[849] | 1 | SUBROUTINE lpm_droplet_condensation |
---|
| 2 | |
---|
[1036] | 3 | !--------------------------------------------------------------------------------! |
---|
| 4 | ! This file is part of PALM. |
---|
| 5 | ! |
---|
| 6 | ! PALM is free software: you can redistribute it and/or modify it under the terms |
---|
| 7 | ! of the GNU General Public License as published by the Free Software Foundation, |
---|
| 8 | ! either version 3 of the License, or (at your option) any later version. |
---|
| 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
| 17 | ! Copyright 1997-2012 Leibniz University Hannover |
---|
| 18 | !--------------------------------------------------------------------------------! |
---|
| 19 | ! |
---|
[849] | 20 | ! Current revisions: |
---|
| 21 | ! ------------------ |
---|
[1093] | 22 | ! |
---|
[1072] | 23 | ! |
---|
| 24 | ! Former revisions: |
---|
| 25 | ! ----------------- |
---|
| 26 | ! $Id: lpm_droplet_condensation.f90 1093 2013-02-02 12:58:49Z witha $ |
---|
| 27 | ! |
---|
[1093] | 28 | ! 1092 2013-02-02 11:24:22Z raasch |
---|
| 29 | ! unused variables removed |
---|
| 30 | ! |
---|
[1072] | 31 | ! 1071 2012-11-29 16:54:55Z franke |
---|
[1071] | 32 | ! Ventilation effect for evaporation of large droplets included |
---|
| 33 | ! Check for unreasonable results included in calculation of Rosenbrock method |
---|
| 34 | ! since physically unlikely results were observed and for the same |
---|
| 35 | ! reason the first internal time step in Rosenbrock method should be < 1.0E02 in |
---|
| 36 | ! case of evaporation |
---|
| 37 | ! Unnecessary calculation of ql_int removed |
---|
| 38 | ! Unnecessary calculations in Rosenbrock method (d2rdt2, drdt_m, dt_ros_last) |
---|
| 39 | ! removed |
---|
| 40 | ! Bugfix: factor in calculation of surface tension changed from 0.00155 to |
---|
| 41 | ! 0.000155 |
---|
[849] | 42 | ! |
---|
[1037] | 43 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
| 44 | ! code put under GPL (PALM 3.9) |
---|
| 45 | ! |
---|
[850] | 46 | ! 849 2012-03-15 10:35:09Z raasch |
---|
| 47 | ! initial revision (former part of advec_particles) |
---|
[849] | 48 | ! |
---|
[850] | 49 | ! |
---|
[849] | 50 | ! Description: |
---|
| 51 | ! ------------ |
---|
| 52 | ! Calculates change in droplet radius by condensation/evaporation, using |
---|
| 53 | ! either an analytic formula or by numerically integrating the radius growth |
---|
| 54 | ! equation including curvature and solution effects using Rosenbrocks method |
---|
| 55 | ! (see Numerical recipes in FORTRAN, 2nd edition, p. 731). |
---|
| 56 | ! The analytical formula and growth equation follow those given in |
---|
| 57 | ! Rogers and Yau (A short course in cloud physics, 3rd edition, p. 102/103). |
---|
| 58 | !------------------------------------------------------------------------------! |
---|
| 59 | |
---|
| 60 | USE arrays_3d |
