1 | SUBROUTINE lpm_droplet_collision |
---|
2 | |
---|
3 | !--------------------------------------------------------------------------------! |
---|
4 | ! This file is part of PALM. |
---|
5 | ! |
---|
6 | ! PALM is free software: you can redistribute it and/or modify it under the terms |
---|
7 | ! of the GNU General Public License as published by the Free Software Foundation, |
---|
8 | ! either version 3 of the License, or (at your option) any later version. |
---|
9 | ! |
---|
10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
13 | ! |
---|
14 | ! You should have received a copy of the GNU General Public License along with |
---|
15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
16 | ! |
---|
17 | ! Copyright 1997-2012 Leibniz University Hannover |
---|
18 | !--------------------------------------------------------------------------------! |
---|
19 | ! |
---|
20 | ! Current revisions: |
---|
21 | ! ------------------ |
---|
22 | ! |
---|
23 | ! |
---|
24 | ! Former revisions: |
---|
25 | ! ----------------- |
---|
26 | ! $Id: lpm_droplet_collision.f90 1072 2012-11-29 17:04:39Z raasch $ |
---|
27 | ! |
---|
28 | ! 1071 2012-11-29 16:54:55Z franke |
---|
29 | ! Calculation of Hall and Wang kernel now uses collision-coalescence formulation |
---|
30 | ! proposed by Wang instead of the continuous collection equation (for more |
---|
31 | ! information about new method see PALM documentation) |
---|
32 | ! Bugfix: message identifiers added |
---|
33 | ! |
---|
34 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
35 | ! code put under GPL (PALM 3.9) |
---|
36 | ! |
---|
37 | ! 849 2012-03-15 10:35:09Z raasch |
---|
38 | ! initial revision (former part of advec_particles) |
---|
39 | ! |
---|
40 | ! |
---|
41 | ! Description: |
---|
42 | ! ------------ |
---|
43 | ! Calculates change in droplet radius by collision. Droplet collision is |
---|
44 | ! calculated for each grid box seperately. Collision is parameterized by |
---|
45 | ! using collision kernels. Three different kernels are available: |
---|
46 | ! PALM kernel: Kernel is approximated using a method from Rogers and |
---|
47 | ! Yau (1989, A Short Course in Cloud Physics, Pergamon Press). |
---|
48 | ! All droplets smaller than the treated one are represented by |
---|
49 | ! one droplet with mean features. Collision efficiencies are taken |
---|
50 | ! from the respective table in Rogers and Yau. |
---|
51 | ! Hall kernel: Kernel from Hall (1980, J. Atmos. Sci., 2486-2507), which |
---|
52 | ! considers collision due to pure gravitational effects. |
---|
53 | ! Wang kernel: Beside gravitational effects (treated with the Hall-kernel) also |
---|
54 | ! the effects of turbulence on the collision are considered using |
---|
55 | ! parameterizations of Ayala et al. (2008, New J. Phys., 10, |
---|
56 | ! 075015) and Wang and Grabowski (2009, Atmos. Sci. Lett., 10, |
---|
57 | ! 1-8). This kernel includes three possible effects of turbulence: |
---|
58 | ! the modification of the relative velocity between the droplets, |
