1 | !> @file lpm_droplet_collision.f90 |
---|
2 | !--------------------------------------------------------------------------------! |
---|
3 | ! This file is part of PALM. |
---|
4 | ! |
---|
5 | ! PALM is free software: you can redistribute it and/or modify it under the terms |
---|
6 | ! of the GNU General Public License as published by the Free Software Foundation, |
---|
7 | ! either version 3 of the License, or (at your option) any later version. |
---|
8 | ! |
---|
9 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
10 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
11 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
12 | ! |
---|
13 | ! You should have received a copy of the GNU General Public License along with |
---|
14 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
15 | ! |
---|
16 | ! Copyright 1997-2016 Leibniz Universitaet Hannover |
---|
17 | !--------------------------------------------------------------------------------! |
---|
18 | ! |
---|
19 | ! Current revisions: |
---|
20 | ! ------------------ |
---|
21 | ! |
---|
22 | ! |
---|
23 | ! Former revisions: |
---|
24 | ! ----------------- |
---|
25 | ! $Id: lpm_droplet_collision.f90 1861 2016-04-13 13:22:08Z maronga $ |
---|
26 | ! |
---|
27 | ! 1860 2016-04-13 13:21:28Z hoffmann |
---|
28 | ! Interpolation of dissipation rate adjusted to more reasonable values. |
---|
29 | ! |
---|
30 | ! 1822 2016-04-07 07:49:42Z hoffmann |
---|
31 | ! Integration of a new collision algortithm based on Shima et al. (2009) and |
---|
32 | ! Soelch and Kaercher (2010) called all_or_nothing. The previous implemented |
---|
33 | ! collision algorithm is called average_impact. Moreover, both algorithms are |
---|
34 | ! now positive definit due to their construction, i.e., no negative weighting |
---|
35 | ! factors should occur. |
---|
36 | ! |
---|
37 | ! 1682 2015-10-07 23:56:08Z knoop |
---|
38 | ! Code annotations made doxygen readable |
---|
39 | ! |
---|
40 | ! 1359 2014-04-11 17:15:14Z hoffmann |
---|
41 | ! New particle structure integrated. |
---|
42 | ! Kind definition added to all floating point numbers. |
---|
43 | ! |
---|
44 | ! 1322 2014-03-20 16:38:49Z raasch |
---|
45 | ! REAL constants defined as wp_kind |
---|
46 | ! |
---|
47 | ! 1320 2014-03-20 08:40:49Z raasch |
---|
48 | ! ONLY-attribute added to USE-statements, |
---|
49 | ! kind-parameters added to all INTEGER and REAL declaration statements, |
---|
50 | ! kinds are defined in new module kinds, |
---|
51 | ! revision history before 2012 removed, |
---|
52 | ! comment fields (!:) to be used for variable explanations added to |
---|
53 | ! all variable declaration statements |
---|
54 | ! |
---|
55 | ! 1092 2013-02-02 11:24:22Z raasch |
---|
56 | ! unused variables removed |
---|
57 | ! |
---|
58 | ! 1071 2012-11-29 16:54:55Z franke |
---|
59 | ! Calculation of Hall and Wang kernel now uses collision-coalescence formulation |
---|
60 | ! proposed by Wang instead of the continuous collection equation (for more |
---|
61 | ! information about new method see PALM documentation) |
---|
62 | ! Bugfix: message identifiers added |
---|
63 | ! |
---|
64 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
65 | ! code put under GPL (PALM 3.9) |
---|
66 | ! |
