1 | !> @file lpm_droplet_condensation.f90 |
---|
2 | !--------------------------------------------------------------------------------! |
---|
3 | ! This file is part of PALM. |
---|
4 | ! |
---|
5 | ! PALM is free software: you can redistribute it and/or modify it under the terms |
---|
6 | ! of the GNU General Public License as published by the Free Software Foundation, |
---|
7 | ! either version 3 of the License, or (at your option) any later version. |
---|
8 | ! |
---|
9 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
10 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
11 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
12 | ! |
---|
13 | ! You should have received a copy of the GNU General Public License along with |
---|
14 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
15 | ! |
---|
16 | ! Copyright 1997-2016 Leibniz Universitaet Hannover |
---|
17 | !--------------------------------------------------------------------------------! |
---|
18 | ! |
---|
19 | ! Current revisions: |
---|
20 | ! ------------------ |
---|
21 | ! |
---|
22 | ! |
---|
23 | ! Former revisions: |
---|
24 | ! ----------------- |
---|
25 | ! $Id: lpm_droplet_condensation.f90 1891 2016-04-22 08:53:22Z suehring $ |
---|
26 | ! |
---|
27 | ! 1890 2016-04-22 08:52:11Z hoffmann |
---|
28 | ! Some improvements of the Rosenbrock method. If the Rosenbrock method needs more |
---|
29 | ! than 40 iterations to find a sufficient time setp, the model is not aborted. |
---|
30 | ! This might lead to small erros. But they can be assumend as negligible, since |
---|
31 | ! the maximum timesetp of the Rosenbrock method after 40 iterations will be |
---|
32 | ! smaller than 10^-16 s. |
---|
33 | ! |
---|
34 | ! 1871 2016-04-15 11:46:09Z hoffmann |
---|
35 | ! Initialization of aerosols added. |
---|
36 | ! |
---|
37 | ! 1849 2016-04-08 11:33:18Z hoffmann |
---|
38 | ! Interpolation of supersaturation has been removed because it is not in |
---|
39 | ! accordance with the release/depletion of latent heat/water vapor in |
---|
40 | ! interaction_droplets_ptq. |
---|
41 | ! Calculation of particle Reynolds number has been corrected. |
---|
42 | ! eps_ros added from modules. |
---|
43 | ! |
---|
44 | ! 1831 2016-04-07 13:15:51Z hoffmann |
---|
45 | ! curvature_solution_effects moved to particle_attributes |
---|
46 | ! |
---|
47 | ! 1822 2016-04-07 07:49:42Z hoffmann |
---|
48 | ! Unused variables removed. |
---|
49 | ! |
---|
50 | ! 1682 2015-10-07 23:56:08Z knoop |
---|
51 | ! Code annotations made doxygen readable |
---|
52 | ! |
---|
53 | ! 1359 2014-04-11 17:15:14Z hoffmann |
---|
54 | ! New particle structure integrated. |
---|
55 | ! Kind definition added to all floating point numbers. |
---|
56 | ! |
---|
57 | ! 1346 2014-03-27 13:18:20Z heinze |
---|
58 | ! Bugfix: REAL constants provided with KIND-attribute especially in call of |
---|
59 | ! intrinsic function like MAX, MIN, SIGN |
---|
60 | ! |
---|
61 | ! 1322 2014-03-20 16:38:49Z raasch |