---|
59 | ! the effect of preferential concentration, and the enhancement of |
---|
60 | ! collision efficiencies. |
---|
61 | !------------------------------------------------------------------------------! |
---|
62 | |
---|
63 | USE arrays_3d |
---|
64 | USE cloud_parameters |
---|
65 | USE constants |
---|
66 | USE control_parameters |
---|
67 | USE cpulog |
---|
68 | USE grid_variables |
---|
69 | USE indices |
---|
70 | USE interfaces |
---|
71 | USE lpm_collision_kernels_mod |
---|
72 | USE particle_attributes |
---|
73 | |
---|
74 | IMPLICIT NONE |
---|
75 | |
---|
76 | INTEGER :: eclass, i, ii, inc, is, j, jj, js, k, kk, n, pse, psi, & |
---|
77 | rclass_l, rclass_s |
---|
78 | |
---|
79 | REAL :: aa, bb, cc, dd, delta_r, delta_v, gg, epsilon, integral, lw_max, & |
---|
80 | mean_r, ql_int, ql_int_l, ql_int_u, u_int, u_int_l, u_int_u, & |
---|
81 | v_int, v_int_l, v_int_u, w_int, w_int_l, w_int_u, sl_r3, sl_r4, & |
---|
82 | x, y, sum1, sum2, sum3, r3, ddV |
---|
83 | |
---|
84 | TYPE(particle_type) :: tmp_particle |
---|
85 | REAL, DIMENSION(:), ALLOCATABLE :: rad, weight |
---|
86 | |
---|
87 | |
---|
88 | CALL cpu_log( log_point_s(43), 'lpm_droplet_coll', 'start' ) |
---|
89 | |
---|
90 | DO i = nxl, nxr |
---|
91 | DO j = nys, nyn |
---|
92 | DO k = nzb+1, nzt |
---|
93 | ! |
---|
94 | !-- Collision requires at least two particles in the box |
---|
95 | IF ( prt_count(k,j,i) > 1 ) THEN |
---|
96 | ! |
---|
97 | !-- First, sort particles within the gridbox by their size, |
---|
98 | !-- using Shell's method (see Numerical Recipes) |
---|
99 | !-- NOTE: In case of using particle tails, the re-sorting of |
---|
100 | !-- ---- tails would have to be included here! |
---|
101 | psi = prt_start_index(k,j,i) - 1 |
---|
102 | inc = 1 |
---|
103 | DO WHILE ( inc <= prt_count(k,j,i) ) |
---|
104 | inc = 3 * inc + 1 |
---|
105 | ENDDO |
---|
106 | |
---|
107 | DO WHILE ( inc > 1 ) |
---|
108 | inc = inc / 3 |
---|
109 | DO is = inc+1, prt_count(k,j,i) |
---|
110 | tmp_particle = particles(psi+is) |
---|
111 | js = is |
---|
112 | DO WHILE ( particles(psi+js-inc)%radius > & |
---|
113 | tmp_particle%radius ) |
---|
114 | particles(psi+js) = particles(psi+js-inc) |
---|
115 | js = js - inc |
---|
116 | IF ( js <= inc ) EXIT |
---|
117 | ENDDO |
---|
118 | particles(psi+js) = tmp_particle |
---|
119 | ENDDO |
---|
120 | ENDDO |
---|
121 | |
---|
122 | psi = prt_start_index(k,j,i) |
---|
123 | pse = psi + prt_count(k,j,i)-1 |
---|
124 | |
---|
125 | ! |
---|
126 | !-- Now apply the different kernels |
---|
127 | IF ( ( hall_kernel .OR. wang_kernel ) .AND. & |
---|
128 | use_kernel_tables ) THEN |
---|
129 | ! |
---|
130 | !-- Fast method with pre-calculated efficiencies for |
---|
131 | !-- discrete radius- and dissipation-classes. |
---|
132 | ! |
---|
133 | !-- Determine dissipation class index of this gridbox |
---|
134 | IF ( wang_kernel ) THEN |
---|
135 | eclass = INT( diss(k,j,i) * 1.0E4 / 1000.0 * & |
---|
136 | dissipation_classes ) + 1 |
---|