---|
67 | ! 849 2012-03-15 10:35:09Z raasch |
---|
68 | ! initial revision (former part of advec_particles) |
---|
69 | ! |
---|
70 | ! |
---|
71 | ! Description: |
---|
72 | ! ------------ |
---|
73 | !> Calculates change in droplet radius by collision. Droplet collision is |
---|
74 | !> calculated for each grid box seperately. Collision is parameterized by |
---|
75 | !> using collision kernels. Two different kernels are available: |
---|
76 | !> Hall kernel: Kernel from Hall (1980, J. Atmos. Sci., 2486-2507), which |
---|
77 | !> considers collision due to pure gravitational effects. |
---|
78 | !> Wang kernel: Beside gravitational effects (treated with the Hall-kernel) also |
---|
79 | !> the effects of turbulence on the collision are considered using |
---|
80 | !> parameterizations of Ayala et al. (2008, New J. Phys., 10, |
---|
81 | !> 075015) and Wang and Grabowski (2009, Atmos. Sci. Lett., 10, |
---|
82 | !> 1-8). This kernel includes three possible effects of turbulence: |
---|
83 | !> the modification of the relative velocity between the droplets, |
---|
84 | !> the effect of preferential concentration, and the enhancement of |
---|
85 | !> collision efficiencies. |
---|
86 | !------------------------------------------------------------------------------! |
---|
87 | SUBROUTINE lpm_droplet_collision (i,j,k) |
---|
88 | |
---|
89 | |
---|
90 | |
---|
91 | USE arrays_3d, & |
---|
92 | ONLY: diss, ql_v, ql_vp |
---|
93 | |
---|
94 | USE cloud_parameters, & |
---|
95 | ONLY: rho_l |
---|
96 | |
---|
97 | USE constants, & |
---|
98 | ONLY: pi |
---|
99 | |
---|
100 | USE control_parameters, & |
---|
101 | ONLY: dt_3d, message_string, dz |
---|
102 | |
---|
103 | USE cpulog, & |
---|
104 | ONLY: cpu_log, log_point_s |
---|
105 | |
---|
106 | USE grid_variables, & |
---|
107 | ONLY: dx, dy |
---|
108 | |
---|
109 | USE kinds |
---|
110 | |
---|
111 | USE lpm_collision_kernels_mod, & |
---|
112 | ONLY: ckernel, recalculate_kernel |
---|
113 | |
---|
114 | USE particle_attributes, & |
---|
115 | ONLY: all_or_nothing, average_impact, dissipation_classes, & |
---|
116 | hall_kernel, iran_part, number_of_particles, particles, & |
---|
117 | particle_type, prt_count, use_kernel_tables, wang_kernel |
---|
118 | |
---|
119 | USE random_function_mod, & |
---|
120 | ONLY: random_function |
---|
121 | |
---|
122 | USE pegrid |
---|
123 | |
---|
124 | IMPLICIT NONE |
---|
125 | |
---|
126 | INTEGER(iwp) :: eclass !< |
---|
127 | INTEGER(iwp) :: i !< |
---|
128 | INTEGER(iwp) :: j !< |
---|
129 | INTEGER(iwp) :: k !< |
---|
130 | INTEGER(iwp) :: n !< |
---|
131 | INTEGER(iwp) :: m !< |
---|
132 | INTEGER(iwp) :: rclass_l !< |
---|
133 | INTEGER(iwp) :: rclass_s !< |
---|
134 | |
---|
135 | REAL(wp) :: collection_probability !< probability for collection |
---|
136 | REAL(wp) :: ddV !< inverse grid box volume |
---|
137 | REAL(wp) :: epsilon !< dissipation rate |
---|
138 | REAL(wp) :: factor_volume_to_mass !< 4.0 / 3.0 * pi * rho_l |
---|
139 | REAL(wp) :: xm !< mean mass of droplet m |
---|
140 | REAL(wp) :: xn !< mean mass of droplet n |
---|
141 | |
---|
142 | REAL(wp), DIMENSION(:), ALLOCATABLE :: weight !< weighting factor |
---|
143 | REAL(wp), DIMENSION(:), ALLOCATABLE :: mass !< total mass of super droplet |
