[1682] | 1 | !> @file lpm_droplet_condensation.f90 |
---|
[2000] | 2 | !------------------------------------------------------------------------------! |
---|
[2696] | 3 | ! This file is part of the PALM model system. |
---|
[1036] | 4 | ! |
---|
[2000] | 5 | ! PALM is free software: you can redistribute it and/or modify it under the |
---|
| 6 | ! terms of the GNU General Public License as published by the Free Software |
---|
| 7 | ! Foundation, either version 3 of the License, or (at your option) any later |
---|
| 8 | ! version. |
---|
[1036] | 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
[2718] | 17 | ! Copyright 1997-2018 Leibniz Universitaet Hannover |
---|
[2000] | 18 | !------------------------------------------------------------------------------! |
---|
[1036] | 19 | ! |
---|
[849] | 20 | ! Current revisions: |
---|
| 21 | ! ------------------ |
---|
[2375] | 22 | ! |
---|
| 23 | ! |
---|
[1891] | 24 | ! Former revisions: |
---|
| 25 | ! ----------------- |
---|
| 26 | ! $Id: lpm_droplet_condensation.f90 3039 2018-05-24 13:13:11Z schwenkel $ |
---|
[3039] | 27 | ! bugfix for lcm with grid stretching |
---|
| 28 | ! |
---|
| 29 | ! 2718 2018-01-02 08:49:38Z maronga |
---|
[2716] | 30 | ! Corrected "Former revisions" section |
---|
| 31 | ! |
---|
| 32 | ! 2696 2017-12-14 17:12:51Z kanani |
---|
| 33 | ! Change in file header (GPL part) |
---|
| 34 | ! |
---|
| 35 | ! 2608 2017-11-13 14:04:26Z schwenkel |
---|
[2608] | 36 | ! Calculation of magnus equation in external module (diagnostic_quantities_mod). |
---|
| 37 | ! |
---|
| 38 | ! 2375 2017-08-29 14:10:28Z schwenkel |
---|
[2375] | 39 | ! Changed ONLY-dependencies |
---|
| 40 | ! |
---|
| 41 | ! 2312 2017-07-14 20:26:51Z hoffmann |
---|
[2312] | 42 | ! Rosenbrock scheme improved. Gas-kinetic effect added. |
---|
[1891] | 43 | ! |
---|
[2001] | 44 | ! 2000 2016-08-20 18:09:15Z knoop |
---|
| 45 | ! Forced header and separation lines into 80 columns |
---|
[2312] | 46 | ! |
---|
[1891] | 47 | ! 1890 2016-04-22 08:52:11Z hoffmann |
---|
[1890] | 48 | ! Some improvements of the Rosenbrock method. If the Rosenbrock method needs more |
---|
| 49 | ! than 40 iterations to find a sufficient time setp, the model is not aborted. |
---|
[2312] | 50 | ! This might lead to small erros. But they can be assumend as negligible, since |
---|
| 51 | ! the maximum timesetp of the Rosenbrock method after 40 iterations will be |
---|
| 52 | ! smaller than 10^-16 s. |
---|
| 53 | ! |
---|
[1872] | 54 | ! 1871 2016-04-15 11:46:09Z hoffmann |
---|
| 55 | ! Initialization of aerosols added. |
---|
| 56 | ! |
---|
[1851] | 57 | ! 1849 2016-04-08 11:33:18Z hoffmann |
---|
[1852] | 58 | ! Interpolation of supersaturation has been removed because it is not in |
---|
| 59 | ! accordance with the release/depletion of latent heat/water vapor in |
---|
[1849] | 60 | ! interaction_droplets_ptq. |
---|
| 61 | ! Calculation of particle Reynolds number has been corrected. |
---|
[1852] | 62 | ! eps_ros added from modules. |
---|