137 | epsilon = diss(k,j,i) |
---|
138 | ELSE |
---|
139 | epsilon = 0.0 |
---|
140 | ENDIF |
---|
141 | IF ( hall_kernel .OR. epsilon * 1.0E4 < 0.001 ) THEN |
---|
142 | eclass = 0 ! Hall kernel is used |
---|
143 | ELSE |
---|
144 | eclass = MIN( dissipation_classes, eclass ) |
---|
145 | ENDIF |
---|
146 | |
---|
147 | ! |
---|
148 | !-- Droplet collision are calculated using collision-coalescence |
---|
149 | !-- formulation proposed by Wang (see PALM documentation) |
---|
150 | !-- Since new radii after collision are defined by radii of all |
---|
151 | !-- droplets before collision, temporary fields for new radii and |
---|
152 | !-- weighting factors are needed |
---|
153 | ALLOCATE(rad(1:prt_count(k,j,i)), weight(1:prt_count(k,j,i))) |
---|
154 | |
---|
155 | rad = 0.0 |
---|
156 | weight = 0.0 |
---|
157 | |
---|
158 | DO n = psi, pse, 1 |
---|
159 | |
---|
160 | sum1 = 0.0 |
---|
161 | sum2 = 0.0 |
---|
162 | sum3 = 0.0 |
---|
163 | |
---|
164 | rclass_l = particles(n)%class |
---|
165 | ! |
---|
166 | !-- Mass added due to collisions with smaller droplets |
---|
167 | DO is = psi, n-1 |
---|
168 | |
---|
169 | rclass_s = particles(is)%class |
---|
170 | sum1 = sum1 + ( particles(is)%radius**3 * & |
---|
171 | ckernel(rclass_l,rclass_s,eclass) * & |
---|
172 | particles(is)%weight_factor ) |
---|
173 | |
---|
174 | ENDDO |
---|
175 | ! |
---|
176 | !-- Rate of collisions with larger droplets |
---|
177 | DO is = n+1, pse |
---|
178 | |
---|
179 | rclass_s = particles(is)%class |
---|
180 | sum2 = sum2 + ( ckernel(rclass_l,rclass_s,eclass) * & |
---|
181 | particles(is)%weight_factor ) |
---|
182 | |
---|
183 | ENDDO |
---|
184 | |
---|
185 | r3 = particles(n)%radius**3 |
---|
186 | ddV = ddx * ddy / dz |
---|
187 | is = prt_start_index(k,j,i) |
---|
188 | ! |
---|
189 | !-- Change of the current weighting factor |
---|
190 | sum3 = 1 - dt_3d * ddV * & |
---|
191 | ckernel(rclass_l,rclass_l,eclass) * & |
---|
192 | ( particles(n)%weight_factor - 1 ) * 0.5 - & |
---|
193 | dt_3d * ddV * sum2 |
---|
194 | weight(n-is+1) = particles(n)%weight_factor * sum3 |
---|
195 | ! |
---|
196 | !-- Change of the current droplet radius |
---|
197 | rad(n-is+1) = ( (r3 + dt_3d * ddV * (sum1 - sum2 * r3) )/& |
---|
198 | sum3 )**0.33333333333333 |
---|
199 | |
---|
200 | IF ( weight(n-is+1) < 0.0 ) THEN |
---|
201 | WRITE( message_string, * ) 'negative weighting', & |
---|
202 | 'factor: ', weight(n-is+1) |
---|
203 | CALL message( 'lpm_droplet_collision', 'PA0028', & |
---|
204 | 2, 2, -1, 6, 1 ) |
---|
205 | ENDIF |
---|
206 | |
---|
207 | ql_vp(k,j,i) = ql_vp(k,j,i) + weight(n-is+1) & |
---|
208 | * rad(n-is+1)**3 |
---|
209 | |
---|
210 | ENDDO |
---|
211 | |
---|
212 | particles(psi:pse)%radius = rad(1:prt_count(k,j,i)) |
---|
213 | particles(psi:pse)%weight_factor = weight(1:prt_count(k,j,i)) |
---|
214 | |
---|
215 | DEALLOCATE(rad, weight) |
---|
216 | |
---|
217 | ELSEIF ( ( hall_kernel .OR. wang_kernel ) .AND. & |
---|
218 | .NOT. use_kernel_tables ) THEN |
---|
219 | ! |
---|