---|
62 | ! REAL constants defined as wp-kind |
---|
63 | ! |
---|
64 | ! 1320 2014-03-20 08:40:49Z raasch |
---|
65 | ! ONLY-attribute added to USE-statements, |
---|
66 | ! kind-parameters added to all INTEGER and REAL declaration statements, |
---|
67 | ! kinds are defined in new module kinds, |
---|
68 | ! comment fields (!:) to be used for variable explanations added to |
---|
69 | ! all variable declaration statements |
---|
70 | ! |
---|
71 | ! 1318 2014-03-17 13:35:16Z raasch |
---|
72 | ! module interfaces removed |
---|
73 | ! |
---|
74 | ! 1092 2013-02-02 11:24:22Z raasch |
---|
75 | ! unused variables removed |
---|
76 | ! |
---|
77 | ! 1071 2012-11-29 16:54:55Z franke |
---|
78 | ! Ventilation effect for evaporation of large droplets included |
---|
79 | ! Check for unreasonable results included in calculation of Rosenbrock method |
---|
80 | ! since physically unlikely results were observed and for the same |
---|
81 | ! reason the first internal time step in Rosenbrock method should be < 1.0E02 in |
---|
82 | ! case of evaporation |
---|
83 | ! Unnecessary calculation of ql_int removed |
---|
84 | ! Unnecessary calculations in Rosenbrock method (d2rdt2, drdt_m, dt_ros_last) |
---|
85 | ! removed |
---|
86 | ! Bugfix: factor in calculation of surface tension changed from 0.00155 to |
---|
87 | ! 0.000155 |
---|
88 | ! |
---|
89 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
90 | ! code put under GPL (PALM 3.9) |
---|
91 | ! |
---|
92 | ! 849 2012-03-15 10:35:09Z raasch |
---|
93 | ! initial revision (former part of advec_particles) |
---|
94 | ! |
---|
95 | ! |
---|
96 | ! Description: |
---|
97 | ! ------------ |
---|
98 | !> Calculates change in droplet radius by condensation/evaporation, using |
---|
99 | !> either an analytic formula or by numerically integrating the radius growth |
---|
100 | !> equation including curvature and solution effects using Rosenbrocks method |
---|
101 | !> (see Numerical recipes in FORTRAN, 2nd edition, p. 731). |
---|
102 | !> The analytical formula and growth equation follow those given in |
---|
103 | !> Rogers and Yau (A short course in cloud physics, 3rd edition, p. 102/103). |
---|
104 | !------------------------------------------------------------------------------! |
---|
105 | SUBROUTINE lpm_droplet_condensation (ip,jp,kp) |
---|
106 | |
---|
107 | |
---|
108 | USE arrays_3d, & |
---|
109 | ONLY: hyp, pt, q, ql_c, ql_v |
---|
110 | |
---|
111 | USE cloud_parameters, & |
---|
112 | ONLY: l_d_rv, l_v, rho_l, r_v |
---|
113 | |
---|
114 | USE constants, & |
---|
115 | ONLY: pi |
---|
116 | |
---|
117 | USE control_parameters, & |
---|
118 | ONLY: dt_3d, dz, message_string, molecular_viscosity, rho_surface |
---|
119 | |
---|
120 | USE cpulog, & |
---|
121 | ONLY: cpu_log, log_point_s |
---|
122 | |
---|
123 | USE grid_variables, & |
---|
124 | ONLY: dx, dy |
---|
125 | |
---|
126 | USE lpm_collision_kernels_mod, & |
---|