---|
| 61 | USE cloud_parameters |
---|
| 62 | USE constants |
---|
| 63 | USE control_parameters |
---|
| 64 | USE cpulog |
---|
| 65 | USE grid_variables |
---|
| 66 | USE interfaces |
---|
| 67 | USE lpm_collision_kernels_mod |
---|
| 68 | USE particle_attributes |
---|
| 69 | |
---|
| 70 | IMPLICIT NONE |
---|
| 71 | |
---|
[1071] | 72 | INTEGER :: i, internal_timestep_count, j, jtry, k, n, ros_count |
---|
[849] | 73 | |
---|
| 74 | INTEGER, PARAMETER :: maxtry = 40 |
---|
| 75 | |
---|
[1071] | 76 | LOGICAL :: repeat |
---|
| 77 | |
---|
[849] | 78 | REAL :: aa, afactor, arg, bb, cc, dd, ddenom, delta_r, drdt, drdt_ini, & |
---|
[1071] | 79 | dt_ros, dt_ros_next, dt_ros_sum, dt_ros_sum_ini, d2rdtdr, errmax, & |
---|
| 80 | err_ros, g1, g2, g3, g4, e_a, e_s, gg, new_r, p_int, pt_int, & |
---|
[1092] | 81 | pt_int_l, pt_int_u, q_int, q_int_l, q_int_u, r_ros, r_ros_ini, & |
---|
| 82 | sigma, t_int, x, y, re_p |
---|
[849] | 83 | |
---|
| 84 | ! |
---|
| 85 | !-- Parameters for Rosenbrock method |
---|
| 86 | REAL, PARAMETER :: a21 = 2.0, a31 = 48.0/25.0, a32 = 6.0/25.0, & |
---|
[1071] | 87 | b1 = 19.0/9.0, b2 = 0.5, b3 = 25.0/108.0, & |
---|
| 88 | b4 = 125.0/108.0, c21 = -8.0, c31 = 372.0/25.0, & |
---|
| 89 | c32 = 12.0/5.0, c41 = -112.0/125.0, & |
---|
| 90 | c42 = -54.0/125.0, c43 = -2.0/5.0, & |
---|
[849] | 91 | errcon = 0.1296, e1 = 17.0/54.0, e2 = 7.0/36.0, & |
---|
| 92 | e3 = 0.0, e4 = 125.0/108.0, gam = 0.5, grow = 1.5, & |
---|
| 93 | pgrow = -0.25, pshrnk = -1.0/3.0, shrnk = 0.5 |
---|
| 94 | |
---|
| 95 | |
---|
| 96 | CALL cpu_log( log_point_s(42), 'lpm_droplet_condens', 'start' ) |
---|
| 97 | |
---|
| 98 | DO n = 1, number_of_particles |
---|
| 99 | ! |
---|
| 100 | !-- Interpolate temperature and humidity. |
---|
| 101 | !-- First determine left, south, and bottom index of the arrays. |
---|
| 102 | i = particles(n)%x * ddx |
---|
| 103 | j = particles(n)%y * ddy |
---|
| 104 | k = ( particles(n)%z + 0.5 * dz * atmos_ocean_sign ) / dz & |
---|
| 105 | + offset_ocean_nzt ! only exact if equidistant |
---|
| 106 | |
---|
| 107 | x = particles(n)%x - i * dx |
---|
| 108 | y = particles(n)%y - j * dy |
---|
| 109 | aa = x**2 + y**2 |
---|
| 110 | bb = ( dx - x )**2 + y**2 |
---|
| 111 | cc = x**2 + ( dy - y )**2 |
---|
| 112 | dd = ( dx - x )**2 + ( dy - y )**2 |
---|
| 113 | gg = aa + bb + cc + dd |
---|
| 114 | |
---|
| 115 | pt_int_l = ( ( gg - aa ) * pt(k,j,i) + ( gg - bb ) * pt(k,j,i+1) & |
---|
| 116 | + ( gg - cc ) * pt(k,j+1,i) + ( gg - dd ) * pt(k,j+1,i+1) & |
---|
| 117 | ) / ( 3.0 * gg ) |
---|
| 118 | |
---|
| 119 | pt_int_u = ( ( gg-aa ) * pt(k+1,j,i) + ( gg-bb ) * pt(k+1,j,i+1) & |
---|
| 120 | + ( gg-cc ) * pt(k+1,j+1,i) + ( gg-dd ) * pt(k+1,j+1,i+1) & |
---|
| 121 | ) / ( 3.0 * gg ) |
---|
| 122 | |
---|
| 123 | pt_int = pt_int_l + ( particles(n)%z - zu(k) ) / dz * & |
---|
| 124 | ( pt_int_u - pt_int_l ) |