220 | !-- Collision efficiencies are calculated for every new |
---|
221 | !-- grid box. First, allocate memory for kernel table. |
---|
222 | !-- Third dimension is 1, because table is re-calculated for |
---|
223 | !-- every new dissipation value. |
---|
224 | ALLOCATE( ckernel(prt_start_index(k,j,i): & |
---|
225 | prt_start_index(k,j,i)+prt_count(k,j,i)-1, & |
---|
226 | prt_start_index(k,j,i): & |
---|
227 | prt_start_index(k,j,i)+prt_count(k,j,i)-1,1:1) ) |
---|
228 | ! |
---|
229 | !-- Now calculate collision efficiencies for this box |
---|
230 | CALL recalculate_kernel( i, j, k ) |
---|
231 | |
---|
232 | ! |
---|
233 | !-- Droplet collision are calculated using collision-coalescence |
---|
234 | !-- formulation proposed by Wang (see PALM documentation) |
---|
235 | !-- Since new radii after collision are defined by radii of all |
---|
236 | !-- droplets before collision, temporary fields for new radii and |
---|
237 | !-- weighting factors are needed |
---|
238 | ALLOCATE(rad(1:prt_count(k,j,i)), weight(1:prt_count(k,j,i))) |
---|
239 | |
---|
240 | rad = 0.0 |
---|
241 | weight = 0.0 |
---|
242 | |
---|
243 | DO n = psi, pse, 1 |
---|
244 | |
---|
245 | sum1 = 0.0 |
---|
246 | sum2 = 0.0 |
---|
247 | sum3 = 0.0 |
---|
248 | ! |
---|
249 | !-- Mass added due to collisions with smaller droplets |
---|
250 | DO is = psi, n-1 |
---|
251 | sum1 = sum1 + ( particles(is)%radius**3 * & |
---|
252 | ckernel(n,is,1) * & |
---|
253 | particles(is)%weight_factor ) |
---|
254 | ENDDO |
---|
255 | ! |
---|
256 | !-- Rate of collisions with larger droplets |
---|
257 | DO is = n+1, pse |
---|
258 | sum2 = sum2 + ( ckernel(n,is,1) * & |
---|
259 | particles(is)%weight_factor ) |
---|
260 | ENDDO |
---|
261 | |
---|
262 | r3 = particles(n)%radius**3 |
---|
263 | ddV = ddx * ddy / dz |
---|
264 | is = prt_start_index(k,j,i) |
---|
265 | ! |
---|
266 | !-- Change of the current weighting factor |
---|
267 | sum3 = 1 - dt_3d * ddV * & |
---|
268 | ckernel(n,n,1) * & |
---|
269 | ( particles(n)%weight_factor - 1 ) * 0.5 - & |
---|
270 | dt_3d * ddV * sum2 |
---|
271 | weight(n-is+1) = particles(n)%weight_factor * sum3 |
---|
272 | ! |
---|
273 | !-- Change of the current droplet radius |
---|
274 | rad(n-is+1) = ( (r3 + dt_3d * ddV * (sum1 - sum2 * r3) )/& |
---|
275 | sum3 )**0.33333333333333 |
---|
276 | |
---|
277 | IF ( weight(n-is+1) < 0.0 ) THEN |
---|
278 | WRITE( message_string, * ) 'negative weighting', & |
---|
279 | 'factor: ', weight(n-is+1) |
---|
280 | CALL message( 'lpm_droplet_collision', 'PA0037', & |
---|
281 | 2, 2, -1, 6, 1 ) |
---|
282 | ENDIF |
---|
283 | |
---|
284 | ql_vp(k,j,i) = ql_vp(k,j,i) + weight(n-is+1) & |
---|
285 | * rad(n-is+1)**3 |
---|
286 | |
---|
287 | ENDDO |
---|
288 | |
---|
289 | particles(psi:pse)%radius = rad(1:prt_count(k,j,i)) |
---|
290 | particles(psi:pse)%weight_factor = weight(1:prt_count(k,j,i)) |
---|
291 | |
---|
292 | DEALLOCATE( rad, weight, ckernel ) |
---|
293 | |
---|
294 | ELSEIF ( palm_kernel ) THEN |
---|
295 | ! |
---|