---|
144 | |
---|
145 | CALL cpu_log( log_point_s(43), 'lpm_droplet_coll', 'start' ) |
---|
146 | |
---|
147 | number_of_particles = prt_count(k,j,i) |
---|
148 | factor_volume_to_mass = 4.0_wp / 3.0_wp * pi * rho_l |
---|
149 | ddV = 1 / ( dx * dy * dz ) |
---|
150 | ! |
---|
151 | !-- Collision requires at least one super droplet inside the box |
---|
152 | IF ( number_of_particles > 0 ) THEN |
---|
153 | |
---|
154 | ! |
---|
155 | !-- Now apply the different kernels |
---|
156 | IF ( use_kernel_tables ) THEN |
---|
157 | ! |
---|
158 | !-- Fast method with pre-calculated collection kernels for |
---|
159 | !-- discrete radius- and dissipation-classes. |
---|
160 | !-- |
---|
161 | !-- Determine dissipation class index of this gridbox |
---|
162 | IF ( wang_kernel ) THEN |
---|
163 | eclass = INT( diss(k,j,i) * 1.0E4_wp / 600.0_wp * & |
---|
164 | dissipation_classes ) + 1 |
---|
165 | epsilon = diss(k,j,i) |
---|
166 | ELSE |
---|
167 | epsilon = 0.0_wp |
---|
168 | ENDIF |
---|
169 | IF ( hall_kernel .OR. epsilon * 1.0E4_wp < 0.001_wp ) THEN |
---|
170 | eclass = 0 ! Hall kernel is used |
---|
171 | ELSE |
---|
172 | eclass = MIN( dissipation_classes, eclass ) |
---|
173 | ENDIF |
---|
174 | |
---|
175 | ! |
---|
176 | !-- Droplet collision are calculated using collision-coalescence |
---|
177 | !-- formulation proposed by Wang (see PALM documentation) |
---|
178 | !-- Temporary fields for total mass of super-droplet and weighting factors |
---|
179 | !-- are allocated. |
---|
180 | ALLOCATE(mass(1:number_of_particles), weight(1:number_of_particles)) |
---|
181 | |
---|
182 | mass(1:number_of_particles) = particles(1:number_of_particles)%weight_factor * & |
---|
183 | particles(1:number_of_particles)%radius**3 * & |
---|
184 | factor_volume_to_mass |
---|
185 | weight(1:number_of_particles) = particles(1:number_of_particles)%weight_factor |
---|
186 | |
---|
187 | IF ( average_impact ) THEN ! select collision algorithm |
---|
188 | |
---|
189 | DO n = 1, number_of_particles |
---|
190 | |
---|
191 | rclass_l = particles(n)%class |
---|
192 | xn = mass(n) / weight(n) |
---|
193 | |
---|
194 | DO m = n, number_of_particles |
---|
195 | |
---|
196 | rclass_s = particles(m)%class |
---|
197 | xm = mass(m) / weight(m) |
---|
198 | |
---|
199 | IF ( xm .LT. xn ) THEN |
---|
200 | |
---|
201 | ! |
---|
202 | !-- Particle n collects smaller particle m |
---|
203 | collection_probability = ckernel(rclass_l,rclass_s,eclass) * & |
---|
204 | weight(n) * ddV * dt_3d |
---|
205 | |
---|
206 | mass(n) = mass(n) + mass(m) * collection_probability |
---|
207 | weight(m) = weight(m) - weight(m) * collection_probability |
---|
208 | mass(m) = mass(m) - mass(m) * collection_probability |
---|
209 | ELSEIF ( xm .GT. xn ) THEN |
---|
210 | ! |
---|
211 | !-- Particle m collects smaller particle n |
---|
212 | collection_probability = ckernel(rclass_l,rclass_s,eclass) * & |
---|
213 | weight(m) * ddV * dt_3d |
---|
214 | |
---|
215 | mass(m) = mass(m) + mass(n) * collection_probability |
---|
216 | weight(n) = weight(n) - weight(n) * collection_probability |
---|
217 | mass(n) = mass(n) - mass(n) * collection_probability |
---|
218 | ELSE |
---|
219 | ! |
---|
