[1359] | 1 | SUBROUTINE lpm_droplet_collision (i,j,k) |
---|
[849] | 2 | |
---|
[1036] | 3 | !--------------------------------------------------------------------------------! |
---|
| 4 | ! This file is part of PALM. |
---|
| 5 | ! |
---|
| 6 | ! PALM is free software: you can redistribute it and/or modify it under the terms |
---|
| 7 | ! of the GNU General Public License as published by the Free Software Foundation, |
---|
| 8 | ! either version 3 of the License, or (at your option) any later version. |
---|
| 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
[1310] | 17 | ! Copyright 1997-2014 Leibniz Universitaet Hannover |
---|
[1036] | 18 | !--------------------------------------------------------------------------------! |
---|
| 19 | ! |
---|
[849] | 20 | ! Current revisions: |
---|
| 21 | ! ------------------ |
---|
[1360] | 22 | ! |
---|
| 23 | ! |
---|
[1321] | 24 | ! Former revisions: |
---|
| 25 | ! ----------------- |
---|
| 26 | ! $Id: lpm_droplet_collision.f90 1360 2014-04-11 17:20:32Z gronemeier $ |
---|
| 27 | ! |
---|
[1360] | 28 | ! 1359 2014-04-11 17:15:14Z hoffmann |
---|
| 29 | ! New particle structure integrated. |
---|
| 30 | ! Kind definition added to all floating point numbers. |
---|
| 31 | ! |
---|
[1323] | 32 | ! 1322 2014-03-20 16:38:49Z raasch |
---|
| 33 | ! REAL constants defined as wp_kind |
---|
| 34 | ! |
---|
[1321] | 35 | ! 1320 2014-03-20 08:40:49Z raasch |
---|
[1320] | 36 | ! ONLY-attribute added to USE-statements, |
---|
| 37 | ! kind-parameters added to all INTEGER and REAL declaration statements, |
---|
| 38 | ! kinds are defined in new module kinds, |
---|
| 39 | ! revision history before 2012 removed, |
---|
| 40 | ! comment fields (!:) to be used for variable explanations added to |
---|
| 41 | ! all variable declaration statements |
---|
[1072] | 42 | ! |
---|
[1093] | 43 | ! 1092 2013-02-02 11:24:22Z raasch |
---|
| 44 | ! unused variables removed |
---|
| 45 | ! |
---|
[1072] | 46 | ! 1071 2012-11-29 16:54:55Z franke |
---|
[1071] | 47 | ! Calculation of Hall and Wang kernel now uses collision-coalescence formulation |
---|
| 48 | ! proposed by Wang instead of the continuous collection equation (for more |
---|
| 49 | ! information about new method see PALM documentation) |
---|
| 50 | ! Bugfix: message identifiers added |
---|
[849] | 51 | ! |
---|
[1037] | 52 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
| 53 | ! code put under GPL (PALM 3.9) |
---|
| 54 | ! |
---|
[850] | 55 | ! 849 2012-03-15 10:35:09Z raasch |
---|
| 56 | ! initial revision (former part of advec_particles) |
---|
[849] | 57 | ! |
---|
[850] | 58 | ! |
---|
[849] | 59 | ! Description: |
---|
| 60 | ! ------------ |
---|
[1071] | 61 | ! Calculates change in droplet radius by collision. Droplet collision is |
---|
[849] | 62 | ! calculated for each grid box seperately. Collision is parameterized by |
---|
| 63 | ! using collision kernels. Three different kernels are available: |
---|
| 64 | ! PALM kernel: Kernel is approximated using a method from Rogers and |
---|