127 | ONLY: rclass_lbound, rclass_ubound |
---|
128 | |
---|
129 | USE kinds |
---|
130 | |
---|
131 | USE particle_attributes, & |
---|
132 | ONLY: curvature_solution_effects, hall_kernel, & |
---|
133 | molecular_weight_of_solute, molecular_weight_of_water, & |
---|
134 | number_of_particles, particles, radius_classes, rho_s, & |
---|
135 | use_kernel_tables, vanthoff, wang_kernel |
---|
136 | |
---|
137 | |
---|
138 | IMPLICIT NONE |
---|
139 | |
---|
140 | INTEGER(iwp) :: ip !< |
---|
141 | INTEGER(iwp) :: internal_timestep_count !< |
---|
142 | INTEGER(iwp) :: jp !< |
---|
143 | INTEGER(iwp) :: jtry !< |
---|
144 | INTEGER(iwp) :: kp !< |
---|
145 | INTEGER(iwp) :: n !< |
---|
146 | INTEGER(iwp) :: ros_count !< |
---|
147 | |
---|
148 | INTEGER(iwp), PARAMETER :: maxtry = 40 !< |
---|
149 | |
---|
150 | LOGICAL :: repeat !< |
---|
151 | |
---|
152 | REAL(wp) :: aa !< |
---|
153 | REAL(wp) :: afactor !< curvature effects |
---|
154 | REAL(wp) :: arg !< |
---|
155 | REAL(wp) :: bfactor !< solute effects |
---|
156 | REAL(wp) :: ddenom !< |
---|
157 | REAL(wp) :: delta_r !< |
---|
158 | REAL(wp) :: diameter !< diameter of cloud droplets |
---|
159 | REAL(wp) :: diff_coeff_v !< diffusivity for water vapor |
---|
160 | REAL(wp) :: drdt !< |
---|
161 | REAL(wp) :: drdt_ini !< |
---|
162 | REAL(wp) :: dt_ros !< |
---|
163 | REAL(wp) :: dt_ros_next !< |
---|
164 | REAL(wp) :: dt_ros_sum !< |
---|
165 | REAL(wp) :: dt_ros_sum_ini !< |
---|
166 | REAL(wp) :: d2rdtdr !< |
---|
167 | REAL(wp) :: errmax !< |
---|
168 | REAL(wp) :: e_a !< current vapor pressure |
---|
169 | REAL(wp) :: e_s !< current saturation vapor pressure |
---|
170 | REAL(wp) :: err_ros !< |
---|
171 | REAL(wp) :: g1 !< |
---|
172 | REAL(wp) :: g2 !< |
---|
173 | REAL(wp) :: g3 !< |
---|
174 | REAL(wp) :: g4 !< |
---|
175 | REAL(wp) :: r_ros !< |
---|
176 | REAL(wp) :: r_ros_ini !< |
---|
177 | REAL(wp) :: sigma !< |
---|
178 | REAL(wp) :: thermal_conductivity_v !< thermal conductivity for water |
---|
179 | REAL(wp) :: t_int !< temperature |
---|
180 | REAL(wp) :: w_s !< terminal velocity of droplets |
---|
181 | REAL(wp) :: re_p !< |
---|
182 | |
---|
183 | ! |
---|
184 | !-- Parameters for Rosenbrock method |
---|
185 | REAL(wp), PARAMETER :: a21 = 2.0_wp !< |
---|
186 | REAL(wp), PARAMETER :: a31 = 48.0_wp / 25.0_wp !< |
---|
187 | REAL(wp), PARAMETER :: a32 = 6.0_wp / 25.0_wp !< |
---|
188 | REAL(wp), PARAMETER :: b1 = 19.0_wp / 9.0_wp !< |
---|
189 | REAL(wp), PARAMETER :: b2 = 0.5_wp !< |
---|
190 | REAL(wp), PARAMETER :: b3 = 25.0_wp / 108.0_wp !< |
---|
191 | REAL(wp), PARAMETER :: b4 = 125.0_wp / 108.0_wp !< |
---|
192 | REAL(wp), PARAMETER :: c21 = -8.0_wp !< |
---|
193 | REAL(wp), PARAMETER :: c31 = 372.0_wp / 25.0_wp !< |
---|
194 | REAL(wp), PARAMETER :: c32 = 12.0_wp / 5.0_wp !< |
---|
195 | REAL(wp), PARAMETER :: c41 = -112.0_wp / 125.0_wp !< |
---|
196 | REAL(wp), PARAMETER :: c42 = -54.0_wp / 125.0_wp !< |
---|
197 | REAL(wp), PARAMETER :: c43 = -2.0_wp / 5.0_wp !< |
