1 | SUBROUTINE lpm_droplet_condensation |
---|
2 | |
---|
3 | !--------------------------------------------------------------------------------! |
---|
4 | ! This file is part of PALM. |
---|
5 | ! |
---|
6 | ! PALM is free software: you can redistribute it and/or modify it under the terms |
---|
7 | ! of the GNU General Public License as published by the Free Software Foundation, |
---|
8 | ! either version 3 of the License, or (at your option) any later version. |
---|
9 | ! |
---|
10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
13 | ! |
---|
14 | ! You should have received a copy of the GNU General Public License along with |
---|
15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
16 | ! |
---|
17 | ! Copyright 1997-2012 Leibniz University Hannover |
---|
18 | !--------------------------------------------------------------------------------! |
---|
19 | ! |
---|
20 | ! Current revisions: |
---|
21 | ! ------------------ |
---|
22 | ! |
---|
23 | ! |
---|
24 | ! Former revisions: |
---|
25 | ! ----------------- |
---|
26 | ! $Id: lpm_droplet_condensation.f90 1072 2012-11-29 17:04:39Z maronga $ |
---|
27 | ! |
---|
28 | ! 1071 2012-11-29 16:54:55Z franke |
---|
29 | ! Ventilation effect for evaporation of large droplets included |
---|
30 | ! Check for unreasonable results included in calculation of Rosenbrock method |
---|
31 | ! since physically unlikely results were observed and for the same |
---|
32 | ! reason the first internal time step in Rosenbrock method should be < 1.0E02 in |
---|
33 | ! case of evaporation |
---|
34 | ! Unnecessary calculation of ql_int removed |
---|
35 | ! Unnecessary calculations in Rosenbrock method (d2rdt2, drdt_m, dt_ros_last) |
---|
36 | ! removed |
---|
37 | ! Bugfix: factor in calculation of surface tension changed from 0.00155 to |
---|
38 | ! 0.000155 |
---|
39 | ! |
---|
40 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
41 | ! code put under GPL (PALM 3.9) |
---|
42 | ! |
---|
43 | ! 849 2012-03-15 10:35:09Z raasch |
---|
44 | ! initial revision (former part of advec_particles) |
---|
45 | ! |
---|
46 | ! |
---|
47 | ! Description: |
---|
48 | ! ------------ |
---|
49 | ! Calculates change in droplet radius by condensation/evaporation, using |
---|
50 | ! either an analytic formula or by numerically integrating the radius growth |
---|
51 | ! equation including curvature and solution effects using Rosenbrocks method |
---|
52 | ! (see Numerical recipes in FORTRAN, 2nd edition, p. 731). |
---|
53 | ! The analytical formula and growth equation follow those given in |
---|
54 | ! Rogers and Yau (A short course in cloud physics, 3rd edition, p. 102/103). |
---|
55 | !------------------------------------------------------------------------------! |
---|
56 | |
---|
57 | USE arrays_3d |
---|
58 | USE cloud_parameters |
---|
59 | USE constants |
---|
60 | USE control_parameters |
---|
61 | USE cpulog |
---|
62 | USE grid_variables |
---|
63 | USE interfaces |
---|
64 | USE lpm_collision_kernels_mod |
---|
65 | USE particle_attributes |
---|
66 | |
---|
67 | IMPLICIT NONE |
---|
68 | |
---|
69 | INTEGER :: i, internal_timestep_count, j, jtry, k, n, ros_count |