[1849] | 63 | ! |
---|
[1832] | 64 | ! 1831 2016-04-07 13:15:51Z hoffmann |
---|
| 65 | ! curvature_solution_effects moved to particle_attributes |
---|
| 66 | ! |
---|
[1823] | 67 | ! 1822 2016-04-07 07:49:42Z hoffmann |
---|
| 68 | ! Unused variables removed. |
---|
| 69 | ! |
---|
[1683] | 70 | ! 1682 2015-10-07 23:56:08Z knoop |
---|
[2312] | 71 | ! Code annotations made doxygen readable |
---|
| 72 | ! |
---|
[1360] | 73 | ! 1359 2014-04-11 17:15:14Z hoffmann |
---|
[2312] | 74 | ! New particle structure integrated. |
---|
[1360] | 75 | ! Kind definition added to all floating point numbers. |
---|
| 76 | ! |
---|
[1347] | 77 | ! 1346 2014-03-27 13:18:20Z heinze |
---|
[2312] | 78 | ! Bugfix: REAL constants provided with KIND-attribute especially in call of |
---|
[1347] | 79 | ! intrinsic function like MAX, MIN, SIGN |
---|
| 80 | ! |
---|
[1323] | 81 | ! 1322 2014-03-20 16:38:49Z raasch |
---|
| 82 | ! REAL constants defined as wp-kind |
---|
| 83 | ! |
---|
[1321] | 84 | ! 1320 2014-03-20 08:40:49Z raasch |
---|
[1320] | 85 | ! ONLY-attribute added to USE-statements, |
---|
| 86 | ! kind-parameters added to all INTEGER and REAL declaration statements, |
---|
| 87 | ! kinds are defined in new module kinds, |
---|
| 88 | ! comment fields (!:) to be used for variable explanations added to |
---|
| 89 | ! all variable declaration statements |
---|
[1072] | 90 | ! |
---|
[1319] | 91 | ! 1318 2014-03-17 13:35:16Z raasch |
---|
| 92 | ! module interfaces removed |
---|
| 93 | ! |
---|
[1093] | 94 | ! 1092 2013-02-02 11:24:22Z raasch |
---|
| 95 | ! unused variables removed |
---|
| 96 | ! |
---|
[1072] | 97 | ! 1071 2012-11-29 16:54:55Z franke |
---|
[1071] | 98 | ! Ventilation effect for evaporation of large droplets included |
---|
| 99 | ! Check for unreasonable results included in calculation of Rosenbrock method |
---|
| 100 | ! since physically unlikely results were observed and for the same |
---|
| 101 | ! reason the first internal time step in Rosenbrock method should be < 1.0E02 in |
---|
| 102 | ! case of evaporation |
---|
| 103 | ! Unnecessary calculation of ql_int removed |
---|
| 104 | ! Unnecessary calculations in Rosenbrock method (d2rdt2, drdt_m, dt_ros_last) |
---|
| 105 | ! removed |
---|
| 106 | ! Bugfix: factor in calculation of surface tension changed from 0.00155 to |
---|
| 107 | ! 0.000155 |
---|
[849] | 108 | ! |
---|
[1037] | 109 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
| 110 | ! code put under GPL (PALM 3.9) |
---|
| 111 | ! |
---|
[850] | 112 | ! 849 2012-03-15 10:35:09Z raasch |
---|
| 113 | ! initial revision (former part of advec_particles) |
---|
[849] | 114 | ! |
---|
[850] | 115 | ! |
---|
[849] | 116 | ! Description: |
---|
| 117 | ! ------------ |
---|
[1682] | 118 | !> Calculates change in droplet radius by condensation/evaporation, using |
---|
| 119 | !> either an analytic formula or by numerically integrating the radius growth |
---|
| 120 | !> equation including curvature and solution effects using Rosenbrocks method |