296 | !-- PALM collision kernel |
---|
297 | ! |
---|
298 | !-- Calculate the mean radius of all those particles which |
---|
299 | !-- are of smaller size than the current particle and |
---|
300 | !-- use this radius for calculating the collision efficiency |
---|
301 | DO n = psi+prt_count(k,j,i)-1, psi+1, -1 |
---|
302 | |
---|
303 | sl_r3 = 0.0 |
---|
304 | sl_r4 = 0.0 |
---|
305 | |
---|
306 | DO is = n-1, psi, -1 |
---|
307 | IF ( particles(is)%radius < particles(n)%radius ) & |
---|
308 | THEN |
---|
309 | sl_r3 = sl_r3 + particles(is)%weight_factor & |
---|
310 | * particles(is)%radius**3 |
---|
311 | sl_r4 = sl_r4 + particles(is)%weight_factor & |
---|
312 | * particles(is)%radius**4 |
---|
313 | ENDIF |
---|
314 | ENDDO |
---|
315 | |
---|
316 | IF ( ( sl_r3 ) > 0.0 ) THEN |
---|
317 | mean_r = ( sl_r4 ) / ( sl_r3 ) |
---|
318 | |
---|
319 | CALL collision_efficiency_rogers( mean_r, & |
---|
320 | particles(n)%radius, & |
---|
321 | effective_coll_efficiency ) |
---|
322 | |
---|
323 | ELSE |
---|
324 | effective_coll_efficiency = 0.0 |
---|
325 | ENDIF |
---|
326 | |
---|
327 | IF ( effective_coll_efficiency > 1.0 .OR. & |
---|
328 | effective_coll_efficiency < 0.0 ) & |
---|
329 | THEN |
---|
330 | WRITE( message_string, * ) 'collision_efficien' , & |
---|
331 | 'cy out of range:' ,effective_coll_efficiency |
---|
332 | CALL message( 'lpm_droplet_collision', 'PA0145', 2, & |
---|
333 | 2, -1, 6, 1 ) |
---|
334 | ENDIF |
---|
335 | |
---|
336 | ! |
---|
337 | !-- Interpolation of ... |
---|
338 | ii = particles(n)%x * ddx |
---|
339 | jj = particles(n)%y * ddy |
---|
340 | kk = ( particles(n)%z + 0.5 * dz ) / dz |
---|
341 | |
---|
342 | x = particles(n)%x - ii * dx |
---|
343 | y = particles(n)%y - jj * dy |
---|
344 | aa = x**2 + y**2 |
---|
345 | bb = ( dx - x )**2 + y**2 |
---|
346 | cc = x**2 + ( dy - y )**2 |
---|
347 | dd = ( dx - x )**2 + ( dy - y )**2 |
---|
348 | gg = aa + bb + cc + dd |
---|
349 | |
---|
350 | ql_int_l = ( (gg-aa) * ql(kk,jj,ii) + (gg-bb) * & |
---|
351 | ql(kk,jj,ii+1) & |
---|
352 | + (gg-cc) * ql(kk,jj+1,ii) + ( gg-dd ) * & |
---|
353 | ql(kk,jj+1,ii+1) & |
---|
354 | ) / ( 3.0 * gg ) |
---|
355 | |
---|
356 | ql_int_u = ( (gg-aa) * ql(kk+1,jj,ii) + (gg-bb) * & |
---|
357 | ql(kk+1,jj,ii+1) & |
---|
358 | + (gg-cc) * ql(kk+1,jj+1,ii) + (gg-dd) * & |
---|
359 | ql(kk+1,jj+1,ii+1) & |
---|
360 | ) / ( 3.0 * gg ) |
---|
361 | |
---|
362 | ql_int = ql_int_l + ( particles(n)%z - zu(kk) ) / dz *& |
---|
363 | ( ql_int_u - ql_int_l ) |
---|
364 | |
---|
365 | ! |
---|
366 | !-- Interpolate u velocity-component |
---|
367 | ii = ( particles(n)%x + 0.5 * dx ) * ddx |
---|
368 | jj = particles(n)%y * ddy |
---|
369 | kk = ( particles(n)%z + 0.5 * dz ) / dz ! only if eqist |
---|
370 | |
---|
371 | IF ( ( particles(n)%z - zu(kk) ) > (0.5*dz) ) kk = kk+1 |
---|
372 | |
---|
373 | x = particles(n)%x + ( 0.5 - ii ) * dx |
---|
374 | y = particles(n)%y - jj * dy |
---|
375 | aa = x**2 + y**2 |
---|
376 | bb = ( dx - x )**2 + y**2 |
---|