---|
| 125 | |
---|
| 126 | q_int_l = ( ( gg - aa ) * q(k,j,i) + ( gg - bb ) * q(k,j,i+1) & |
---|
| 127 | + ( gg - cc ) * q(k,j+1,i) + ( gg - dd ) * q(k,j+1,i+1) & |
---|
| 128 | ) / ( 3.0 * gg ) |
---|
| 129 | |
---|
| 130 | q_int_u = ( ( gg-aa ) * q(k+1,j,i) + ( gg-bb ) * q(k+1,j,i+1) & |
---|
| 131 | + ( gg-cc ) * q(k+1,j+1,i) + ( gg-dd ) * q(k+1,j+1,i+1) & |
---|
| 132 | ) / ( 3.0 * gg ) |
---|
| 133 | |
---|
| 134 | q_int = q_int_l + ( particles(n)%z - zu(k) ) / dz * & |
---|
| 135 | ( q_int_u - q_int_l ) |
---|
| 136 | |
---|
| 137 | ! |
---|
| 138 | !-- Calculate real temperature and saturation vapor pressure |
---|
| 139 | p_int = hyp(k) + ( particles(n)%z - zu(k) ) / dz * ( hyp(k+1)-hyp(k) ) |
---|
| 140 | t_int = pt_int * ( p_int / 100000.0 )**0.286 |
---|
| 141 | |
---|
| 142 | e_s = 611.0 * EXP( l_d_rv * ( 3.6609E-3 - 1.0 / t_int ) ) |
---|
| 143 | |
---|
| 144 | ! |
---|
| 145 | !-- Current vapor pressure |
---|
| 146 | e_a = q_int * p_int / ( 0.378 * q_int + 0.622 ) |
---|
| 147 | |
---|
| 148 | ! |
---|
| 149 | !-- Thermal conductivity for water (from Rogers and Yau, Table 7.1), |
---|
| 150 | !-- diffusivity for water vapor (after Hall und Pruppacher, 1976) |
---|
| 151 | thermal_conductivity_l = 7.94048E-05 * t_int + 0.00227011 |
---|
| 152 | diff_coeff_l = 0.211E-4 * ( t_int / 273.15 )**1.94 * & |
---|
| 153 | ( 101325.0 / p_int) |
---|
| 154 | ! |
---|
| 155 | !-- Change in radius by condensation/evaporation |
---|
[1071] | 156 | IF ( particles(n)%radius >= 4.0E-5 .AND. e_a/e_s < 1.0 ) THEN |
---|
[849] | 157 | ! |
---|
[1071] | 158 | !-- Approximation for large radii, where curvature and solution effects |
---|
| 159 | !-- can be neglected but ventilation effect has to be included in case of |
---|
| 160 | !-- evaporation. |
---|
| 161 | !-- First calculate the droplet's Reynolds number |
---|
| 162 | re_p = 2.0 * particles(n)%radius * ABS( particles(n)%speed_z ) / & |
---|
| 163 | molecular_viscosity |
---|
| 164 | ! |
---|
| 165 | !-- Ventilation coefficient after Rogers and Yau, 1989 |
---|
| 166 | IF ( re_p > 2.5 ) THEN |
---|
| 167 | afactor = 0.78 + 0.28 * SQRT( re_p ) |
---|
| 168 | ELSE |
---|
| 169 | afactor = 1.0 + 0.09 * re_p |
---|
| 170 | ENDIF |
---|
| 171 | |
---|
| 172 | arg = particles(n)%radius**2 + 2.0 * dt_3d * afactor * & |
---|
| 173 | ( e_a / e_s - 1.0 ) / & |
---|
| 174 | ( ( l_d_rv / t_int - 1.0 ) * l_v * rho_l / t_int / & |
---|
| 175 | thermal_conductivity_l + & |
---|
| 176 | rho_l * r_v * t_int / diff_coeff_l / e_s ) |
---|
| 177 | |
---|
| 178 | new_r = SQRT( arg ) |
---|
| 179 | |
---|
| 180 | ELSEIF ( particles(n)%radius >= 1.0E-6 .OR. & |
---|
| 181 | .NOT. curvature_solution_effects ) THEN |
---|
| 182 | ! |
---|
| 183 | !-- Approximation for larger radii in case that curvature and solution |
---|
| 184 | !-- effects are neglected and ventilation effects does not play a role |
---|