---|
198 | REAL(wp), PARAMETER :: errcon = 0.1296_wp !< |
---|
199 | REAL(wp), PARAMETER :: e1 = 17.0_wp / 54.0_wp !< |
---|
200 | REAL(wp), PARAMETER :: e2 = 7.0_wp / 36.0_wp !< |
---|
201 | REAL(wp), PARAMETER :: e3 = 0.0_wp !< |
---|
202 | REAL(wp), PARAMETER :: e4 = 125.0_wp / 108.0_wp !< |
---|
203 | REAL(wp), PARAMETER :: eps_ros = 1.0E-3_wp !< accuracy of Rosenbrock method |
---|
204 | REAL(wp), PARAMETER :: gam = 0.5_wp !< |
---|
205 | REAL(wp), PARAMETER :: grow = 1.5_wp !< |
---|
206 | REAL(wp), PARAMETER :: pgrow = -0.25_wp !< |
---|
207 | REAL(wp), PARAMETER :: pshrnk = -1.0_wp /3.0_wp !< |
---|
208 | REAL(wp), PARAMETER :: shrnk = 0.5_wp !< |
---|
209 | |
---|
210 | ! |
---|
211 | !-- Parameters for terminal velocity |
---|
212 | REAL(wp), PARAMETER :: a_rog = 9.65_wp !< parameter for fall velocity |
---|
213 | REAL(wp), PARAMETER :: b_rog = 10.43_wp !< parameter for fall velocity |
---|
214 | REAL(wp), PARAMETER :: c_rog = 0.6_wp !< parameter for fall velocity |
---|
215 | REAL(wp), PARAMETER :: k_cap_rog = 4.0_wp !< parameter for fall velocity |
---|
216 | REAL(wp), PARAMETER :: k_low_rog = 12.0_wp !< parameter for fall velocity |
---|
217 | REAL(wp), PARAMETER :: d0_rog = 0.745_wp !< separation diameter |
---|
218 | |
---|
219 | REAL(wp), DIMENSION(number_of_particles) :: ventilation_effect !< |
---|
220 | REAL(wp), DIMENSION(number_of_particles) :: new_r !< |
---|
221 | |
---|
222 | |
---|
223 | |
---|
224 | CALL cpu_log( log_point_s(42), 'lpm_droplet_condens', 'start' ) |
---|
225 | |
---|
226 | ! |
---|
227 | !-- Calculate temperature, saturation vapor pressure and current vapor pressure |
---|
228 | t_int = pt(kp,jp,ip) * ( hyp(kp) / 100000.0_wp )**0.286_wp |
---|
229 | e_s = 611.0_wp * EXP( l_d_rv * ( 3.6609E-3_wp - 1.0_wp / t_int ) ) |
---|
230 | e_a = q(kp,jp,ip) * hyp(kp) / ( 0.378_wp * q(kp,jp,ip) + 0.622_wp ) |
---|
231 | ! |
---|
232 | !-- Thermal conductivity for water (from Rogers and Yau, Table 7.1), |
---|
233 | !-- diffusivity for water vapor (after Hall und Pruppacher, 1976) |
---|
234 | thermal_conductivity_v = 7.94048E-05_wp * t_int + 0.00227011_wp |
---|
235 | diff_coeff_v = 0.211E-4_wp * ( t_int / 273.15_wp )**1.94_wp * & |
---|
236 | ( 101325.0_wp / hyp(kp) ) |
---|
237 | ! |
---|
238 | !-- Calculate effects of heat conductivity and diffusion of water vapor on the |
---|
239 | !-- condensation/evaporation process (typically known as 1.0 / (F_k + F_d) ) |
---|
240 | ddenom = 1.0_wp / ( rho_l * r_v * t_int / ( e_s * diff_coeff_v ) + & |
---|
241 | ( l_v / ( r_v * t_int ) - 1.0_wp ) * rho_l * & |
---|
242 | l_v / ( thermal_conductivity_v * t_int ) & |
---|
243 | ) |
---|
244 | |
---|
245 | new_r = 0.0_wp |
---|
246 | |
---|
247 | ! |
---|
248 | !-- Determine ventilation effect on evaporation of large drops |
---|
249 | DO n = 1, number_of_particles |
---|
250 | |
---|
251 | IF ( particles(n)%radius >= 4.0E-5_wp .AND. e_a / e_s < 1.0_wp ) THEN |
---|
252 | ! |
---|
