source: palm/trunk/SOURCE/lpm_droplet_condensation.f90 @ 3882

Last change on this file since 3882 was 3655, checked in by knoop, 6 years ago

Bugfix: made "unit" and "found" intend INOUT in module interface subroutines + automatic copyright update

  • Property svn:keywords set to Id
File size: 17.7 KB
RevLine 
[1682]1!> @file lpm_droplet_condensation.f90
[2000]2!------------------------------------------------------------------------------!
[2696]3! This file is part of the PALM model system.
[1036]4!
[2000]5! PALM is free software: you can redistribute it and/or modify it under the
6! terms of the GNU General Public License as published by the Free Software
7! Foundation, either version 3 of the License, or (at your option) any later
8! version.
[1036]9!
10! PALM is distributed in the hope that it will be useful, but WITHOUT ANY
11! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
12! A PARTICULAR PURPOSE.  See the GNU General Public License for more details.
13!
14! You should have received a copy of the GNU General Public License along with
15! PALM. If not, see <http://www.gnu.org/licenses/>.
16!
[3655]17! Copyright 1997-2019 Leibniz Universitaet Hannover
[2000]18!------------------------------------------------------------------------------!
[1036]19!
[849]20! Current revisions:
21! ------------------
[2375]22!
[3049]23!
[1891]24! Former revisions:
25! -----------------
26! $Id: lpm_droplet_condensation.f90 3655 2019-01-07 16:51:22Z suehring $
[3274]27! Modularization of all bulk cloud physics code components
28!
29! 3241 2018-09-12 15:02:00Z raasch
[3241]30! unused variables removed
31!
32! 3049 2018-05-29 13:52:36Z Giersch
[3045]33! Error messages revised
34!
[3049]35! 3045 2018-05-28 07:55:41Z Giersch
36! Error messages revised
37!
[3045]38! 3039 2018-05-24 13:13:11Z schwenkel
[3039]39! bugfix for lcm with grid stretching
40!
41! 2718 2018-01-02 08:49:38Z maronga
[2716]42! Corrected "Former revisions" section
43!
44! 2696 2017-12-14 17:12:51Z kanani
45! Change in file header (GPL part)
46!
47! 2608 2017-11-13 14:04:26Z schwenkel
[2608]48! Calculation of magnus equation in external module (diagnostic_quantities_mod).
49!
50! 2375 2017-08-29 14:10:28Z schwenkel
[2375]51! Changed ONLY-dependencies
52!
53! 2312 2017-07-14 20:26:51Z hoffmann
[2312]54! Rosenbrock scheme improved. Gas-kinetic effect added.
[1891]55!
[2001]56! 2000 2016-08-20 18:09:15Z knoop
57! Forced header and separation lines into 80 columns
[2312]58!
[1891]59! 1890 2016-04-22 08:52:11Z hoffmann
[1890]60! Some improvements of the Rosenbrock method. If the Rosenbrock method needs more
61! than 40 iterations to find a sufficient time setp, the model is not aborted.
[2312]62! This might lead to small erros. But they can be assumend as negligible, since
63! the maximum timesetp of the Rosenbrock method after 40 iterations will be
64! smaller than 10^-16 s.
65!
[1872]66! 1871 2016-04-15 11:46:09Z hoffmann
67! Initialization of aerosols added.
68!
[1851]69! 1849 2016-04-08 11:33:18Z hoffmann
[1852]70! Interpolation of supersaturation has been removed because it is not in
71! accordance with the release/depletion of latent heat/water vapor in
[1849]72! interaction_droplets_ptq.
73! Calculation of particle Reynolds number has been corrected.
[1852]74! eps_ros added from modules.
[1849]75!
[1832]76! 1831 2016-04-07 13:15:51Z hoffmann
77! curvature_solution_effects moved to particle_attributes
78!
[1823]79! 1822 2016-04-07 07:49:42Z hoffmann
80! Unused variables removed.
81!
[1683]82! 1682 2015-10-07 23:56:08Z knoop
[2312]83! Code annotations made doxygen readable
84!
[1360]85! 1359 2014-04-11 17:15:14Z hoffmann
[2312]86! New particle structure integrated.
[1360]87! Kind definition added to all floating point numbers.
88!
[1347]89! 1346 2014-03-27 13:18:20Z heinze
[2312]90! Bugfix: REAL constants provided with KIND-attribute especially in call of
[1347]91! intrinsic function like MAX, MIN, SIGN
92!
[1323]93! 1322 2014-03-20 16:38:49Z raasch
94! REAL constants defined as wp-kind
95!