[849] | 185 | arg = particles(n)%radius**2 + 2.0 * dt_3d * & |
---|
| 186 | ( e_a / e_s - 1.0 ) / & |
---|
| 187 | ( ( l_d_rv / t_int - 1.0 ) * l_v * rho_l / t_int / & |
---|
| 188 | thermal_conductivity_l + & |
---|
| 189 | rho_l * r_v * t_int / diff_coeff_l / e_s ) |
---|
| 190 | IF ( arg < 1.0E-16 ) THEN |
---|
| 191 | new_r = 1.0E-8 |
---|
| 192 | ELSE |
---|
| 193 | new_r = SQRT( arg ) |
---|
| 194 | ENDIF |
---|
| 195 | ENDIF |
---|
| 196 | |
---|
| 197 | IF ( curvature_solution_effects .AND. & |
---|
| 198 | ( ( particles(n)%radius < 1.0E-6 ) .OR. ( new_r < 1.0E-6 ) ) ) & |
---|
| 199 | THEN |
---|
| 200 | ! |
---|
| 201 | !-- Curvature and solutions effects are included in growth equation. |
---|
| 202 | !-- Change in Radius is calculated with 4th-order Rosenbrock method |
---|
| 203 | !-- for stiff o.d.e's with monitoring local truncation error to adjust |
---|
| 204 | !-- stepsize (see Numerical recipes in FORTRAN, 2nd edition, p. 731). |
---|
| 205 | !-- For larger radii the simple analytic method (see ELSE) gives |
---|
| 206 | !-- almost the same results. |
---|
[1071] | 207 | |
---|
| 208 | ros_count = 0 |
---|
| 209 | repeat = .TRUE. |
---|
[849] | 210 | ! |
---|
[1071] | 211 | !-- Carry out the Rosenbrock algorithm. In case of unreasonable results |
---|
| 212 | !-- the switch "repeat" will be set true and the algorithm will be carried |
---|
| 213 | !-- out again with the internal time step set to its initial (small) value. |
---|
| 214 | !-- Unreasonable results may occur if the external conditions, especially the |
---|
| 215 | !-- supersaturation, has significantly changed compared to the last PALM |
---|
| 216 | !-- timestep. |
---|
| 217 | DO WHILE ( repeat ) |
---|
[849] | 218 | |
---|
[1071] | 219 | repeat = .FALSE. |
---|
| 220 | ! |
---|
| 221 | !-- Surface tension after (Straka, 2009) |
---|
| 222 | sigma = 0.0761 - 0.000155 * ( t_int - 273.15 ) |
---|
[849] | 223 | |
---|
[1071] | 224 | r_ros = particles(n)%radius |
---|
| 225 | dt_ros_sum = 0.0 ! internal integrated time (s) |
---|
| 226 | internal_timestep_count = 0 |
---|
[849] | 227 | |
---|
[1071] | 228 | ddenom = 1.0 / ( rho_l * r_v * t_int / ( e_s * diff_coeff_l ) + & |
---|
| 229 | ( l_v / ( r_v * t_int ) - 1.0 ) * & |
---|
| 230 | rho_l * l_v / ( thermal_conductivity_l * t_int )& |
---|
| 231 | ) |
---|
| 232 | |
---|
| 233 | afactor = 2.0 * sigma / ( rho_l * r_v * t_int ) |
---|
| 234 | |
---|
[849] | 235 | ! |
---|
[1071] | 236 | !-- Take internal time step values from the end of last PALM time step |
---|
| 237 | dt_ros_next = particles(n)%rvar1 |
---|
| 238 | |
---|
[849] | 239 | ! |
---|
[1071] | 240 | !-- Internal time step should not be > 1.0E-2 in case of evaporation |
---|
| 241 | !-- because larger values may lead to secondary solutions which are |
---|
| 242 | !-- physically unlikely |
---|
| 243 | IF ( dt_ros_next > 1.0E-2 .AND. e_a/e_s < 1.0 ) THEN |