253 | !-- Terminal velocity is computed for vertical direction (Rogers et al., |
---|
254 | !-- 1993, J. Appl. Meteorol.) |
---|
255 | diameter = particles(n)%radius * 2000.0_wp !diameter in mm |
---|
256 | IF ( diameter <= d0_rog ) THEN |
---|
257 | w_s = k_cap_rog * diameter * ( 1.0_wp - EXP( -k_low_rog * diameter ) ) |
---|
258 | ELSE |
---|
259 | w_s = a_rog - b_rog * EXP( -c_rog * diameter ) |
---|
260 | ENDIF |
---|
261 | ! |
---|
262 | !-- First calculate droplet's Reynolds number |
---|
263 | re_p = 2.0_wp * particles(n)%radius * w_s / molecular_viscosity |
---|
264 | ! |
---|
265 | !-- Ventilation coefficient (Rogers and Yau, 1989): |
---|
266 | IF ( re_p > 2.5_wp ) THEN |
---|
267 | ventilation_effect(n) = 0.78_wp + 0.28_wp * SQRT( re_p ) |
---|
268 | ELSE |
---|
269 | ventilation_effect(n) = 1.0_wp + 0.09_wp * re_p |
---|
270 | ENDIF |
---|
271 | ELSE |
---|
272 | ! |
---|
273 | !-- For small droplets or in supersaturated environments, the ventilation |
---|
274 | !-- effect does not play a role |
---|
275 | ventilation_effect(n) = 1.0_wp |
---|
276 | ENDIF |
---|
277 | ENDDO |
---|
278 | |
---|
279 | ! |
---|
280 | !-- Use analytic model for condensational growth |
---|
281 | IF( .NOT. curvature_solution_effects ) then |
---|
282 | DO n = 1, number_of_particles |
---|
283 | arg = particles(n)%radius**2 + 2.0_wp * dt_3d * ddenom * & |
---|
284 | ventilation_effect(n) * & |
---|
285 | ( e_a / e_s - 1.0_wp ) |
---|
286 | arg = MAX( arg, 1.0E-16_wp ) |
---|
287 | new_r(n) = SQRT( arg ) |
---|
288 | ENDDO |
---|
289 | ENDIF |
---|
290 | |
---|
291 | ! |
---|
292 | !-- If selected, use numerical solution of the condensational growth |
---|
293 | !-- equation (e.g., for studying the activation of aerosols). |
---|
294 | !-- Curvature and solutions effects are included in growth equation. |
---|
295 | !-- Change in Radius is calculated with a 4th-order Rosenbrock method |
---|
296 | !-- for stiff o.d.e's with monitoring local truncation error to adjust |
---|
297 | !-- stepsize (see Numerical recipes in FORTRAN, 2nd edition, p. 731). |
---|
298 | DO n = 1, number_of_particles |
---|
299 | IF ( curvature_solution_effects ) THEN |
---|
300 | |
---|
301 | ros_count = 0 |
---|
302 | repeat = .TRUE. |
---|
303 | ! |
---|
304 | !-- Carry out the Rosenbrock algorithm. In case of unreasonable results |
---|
305 | !-- the switch "repeat" will be set true and the algorithm will be carried |
---|
306 | !-- out again with the internal time step set to its initial (small) value. |
---|
307 | !-- Unreasonable results may occur if the external conditions, especially |
---|
308 | !-- the supersaturation, has significantly changed compared to the last |
---|
309 | !-- PALM timestep. |
---|
310 | DO WHILE ( repeat ) |
---|
311 | |
---|
312 | repeat = .FALSE. |
---|
313 | ! |
---|
314 | !-- Curvature effect (afactor) with surface tension parameterization |
---|
315 | !-- by Straka (2009) |
---|
316 | sigma = 0.0761_wp - 0.000155_wp * ( t_int - 273.15_wp ) |