---|
70 | |
---|
71 | INTEGER, PARAMETER :: maxtry = 40 |
---|
72 | |
---|
73 | LOGICAL :: repeat |
---|
74 | |
---|
75 | REAL :: aa, afactor, arg, bb, cc, dd, ddenom, delta_r, drdt, drdt_ini, & |
---|
76 | dt_ros, dt_ros_next, dt_ros_sum, dt_ros_sum_ini, d2rdtdr, errmax, & |
---|
77 | err_ros, g1, g2, g3, g4, e_a, e_s, gg, new_r, p_int, pt_int, & |
---|
78 | pt_int_l, pt_int_u, q_int, q_int_l, q_int_u, ql_int, ql_int_l, & |
---|
79 | ql_int_u, r_ros, r_ros_ini, sigma, t_int, x, y, re_p |
---|
80 | |
---|
81 | ! |
---|
82 | !-- Parameters for Rosenbrock method |
---|
83 | REAL, PARAMETER :: a21 = 2.0, a31 = 48.0/25.0, a32 = 6.0/25.0, & |
---|
84 | b1 = 19.0/9.0, b2 = 0.5, b3 = 25.0/108.0, & |
---|
85 | b4 = 125.0/108.0, c21 = -8.0, c31 = 372.0/25.0, & |
---|
86 | c32 = 12.0/5.0, c41 = -112.0/125.0, & |
---|
87 | c42 = -54.0/125.0, c43 = -2.0/5.0, & |
---|
88 | errcon = 0.1296, e1 = 17.0/54.0, e2 = 7.0/36.0, & |
---|
89 | e3 = 0.0, e4 = 125.0/108.0, gam = 0.5, grow = 1.5, & |
---|
90 | pgrow = -0.25, pshrnk = -1.0/3.0, shrnk = 0.5 |
---|
91 | |
---|
92 | |
---|
93 | CALL cpu_log( log_point_s(42), 'lpm_droplet_condens', 'start' ) |
---|
94 | |
---|
95 | DO n = 1, number_of_particles |
---|
96 | ! |
---|
97 | !-- Interpolate temperature and humidity. |
---|
98 | !-- First determine left, south, and bottom index of the arrays. |
---|
99 | i = particles(n)%x * ddx |
---|
100 | j = particles(n)%y * ddy |
---|
101 | k = ( particles(n)%z + 0.5 * dz * atmos_ocean_sign ) / dz & |
---|
102 | + offset_ocean_nzt ! only exact if equidistant |
---|
103 | |
---|
104 | x = particles(n)%x - i * dx |
---|
105 | y = particles(n)%y - j * dy |
---|
106 | aa = x**2 + y**2 |
---|
107 | bb = ( dx - x )**2 + y**2 |
---|
108 | cc = x**2 + ( dy - y )**2 |
---|
109 | dd = ( dx - x )**2 + ( dy - y )**2 |
---|
110 | gg = aa + bb + cc + dd |
---|
111 | |
---|
112 | pt_int_l = ( ( gg - aa ) * pt(k,j,i) + ( gg - bb ) * pt(k,j,i+1) & |
---|
113 | + ( gg - cc ) * pt(k,j+1,i) + ( gg - dd ) * pt(k,j+1,i+1) & |
---|
114 | ) / ( 3.0 * gg ) |
---|
115 | |
---|
116 | pt_int_u = ( ( gg-aa ) * pt(k+1,j,i) + ( gg-bb ) * pt(k+1,j,i+1) & |
---|
117 | + ( gg-cc ) * pt(k+1,j+1,i) + ( gg-dd ) * pt(k+1,j+1,i+1) & |
---|
118 | ) / ( 3.0 * gg ) |
---|
119 | |
---|
120 | pt_int = pt_int_l + ( particles(n)%z - zu(k) ) / dz * & |
---|
121 | ( pt_int_u - pt_int_l ) |
---|
122 | |
---|
123 | q_int_l = ( ( gg - aa ) * q(k,j,i) + ( gg - bb ) * q(k,j,i+1) & |
---|
124 | + ( gg - cc ) * q(k,j+1,i) + ( gg - dd ) * q(k,j+1,i+1) & |
---|
125 | ) / ( 3.0 * gg ) |
---|
126 | |
---|
127 | q_int_u = ( ( gg-aa ) * q(k+1,j,i) + ( gg-bb ) * q(k+1,j,i+1) & |
---|
128 | + ( gg-cc ) * q(k+1,j+1,i) + ( gg-dd ) * q(k+1,j+1,i+1) & |
---|
129 | ) / ( 3.0 * gg ) |
---|
130 | |
---|
131 | q_int = q_int_l + ( particles(n)%z - zu(k) ) / dz * & |
---|
132 | ( q_int_u - q_int_l ) |
---|
133 | |
---|
134 | ! |
---|
135 | !-- Calculate real temperature and saturation vapor pressure |
---|
136 | p_int = hyp(k) + ( particles(n)%z - zu(k) ) / dz * ( hyp(k+1)-hyp(k) ) |
---|
137 | t_int = pt_int * ( p_int / 100000.0 )**0.286 |
---|
138 | |
---|
139 | e_s = 611.0 * EXP( l_d_rv * ( 3.6609E-3 - 1.0 / t_int ) ) |