---|
| 244 | dt_ros_next = 1.0E-3 |
---|
| 245 | ENDIF |
---|
[849] | 246 | ! |
---|
[1071] | 247 | !-- If calculation of Rosenbrock method is repeated due to unreasonalble |
---|
| 248 | !-- results during previous try the initial internal time step has to be |
---|
| 249 | !-- reduced |
---|
| 250 | IF ( ros_count > 1 ) THEN |
---|
| 251 | dt_ros_next = dt_ros_next - ( 0.2 * dt_ros_next ) |
---|
| 252 | ELSEIF ( ros_count > 5 ) THEN |
---|
[849] | 253 | ! |
---|
[1071] | 254 | !-- Prevent creation of infinite loop |
---|
| 255 | message_string = 'ros_count > 5 in Rosenbrock method' |
---|
| 256 | CALL message( 'lpm_droplet_condensation', 'PA0018', 2, 2, & |
---|
| 257 | 0, 6, 0 ) |
---|
| 258 | ENDIF |
---|
| 259 | |
---|
[849] | 260 | ! |
---|
[1071] | 261 | !-- Internal time step must not be larger than PALM time step |
---|
| 262 | dt_ros = MIN( dt_ros_next, dt_3d ) |
---|
| 263 | ! |
---|
| 264 | !-- Integrate growth equation in time unless PALM time step is reached |
---|
| 265 | DO WHILE ( dt_ros_sum < dt_3d ) |
---|
[849] | 266 | |
---|
[1071] | 267 | internal_timestep_count = internal_timestep_count + 1 |
---|
[849] | 268 | |
---|
| 269 | ! |
---|
[1071] | 270 | !-- Derivative at starting value |
---|
| 271 | drdt = ddenom / r_ros * ( e_a / e_s - 1.0 - afactor / r_ros + & |
---|
| 272 | bfactor / r_ros**3 ) |
---|
| 273 | drdt_ini = drdt |
---|
| 274 | dt_ros_sum_ini = dt_ros_sum |
---|
| 275 | r_ros_ini = r_ros |
---|
[849] | 276 | |
---|
| 277 | ! |
---|
[1071] | 278 | !-- Calculate radial derivative of dr/dt |
---|
| 279 | d2rdtdr = ddenom * ( ( 1.0 - e_a/e_s ) / r_ros**2 + & |
---|
| 280 | 2.0 * afactor / r_ros**3 - & |
---|
| 281 | 4.0 * bfactor / r_ros**5 ) |
---|
[849] | 282 | ! |
---|
[1071] | 283 | !-- Adjust stepsize unless required accuracy is reached |
---|
| 284 | DO jtry = 1, maxtry+1 |
---|
[849] | 285 | |
---|
[1071] | 286 | IF ( jtry == maxtry+1 ) THEN |
---|
| 287 | message_string = 'maxtry > 40 in Rosenbrock method' |
---|
| 288 | CALL message( 'lpm_droplet_condensation', 'PA0347', 2, 2, & |
---|
| 289 | 0, 6, 0 ) |
---|
| 290 | ENDIF |
---|
[849] | 291 | |
---|
[1071] | 292 | aa = 1.0 / ( gam * dt_ros ) - d2rdtdr |
---|
| 293 | g1 = drdt_ini / aa |
---|
| 294 | r_ros = r_ros_ini + a21 * g1 |
---|
| 295 | drdt = ddenom / r_ros * ( e_a / e_s - 1.0 - & |
---|
| 296 | afactor / r_ros + & |
---|
| 297 | bfactor / r_ros**3 ) |
---|
[849] | 298 | |
---|
[1071] | 299 | g2 = ( drdt + c21 * g1 / dt_ros )& |
---|
| 300 | / aa |
---|
| 301 | r_ros = r_ros_ini + a31 * g1 + a32 * g2 |
---|
| 302 | drdt = ddenom / r_ros * ( e_a / e_s - 1.0 - & |
---|
| 303 | afactor / r_ros + & |
---|
| 304 | bfactor / r_ros**3 ) |
---|
[849] | 305 | |
---|
[1071] | 306 | g3 = ( drdt + & |
---|
| 307 | ( c31 * g1 + c32 * g2 ) / dt_ros ) / aa |
---|
| 308 | g4 = ( drdt + & |
---|
| 309 | ( c41 * g1 + c42 * g2 + c43 * g3 ) / dt_ros ) / aa |