---|
317 | afactor = 2.0_wp * sigma / ( rho_l * r_v * t_int ) |
---|
318 | ! |
---|
319 | !-- Solute effect (bfactor) |
---|
320 | bfactor = vanthoff * rho_s * particles(n)%rvar2**3 * & |
---|
321 | molecular_weight_of_water / & |
---|
322 | ( rho_l * molecular_weight_of_solute ) |
---|
323 | |
---|
324 | r_ros = particles(n)%radius |
---|
325 | dt_ros_sum = 0.0_wp ! internal integrated time (s) |
---|
326 | internal_timestep_count = 0 |
---|
327 | ! |
---|
328 | !-- Take internal time step values from the end of last PALM time step |
---|
329 | dt_ros_next = particles(n)%rvar1 |
---|
330 | |
---|
331 | ! |
---|
332 | !-- Internal time step should not be > 1.0E-2 and < 1.0E-6 |
---|
333 | IF ( dt_ros_next > 1.0E-2_wp ) THEN |
---|
334 | dt_ros_next = 1.0E-2_wp |
---|
335 | ELSEIF ( dt_ros_next < 1.0E-6_wp ) THEN |
---|
336 | dt_ros_next = 1.0E-6_wp |
---|
337 | ENDIF |
---|
338 | |
---|
339 | ! |
---|
340 | !-- If calculation of Rosenbrock method is repeated due to unreasonalble |
---|
341 | !-- results during previous try the initial internal time step has to be |
---|
342 | !-- reduced |
---|
343 | IF ( ros_count > 1 ) THEN |
---|
344 | dt_ros_next = dt_ros_next * 0.1_wp |
---|
345 | ELSEIF ( ros_count > 5 ) THEN |
---|
346 | ! |
---|
347 | !-- Prevent creation of infinite loop |
---|
348 | message_string = 'ros_count > 5 in Rosenbrock method' |
---|
349 | CALL message( 'lpm_droplet_condensation', 'PA0018', 2, 2, & |
---|
350 | 0, 6, 0 ) |
---|
351 | ENDIF |
---|
352 | |
---|
353 | ! |
---|
354 | !-- Internal time step must not be larger than PALM time step |
---|
355 | dt_ros = MIN( dt_ros_next, dt_3d ) |
---|
356 | |
---|
357 | ! |
---|
358 | !-- Integrate growth equation in time unless PALM time step is reached |
---|
359 | DO WHILE ( dt_ros_sum < dt_3d ) |
---|
360 | |
---|
361 | internal_timestep_count = internal_timestep_count + 1 |
---|
362 | |
---|
363 | ! |
---|
364 | !-- Derivative at starting value |
---|
365 | drdt = ddenom * ventilation_effect(n) * ( e_a / e_s - 1.0_wp - & |
---|
366 | afactor / r_ros + & |
---|
367 | bfactor / r_ros**3 & |
---|
368 | ) / r_ros |
---|
369 | |
---|
370 | drdt_ini = drdt |
---|
371 | dt_ros_sum_ini = dt_ros_sum |
---|
372 | r_ros_ini = r_ros |
---|
373 | |
---|
374 | ! |
---|
375 | !-- Calculate radial derivative of dr/dt |
---|
376 | d2rdtdr = ddenom * ventilation_effect(n) * & |
---|
377 | ( ( 1.0_wp - e_a / e_s ) / r_ros**2 + & |
---|
378 | 2.0_wp * afactor / r_ros**3 - & |
---|
379 | 4.0_wp * bfactor / r_ros**5 & |
---|
380 | ) |
---|
381 | ! |
---|
382 | !-- Adjust stepsize unless required accuracy is reached |
---|
383 | DO jtry = 1, maxtry+1 |
---|
384 | |
---|
385 | IF ( jtry == maxtry+1 ) THEN |
---|
386 | message_string = 'maxtry > 40 in Rosenbrock method' |
---|
387 | CALL message( 'lpm_droplet_condensation', 'PA0347', 0, & |
---|
388 | 1, 0, 6, 0 ) |
---|
389 | ENDIF |
---|
390 | |
---|
391 | aa = 1.0_wp / ( gam * dt_ros ) - d2rdtdr |
---|