220 | !-- Same-size collections. If n = m, weight is reduced by the |
---|
221 | !-- number of possible same-size collections; the total mass |
---|
222 | !-- is not changed during same-size collection. |
---|
223 | !-- Same-size collections of different |
---|
224 | !-- particles ( n /= m ) are treated as same-size collections |
---|
225 | !-- of ONE partilce with weight = weight(n) + weight(m) and |
---|
226 | !-- mass = mass(n) + mass(m). |
---|
227 | !-- Accordingly, each particle loses the same number of |
---|
228 | !-- droplets to the other particle, but this has no effect on |
---|
229 | !-- total mass mass, since the exchanged droplets have the |
---|
230 | !-- same radius. |
---|
231 | |
---|
232 | !-- Note: For m = n this equation is an approximation only |
---|
233 | !-- valid for weight >> 1 (which is usually the case). The |
---|
234 | !-- approximation is weight(n)-1 = weight(n). |
---|
235 | weight(n) = weight(n) - 0.5_wp * weight(n) * & |
---|
236 | ckernel(rclass_l,rclass_s,eclass) * & |
---|
237 | weight(m) * ddV * dt_3d |
---|
238 | IF ( n .NE. m ) THEN |
---|
239 | weight(m) = weight(m) - 0.5_wp * weight(m) * & |
---|
240 | ckernel(rclass_l,rclass_s,eclass) * & |
---|
241 | weight(n) * ddV * dt_3d |
---|
242 | ENDIF |
---|
243 | ENDIF |
---|
244 | |
---|
245 | ENDDO |
---|
246 | |
---|
247 | ql_vp(k,j,i) = ql_vp(k,j,i) + mass(n) / factor_volume_to_mass |
---|
248 | |
---|
249 | ENDDO |
---|
250 | |
---|
251 | ELSEIF ( all_or_nothing ) THEN ! select collision algorithm |
---|
252 | |
---|
253 | DO n = 1, number_of_particles |
---|
254 | |
---|
255 | rclass_l = particles(n)%class |
---|
256 | xn = mass(n) / weight(n) ! mean mass of droplet n |
---|
257 | |
---|
258 | DO m = n, number_of_particles |
---|
259 | |
---|
260 | rclass_s = particles(m)%class |
---|
261 | xm = mass(m) / weight(m) ! mean mass of droplet m |
---|
262 | |
---|
263 | IF ( weight(n) .LT. weight(m) ) THEN |
---|
264 | ! |
---|
265 | !-- Particle n collects weight(n) droplets of particle m |
---|
266 | collection_probability = ckernel(rclass_l,rclass_s,eclass) * & |
---|
267 | weight(m) * ddV * dt_3d |
---|
268 | |
---|
269 | IF ( collection_probability .GT. random_function( iran_part ) ) THEN |
---|
270 | mass(n) = mass(n) + weight(n) * xm |
---|
271 | weight(m) = weight(m) - weight(n) |
---|
272 | mass(m) = mass(m) - weight(n) * xm |
---|
273 | ENDIF |
---|
274 | |
---|
275 | ELSEIF ( weight(m) .LT. weight(n) ) THEN |
---|
276 | ! |
---|
277 | !-- Particle m collects weight(m) droplets of particle n |
---|
278 | collection_probability = ckernel(rclass_l,rclass_s,eclass) * & |
---|
279 | weight(n) * ddV * dt_3d |
---|
280 | |
---|
281 | IF ( collection_probability .GT. random_function( iran_part ) ) THEN |
---|
282 | mass(m) = mass(m) + weight(m) * xn |
---|
283 | weight(n) = weight(n) - weight(m) |
---|
284 | mass(n) = mass(n) - weight(m) * xn |
---|
285 | ENDIF |
---|
286 | ELSE |
---|
287 | ! |
---|
288 | !-- Collisions of particles of the same weighting factor. |
---|
289 | !-- Particle n collects 1/2 weight(n) droplets of particle m, |
---|
290 | !-- particle m collects 1/2 weight(m) droplets of particle n. |
---|
291 | !-- The total mass mass changes accordingly. |
---|
292 | !-- If n = m, the first half of the droplets coalesces with the |