---|
| 121 | !> (see Numerical recipes in FORTRAN, 2nd edition, p. 731). |
---|
| 122 | !> The analytical formula and growth equation follow those given in |
---|
| 123 | !> Rogers and Yau (A short course in cloud physics, 3rd edition, p. 102/103). |
---|
[849] | 124 | !------------------------------------------------------------------------------! |
---|
[1682] | 125 | SUBROUTINE lpm_droplet_condensation (ip,jp,kp) |
---|
[849] | 126 | |
---|
[2312] | 127 | |
---|
[1320] | 128 | USE arrays_3d, & |
---|
[3039] | 129 | ONLY: dzw, hyp, pt, q, ql_c, ql_v |
---|
[849] | 130 | |
---|
[1320] | 131 | USE cloud_parameters, & |
---|
[2375] | 132 | ONLY: l_d_rv, l_v, molecular_weight_of_solute, & |
---|
| 133 | molecular_weight_of_water, rho_l, rho_s, r_v, vanthoff |
---|
[849] | 134 | |
---|
[1320] | 135 | USE constants, & |
---|
| 136 | ONLY: pi |
---|
[849] | 137 | |
---|
[1320] | 138 | USE control_parameters, & |
---|
[1822] | 139 | ONLY: dt_3d, dz, message_string, molecular_viscosity, rho_surface |
---|
| 140 | |
---|
[1320] | 141 | USE cpulog, & |
---|
| 142 | ONLY: cpu_log, log_point_s |
---|
[849] | 143 | |
---|
[2608] | 144 | USE diagnostic_quantities_mod, & |
---|
| 145 | ONLY: magnus |
---|
| 146 | |
---|
[1320] | 147 | USE grid_variables, & |
---|
[1822] | 148 | ONLY: dx, dy |
---|
[1071] | 149 | |
---|
[1320] | 150 | USE lpm_collision_kernels_mod, & |
---|
| 151 | ONLY: rclass_lbound, rclass_ubound |
---|
[849] | 152 | |
---|
[1320] | 153 | USE kinds |
---|
| 154 | |
---|
| 155 | USE particle_attributes, & |
---|
[2375] | 156 | ONLY: curvature_solution_effects, hall_kernel, number_of_particles, & |
---|
| 157 | particles, radius_classes, use_kernel_tables, wang_kernel |
---|
[1320] | 158 | |
---|
| 159 | IMPLICIT NONE |
---|
| 160 | |
---|
[1682] | 161 | INTEGER(iwp) :: ip !< |
---|
| 162 | INTEGER(iwp) :: jp !< |
---|
| 163 | INTEGER(iwp) :: kp !< |
---|
| 164 | INTEGER(iwp) :: n !< |
---|
[1320] | 165 | |
---|
[1849] | 166 | REAL(wp) :: afactor !< curvature effects |
---|
[1682] | 167 | REAL(wp) :: arg !< |
---|
[1849] | 168 | REAL(wp) :: bfactor !< solute effects |
---|
[1682] | 169 | REAL(wp) :: ddenom !< |
---|
| 170 | REAL(wp) :: delta_r !< |
---|
[1849] | 171 | REAL(wp) :: diameter !< diameter of cloud droplets |
---|
[2312] | 172 | REAL(wp) :: diff_coeff !< diffusivity for water vapor |
---|
[1682] | 173 | REAL(wp) :: drdt !< |
---|
| 174 | REAL(wp) :: dt_ros !< |
---|
| 175 | REAL(wp) :: dt_ros_sum !< |
---|
| 176 | REAL(wp) :: d2rdtdr !< |
---|
[1849] | 177 | REAL(wp) :: e_a !< current vapor pressure |
---|
| 178 | REAL(wp) :: e_s !< current saturation vapor pressure |
---|
[2312] | 179 | REAL(wp) :: error !< local truncation error in Rosenbrock |
---|
| 180 | REAL(wp) :: k1 !< |
---|
| 181 | REAL(wp) :: k2 !< |
---|
| 182 | REAL(wp) :: r_err !< First order estimate of Rosenbrock radius |
---|
| 183 | REAL(wp) :: r_ros !< Rosenbrock radius |
---|
| 184 | REAL(wp) :: r_ros_ini !< initial Rosenbrock radius |
---|
| 185 | REAL(wp) :: r0 !< gas-kinetic lengthscale |