---|
| 310 | r_ros = r_ros_ini + b1 * g1 + b2 * g2 + b3 * g3 + b4 * g4 |
---|
[849] | 311 | |
---|
[1071] | 312 | dt_ros_sum = dt_ros_sum_ini + dt_ros |
---|
[849] | 313 | |
---|
[1071] | 314 | IF ( dt_ros_sum == dt_ros_sum_ini ) THEN |
---|
| 315 | message_string = 'zero stepsize in Rosenbrock method' |
---|
| 316 | CALL message( 'lpm_droplet_condensation', 'PA0348', 2, 2, & |
---|
| 317 | 0, 6, 0 ) |
---|
| 318 | ENDIF |
---|
[849] | 319 | ! |
---|
[1071] | 320 | !-- Calculate error |
---|
| 321 | err_ros = e1*g1 + e2*g2 + e3*g3 + e4*g4 |
---|
| 322 | errmax = 0.0 |
---|
| 323 | errmax = MAX( errmax, ABS( err_ros / r_ros_ini ) ) / eps_ros |
---|
[849] | 324 | ! |
---|
[1071] | 325 | !-- Leave loop if accuracy is sufficient, otherwise try again |
---|
| 326 | !-- with a reduced stepsize |
---|
| 327 | IF ( errmax <= 1.0 ) THEN |
---|
| 328 | EXIT |
---|
| 329 | ELSE |
---|
| 330 | dt_ros = SIGN( MAX( ABS( 0.9 * dt_ros * errmax**pshrnk ), & |
---|
| 331 | shrnk * ABS( dt_ros ) ), dt_ros ) |
---|
| 332 | ENDIF |
---|
| 333 | |
---|
| 334 | ENDDO ! loop for stepsize adjustment |
---|
| 335 | |
---|
| 336 | ! |
---|
| 337 | !-- Calculate next internal time step |
---|
| 338 | IF ( errmax > errcon ) THEN |
---|
| 339 | dt_ros_next = 0.9 * dt_ros * errmax**pgrow |
---|
[849] | 340 | ELSE |
---|
[1071] | 341 | dt_ros_next = grow * dt_ros |
---|
[849] | 342 | ENDIF |
---|
| 343 | |
---|
[1071] | 344 | ! |
---|
| 345 | !-- Estimated time step is reduced if the PALM time step is exceeded |
---|
| 346 | IF ( ( dt_ros_next + dt_ros_sum ) >= dt_3d ) THEN |
---|
| 347 | dt_ros = dt_3d - dt_ros_sum |
---|
| 348 | ELSE |
---|
| 349 | dt_ros = dt_ros_next |
---|
| 350 | ENDIF |
---|
[849] | 351 | |
---|
[1071] | 352 | ENDDO |
---|
[849] | 353 | ! |
---|
[1071] | 354 | !-- Store internal time step value for next PALM step |
---|
| 355 | particles(n)%rvar1 = dt_ros_next |
---|
[849] | 356 | |
---|
[1071] | 357 | new_r = r_ros |
---|
[849] | 358 | ! |
---|
[1071] | 359 | !-- Radius should not fall below 1E-8 because Rosenbrock method may |
---|
| 360 | !-- lead to errors otherwise |
---|
| 361 | new_r = MAX( new_r, 1.0E-8 ) |
---|
| 362 | ! |
---|
| 363 | !-- Check if calculated droplet radius change is reasonable since in |
---|
| 364 | !-- case of droplet evaporation the Rosenbrock method may lead to |
---|
| 365 | !-- secondary solutions which are physically unlikely. |
---|
| 366 | !-- Due to the solution effect the droplets may grow for relative |
---|
| 367 | !-- humidities below 100%, but change of radius should not be too large. |
---|
| 368 | !-- In case of unreasonable droplet growth the Rosenbrock method is |
---|
| 369 | !-- recalculated using a smaller initial time step. |
---|
| 370 | !-- Limiting values are tested for droplets down to 1.0E-7 |
---|
| 371 | IF ( new_r - particles(n)%radius >= 3.0E-7 .AND. & |
---|
| 372 | e_a/e_s < 0.97 ) THEN |