| 65 | ! Yau (1989, A Short Course in Cloud Physics, Pergamon Press). |
---|
| 66 | ! All droplets smaller than the treated one are represented by |
---|
| 67 | ! one droplet with mean features. Collision efficiencies are taken |
---|
| 68 | ! from the respective table in Rogers and Yau. |
---|
| 69 | ! Hall kernel: Kernel from Hall (1980, J. Atmos. Sci., 2486-2507), which |
---|
| 70 | ! considers collision due to pure gravitational effects. |
---|
| 71 | ! Wang kernel: Beside gravitational effects (treated with the Hall-kernel) also |
---|
| 72 | ! the effects of turbulence on the collision are considered using |
---|
| 73 | ! parameterizations of Ayala et al. (2008, New J. Phys., 10, |
---|
| 74 | ! 075015) and Wang and Grabowski (2009, Atmos. Sci. Lett., 10, |
---|
| 75 | ! 1-8). This kernel includes three possible effects of turbulence: |
---|
| 76 | ! the modification of the relative velocity between the droplets, |
---|
| 77 | ! the effect of preferential concentration, and the enhancement of |
---|
| 78 | ! collision efficiencies. |
---|
| 79 | !------------------------------------------------------------------------------! |
---|
| 80 | |
---|
[1359] | 81 | |
---|
[1320] | 82 | USE arrays_3d, & |
---|
| 83 | ONLY: diss, ql, ql_v, ql_vp, u, v, w, zu, zw |
---|
[849] | 84 | |
---|
[1320] | 85 | USE cloud_parameters, & |
---|
| 86 | ONLY: effective_coll_efficiency |
---|
| 87 | |
---|
| 88 | USE constants, & |
---|
| 89 | ONLY: pi |
---|
| 90 | |
---|
| 91 | USE control_parameters, & |
---|
| 92 | ONLY: dt_3d, message_string, u_gtrans, v_gtrans, dz |
---|
| 93 | |
---|
| 94 | USE cpulog, & |
---|
| 95 | ONLY: cpu_log, log_point_s |
---|
| 96 | |
---|
| 97 | USE grid_variables, & |
---|
| 98 | ONLY: ddx, dx, ddy, dy |
---|
| 99 | |
---|
| 100 | USE indices, & |
---|
| 101 | ONLY: nxl, nxr, nyn, nys, nzb, nzt |
---|
| 102 | |
---|
| 103 | USE kinds |
---|
| 104 | |
---|
| 105 | USE lpm_collision_kernels_mod, & |
---|
| 106 | ONLY: ckernel, collision_efficiency_rogers, recalculate_kernel |
---|
| 107 | |
---|
| 108 | USE particle_attributes, & |
---|
| 109 | ONLY: deleted_particles, dissipation_classes, hall_kernel, & |
---|
[1359] | 110 | palm_kernel, particles, particle_type, & |
---|
| 111 | prt_count, use_kernel_tables, wang_kernel |
---|
[1320] | 112 | |
---|
[1359] | 113 | USE pegrid |
---|
| 114 | |
---|
[849] | 115 | IMPLICIT NONE |
---|
| 116 | |
---|
[1320] | 117 | INTEGER(iwp) :: eclass !: |
---|
| 118 | INTEGER(iwp) :: i !: |
---|
| 119 | INTEGER(iwp) :: ii !: |
---|
| 120 | INTEGER(iwp) :: inc !: |
---|
| 121 | INTEGER(iwp) :: is !: |
---|
| 122 | INTEGER(iwp) :: j !: |
---|
| 123 | INTEGER(iwp) :: jj !: |
---|
| 124 | INTEGER(iwp) :: js !: |
---|
| 125 | INTEGER(iwp) :: k !: |
---|
| 126 | INTEGER(iwp) :: kk !: |
---|
| 127 | INTEGER(iwp) :: n !: |
---|
| 128 | INTEGER(iwp) :: pse !: |
---|
| 129 | INTEGER(iwp) :: psi !: |
---|
| 130 | INTEGER(iwp) :: rclass_l !: |
---|
| 131 | INTEGER(iwp) :: rclass_s !: |
---|
[849] | 132 | |
---|
[1359] | 133 | INTEGER(iwp), DIMENSION(prt_count(k,j,i)) :: rclass_v !: |
---|
| 134 | |
---|