---|
| 186 | REAL(wp) :: sigma !< surface tension of water |
---|
| 187 | REAL(wp) :: thermal_conductivity !< thermal conductivity for water |
---|
[1849] | 188 | REAL(wp) :: t_int !< temperature |
---|
| 189 | REAL(wp) :: w_s !< terminal velocity of droplets |
---|
[2312] | 190 | REAL(wp) :: re_p !< particle Reynolds number |
---|
[1849] | 191 | ! |
---|
[2312] | 192 | !-- Parameters for Rosenbrock method (see Verwer et al., 1999) |
---|
| 193 | REAL(wp), PARAMETER :: prec = 1.0E-3_wp !< precision of Rosenbrock solution |
---|
| 194 | REAL(wp), PARAMETER :: q_increase = 1.5_wp !< increase factor in timestep |
---|
| 195 | REAL(wp), PARAMETER :: q_decrease = 0.9_wp !< decrease factor in timestep |
---|
| 196 | REAL(wp), PARAMETER :: gamma = 0.292893218814_wp !< = 1.0 - 1.0 / SQRT(2.0) |
---|
[849] | 197 | ! |
---|
[1849] | 198 | !-- Parameters for terminal velocity |
---|
| 199 | REAL(wp), PARAMETER :: a_rog = 9.65_wp !< parameter for fall velocity |
---|
| 200 | REAL(wp), PARAMETER :: b_rog = 10.43_wp !< parameter for fall velocity |
---|
| 201 | REAL(wp), PARAMETER :: c_rog = 0.6_wp !< parameter for fall velocity |
---|
| 202 | REAL(wp), PARAMETER :: k_cap_rog = 4.0_wp !< parameter for fall velocity |
---|
| 203 | REAL(wp), PARAMETER :: k_low_rog = 12.0_wp !< parameter for fall velocity |
---|
| 204 | REAL(wp), PARAMETER :: d0_rog = 0.745_wp !< separation diameter |
---|
[849] | 205 | |
---|
[1849] | 206 | REAL(wp), DIMENSION(number_of_particles) :: ventilation_effect !< |
---|
| 207 | REAL(wp), DIMENSION(number_of_particles) :: new_r !< |
---|
[849] | 208 | |
---|
[1849] | 209 | CALL cpu_log( log_point_s(42), 'lpm_droplet_condens', 'start' ) |
---|
[849] | 210 | |
---|
| 211 | ! |
---|
[2312] | 212 | !-- Absolute temperature |
---|
[1849] | 213 | t_int = pt(kp,jp,ip) * ( hyp(kp) / 100000.0_wp )**0.286_wp |
---|
[849] | 214 | ! |
---|
[2312] | 215 | !-- Saturation vapor pressure (Eq. 10 in Bolton, 1980) |
---|
[2608] | 216 | e_s = magnus( t_int ) |
---|
[1849] | 217 | ! |
---|
[2312] | 218 | !-- Current vapor pressure |
---|
| 219 | e_a = q(kp,jp,ip) * hyp(kp) / ( q(kp,jp,ip) + 0.622_wp ) |
---|
| 220 | ! |
---|
| 221 | !-- Thermal conductivity for water (from Rogers and Yau, Table 7.1) |
---|
| 222 | thermal_conductivity = 7.94048E-05_wp * t_int + 0.00227011_wp |
---|
| 223 | ! |
---|
| 224 | !-- Moldecular diffusivity of water vapor in air (Hall und Pruppacher, 1976) |
---|
| 225 | diff_coeff = 0.211E-4_wp * ( t_int / 273.15_wp )**1.94_wp * & |
---|
| 226 | ( 101325.0_wp / hyp(kp) ) |
---|
| 227 | ! |
---|
| 228 | !-- Lengthscale for gas-kinetic effects (from Mordy, 1959, p. 23): |
---|
| 229 | r0 = diff_coeff / 0.036_wp * SQRT( 2.0_wp * pi / ( r_v * t_int ) ) |
---|
| 230 | ! |
---|
| 231 | !-- Calculate effects of heat conductivity and diffusion of water vapor on the |
---|
| 232 | !-- diffusional growth process (usually known as 1.0 / (F_k + F_d) ) |
---|
| 233 | ddenom = 1.0_wp / ( rho_l * r_v * t_int / ( e_s * diff_coeff ) + & |
---|