---|
140 | |
---|
141 | ! |
---|
142 | !-- Current vapor pressure |
---|
143 | e_a = q_int * p_int / ( 0.378 * q_int + 0.622 ) |
---|
144 | |
---|
145 | ! |
---|
146 | !-- Thermal conductivity for water (from Rogers and Yau, Table 7.1), |
---|
147 | !-- diffusivity for water vapor (after Hall und Pruppacher, 1976) |
---|
148 | thermal_conductivity_l = 7.94048E-05 * t_int + 0.00227011 |
---|
149 | diff_coeff_l = 0.211E-4 * ( t_int / 273.15 )**1.94 * & |
---|
150 | ( 101325.0 / p_int) |
---|
151 | ! |
---|
152 | !-- Change in radius by condensation/evaporation |
---|
153 | IF ( particles(n)%radius >= 4.0E-5 .AND. e_a/e_s < 1.0 ) THEN |
---|
154 | ! |
---|
155 | !-- Approximation for large radii, where curvature and solution effects |
---|
156 | !-- can be neglected but ventilation effect has to be included in case of |
---|
157 | !-- evaporation. |
---|
158 | !-- First calculate the droplet's Reynolds number |
---|
159 | re_p = 2.0 * particles(n)%radius * ABS( particles(n)%speed_z ) / & |
---|
160 | molecular_viscosity |
---|
161 | ! |
---|
162 | !-- Ventilation coefficient after Rogers and Yau, 1989 |
---|
163 | IF ( re_p > 2.5 ) THEN |
---|
164 | afactor = 0.78 + 0.28 * SQRT( re_p ) |
---|
165 | ELSE |
---|
166 | afactor = 1.0 + 0.09 * re_p |
---|
167 | ENDIF |
---|
168 | |
---|
169 | arg = particles(n)%radius**2 + 2.0 * dt_3d * afactor * & |
---|
170 | ( e_a / e_s - 1.0 ) / & |
---|
171 | ( ( l_d_rv / t_int - 1.0 ) * l_v * rho_l / t_int / & |
---|
172 | thermal_conductivity_l + & |
---|
173 | rho_l * r_v * t_int / diff_coeff_l / e_s ) |
---|
174 | |
---|
175 | new_r = SQRT( arg ) |
---|
176 | |
---|
177 | ELSEIF ( particles(n)%radius >= 1.0E-6 .OR. & |
---|
178 | .NOT. curvature_solution_effects ) THEN |
---|
179 | ! |
---|
180 | !-- Approximation for larger radii in case that curvature and solution |
---|
181 | !-- effects are neglected and ventilation effects does not play a role |
---|
182 | arg = particles(n)%radius**2 + 2.0 * dt_3d * & |
---|
183 | ( e_a / e_s - 1.0 ) / & |
---|
184 | ( ( l_d_rv / t_int - 1.0 ) * l_v * rho_l / t_int / & |
---|
185 | thermal_conductivity_l + & |
---|
186 | rho_l * r_v * t_int / diff_coeff_l / e_s ) |
---|
187 | IF ( arg < 1.0E-16 ) THEN |
---|
188 | new_r = 1.0E-8 |
---|
189 | ELSE |
---|
190 | new_r = SQRT( arg ) |
---|
191 | ENDIF |
---|
192 | ENDIF |
---|
193 | |
---|
194 | IF ( curvature_solution_effects .AND. & |
---|
195 | ( ( particles(n)%radius < 1.0E-6 ) .OR. ( new_r < 1.0E-6 ) ) ) & |
---|
196 | THEN |
---|
197 | ! |
---|
198 | !-- Curvature and solutions effects are included in growth equation. |
---|
199 | !-- Change in Radius is calculated with 4th-order Rosenbrock method |
---|
200 | !-- for stiff o.d.e's with monitoring local truncation error to adjust |
---|
201 | !-- stepsize (see Numerical recipes in FORTRAN, 2nd edition, p. 731). |
---|
202 | !-- For larger radii the simple analytic method (see ELSE) gives |
---|
203 | !-- almost the same results. |
---|
204 | |
---|
205 | ros_count = 0 |
---|
206 | repeat = .TRUE. |
---|
207 | ! |
---|
208 | !-- Carry out the Rosenbrock algorithm. In case of unreasonable results |