377 | cc = x**2 + ( dy - y )**2 |
---|
378 | dd = ( dx - x )**2 + ( dy - y )**2 |
---|
379 | gg = aa + bb + cc + dd |
---|
380 | |
---|
381 | u_int_l = ( (gg-aa) * u(kk,jj,ii) + (gg-bb) * & |
---|
382 | u(kk,jj,ii+1) & |
---|
383 | + (gg-cc) * u(kk,jj+1,ii) + (gg-dd) * & |
---|
384 | u(kk,jj+1,ii+1) & |
---|
385 | ) / ( 3.0 * gg ) - u_gtrans |
---|
386 | IF ( kk+1 == nzt+1 ) THEN |
---|
387 | u_int = u_int_l |
---|
388 | ELSE |
---|
389 | u_int_u = ( (gg-aa) * u(kk+1,jj,ii) + (gg-bb) * & |
---|
390 | u(kk+1,jj,ii+1) & |
---|
391 | + (gg-cc) * u(kk+1,jj+1,ii) + (gg-dd) * & |
---|
392 | u(kk+1,jj+1,ii+1) & |
---|
393 | ) / ( 3.0 * gg ) - u_gtrans |
---|
394 | u_int = u_int_l + ( particles(n)%z - zu(kk) ) / dz & |
---|
395 | * ( u_int_u - u_int_l ) |
---|
396 | ENDIF |
---|
397 | |
---|
398 | ! |
---|
399 | !-- Same procedure for interpolation of the v velocity-com- |
---|
400 | !-- ponent (adopt index k from u velocity-component) |
---|
401 | ii = particles(n)%x * ddx |
---|
402 | jj = ( particles(n)%y + 0.5 * dy ) * ddy |
---|
403 | |
---|
404 | x = particles(n)%x - ii * dx |
---|
405 | y = particles(n)%y + ( 0.5 - jj ) * dy |
---|
406 | aa = x**2 + y**2 |
---|
407 | bb = ( dx - x )**2 + y**2 |
---|
408 | cc = x**2 + ( dy - y )**2 |
---|
409 | dd = ( dx - x )**2 + ( dy - y )**2 |
---|
410 | gg = aa + bb + cc + dd |
---|
411 | |
---|
412 | v_int_l = ( ( gg-aa ) * v(kk,jj,ii) + ( gg-bb ) * & |
---|
413 | v(kk,jj,ii+1) & |
---|
414 | + ( gg-cc ) * v(kk,jj+1,ii) + ( gg-dd ) * & |
---|
415 | v(kk,jj+1,ii+1) & |
---|
416 | ) / ( 3.0 * gg ) - v_gtrans |
---|
417 | IF ( kk+1 == nzt+1 ) THEN |
---|
418 | v_int = v_int_l |
---|
419 | ELSE |
---|
420 | v_int_u = ( (gg-aa) * v(kk+1,jj,ii) + (gg-bb) * & |
---|
421 | v(kk+1,jj,ii+1) & |
---|
422 | + (gg-cc) * v(kk+1,jj+1,ii) + (gg-dd) * & |
---|
423 | v(kk+1,jj+1,ii+1) & |
---|
424 | ) / ( 3.0 * gg ) - v_gtrans |
---|
425 | v_int = v_int_l + ( particles(n)%z - zu(kk) ) / dz & |
---|
426 | * ( v_int_u - v_int_l ) |
---|
427 | ENDIF |
---|
428 | |
---|
429 | ! |
---|
430 | !-- Same procedure for interpolation of the w velocity-com- |
---|
431 | !-- ponent (adopt index i from v velocity-component) |
---|
432 | jj = particles(n)%y * ddy |
---|
433 | kk = particles(n)%z / dz |
---|
434 | |
---|
435 | x = particles(n)%x - ii * dx |
---|
436 | y = particles(n)%y - jj * dy |
---|
437 | aa = x**2 + y**2 |
---|
438 | bb = ( dx - x )**2 + y**2 |
---|
439 | cc = x**2 + ( dy - y )**2 |
---|
440 | dd = ( dx - x )**2 + ( dy - y )**2 |
---|
441 | gg = aa + bb + cc + dd |
---|
442 | |
---|
443 | w_int_l = ( ( gg-aa ) * w(kk,jj,ii) + ( gg-bb ) * & |
---|
444 | w(kk,jj,ii+1) & |
---|
445 | + ( gg-cc ) * w(kk,jj+1,ii) + ( gg-dd ) * & |
---|
446 | w(kk,jj+1,ii+1) & |
---|
447 | ) / ( 3.0 * gg ) |
---|
448 | IF ( kk+1 == nzt+1 ) THEN |
---|
449 | w_int = w_int_l |
---|
450 | ELSE |
---|
451 | w_int_u = ( (gg-aa) * w(kk+1,jj,ii) + (gg-bb) * & |
---|
452 | w(kk+1,jj,ii+1) & |
---|
453 | + (gg-cc) * w(kk+1,jj+1,ii) + (gg-dd) * & |
---|
454 | w(kk+1,jj+1,ii+1) & |
---|