392 | g1 = drdt_ini / aa |
---|
393 | r_ros = r_ros_ini + a21 * g1 |
---|
394 | drdt = ddenom * ventilation_effect(n) * ( e_a / e_s - 1.0_wp - & |
---|
395 | afactor / r_ros + & |
---|
396 | bfactor / r_ros**3 & |
---|
397 | ) / r_ros |
---|
398 | |
---|
399 | g2 = ( drdt + c21 * g1 / dt_ros )& |
---|
400 | / aa |
---|
401 | r_ros = r_ros_ini + a31 * g1 + a32 * g2 |
---|
402 | drdt = ddenom * ventilation_effect(n) * ( e_a / e_s - 1.0_wp - & |
---|
403 | afactor / r_ros + & |
---|
404 | bfactor / r_ros**3 & |
---|
405 | ) / r_ros |
---|
406 | |
---|
407 | g3 = ( drdt + & |
---|
408 | ( c31 * g1 + c32 * g2 ) / dt_ros ) / aa |
---|
409 | g4 = ( drdt + & |
---|
410 | ( c41 * g1 + c42 * g2 + c43 * g3 ) / dt_ros ) / aa |
---|
411 | r_ros = r_ros_ini + b1 * g1 + b2 * g2 + b3 * g3 + b4 * g4 |
---|
412 | |
---|
413 | dt_ros_sum = dt_ros_sum_ini + dt_ros |
---|
414 | |
---|
415 | IF ( dt_ros_sum == dt_ros_sum_ini ) THEN |
---|
416 | message_string = 'zero stepsize in Rosenbrock method' |
---|
417 | CALL message( 'lpm_droplet_condensation', 'PA0348', 2, & |
---|
418 | 2, 0, 6, 0 ) |
---|
419 | ENDIF |
---|
420 | ! |
---|
421 | !-- Calculate error |
---|
422 | err_ros = e1 * g1 + e2 * g2 + e3 * g3 + e4 * g4 |
---|
423 | errmax = 0.0_wp |
---|
424 | errmax = MAX( errmax, ABS( err_ros / r_ros_ini ) ) / eps_ros |
---|
425 | ! |
---|
426 | !-- Leave loop if accuracy is sufficient, otherwise try again |
---|
427 | !-- with a reduced stepsize |
---|
428 | IF ( errmax <= 1.0_wp ) THEN |
---|
429 | EXIT |
---|
430 | ELSE |
---|
431 | dt_ros = MAX( ABS( 0.9_wp * dt_ros * errmax**pshrnk ), & |
---|
432 | shrnk * ABS( dt_ros ) ) |
---|
433 | ENDIF |
---|
434 | |
---|
435 | ENDDO ! loop for stepsize adjustment |
---|
436 | |
---|
437 | ! |
---|
438 | !-- Calculate next internal time step |
---|
439 | IF ( errmax > errcon ) THEN |
---|
440 | dt_ros_next = 0.9_wp * dt_ros * errmax**pgrow |
---|
441 | ELSE |
---|
442 | dt_ros_next = grow * dt_ros |
---|
443 | ENDIF |
---|
444 | |
---|
445 | ! |
---|
446 | !-- Estimated time step is reduced if the PALM time step is exceeded |
---|
447 | IF ( ( dt_ros_next + dt_ros_sum ) >= dt_3d ) THEN |
---|
448 | dt_ros = dt_3d - dt_ros_sum |
---|
449 | ELSE |
---|
450 | dt_ros = dt_ros_next |
---|
451 | ENDIF |
---|
452 | |
---|
453 | ENDDO |
---|
454 | ! |
---|
455 | !-- Store internal time step value for next PALM step |
---|
456 | particles(n)%rvar1 = dt_ros_next |
---|
457 | |
---|
458 | ! |
---|
459 | !-- Radius should not fall below 1E-8 because Rosenbrock method may |
---|
460 | !-- lead to errors otherwise |
---|
461 | new_r(n) = MAX( r_ros, particles(n)%rvar2 ) |
---|
462 | ! |
---|
463 | !-- Check if calculated droplet radius change is reasonable since in |
---|
464 | !-- case of droplet evaporation the Rosenbrock method may lead to |
---|
465 | !-- secondary solutions which are physically unlikely. |
---|
466 | !-- Due to the solution effect the droplets may grow for relative |
---|