---|
209 | !-- the switch "repeat" will be set true and the algorithm will be carried |
---|
210 | !-- out again with the internal time step set to its initial (small) value. |
---|
211 | !-- Unreasonable results may occur if the external conditions, especially the |
---|
212 | !-- supersaturation, has significantly changed compared to the last PALM |
---|
213 | !-- timestep. |
---|
214 | DO WHILE ( repeat ) |
---|
215 | |
---|
216 | repeat = .FALSE. |
---|
217 | ! |
---|
218 | !-- Surface tension after (Straka, 2009) |
---|
219 | sigma = 0.0761 - 0.000155 * ( t_int - 273.15 ) |
---|
220 | |
---|
221 | r_ros = particles(n)%radius |
---|
222 | dt_ros_sum = 0.0 ! internal integrated time (s) |
---|
223 | internal_timestep_count = 0 |
---|
224 | |
---|
225 | ddenom = 1.0 / ( rho_l * r_v * t_int / ( e_s * diff_coeff_l ) + & |
---|
226 | ( l_v / ( r_v * t_int ) - 1.0 ) * & |
---|
227 | rho_l * l_v / ( thermal_conductivity_l * t_int )& |
---|
228 | ) |
---|
229 | |
---|
230 | afactor = 2.0 * sigma / ( rho_l * r_v * t_int ) |
---|
231 | |
---|
232 | ! |
---|
233 | !-- Take internal time step values from the end of last PALM time step |
---|
234 | dt_ros_next = particles(n)%rvar1 |
---|
235 | |
---|
236 | ! |
---|
237 | !-- Internal time step should not be > 1.0E-2 in case of evaporation |
---|
238 | !-- because larger values may lead to secondary solutions which are |
---|
239 | !-- physically unlikely |
---|
240 | IF ( dt_ros_next > 1.0E-2 .AND. e_a/e_s < 1.0 ) THEN |
---|
241 | dt_ros_next = 1.0E-3 |
---|
242 | ENDIF |
---|
243 | ! |
---|
244 | !-- If calculation of Rosenbrock method is repeated due to unreasonalble |
---|
245 | !-- results during previous try the initial internal time step has to be |
---|
246 | !-- reduced |
---|
247 | IF ( ros_count > 1 ) THEN |
---|
248 | dt_ros_next = dt_ros_next - ( 0.2 * dt_ros_next ) |
---|
249 | ELSEIF ( ros_count > 5 ) THEN |
---|
250 | ! |
---|
251 | !-- Prevent creation of infinite loop |
---|
252 | message_string = 'ros_count > 5 in Rosenbrock method' |
---|
253 | CALL message( 'lpm_droplet_condensation', 'PA0018', 2, 2, & |
---|
254 | 0, 6, 0 ) |
---|
255 | ENDIF |
---|
256 | |
---|
257 | ! |
---|
258 | !-- Internal time step must not be larger than PALM time step |
---|
259 | dt_ros = MIN( dt_ros_next, dt_3d ) |
---|
260 | ! |
---|
261 | !-- Integrate growth equation in time unless PALM time step is reached |
---|
262 | DO WHILE ( dt_ros_sum < dt_3d ) |
---|
263 | |
---|
264 | internal_timestep_count = internal_timestep_count + 1 |
---|
265 | |
---|
266 | ! |
---|
267 | !-- Derivative at starting value |
---|
268 | drdt = ddenom / r_ros * ( e_a / e_s - 1.0 - afactor / r_ros + & |
---|
269 | bfactor / r_ros**3 ) |
---|
270 | drdt_ini = drdt |
---|
271 | dt_ros_sum_ini = dt_ros_sum |
---|
272 | r_ros_ini = r_ros |
---|
273 | |
---|
274 | ! |
---|
275 | !-- Calculate radial derivative of dr/dt |
---|
276 | d2rdtdr = ddenom * ( ( 1.0 - e_a/e_s ) / r_ros**2 + & |
---|
277 | 2.0 * afactor / r_ros**3 - & |
---|
278 | 4.0 * bfactor / r_ros**5 ) |
---|
279 | ! |
---|
280 | !-- Adjust stepsize unless required accuracy is reached |
---|
281 | DO jtry = 1, maxtry+1 |
---|