---|
| 373 | ros_count = ros_count + 1 |
---|
| 374 | repeat = .TRUE. |
---|
[849] | 375 | ENDIF |
---|
| 376 | |
---|
[1071] | 377 | ENDDO ! Rosenbrock method |
---|
[849] | 378 | |
---|
| 379 | ENDIF |
---|
| 380 | |
---|
| 381 | delta_r = new_r - particles(n)%radius |
---|
| 382 | |
---|
| 383 | ! |
---|
| 384 | !-- Sum up the change in volume of liquid water for the respective grid |
---|
| 385 | !-- volume (this is needed later in lpm_calc_liquid_water_content for |
---|
| 386 | !-- calculating the release of latent heat) |
---|
| 387 | i = ( particles(n)%x + 0.5 * dx ) * ddx |
---|
| 388 | j = ( particles(n)%y + 0.5 * dy ) * ddy |
---|
| 389 | k = particles(n)%z / dz + 1 + offset_ocean_nzt_m1 |
---|
| 390 | ! only exact if equidistant |
---|
| 391 | |
---|
| 392 | ql_c(k,j,i) = ql_c(k,j,i) + particles(n)%weight_factor * & |
---|
| 393 | rho_l * 1.33333333 * pi * & |
---|
| 394 | ( new_r**3 - particles(n)%radius**3 ) / & |
---|
| 395 | ( rho_surface * dx * dy * dz ) |
---|
| 396 | IF ( ql_c(k,j,i) > 100.0 ) THEN |
---|
| 397 | WRITE( message_string, * ) 'k=',k,' j=',j,' i=',i, & |
---|
| 398 | ' ql_c=',ql_c(k,j,i), ' &part(',n,')%wf=', & |
---|
| 399 | particles(n)%weight_factor,' delta_r=',delta_r |
---|
| 400 | CALL message( 'lpm_droplet_condensation', 'PA0143', 2, 2, -1, 6, 1 ) |
---|
| 401 | ENDIF |
---|
| 402 | |
---|
| 403 | ! |
---|
| 404 | !-- Change the droplet radius |
---|
| 405 | IF ( ( new_r - particles(n)%radius ) < 0.0 .AND. new_r < 0.0 ) & |
---|
| 406 | THEN |
---|
| 407 | WRITE( message_string, * ) '#1 k=',k,' j=',j,' i=',i, & |
---|
| 408 | ' e_s=',e_s, ' e_a=',e_a,' t_int=',t_int, & |
---|
| 409 | ' &delta_r=',delta_r, & |
---|
| 410 | ' particle_radius=',particles(n)%radius |
---|
| 411 | CALL message( 'lpm_droplet_condensation', 'PA0144', 2, 2, -1, 6, 1 ) |
---|
| 412 | ENDIF |
---|
| 413 | |
---|
| 414 | ! |
---|
| 415 | !-- Sum up the total volume of liquid water (needed below for |
---|
| 416 | !-- re-calculating the weighting factors) |
---|
| 417 | ql_v(k,j,i) = ql_v(k,j,i) + particles(n)%weight_factor * new_r**3 |
---|
| 418 | |
---|
| 419 | particles(n)%radius = new_r |
---|
| 420 | |
---|
| 421 | ! |
---|
| 422 | !-- Determine radius class of the particle needed for collision |
---|
| 423 | IF ( ( hall_kernel .OR. wang_kernel ) .AND. use_kernel_tables ) & |
---|
| 424 | THEN |
---|
| 425 | particles(n)%class = ( LOG( new_r ) - rclass_lbound ) / & |
---|
| 426 | ( rclass_ubound - rclass_lbound ) * & |
---|
| 427 | radius_classes |
---|
| 428 | particles(n)%class = MIN( particles(n)%class, radius_classes ) |
---|
| 429 | particles(n)%class = MAX( particles(n)%class, 1 ) |
---|
| 430 | ENDIF |
---|
| 431 | |
---|
| 432 | ENDDO |
---|
| 433 | |
---|
| 434 | CALL cpu_log( log_point_s(42), 'lpm_droplet_condens', 'stop' ) |
---|
| 435 | |
---|
| 436 | |
---|
| 437 | END SUBROUTINE lpm_droplet_condensation |
---|