[1849] | 234 | ( l_v / ( r_v * t_int ) - 1.0_wp ) * rho_l * & |
---|
[2312] | 235 | l_v / ( thermal_conductivity * t_int ) & |
---|
[1849] | 236 | ) |
---|
[1359] | 237 | new_r = 0.0_wp |
---|
[1849] | 238 | ! |
---|
| 239 | !-- Determine ventilation effect on evaporation of large drops |
---|
[1359] | 240 | DO n = 1, number_of_particles |
---|
[1849] | 241 | |
---|
| 242 | IF ( particles(n)%radius >= 4.0E-5_wp .AND. e_a / e_s < 1.0_wp ) THEN |
---|
[849] | 243 | ! |
---|
[1849] | 244 | !-- Terminal velocity is computed for vertical direction (Rogers et al., |
---|
| 245 | !-- 1993, J. Appl. Meteorol.) |
---|
| 246 | diameter = particles(n)%radius * 2000.0_wp !diameter in mm |
---|
| 247 | IF ( diameter <= d0_rog ) THEN |
---|
| 248 | w_s = k_cap_rog * diameter * ( 1.0_wp - EXP( -k_low_rog * diameter ) ) |
---|
| 249 | ELSE |
---|
| 250 | w_s = a_rog - b_rog * EXP( -c_rog * diameter ) |
---|
| 251 | ENDIF |
---|
[849] | 252 | ! |
---|
[2312] | 253 | !-- Calculate droplet's Reynolds number |
---|
[1849] | 254 | re_p = 2.0_wp * particles(n)%radius * w_s / molecular_viscosity |
---|
[1071] | 255 | ! |
---|
[1359] | 256 | !-- Ventilation coefficient (Rogers and Yau, 1989): |
---|
| 257 | IF ( re_p > 2.5_wp ) THEN |
---|
[1849] | 258 | ventilation_effect(n) = 0.78_wp + 0.28_wp * SQRT( re_p ) |
---|
[1071] | 259 | ELSE |
---|
[1849] | 260 | ventilation_effect(n) = 1.0_wp + 0.09_wp * re_p |
---|
[1071] | 261 | ENDIF |
---|
[1849] | 262 | ELSE |
---|
[1071] | 263 | ! |
---|
[2312] | 264 | !-- For small droplets or in supersaturated environments, the ventilation |
---|
[1849] | 265 | !-- effect does not play a role |
---|
| 266 | ventilation_effect(n) = 1.0_wp |
---|
[849] | 267 | ENDIF |
---|
[1359] | 268 | ENDDO |
---|
[849] | 269 | |
---|
[2312] | 270 | IF( .NOT. curvature_solution_effects ) then |
---|
[849] | 271 | ! |
---|
[2312] | 272 | !-- Use analytic model for diffusional growth including gas-kinetic |
---|
| 273 | !-- effects (Mordy, 1959) but without the impact of aerosols. |
---|
[1849] | 274 | DO n = 1, number_of_particles |
---|
[2312] | 275 | arg = ( particles(n)%radius + r0 )**2 + 2.0_wp * dt_3d * ddenom * & |
---|
| 276 | ventilation_effect(n) * & |
---|
| 277 | ( e_a / e_s - 1.0_wp ) |
---|
| 278 | arg = MAX( arg, ( 0.01E-6 + r0 )**2 ) |
---|
| 279 | new_r(n) = SQRT( arg ) - r0 |
---|
[1849] | 280 | ENDDO |
---|
[1359] | 281 | |
---|
[2312] | 282 | ELSE |
---|
[1849] | 283 | ! |
---|
[2312] | 284 | !-- Integrate the diffusional growth including gas-kinetic (Mordy, 1959), |
---|
| 285 | !-- as well as curvature and solute effects (e.g., Köhler, 1936). |
---|
[849] | 286 | ! |
---|
[2312] | 287 | !-- Curvature effect (afactor) with surface tension (sigma) by Straka (2009) |
---|
| 288 | sigma = 0.0761_wp - 0.000155_wp * ( t_int - 273.15_wp ) |
---|
[1071] | 289 | ! |
---|
[2312] | 290 | !-- Solute effect (afactor) |
---|
| 291 | afactor = 2.0_wp * sigma / ( rho_l * r_v * t_int ) |
---|
[849] | 292 | |
---|
[2312] | 293 | DO n = 1, number_of_particles |
---|
[849] | 294 | ! |
---|