[1321]96! 1320 2014-03-20 08:40:49Z raasch
[1320]97! ONLY-attribute added to USE-statements,
98! kind-parameters added to all INTEGER and REAL declaration statements,
99! kinds are defined in new module kinds,
100! comment fields (!:) to be used for variable explanations added to
101! all variable declaration statements
[1072]102!
[1319]103! 1318 2014-03-17 13:35:16Z raasch
104! module interfaces removed
105!
[1093]106! 1092 2013-02-02 11:24:22Z raasch
107! unused variables removed
108!
[1072]109! 1071 2012-11-29 16:54:55Z franke
[1071]110! Ventilation effect for evaporation of large droplets included
111! Check for unreasonable results included in calculation of Rosenbrock method
112! since physically unlikely results were observed and for the same
113! reason the first internal time step in Rosenbrock method should be < 1.0E02 in
114! case of evaporation
115! Unnecessary calculation of ql_int removed
116! Unnecessary calculations in Rosenbrock method (d2rdt2, drdt_m, dt_ros_last)
117! removed
118! Bugfix: factor in calculation of surface tension changed from 0.00155 to
119! 0.000155
[849]120!
[1037]121! 1036 2012-10-22 13:43:42Z raasch
122! code put under GPL (PALM 3.9)
123!
[850]124! 849 2012-03-15 10:35:09Z raasch
125! initial revision (former part of advec_particles)
[849]126!
[850]127!
[849]128! Description:
129! ------------
[1682]130!> Calculates change in droplet radius by condensation/evaporation, using
131!> either an analytic formula or by numerically integrating the radius growth
132!> equation including curvature and solution effects using Rosenbrocks method
133!> (see Numerical recipes in FORTRAN, 2nd edition, p. 731).
134!> The analytical formula and growth equation follow those given in
135!> Rogers and Yau (A short course in cloud physics, 3rd edition, p. 102/103).
[849]136!------------------------------------------------------------------------------!
[1682]137 SUBROUTINE lpm_droplet_condensation (ip,jp,kp)
[849]138
[2312]139
[1320]140    USE arrays_3d,                                                             &
[3274]141        ONLY:  dzw, hyp, pt, q, ql_c, ql_v, exner
[849]142
[3274]143    USE basic_constants_and_equations_mod,                                     &
144        ONLY:  l_v, molecular_weight_of_solute, molecular_weight_of_water,     &
[3361]145               magnus, pi, rho_l, rho_s, rd_d_rv, r_v, vanthoff
[849]146
[1320]147    USE control_parameters,                                                    &
[3241]148        ONLY:  dt_3d, message_string, molecular_viscosity, rho_surface
[1822]149
[1320]150    USE cpulog,                                                                &
151        ONLY:  cpu_log, log_point_s
[849]152
[1320]153    USE grid_variables,                                                        &
[1822]154        ONLY:  dx, dy
[1071]155
[1320]156    USE lpm_collision_kernels_mod,                                             &
157        ONLY:  rclass_lbound, rclass_ubound
[849]158
[1320]159    USE kinds
160
161    USE particle_attributes,                                                   &
[3241]162        ONLY:  curvature_solution_effects, number_of_particles,   &
163               particles, radius_classes, use_kernel_tables
[1320]164
165    IMPLICIT NONE
166
[1682]167    INTEGER(iwp) :: ip                         !<
168    INTEGER(iwp) :: jp                         !<
169    INTEGER(iwp) :: kp                         !<
170    INTEGER(iwp) :: n                          !<
[1320]171
[1849]172    REAL(wp) ::  afactor                       !< curvature effects
[1682]173    REAL(wp) ::  arg                           !<
[1849]174    REAL(wp) ::  bfactor                       !< solute effects
[1682]175    REAL(wp) ::  ddenom                        !<
176    REAL(wp) ::  delta_r                       !<
[1849]177    REAL(wp) ::  diameter                      !< diameter of cloud droplets
[2312]178    REAL(wp) ::  diff_coeff                    !< diffusivity for water vapor
[1682]179    REAL(wp) ::  drdt                          !<
180    REAL(wp) ::  dt_ros                        !<
181    REAL(wp) ::  dt_ros_sum                    !<
182    REAL(wp) ::  d2rdtdr                       !<
[1849]183    REAL(wp) ::  e_a                           !< current vapor pressure
184    REAL(wp) ::  e_s                           !< current saturation vapor pressure
[2312]185    REAL(wp) ::  error                         !< local truncation error in Rosenbrock
186    REAL(wp) ::  k1                            !<
187    REAL(wp) ::  k2                            !<
188    REAL(wp) ::  r_err                         !< First order estimate of Rosenbrock radius
189    REAL(wp) ::  r_ros                         !< Rosenbrock radius
190    REAL(wp) ::  r_ros_ini                     !< initial Rosenbrock radius
191    REAL(wp) ::  r0                            !< gas-kinetic lengthscale
192    REAL(wp) ::  sigma                         !< surface tension of water
193    REAL(wp) ::  thermal_conductivity          !< thermal conductivity for water
[1849]194    REAL(wp) ::  t_int                         !< temperature
195    REAL(wp) ::  w_s                           !< terminal velocity of droplets
[2312]196    REAL(wp) ::  re_p                          !< particle Reynolds number
[1849]197!