455 | ) / ( 3.0 * gg ) |
---|
456 | w_int = w_int_l + ( particles(n)%z - zw(kk) ) / dz & |
---|
457 | * ( w_int_u - w_int_l ) |
---|
458 | ENDIF |
---|
459 | |
---|
460 | ! |
---|
461 | !-- Change in radius due to collision |
---|
462 | delta_r = effective_coll_efficiency / 3.0 & |
---|
463 | * pi * sl_r3 * ddx * ddy / dz & |
---|
464 | * SQRT( ( u_int - particles(n)%speed_x )**2 & |
---|
465 | + ( v_int - particles(n)%speed_y )**2 & |
---|
466 | + ( w_int - particles(n)%speed_z )**2 & |
---|
467 | ) * dt_3d |
---|
468 | ! |
---|
469 | !-- Change in volume due to collision |
---|
470 | delta_v = particles(n)%weight_factor & |
---|
471 | * ( ( particles(n)%radius + delta_r )**3 & |
---|
472 | - particles(n)%radius**3 ) |
---|
473 | |
---|
474 | ! |
---|
475 | !-- Check if collected particles provide enough LWC for |
---|
476 | !-- volume change of collector particle |
---|
477 | IF ( delta_v >= sl_r3 .AND. sl_r3 > 0.0 ) THEN |
---|
478 | |
---|
479 | delta_r = ( ( sl_r3/particles(n)%weight_factor ) & |
---|
480 | + particles(n)%radius**3 )**( 1./3. ) & |
---|
481 | - particles(n)%radius |
---|
482 | |
---|
483 | DO is = n-1, psi, -1 |
---|
484 | IF ( particles(is)%radius < & |
---|
485 | particles(n)%radius ) THEN |
---|
486 | particles(is)%weight_factor = 0.0 |
---|
487 | particle_mask(is) = .FALSE. |
---|
488 | deleted_particles = deleted_particles + 1 |
---|
489 | ENDIF |
---|
490 | ENDDO |
---|
491 | |
---|
492 | ELSE IF ( delta_v < sl_r3 .AND. sl_r3 > 0.0 ) THEN |
---|
493 | |
---|
494 | DO is = n-1, psi, -1 |
---|
495 | IF ( particles(is)%radius < particles(n)%radius & |
---|
496 | .AND. sl_r3 > 0.0 ) THEN |
---|
497 | particles(is)%weight_factor = & |
---|
498 | ( ( particles(is)%weight_factor & |
---|
499 | * ( particles(is)%radius**3 ) ) & |
---|
500 | - ( delta_v & |
---|
501 | * particles(is)%weight_factor & |
---|
502 | * ( particles(is)%radius**3 ) & |
---|
503 | / sl_r3 ) ) & |
---|
504 | / ( particles(is)%radius**3 ) |
---|
505 | |
---|
506 | IF ( particles(is)%weight_factor < 0.0 ) THEN |
---|
507 | WRITE( message_string, * ) 'negative ', & |
---|
508 | 'weighting factor: ', & |
---|
509 | particles(is)%weight_factor |
---|
510 | CALL message( 'lpm_droplet_collision', & |
---|
511 | 'PA0039', & |
---|
512 | 2, 2, -1, 6, 1 ) |
---|
513 | ENDIF |
---|
514 | ENDIF |
---|
515 | ENDDO |
---|
516 | |
---|
517 | ENDIF |
---|
518 | |
---|
519 | particles(n)%radius = particles(n)%radius + delta_r |
---|
520 | ql_vp(k,j,i) = ql_vp(k,j,i) + & |
---|
521 | particles(n)%weight_factor * & |
---|
522 | ( particles(n)%radius**3 ) |
---|
523 | ENDDO |
---|
524 | |
---|
525 | ql_vp(k,j,i) = ql_vp(k,j,i) + particles(psi)%weight_factor & |
---|
526 | * particles(psi)%radius**3 |
---|
527 | |
---|
528 | ENDIF ! collision kernel |
---|
529 | |
---|
530 | ELSE IF ( prt_count(k,j,i) == 1 ) THEN |
---|
531 | |
---|
532 | psi = prt_start_index(k,j,i) |
---|
533 | |
---|
534 | ! |
---|
535 | !-- Calculate change of weighting factor due to self collision |
---|
536 | IF ( ( hall_kernel .OR. wang_kernel ) .AND. & |
