + dt_ros |
---|
333 | dt_ros = q_increase * dt_ros |
---|
334 | r_ros_ini = r_ros |
---|
335 | EXIT |
---|
336 | ENDIF |
---|
337 | |
---|
338 | END DO |
---|
339 | |
---|
340 | END DO !Rosenbrock loop |
---|
341 | ! |
---|
342 | !-- Store new particle radius |
---|
343 | new_r(n) = r_ros |
---|
344 | ! |
---|
345 | !-- Store internal time step value for next PALM step |
---|
346 | particles(n)%aux2 = dt_ros |
---|
347 | |
---|
348 | ENDDO !Particle loop |
---|
349 | |
---|
350 | ENDIF |
---|
351 | |
---|
352 | DO n = 1, number_of_particles |
---|
353 | ! |
---|
354 | !-- Sum up the change in liquid water for the respective grid |
---|
355 | !-- box for the computation of the release/depletion of water vapor |
---|
356 | !-- and heat. |
---|
357 | ql_c(kp,jp,ip) = ql_c(kp,jp,ip) + particles(n)%weight_factor * & |
---|
358 | rho_l * 1.33333333_wp * pi * & |
---|
359 | ( new_r(n)**3 - particles(n)%radius**3 ) / & |
---|
360 | ( rho_surface * dx * dy * dz ) |
---|
361 | ! |
---|
362 | !-- Check if the increase in liqid water is not too big. If this is the case, |
---|
363 | !-- the model timestep might be too long. |
---|
364 | IF ( ql_c(kp,jp,ip) > 100.0_wp ) THEN |
---|
365 | WRITE( message_string, * ) 'k=',kp,' j=',jp,' i=',ip, & |
---|
366 | ' ql_c=',ql_c(kp,jp,ip), ' &part(',n,')%wf=', & |
---|
367 | particles(n)%weight_factor,' delta_r=',delta_r |
---|
368 | CALL message( 'lpm_droplet_condensation', 'PA0143', 2, 2, -1, 6, 1 ) |
---|
369 | ENDIF |
---|
370 | ! |
---|
371 | !-- Check if the change in the droplet radius is not too big. If this is the |
---|
372 | !-- case, the model timestep might be too long. |
---|
373 | delta_r = new_r(n) - particles(n)%radius |
---|
374 | IF ( delta_r < 0.0_wp .AND. new_r(n) < 0.0_wp ) THEN |
---|
375 | WRITE( message_string, * ) '#1 k=',kp,' j=',jp,' i=',ip, & |
---|
376 | ' e_s=',e_s, ' e_a=',e_a,' t_int=',t_int, & |
---|
377 | ' &delta_r=',delta_r, & |
---|
378 | ' particle_radius=',particles(n)%radius |
---|
379 | CALL message( 'lpm_droplet_condensation', 'PA0144', 2, 2, -1, 6, 1 ) |
---|
380 | ENDIF |
---|
381 | ! |
---|
382 | !-- Sum up the total volume of liquid water (needed below for |
---|
383 | !-- re-calculating the weighting factors) |
---|
384 | ql_v(kp,jp,ip) = ql_v(kp,jp,ip) + particles(n)%weight_factor * new_r(n)**3 |
---|
385 | ! |
---|
386 | !-- Determine radius class of the particle needed for collision |
---|
387 | IF ( use_kernel_tables ) THEN |
---|
388 | particles(n)%class = ( LOG( new_r(n) ) - rclass_lbound ) / & |
---|
389 | ( rclass_ubound - rclass_lbound ) * & |
---|
390 | radius_classes |
---|
391 | particles(n)%class = MIN( particles(n)%class, radius_classes ) |
---|
392 | particles(n)%class = MAX( particles(n)%class, 1 ) |
---|
393 | ENDIF |
---|
394 | ! |
---|
395 | !-- Store new radius to particle features |
---|
396 | particles(n)%radius = new_r(n) |
---|
397 | |
---|
398 | ENDDO |
---|
399 | |
---|
400 | CALL cpu_log( log_point_s(42), 'lpm_droplet_condens', 'stop' ) |
---|
401 | |
---|
402 | |
---|
403 | END SUBROUTINE lpm_droplet_condensation |
---|