[2312]198!-- Parameters for Rosenbrock method (see Verwer et al., 1999)
199    REAL(wp), PARAMETER :: prec = 1.0E-3_wp     !< precision of Rosenbrock solution
200    REAL(wp), PARAMETER :: q_increase = 1.5_wp  !< increase factor in timestep
201    REAL(wp), PARAMETER :: q_decrease = 0.9_wp  !< decrease factor in timestep
202    REAL(wp), PARAMETER :: gamma = 0.292893218814_wp !< = 1.0 - 1.0 / SQRT(2.0)
[849]203!
[1849]204!-- Parameters for terminal velocity
205    REAL(wp), PARAMETER ::  a_rog = 9.65_wp      !< parameter for fall velocity
206    REAL(wp), PARAMETER ::  b_rog = 10.43_wp     !< parameter for fall velocity
207    REAL(wp), PARAMETER ::  c_rog = 0.6_wp       !< parameter for fall velocity
208    REAL(wp), PARAMETER ::  k_cap_rog = 4.0_wp   !< parameter for fall velocity
209    REAL(wp), PARAMETER ::  k_low_rog = 12.0_wp  !< parameter for fall velocity
210    REAL(wp), PARAMETER ::  d0_rog = 0.745_wp    !< separation diameter
[849]211
[1849]212    REAL(wp), DIMENSION(number_of_particles) ::  ventilation_effect     !<
213    REAL(wp), DIMENSION(number_of_particles) ::  new_r                  !<
[849]214
[1849]215    CALL cpu_log( log_point_s(42), 'lpm_droplet_condens', 'start' )
[849]216
217!
[2312]218!-- Absolute temperature
[3274]219    t_int = pt(kp,jp,ip) * exner(kp)
[849]220!
[2312]221!-- Saturation vapor pressure (Eq. 10 in Bolton, 1980)
[2608]222    e_s = magnus( t_int )
[1849]223!
[2312]224!-- Current vapor pressure
[3361]225    e_a = q(kp,jp,ip) * hyp(kp) / ( q(kp,jp,ip) + rd_d_rv )
[2312]226!
227!-- Thermal conductivity for water (from Rogers and Yau, Table 7.1)
228    thermal_conductivity = 7.94048E-05_wp * t_int + 0.00227011_wp
229!
230!-- Moldecular diffusivity of water vapor in air (Hall und Pruppacher, 1976)
231    diff_coeff           = 0.211E-4_wp * ( t_int / 273.15_wp )**1.94_wp * &
232                           ( 101325.0_wp / hyp(kp) )
233!
234!-- Lengthscale for gas-kinetic effects (from Mordy, 1959, p. 23):
235    r0 = diff_coeff / 0.036_wp * SQRT( 2.0_wp * pi / ( r_v * t_int ) )
236!
237!-- Calculate effects of heat conductivity and diffusion of water vapor on the
238!-- diffusional growth process (usually known as 1.0 / (F_k + F_d) )
239    ddenom  = 1.0_wp / ( rho_l * r_v * t_int / ( e_s * diff_coeff ) +          &
[1849]240                         ( l_v / ( r_v * t_int ) - 1.0_wp ) * rho_l *          &
[2312]241                         l_v / ( thermal_conductivity * t_int )                &
[1849]242                       )
[1359]243    new_r = 0.0_wp
[1849]244!
245!-- Determine ventilation effect on evaporation of large drops
[1359]246    DO  n = 1, number_of_particles
[1849]247
248       IF ( particles(n)%radius >= 4.0E-5_wp  .AND.  e_a / e_s < 1.0_wp )  THEN
[849]249!
[1849]250!--       Terminal velocity is computed for vertical direction (Rogers et al.,
251!--       1993, J. Appl. Meteorol.)