[2312] | 295 | !-- Solute effect (bfactor) |
---|
| 296 | bfactor = vanthoff * rho_s * particles(n)%aux1**3 * & |
---|
| 297 | molecular_weight_of_water / ( rho_l * molecular_weight_of_solute ) |
---|
[1071] | 298 | |
---|
[2312] | 299 | dt_ros = particles(n)%aux2 ! use previously stored Rosenbrock timestep |
---|
| 300 | dt_ros_sum = 0.0_wp |
---|
[1871] | 301 | |
---|
[2312] | 302 | r_ros = particles(n)%radius ! initialize Rosenbrock particle radius |
---|
| 303 | r_ros_ini = r_ros |
---|
[849] | 304 | ! |
---|
[2312] | 305 | !-- Integrate growth equation using a 2nd-order Rosenbrock method |
---|
| 306 | !-- (see Verwer et al., 1999, Eq. (3.2)). The Rosenbrock method adjusts |
---|
| 307 | !-- its with internal timestep to minimize the local truncation error. |
---|
| 308 | DO WHILE ( dt_ros_sum < dt_3d ) |
---|
[1071] | 309 | |
---|
[2312] | 310 | dt_ros = MIN( dt_ros, dt_3d - dt_ros_sum ) |
---|
[1871] | 311 | |
---|
[2312] | 312 | DO |
---|
[849] | 313 | |
---|
[2312] | 314 | drdt = ddenom * ventilation_effect(n) * ( e_a / e_s - 1.0 - & |
---|
[1849] | 315 | afactor / r_ros + & |
---|
| 316 | bfactor / r_ros**3 & |
---|
[2312] | 317 | ) / ( r_ros + r0 ) |
---|
[1849] | 318 | |
---|
[2312] | 319 | d2rdtdr = -ddenom * ventilation_effect(n) * ( & |
---|
| 320 | (e_a / e_s - 1.0) * r_ros**4 - & |
---|
| 321 | afactor * r0 * r_ros**2 - & |
---|
| 322 | 2.0 * afactor * r_ros**3 + & |
---|
| 323 | 3.0 * bfactor * r0 + & |
---|
| 324 | 4.0 * bfactor * r_ros & |
---|
| 325 | ) & |
---|
| 326 | / ( r_ros**4 * ( r_ros + r0 )**2 ) |
---|
[849] | 327 | |
---|
[2312] | 328 | k1 = drdt / ( 1.0 - gamma * dt_ros * d2rdtdr ) |
---|
[849] | 329 | |
---|
[2312] | 330 | r_ros = MAX(r_ros_ini + k1 * dt_ros, particles(n)%aux1) |
---|
| 331 | r_err = r_ros |
---|
[849] | 332 | |
---|
[2312] | 333 | drdt = ddenom * ventilation_effect(n) * ( e_a / e_s - 1.0 - & |
---|
| 334 | afactor / r_ros + & |
---|
| 335 | bfactor / r_ros**3 & |
---|
| 336 | ) / ( r_ros + r0 ) |
---|
[849] | 337 | |
---|
[2312] | 338 | k2 = ( drdt - dt_ros * 2.0 * gamma * d2rdtdr * k1 ) / & |
---|
| 339 | ( 1.0 - dt_ros * gamma * d2rdtdr ) |
---|
[849] | 340 | |
---|
[2312] | 341 | r_ros = MAX(r_ros_ini + dt_ros * ( 1.5 * k1 + 0.5 * k2), particles(n)%aux1) |
---|
| 342 | ! |
---|
| 343 | !-- Check error of the solution, and reduce dt_ros if necessary. |
---|
| 344 | error = ABS(r_err - r_ros) / r_ros |
---|
| 345 | IF ( error .GT. prec ) THEN |
---|
| 346 | dt_ros = SQRT( q_decrease * prec / error ) * dt_ros |
---|
| 347 | r_ros = r_ros_ini |
---|
[849] | 348 | ELSE |
---|
[2312] | 349 | dt_ros_sum = dt_ros_sum + dt_ros |
---|
| 350 | dt_ros = q_increase * dt_ros |
---|
| 351 | r_ros_ini = r_ros |
---|
| 352 | EXIT |
---|
[849] | 353 | ENDIF |
---|
| 354 | |
---|
[2312] | 355 | END DO |
---|
[849] | 356 | |
---|
[2312] | 357 | END DO !Rosenbrock loop |
---|
[849] | 358 | ! |
---|
[2312] | 359 | !-- Store new particle radius |
---|
| 360 | new_r(n) = r_ros |
---|
[849] | 361 | ! |
---|
[2312] | 362 | !-- Store internal time step value for next PALM step |