---|
537 | use_kernel_tables ) THEN |
---|
538 | |
---|
539 | IF ( wang_kernel ) THEN |
---|
540 | eclass = INT( diss(k,j,i) * 1.0E4 / 1000.0 * & |
---|
541 | dissipation_classes ) + 1 |
---|
542 | epsilon = diss(k,j,i) |
---|
543 | ELSE |
---|
544 | epsilon = 0.0 |
---|
545 | ENDIF |
---|
546 | IF ( hall_kernel .OR. epsilon * 1.0E4 < 0.001 ) THEN |
---|
547 | eclass = 0 ! Hall kernel is used |
---|
548 | ELSE |
---|
549 | eclass = MIN( dissipation_classes, eclass ) |
---|
550 | ENDIF |
---|
551 | |
---|
552 | ddV = ddx * ddy / dz |
---|
553 | rclass_l = particles(psi)%class |
---|
554 | sum3 = 1 - dt_3d * ddV * & |
---|
555 | ( ckernel(rclass_l,rclass_l,eclass) * & |
---|
556 | ( particles(psi)%weight_factor-1 ) * 0.5 ) |
---|
557 | |
---|
558 | particles(psi)%radius = ( particles(psi)%radius**3 / & |
---|
559 | sum3 )**0.33333333333333 |
---|
560 | particles(psi)%weight_factor = particles(psi)%weight_factor & |
---|
561 | * sum3 |
---|
562 | |
---|
563 | ELSE IF ( ( hall_kernel .OR. wang_kernel ) .AND. & |
---|
564 | .NOT. use_kernel_tables ) THEN |
---|
565 | ! |
---|
566 | !-- Collision efficiencies are calculated for every new |
---|
567 | !-- grid box. First, allocate memory for kernel table. |
---|
568 | !-- Third dimension is 1, because table is re-calculated for |
---|
569 | !-- every new dissipation value. |
---|
570 | ALLOCATE( ckernel(psi:psi, psi:psi, 1:1) ) |
---|
571 | ! |
---|
572 | !-- Now calculate collision efficiencies for this box |
---|
573 | CALL recalculate_kernel( i, j, k ) |
---|
574 | |
---|
575 | ddV = ddx * ddy / dz |
---|
576 | sum3 = 1 - dt_3d * ddV * ( ckernel(psi,psi,1) * & |
---|
577 | ( particles(psi)%weight_factor - 1 ) * 0.5 ) |
---|
578 | |
---|
579 | particles(psi)%radius = ( particles(psi)%radius**3 / & |
---|
580 | sum3 )**0.33333333333333 |
---|
581 | particles(psi)%weight_factor = particles(psi)%weight_factor & |
---|
582 | * sum3 |
---|
583 | |
---|
584 | DEALLOCATE( ckernel ) |
---|
585 | ENDIF |
---|
586 | |
---|
587 | ql_vp(k,j,i) = particles(psi)%weight_factor * & |
---|
588 | particles(psi)%radius**3 |
---|
589 | ENDIF |
---|
590 | |
---|
591 | ! |
---|
592 | !-- Check if condensation of LWC was conserved during collision |
---|
593 | !-- process |
---|
594 | IF ( ql_v(k,j,i) /= 0.0 ) THEN |
---|
595 | IF ( ql_vp(k,j,i) / ql_v(k,j,i) >= 1.0001 .OR. & |
---|
596 | ql_vp(k,j,i) / ql_v(k,j,i) <= 0.9999 ) THEN |
---|
597 | WRITE( message_string, * ) 'LWC is not conserved during',& |
---|
598 | ' collision! ', & |
---|
599 | 'LWC after condensation: ', & |
---|
600 | ql_v(k,j,i), & |
---|
601 | ' LWC after collision: ', & |
---|
602 | ql_vp(k,j,i) |
---|
603 | CALL message( 'lpm_droplet_collision', 'PA0040', & |
---|
604 | 2, 2, -1, 6, 1 ) |
---|
605 | ENDIF |
---|
606 | ENDIF |
---|
607 | |
---|
608 | ENDDO |
---|
609 | ENDDO |
---|
610 | ENDDO |
---|
611 | |
---|
612 | CALL cpu_log( log_point_s(43), 'lpm_droplet_coll', 'stop' ) |
---|
613 | |
---|
614 | |
---|
615 | END SUBROUTINE lpm_droplet_collision |
---|