---|
293 | !-- second half of the droplets; mass is unchanged because |
---|
294 | !-- xm = xn for n = m. |
---|
295 | |
---|
296 | !-- Note: For m = n this equation is an approximation only |
---|
297 | !-- valid for weight >> 1 (which is usually the case). The |
---|
298 | !-- approximation is weight(n)-1 = weight(n). |
---|
299 | collection_probability = ckernel(rclass_l,rclass_s,eclass) * & |
---|
300 | weight(n) * ddV * dt_3d |
---|
301 | |
---|
302 | IF ( collection_probability .GT. random_function( iran_part ) ) THEN |
---|
303 | mass(n) = mass(n) + 0.5_wp * weight(n) * ( xm - xn ) |
---|
304 | mass(m) = mass(m) + 0.5_wp * weight(m) * ( xn - xm ) |
---|
305 | weight(n) = weight(n) - 0.5_wp * weight(m) |
---|
306 | weight(m) = weight(n) |
---|
307 | ENDIF |
---|
308 | ENDIF |
---|
309 | |
---|
310 | ENDDO |
---|
311 | |
---|
312 | ql_vp(k,j,i) = ql_vp(k,j,i) + mass(n) / factor_volume_to_mass |
---|
313 | |
---|
314 | ENDDO |
---|
315 | |
---|
316 | ENDIF |
---|
317 | |
---|
318 | |
---|
319 | |
---|
320 | |
---|
321 | IF ( ANY(weight < 0.0_wp) ) THEN |
---|
322 | WRITE( message_string, * ) 'negative weighting' |
---|
323 | CALL message( 'lpm_droplet_collision', 'PA0028', & |
---|
324 | 2, 2, -1, 6, 1 ) |
---|
325 | ENDIF |
---|
326 | |
---|
327 | particles(1:number_of_particles)%radius = ( mass(1:number_of_particles) / & |
---|
328 | ( weight(1:number_of_particles) & |
---|
329 | * factor_volume_to_mass & |
---|
330 | ) & |
---|
331 | )**0.33333333333333_wp |
---|
332 | |
---|
333 | particles(1:number_of_particles)%weight_factor = weight(1:number_of_particles) |
---|
334 | |
---|
335 | DEALLOCATE(weight, mass) |
---|
336 | |
---|
337 | ELSEIF ( .NOT. use_kernel_tables ) THEN |
---|
338 | ! |
---|
339 | !-- Collection kernels are calculated for every new |
---|
340 | !-- grid box. First, allocate memory for kernel table. |
---|
341 | !-- Third dimension is 1, because table is re-calculated for |
---|
342 | !-- every new dissipation value. |
---|
343 | ALLOCATE( ckernel(1:number_of_particles,1:number_of_particles,1:1) ) |
---|
344 | ! |
---|
345 | !-- Now calculate collection kernel for this box. Note that |
---|
346 | !-- the kernel is based on the previous time step |
---|
347 | CALL recalculate_kernel( i, j, k ) |
---|
348 | ! |
---|
349 | !-- Droplet collision are calculated using collision-coalescence |
---|
350 | !-- formulation proposed by Wang (see PALM documentation) |
---|
351 | !-- Temporary fields for total mass of super-droplet and weighting factors |
---|
352 | !-- are allocated. |
---|
353 | ALLOCATE(mass(1:number_of_particles), weight(1:number_of_particles)) |
---|
354 | |
---|
355 | mass(1:number_of_particles) = particles(1:number_of_particles)%weight_factor * & |
---|
356 | particles(1:number_of_particles)%radius**3 * & |
---|
357 | factor_volume_to_mass |
---|
358 | |
---|
359 | weight(1:number_of_particles) = particles(1:number_of_particles)%weight_factor |
---|
360 | |
---|
361 | IF ( average_impact ) THEN ! select collision algorithm |
---|
362 | |
---|
363 | DO n = 1, number_of_particles |
---|
364 | |
---|
365 | xn = mass(n) / weight(n) ! mean mass of droplet n |
---|
366 | |
---|
367 | DO m = n, number_of_particles |
---|
368 | |
---|