467 | !-- humidities below 100%, but change of radius should not be too |
---|
468 | !-- large. In case of unreasonable droplet growth the Rosenbrock |
---|
469 | !-- method is recalculated using a smaller initial time step. |
---|
470 | !-- Limiting values are tested for droplets down to 1.0E-7 |
---|
471 | IF ( new_r(n) - particles(n)%radius >= 3.0E-7_wp .AND. & |
---|
472 | e_a / e_s < 0.97_wp ) THEN |
---|
473 | ros_count = ros_count + 1 |
---|
474 | repeat = .TRUE. |
---|
475 | ENDIF |
---|
476 | |
---|
477 | ENDDO ! Rosenbrock method |
---|
478 | |
---|
479 | ENDIF |
---|
480 | |
---|
481 | delta_r = new_r(n) - particles(n)%radius |
---|
482 | |
---|
483 | ! |
---|
484 | !-- Sum up the change in volume of liquid water for the respective grid |
---|
485 | !-- volume (this is needed later in lpm_calc_liquid_water_content for |
---|
486 | !-- calculating the release of latent heat) |
---|
487 | ql_c(kp,jp,ip) = ql_c(kp,jp,ip) + particles(n)%weight_factor * & |
---|
488 | rho_l * 1.33333333_wp * pi * & |
---|
489 | ( new_r(n)**3 - particles(n)%radius**3 ) / & |
---|
490 | ( rho_surface * dx * dy * dz ) |
---|
491 | IF ( ql_c(kp,jp,ip) > 100.0_wp ) THEN |
---|
492 | WRITE( message_string, * ) 'k=',kp,' j=',jp,' i=',ip, & |
---|
493 | ' ql_c=',ql_c(kp,jp,ip), ' &part(',n,')%wf=', & |
---|
494 | particles(n)%weight_factor,' delta_r=',delta_r |
---|
495 | CALL message( 'lpm_droplet_condensation', 'PA0143', 2, 2, -1, 6, 1 ) |
---|
496 | ENDIF |
---|
497 | |
---|
498 | ! |
---|
499 | !-- Change the droplet radius |
---|
500 | IF ( ( new_r(n) - particles(n)%radius ) < 0.0_wp .AND. & |
---|
501 | new_r(n) < 0.0_wp ) THEN |
---|
502 | WRITE( message_string, * ) '#1 k=',kp,' j=',jp,' i=',ip, & |
---|
503 | ' e_s=',e_s, ' e_a=',e_a,' t_int=',t_int, & |
---|
504 | ' &delta_r=',delta_r, & |
---|
505 | ' particle_radius=',particles(n)%radius |
---|
506 | CALL message( 'lpm_droplet_condensation', 'PA0144', 2, 2, -1, 6, 1 ) |
---|
507 | ENDIF |
---|
508 | |
---|
509 | ! |
---|
510 | !-- Sum up the total volume of liquid water (needed below for |
---|
511 | !-- re-calculating the weighting factors) |
---|
512 | ql_v(kp,jp,ip) = ql_v(kp,jp,ip) + particles(n)%weight_factor * new_r(n)**3 |
---|
513 | |
---|
514 | particles(n)%radius = new_r(n) |
---|
515 | |
---|
516 | ! |
---|
517 | !-- Determine radius class of the particle needed for collision |
---|
518 | IF ( ( hall_kernel .OR. wang_kernel ) .AND. use_kernel_tables ) & |
---|
519 | THEN |
---|
520 | particles(n)%class = ( LOG( new_r(n) ) - rclass_lbound ) / & |
---|
521 | ( rclass_ubound - rclass_lbound ) * & |
---|
522 | radius_classes |
---|
523 | particles(n)%class = MIN( particles(n)%class, radius_classes ) |
---|
524 | particles(n)%class = MAX( particles(n)%class, 1 ) |
---|
525 | ENDIF |
---|
526 | |
---|
527 | ENDDO |
---|
528 | |
---|
529 | CALL cpu_log( log_point_s(42), 'lpm_droplet_condens', 'stop' ) |
---|
530 | |
---|
531 | |
---|
532 | END SUBROUTINE lpm_droplet_condensation |
---|