252          diameter = particles(n)%radius * 2000.0_wp !diameter in mm
253          IF ( diameter <= d0_rog )  THEN
254             w_s = k_cap_rog * diameter * ( 1.0_wp - EXP( -k_low_rog * diameter ) )
255          ELSE
256             w_s = a_rog - b_rog * EXP( -c_rog * diameter )
257          ENDIF
[849]258!
[2312]259!--       Calculate droplet's Reynolds number
[1849]260          re_p = 2.0_wp * particles(n)%radius * w_s / molecular_viscosity
[1071]261!
[1359]262!--       Ventilation coefficient (Rogers and Yau, 1989):
263          IF ( re_p > 2.5_wp )  THEN
[1849]264             ventilation_effect(n) = 0.78_wp + 0.28_wp * SQRT( re_p )
[1071]265          ELSE
[1849]266             ventilation_effect(n) = 1.0_wp + 0.09_wp * re_p
[1071]267          ENDIF
[1849]268       ELSE
[1071]269!
[2312]270!--       For small droplets or in supersaturated environments, the ventilation
[1849]271!--       effect does not play a role
272          ventilation_effect(n) = 1.0_wp
[849]273       ENDIF
[1359]274    ENDDO
[849]275
[2312]276    IF( .NOT. curvature_solution_effects ) then
[849]277!
[2312]278!--    Use analytic model for diffusional growth including gas-kinetic
279!--    effects (Mordy, 1959) but without the impact of aerosols.
[1849]280       DO  n = 1, number_of_particles
[2312]281          arg      = ( particles(n)%radius + r0 )**2 + 2.0_wp * dt_3d * ddenom * &
282                                                       ventilation_effect(n) *   &
283                                                       ( e_a / e_s - 1.0_wp )
284          arg      = MAX( arg, ( 0.01E-6 + r0 )**2 )
285          new_r(n) = SQRT( arg ) - r0
[1849]286       ENDDO
[1359]287
[2312]288    ELSE
[1849]289!
[2312]290!--    Integrate the diffusional growth including gas-kinetic (Mordy, 1959),
291!--    as well as curvature and solute effects (e.g., Köhler, 1936).
[849]292!
[2312]293!--    Curvature effect (afactor) with surface tension (sigma) by Straka (2009)
294       sigma = 0.0761_wp - 0.000155_wp * ( t_int - 273.15_wp )
[1071]295!
[2312]296!--    Solute effect (afactor)
297       afactor = 2.0_wp * sigma / ( rho_l * r_v * t_int )
[849]298
[2312]299       DO  n = 1, number_of_particles
[849]300!
[2312]301!--       Solute effect (bfactor)
302          bfactor = vanthoff * rho_s * particles(n)%aux1**3 *                    &
303                    molecular_weight_of_water / ( rho_l * molecular_weight_of_solute )
[1071]304
[2312]305          dt_ros     = particles(n)%aux2  ! use previously stored Rosenbrock timestep
306          dt_ros_sum = 0.0_wp
[1871]307
[2312]308          r_ros     = particles(n)%radius  ! initialize Rosenbrock particle radius
309          r_ros_ini = r_ros
[849]310!
[2312]311!--       Integrate growth equation using a 2nd-order Rosenbrock method
312!--       (see Verwer et al., 1999, Eq. (3.2)). The Rosenbrock method adjusts
313!--       its with internal timestep to minimize the local truncation error.
314          DO WHILE ( dt_ros_sum < dt_3d )
[1071]315
[2312]316             dt_ros = MIN( dt_ros, dt_3d - dt_ros_sum )
[1871]317
[2312]318             DO
[849]319
[2312]320                drdt = ddenom * ventilation_effect(n) * ( e_a / e_s - 1.0 -    &
[1849]321                                                          afactor / r_ros +    &
322                                                          bfactor / r_ros**3   &
[2312]323                                                        ) / ( r_ros + r0 )
[1849]324
[2312]325                d2rdtdr = -ddenom * ventilation_effect(n) * (                  &
326                                                (e_a / e_s - 1.0) * r_ros**4 - &
327                                                afactor * r0 * r_ros**2 -      &
328                                                2.0 * afactor * r_ros**3 +     &
329                                                3.0 * bfactor * r0 +           &
330                                                4.0 * bfactor * r_ros          &
331                                                            )                  &
332                          / ( r_ros**4 * ( r_ros + r0 )**2 )
[849]333
[2312]334                k1    = drdt / ( 1.0 - gamma * dt_ros * d2rdtdr )
[849]335
[2312]336                r_ros = MAX(r_ros_ini + k1 * dt_ros, particles(n)%aux1)
337                r_err = r_ros
[849]338
[2312]339                drdt  = ddenom * ventilation_effect(n) * ( e_a / e_s - 1.0 -   &
340                                                           afactor / r_ros +   &
341                                                           bfactor / r_ros**3  &
342                                                         ) / ( r_ros + r0 )
[849]343
[2312]344                k2 = ( drdt - dt_ros * 2.0 * gamma * d2rdtdr * k1 ) / &
345                     ( 1.0 - dt_ros * gamma * d2rdtdr )
[849]346
[2312]347                r_ros = MAX(r_ros_ini + dt_ros * ( 1.5 * k1 + 0.5 * k2), particles(n)%aux1)
348   !