---|
| 363 | particles(n)%aux2 = dt_ros |
---|
[849] | 364 | |
---|
[2312] | 365 | ENDDO !Particle loop |
---|
[849] | 366 | |
---|
[2312] | 367 | ENDIF |
---|
[849] | 368 | |
---|
[2312] | 369 | DO n = 1, number_of_particles |
---|
[849] | 370 | ! |
---|
[2312] | 371 | !-- Sum up the change in liquid water for the respective grid |
---|
| 372 | !-- box for the computation of the release/depletion of water vapor |
---|
| 373 | !-- and heat. |
---|
[1890] | 374 | ql_c(kp,jp,ip) = ql_c(kp,jp,ip) + particles(n)%weight_factor * & |
---|
[1359] | 375 | rho_l * 1.33333333_wp * pi * & |
---|
| 376 | ( new_r(n)**3 - particles(n)%radius**3 ) / & |
---|
[3039] | 377 | ( rho_surface * dx * dy * dzw(kp) ) |
---|
[2312] | 378 | ! |
---|
| 379 | !-- Check if the increase in liqid water is not too big. If this is the case, |
---|
| 380 | !-- the model timestep might be too long. |
---|
[1890] | 381 | IF ( ql_c(kp,jp,ip) > 100.0_wp ) THEN |
---|
| 382 | WRITE( message_string, * ) 'k=',kp,' j=',jp,' i=',ip, & |
---|
| 383 | ' ql_c=',ql_c(kp,jp,ip), ' &part(',n,')%wf=', & |
---|
[849] | 384 | particles(n)%weight_factor,' delta_r=',delta_r |
---|
| 385 | CALL message( 'lpm_droplet_condensation', 'PA0143', 2, 2, -1, 6, 1 ) |
---|
| 386 | ENDIF |
---|
| 387 | ! |
---|
[2312] | 388 | !-- Check if the change in the droplet radius is not too big. If this is the |
---|
| 389 | !-- case, the model timestep might be too long. |
---|
| 390 | delta_r = new_r(n) - particles(n)%radius |
---|
| 391 | IF ( delta_r < 0.0_wp .AND. new_r(n) < 0.0_wp ) THEN |
---|
[1890] | 392 | WRITE( message_string, * ) '#1 k=',kp,' j=',jp,' i=',ip, & |
---|
[1849] | 393 | ' e_s=',e_s, ' e_a=',e_a,' t_int=',t_int, & |
---|
[1890] | 394 | ' &delta_r=',delta_r, & |
---|
[849] | 395 | ' particle_radius=',particles(n)%radius |
---|
| 396 | CALL message( 'lpm_droplet_condensation', 'PA0144', 2, 2, -1, 6, 1 ) |
---|
| 397 | ENDIF |
---|
| 398 | ! |
---|
| 399 | !-- Sum up the total volume of liquid water (needed below for |
---|
| 400 | !-- re-calculating the weighting factors) |
---|
[1890] | 401 | ql_v(kp,jp,ip) = ql_v(kp,jp,ip) + particles(n)%weight_factor * new_r(n)**3 |
---|
[849] | 402 | ! |
---|
| 403 | !-- Determine radius class of the particle needed for collision |
---|
[2312] | 404 | IF ( use_kernel_tables ) THEN |
---|
[1359] | 405 | particles(n)%class = ( LOG( new_r(n) ) - rclass_lbound ) / & |
---|
| 406 | ( rclass_ubound - rclass_lbound ) * & |
---|
[849] | 407 | radius_classes |
---|
| 408 | particles(n)%class = MIN( particles(n)%class, radius_classes ) |
---|
| 409 | particles(n)%class = MAX( particles(n)%class, 1 ) |
---|
| 410 | ENDIF |
---|
[2312] | 411 | ! |
---|
| 412 | !-- Store new radius to particle features |
---|
| 413 | particles(n)%radius = new_r(n) |
---|
[849] | 414 | |
---|
| 415 | ENDDO |
---|
| 416 | |
---|
| 417 | CALL cpu_log( log_point_s(42), 'lpm_droplet_condens', 'stop' ) |
---|
| 418 | |
---|
| 419 | |
---|
| 420 | END SUBROUTINE lpm_droplet_condensation |
---|