282 | |
---|
283 | IF ( jtry == maxtry+1 ) THEN |
---|
284 | message_string = 'maxtry > 40 in Rosenbrock method' |
---|
285 | CALL message( 'lpm_droplet_condensation', 'PA0347', 2, 2, & |
---|
286 | 0, 6, 0 ) |
---|
287 | ENDIF |
---|
288 | |
---|
289 | aa = 1.0 / ( gam * dt_ros ) - d2rdtdr |
---|
290 | g1 = drdt_ini / aa |
---|
291 | r_ros = r_ros_ini + a21 * g1 |
---|
292 | drdt = ddenom / r_ros * ( e_a / e_s - 1.0 - & |
---|
293 | afactor / r_ros + & |
---|
294 | bfactor / r_ros**3 ) |
---|
295 | |
---|
296 | g2 = ( drdt + c21 * g1 / dt_ros )& |
---|
297 | / aa |
---|
298 | r_ros = r_ros_ini + a31 * g1 + a32 * g2 |
---|
299 | drdt = ddenom / r_ros * ( e_a / e_s - 1.0 - & |
---|
300 | afactor / r_ros + & |
---|
301 | bfactor / r_ros**3 ) |
---|
302 | |
---|
303 | g3 = ( drdt + & |
---|
304 | ( c31 * g1 + c32 * g2 ) / dt_ros ) / aa |
---|
305 | g4 = ( drdt + & |
---|
306 | ( c41 * g1 + c42 * g2 + c43 * g3 ) / dt_ros ) / aa |
---|
307 | r_ros = r_ros_ini + b1 * g1 + b2 * g2 + b3 * g3 + b4 * g4 |
---|
308 | |
---|
309 | dt_ros_sum = dt_ros_sum_ini + dt_ros |
---|
310 | |
---|
311 | IF ( dt_ros_sum == dt_ros_sum_ini ) THEN |
---|
312 | message_string = 'zero stepsize in Rosenbrock method' |
---|
313 | CALL message( 'lpm_droplet_condensation', 'PA0348', 2, 2, & |
---|
314 | 0, 6, 0 ) |
---|
315 | ENDIF |
---|
316 | ! |
---|
317 | !-- Calculate error |
---|
318 | err_ros = e1*g1 + e2*g2 + e3*g3 + e4*g4 |
---|
319 | errmax = 0.0 |
---|
320 | errmax = MAX( errmax, ABS( err_ros / r_ros_ini ) ) / eps_ros |
---|
321 | ! |
---|
322 | !-- Leave loop if accuracy is sufficient, otherwise try again |
---|
323 | !-- with a reduced stepsize |
---|
324 | IF ( errmax <= 1.0 ) THEN |
---|
325 | EXIT |
---|
326 | ELSE |
---|
327 | dt_ros = SIGN( MAX( ABS( 0.9 * dt_ros * errmax**pshrnk ), & |
---|
328 | shrnk * ABS( dt_ros ) ), dt_ros ) |
---|
329 | ENDIF |
---|
330 | |
---|
331 | ENDDO ! loop for stepsize adjustment |
---|
332 | |
---|
333 | ! |
---|
334 | !-- Calculate next internal time step |
---|
335 | IF ( errmax > errcon ) THEN |
---|
336 | dt_ros_next = 0.9 * dt_ros * errmax**pgrow |
---|
337 | ELSE |
---|
338 | dt_ros_next = grow * dt_ros |
---|
339 | ENDIF |
---|
340 | |
---|
341 | ! |
---|
342 | !-- Estimated time step is reduced if the PALM time step is exceeded |
---|
343 | IF ( ( dt_ros_next + dt_ros_sum ) >= dt_3d ) THEN |
---|
344 | dt_ros = dt_3d - dt_ros_sum |
---|
345 | ELSE |
---|
346 | dt_ros = dt_ros_next |
---|
347 | ENDIF |
---|
348 | |
---|
349 | ENDDO |
---|
350 | ! |
---|
351 | !-- Store internal time step value for next PALM step |
---|
352 | particles(n)%rvar1 = dt_ros_next |
---|
353 | |
---|
354 | new_r = r_ros |
---|
355 | ! |
---|
356 | !-- Radius should not fall below 1E-8 because Rosenbrock method may |
---|
357 | !-- lead to errors otherwise |
---|
358 | new_r = MAX( new_r, 1.0E-8 ) |
---|
359 | ! |
---|
360 | !-- Check if calculated droplet radius change is reasonable since in |
---|
361 | !-- case of droplet evaporation the Rosenbrock method may lead to |
---|
362 | !-- secondary solutions which are physically unlikely. |
---|
363 | !-- Due to the solution effect the droplets may grow for relative |