349   !--          Check error of the solution, and reduce dt_ros if necessary.
350                error = ABS(r_err - r_ros) / r_ros
351                IF ( error .GT. prec )  THEN
352                   dt_ros = SQRT( q_decrease * prec / error ) * dt_ros
353                   r_ros  = r_ros_ini
[849]354                ELSE
[2312]355                   dt_ros_sum = dt_ros_sum + dt_ros
356                   dt_ros     = q_increase * dt_ros
357                   r_ros_ini  = r_ros
358                   EXIT
[849]359                ENDIF
360
[2312]361             END DO
[849]362
[2312]363          END DO !Rosenbrock loop
[849]364!
[2312]365!--       Store new particle radius
366          new_r(n) = r_ros
[849]367!
[2312]368!--       Store internal time step value for next PALM step
369          particles(n)%aux2 = dt_ros
[849]370
[2312]371       ENDDO !Particle loop
[849]372
[2312]373    ENDIF
[849]374
[2312]375    DO  n = 1, number_of_particles
[849]376!
[2312]377!--    Sum up the change in liquid water for the respective grid
378!--    box for the computation of the release/depletion of water vapor
379!--    and heat.
[1890]380       ql_c(kp,jp,ip) = ql_c(kp,jp,ip) + particles(n)%weight_factor *          &
[1359]381                                   rho_l * 1.33333333_wp * pi *                &
382                                   ( new_r(n)**3 - particles(n)%radius**3 ) /  &
[3039]383                                   ( rho_surface * dx * dy * dzw(kp) )
[2312]384!
385!--    Check if the increase in liqid water is not too big. If this is the case,
386!--    the model timestep might be too long.
[1890]387       IF ( ql_c(kp,jp,ip) > 100.0_wp )  THEN
[3045]388          WRITE( message_string, * ) 'k=',kp,' j=',jp,' i=',ip,                &
[3046]389                       ' ql_c=',ql_c(kp,jp,ip), '&part(',n,')%wf=',            &
[849]390                       particles(n)%weight_factor,' delta_r=',delta_r
391          CALL message( 'lpm_droplet_condensation', 'PA0143', 2, 2, -1, 6, 1 )
392       ENDIF
393!
[2312]394!--    Check if the change in the droplet radius is not too big. If this is the
395!--    case, the model timestep might be too long.
396       delta_r = new_r(n) - particles(n)%radius
397       IF ( delta_r < 0.0_wp  .AND. new_r(n) < 0.0_wp )  THEN
[3045]398          WRITE( message_string, * ) '#1 k=',kp,' j=',jp,' i=',ip,             &
399                       ' e_s=',e_s, ' e_a=',e_a,' t_int=',t_int,               &
[3046]400                       '&delta_r=',delta_r,                                    &
[849]401                       ' particle_radius=',particles(n)%radius
402          CALL message( 'lpm_droplet_condensation', 'PA0144', 2, 2, -1, 6, 1 )
403       ENDIF
404!
405!--    Sum up the total volume of liquid water (needed below for
406!--    re-calculating the weighting factors)
[1890]407       ql_v(kp,jp,ip) = ql_v(kp,jp,ip) + particles(n)%weight_factor * new_r(n)**3
[849]408!
409!--    Determine radius class of the particle needed for collision
[2312]410       IF ( use_kernel_tables )  THEN
[1359]411          particles(n)%class = ( LOG( new_r(n) ) - rclass_lbound ) /           &
412                               ( rclass_ubound - rclass_lbound ) *             &
[849]413                               radius_classes
414          particles(n)%class = MIN( particles(n)%class, radius_classes )
415          particles(n)%class = MAX( particles(n)%class, 1 )
416       ENDIF
[2312]417 !
418 !--   Store new radius to particle features
419       particles(n)%radius = new_r(n)
[849]420
421    ENDDO
422
423    CALL cpu_log( log_point_s(42), 'lpm_droplet_condens', 'stop' )
424
425
426 END SUBROUTINE lpm_droplet_condensation
Note: See TracBrowser for help on using the repository browser.