369 | xm = mass(m) / weight(m) !mean mass of droplet m |
---|
370 | |
---|
371 | IF ( xm .LT. xn ) THEN |
---|
372 | ! |
---|
373 | !-- Particle n collects smaller particle m |
---|
374 | collection_probability = ckernel(n,m,1) * weight(n) * & |
---|
375 | ddV * dt_3d |
---|
376 | |
---|
377 | mass(n) = mass(n) + mass(m) * collection_probability |
---|
378 | weight(m) = weight(m) - weight(m) * collection_probability |
---|
379 | mass(m) = mass(m) - mass(m) * collection_probability |
---|
380 | ELSEIF ( xm .GT. xn ) THEN |
---|
381 | ! |
---|
382 | !-- Particle m collects smaller particle n |
---|
383 | collection_probability = ckernel(n,m,1) * weight(m) * & |
---|
384 | ddV * dt_3d |
---|
385 | |
---|
386 | mass(m) = mass(m) + mass(n) * collection_probability |
---|
387 | weight(n) = weight(n) - weight(n) * collection_probability |
---|
388 | mass(n) = mass(n) - mass(n) * collection_probability |
---|
389 | ELSE |
---|
390 | ! |
---|
391 | !-- Same-size collections. If n = m, weight is reduced by the |
---|
392 | !-- number of possible same-size collections; the total mass |
---|
393 | !-- mass is not changed during same-size collection. |
---|
394 | !-- Same-size collections of different |
---|
395 | !-- particles ( n /= m ) are treated as same-size collections |
---|
396 | !-- of ONE partilce with weight = weight(n) + weight(m) and |
---|
397 | !-- mass = mass(n) + mass(m). |
---|
398 | !-- Accordingly, each particle loses the same number of |
---|
399 | !-- droplets to the other particle, but this has no effect on |
---|
400 | !-- total mass mass, since the exchanged droplets have the |
---|
401 | !-- same radius. |
---|
402 | !-- |
---|
403 | !-- Note: For m = n this equation is an approximation only |
---|
404 | !-- valid for weight >> 1 (which is usually the case). The |
---|
405 | !-- approximation is weight(n)-1 = weight(n). |
---|
406 | weight(n) = weight(n) - 0.5_wp * weight(n) * & |
---|
407 | ckernel(n,m,1) * weight(m) * & |
---|
408 | ddV * dt_3d |
---|
409 | IF ( n .NE. m ) THEN |
---|
410 | weight(m) = weight(m) - 0.5_wp * weight(m) * & |
---|
411 | ckernel(n,m,1) * weight(n) * & |
---|
412 | ddV * dt_3d |
---|
413 | ENDIF |
---|
414 | ENDIF |
---|
415 | |
---|
416 | |
---|
417 | ENDDO |
---|
418 | |
---|
419 | ql_vp(k,j,i) = ql_vp(k,j,i) + mass(n) / factor_volume_to_mass |
---|
420 | |
---|
421 | ENDDO |
---|
422 | |
---|
423 | ELSEIF ( all_or_nothing ) THEN ! select collision algorithm |
---|
424 | |
---|
425 | DO n = 1, number_of_particles |
---|
426 | |
---|
427 | xn = mass(n) / weight(n) ! mean mass of droplet n |
---|
428 | |
---|
429 | DO m = n, number_of_particles |
---|
430 | |
---|
431 | xm = mass(m) / weight(m) !mean mass of droplet m |
---|
432 | |
---|
433 | IF ( weight(n) .LT. weight(m) ) THEN |
---|
434 | ! |
---|
435 | !-- Particle n collects smaller particle m |
---|
436 | collection_probability = ckernel(n,m,1) * weight(m) * & |
---|
437 | ddV * dt_3d |
---|
438 | |
---|
439 | IF ( collection_probability .GT. random_function( iran_part ) ) THEN |
---|
440 | mass(n) = mass(n) + weight(n) * xm |
---|
441 | weight(m) = weight(m) - weight(n) |
---|
442 | mass(m) = mass(m) - weight(n) * xm |
---|
443 | ENDIF |
---|
444 | |
---|
445 | ELSEIF ( weight(m) .LT. weight(n) ) THEN |
---|