---|
364 | !-- humidities below 100%, but change of radius should not be too large. |
---|
365 | !-- In case of unreasonable droplet growth the Rosenbrock method is |
---|
366 | !-- recalculated using a smaller initial time step. |
---|
367 | !-- Limiting values are tested for droplets down to 1.0E-7 |
---|
368 | IF ( new_r - particles(n)%radius >= 3.0E-7 .AND. & |
---|
369 | e_a/e_s < 0.97 ) THEN |
---|
370 | ros_count = ros_count + 1 |
---|
371 | repeat = .TRUE. |
---|
372 | ENDIF |
---|
373 | |
---|
374 | ENDDO ! Rosenbrock method |
---|
375 | |
---|
376 | ENDIF |
---|
377 | |
---|
378 | delta_r = new_r - particles(n)%radius |
---|
379 | |
---|
380 | ! |
---|
381 | !-- Sum up the change in volume of liquid water for the respective grid |
---|
382 | !-- volume (this is needed later in lpm_calc_liquid_water_content for |
---|
383 | !-- calculating the release of latent heat) |
---|
384 | i = ( particles(n)%x + 0.5 * dx ) * ddx |
---|
385 | j = ( particles(n)%y + 0.5 * dy ) * ddy |
---|
386 | k = particles(n)%z / dz + 1 + offset_ocean_nzt_m1 |
---|
387 | ! only exact if equidistant |
---|
388 | |
---|
389 | ql_c(k,j,i) = ql_c(k,j,i) + particles(n)%weight_factor * & |
---|
390 | rho_l * 1.33333333 * pi * & |
---|
391 | ( new_r**3 - particles(n)%radius**3 ) / & |
---|
392 | ( rho_surface * dx * dy * dz ) |
---|
393 | IF ( ql_c(k,j,i) > 100.0 ) THEN |
---|
394 | WRITE( message_string, * ) 'k=',k,' j=',j,' i=',i, & |
---|
395 | ' ql_c=',ql_c(k,j,i), ' &part(',n,')%wf=', & |
---|
396 | particles(n)%weight_factor,' delta_r=',delta_r |
---|
397 | CALL message( 'lpm_droplet_condensation', 'PA0143', 2, 2, -1, 6, 1 ) |
---|
398 | ENDIF |
---|
399 | |
---|
400 | ! |
---|
401 | !-- Change the droplet radius |
---|
402 | IF ( ( new_r - particles(n)%radius ) < 0.0 .AND. new_r < 0.0 ) & |
---|
403 | THEN |
---|
404 | WRITE( message_string, * ) '#1 k=',k,' j=',j,' i=',i, & |
---|
405 | ' e_s=',e_s, ' e_a=',e_a,' t_int=',t_int, & |
---|
406 | ' &delta_r=',delta_r, & |
---|
407 | ' particle_radius=',particles(n)%radius |
---|
408 | CALL message( 'lpm_droplet_condensation', 'PA0144', 2, 2, -1, 6, 1 ) |
---|
409 | ENDIF |
---|
410 | |
---|
411 | ! |
---|
412 | !-- Sum up the total volume of liquid water (needed below for |
---|
413 | !-- re-calculating the weighting factors) |
---|
414 | ql_v(k,j,i) = ql_v(k,j,i) + particles(n)%weight_factor * new_r**3 |
---|
415 | |
---|
416 | particles(n)%radius = new_r |
---|
417 | |
---|
418 | ! |
---|
419 | !-- Determine radius class of the particle needed for collision |
---|
420 | IF ( ( hall_kernel .OR. wang_kernel ) .AND. use_kernel_tables ) & |
---|
421 | THEN |
---|
422 | particles(n)%class = ( LOG( new_r ) - rclass_lbound ) / & |
---|
423 | ( rclass_ubound - rclass_lbound ) * & |
---|
424 | radius_classes |
---|
425 | particles(n)%class = MIN( particles(n)%class, radius_classes ) |
---|
426 | particles(n)%class = MAX( particles(n)%class, 1 ) |
---|
427 | ENDIF |
---|
428 | |
---|
429 | ENDDO |
---|
430 | |
---|
431 | CALL cpu_log( log_point_s(42), 'lpm_droplet_condens', 'stop' ) |
---|
432 | |
---|
433 | |
---|
434 | END SUBROUTINE lpm_droplet_condensation |
---|