446 | ! |
---|
447 | !-- Particle m collects smaller particle n |
---|
448 | collection_probability = ckernel(n,m,1) * weight(n) * & |
---|
449 | ddV * dt_3d |
---|
450 | |
---|
451 | IF ( collection_probability .GT. random_function( iran_part ) ) THEN |
---|
452 | mass(m) = mass(m) + weight(m) * xn |
---|
453 | weight(n) = weight(n) - weight(m) |
---|
454 | mass(n) = mass(n) - weight(m) * xn |
---|
455 | ENDIF |
---|
456 | ELSE |
---|
457 | ! |
---|
458 | !-- Collisions of particles of the same weighting factor. |
---|
459 | !-- Particle n collects 1/2 weight(n) droplets of particle m, |
---|
460 | !-- particle m collects 1/2 weight(m) droplets of particle n. |
---|
461 | !-- The total mass mass changes accordingly. |
---|
462 | !-- If n = m, the first half of the droplets coalesces with the |
---|
463 | !-- second half of the droplets; mass is unchanged because |
---|
464 | !-- xm = xn for n = m. |
---|
465 | !-- |
---|
466 | !-- Note: For m = n this equation is an approximation only |
---|
467 | !-- valid for weight >> 1 (which is usually the case). The |
---|
468 | !-- approximation is weight(n)-1 = weight(n). |
---|
469 | collection_probability = ckernel(n,m,1) * weight(n) * & |
---|
470 | ddV * dt_3d |
---|
471 | |
---|
472 | IF ( collection_probability .GT. random_function( iran_part ) ) THEN |
---|
473 | mass(n) = mass(n) + 0.5_wp * weight(n) * ( xm - xn ) |
---|
474 | mass(m) = mass(m) + 0.5_wp * weight(m) * ( xn - xm ) |
---|
475 | weight(n) = weight(n) - 0.5_wp * weight(m) |
---|
476 | weight(m) = weight(n) |
---|
477 | ENDIF |
---|
478 | ENDIF |
---|
479 | |
---|
480 | |
---|
481 | ENDDO |
---|
482 | |
---|
483 | ql_vp(k,j,i) = ql_vp(k,j,i) + mass(n) / factor_volume_to_mass |
---|
484 | |
---|
485 | ENDDO |
---|
486 | |
---|
487 | ENDIF |
---|
488 | |
---|
489 | IF ( ANY(weight < 0.0_wp) ) THEN |
---|
490 | WRITE( message_string, * ) 'negative weighting' |
---|
491 | CALL message( 'lpm_droplet_collision', 'PA0028', & |
---|
492 | 2, 2, -1, 6, 1 ) |
---|
493 | ENDIF |
---|
494 | |
---|
495 | particles(1:number_of_particles)%radius = ( mass(1:number_of_particles) / & |
---|
496 | ( weight(1:number_of_particles) & |
---|
497 | * factor_volume_to_mass & |
---|
498 | ) & |
---|
499 | )**0.33333333333333_wp |
---|
500 | |
---|
501 | particles(1:number_of_particles)%weight_factor = weight(1:number_of_particles) |
---|
502 | |
---|
503 | DEALLOCATE( weight, mass, ckernel ) |
---|
504 | |
---|
505 | ENDIF |
---|
506 | |
---|
507 | ENDIF |
---|
508 | |
---|
509 | |
---|
510 | ! |
---|
511 | !-- Check if LWC is conserved during collision process |
---|
512 | IF ( ql_v(k,j,i) /= 0.0_wp ) THEN |
---|
513 | IF ( ql_vp(k,j,i) / ql_v(k,j,i) >= 1.0001_wp .OR. & |
---|
514 | ql_vp(k,j,i) / ql_v(k,j,i) <= 0.9999_wp ) THEN |
---|
515 | WRITE( message_string, * ) ' LWC is not conserved during', & |
---|
516 | ' collision! ', & |
---|
517 | ' LWC after condensation: ', ql_v(k,j,i), & |
---|
518 | ' LWC after collision: ', ql_vp(k,j,i) |
---|
519 | CALL message( 'lpm_droplet_collision', 'PA0040', 2, 2, -1, 6, 1 ) |
---|
520 | ENDIF |
---|
521 | ENDIF |
---|
522 | |
---|
523 | CALL cpu_log( log_point_s(43), 'lpm_droplet_coll', 'stop' ) |
---|
524 | |
---|
525 | END SUBROUTINE lpm_droplet_collision |
---|