| 135 | LOGICAL, SAVE :: first_flag = .TRUE. !: |
---|
| 136 | |
---|
| 137 | TYPE(particle_type) :: tmp_particle !: |
---|
| 138 | |
---|
[1320] | 139 | REAL(wp) :: aa !: |
---|
[1359] | 140 | REAL(wp) :: auxn !: temporary variables |
---|
| 141 | REAL(wp) :: auxs !: temporary variables |
---|
[1320] | 142 | REAL(wp) :: bb !: |
---|
| 143 | REAL(wp) :: cc !: |
---|
| 144 | REAL(wp) :: dd !: |
---|
| 145 | REAL(wp) :: ddV !: |
---|
| 146 | REAL(wp) :: delta_r !: |
---|
| 147 | REAL(wp) :: delta_v !: |
---|
| 148 | REAL(wp) :: epsilon !: |
---|
| 149 | REAL(wp) :: gg !: |
---|
| 150 | REAL(wp) :: mean_r !: |
---|
| 151 | REAL(wp) :: ql_int !: |
---|
| 152 | REAL(wp) :: ql_int_l !: |
---|
| 153 | REAL(wp) :: ql_int_u !: |
---|
| 154 | REAL(wp) :: r3 !: |
---|
| 155 | REAL(wp) :: sl_r3 !: |
---|
| 156 | REAL(wp) :: sl_r4 !: |
---|
| 157 | REAL(wp) :: sum1 !: |
---|
| 158 | REAL(wp) :: sum2 !: |
---|
| 159 | REAL(wp) :: sum3 !: |
---|
| 160 | REAL(wp) :: u_int !: |
---|
| 161 | REAL(wp) :: u_int_l !: |
---|
| 162 | REAL(wp) :: u_int_u !: |
---|
| 163 | REAL(wp) :: v_int !: |
---|
| 164 | REAL(wp) :: v_int_l !: |
---|
| 165 | REAL(wp) :: v_int_u !: |
---|
| 166 | REAL(wp) :: w_int !: |
---|
| 167 | REAL(wp) :: w_int_l !: |
---|
| 168 | REAL(wp) :: w_int_u !: |
---|
| 169 | REAL(wp) :: x !: |
---|
| 170 | REAL(wp) :: y !: |
---|
[849] | 171 | |
---|
[1320] | 172 | REAL(wp), DIMENSION(:), ALLOCATABLE :: rad !: |
---|
| 173 | REAL(wp), DIMENSION(:), ALLOCATABLE :: weight !: |
---|
[849] | 174 | |
---|
[1359] | 175 | REAL, DIMENSION(prt_count(k,j,i)) :: ck |
---|
| 176 | REAL, DIMENSION(prt_count(k,j,i)) :: r3v |
---|
| 177 | REAL, DIMENSION(prt_count(k,j,i)) :: sum1v |
---|
| 178 | REAL, DIMENSION(prt_count(k,j,i)) :: sum2v |
---|
[849] | 179 | |
---|
| 180 | CALL cpu_log( log_point_s(43), 'lpm_droplet_coll', 'start' ) |
---|
| 181 | |
---|
| 182 | ! |
---|
[1359] | 183 | !-- Collision requires at least two particles in the box |
---|
| 184 | IF ( prt_count(k,j,i) > 1 ) THEN |
---|
[849] | 185 | ! |
---|
[1359] | 186 | !-- First, sort particles within the gridbox by their size, |
---|
| 187 | !-- using Shell's method (see Numerical Recipes) |
---|
| 188 | !-- NOTE: In case of using particle tails, the re-sorting of |
---|
| 189 | !-- ---- tails would have to be included here! |
---|
| 190 | IF ( .NOT. ( ( hall_kernel .OR. wang_kernel ) .AND. & |
---|
| 191 | use_kernel_tables ) ) THEN |
---|
| 192 | psi = 0 |
---|
| 193 | inc = 1 |
---|
| 194 | DO WHILE ( inc <= prt_count(k,j,i) ) |
---|
| 195 | inc = 3 * inc + 1 |
---|
| 196 | ENDDO |
---|
[849] | 197 | |
---|
[1359] | 198 | DO WHILE ( inc > 1 ) |
---|
| 199 | inc = inc / 3 |
---|
| 200 | DO is = inc+1, prt_count(k,j,i) |
---|
| 201 | tmp_particle = particles(psi+is) |
---|
| 202 | js = is |
---|
| 203 | DO WHILE ( particles(psi+js-inc)%radius > & |
---|
| 204 | tmp_particle%radius ) |
---|
| 205 | particles(psi+js) = particles(psi+js-inc) |
---|
| 206 | js = js - inc |
---|
| 207 | IF ( js <= inc ) EXIT |
---|
[849] | 208 | ENDDO |
---|
[1359] | 209 | particles(psi+js) = tmp_particle |
---|
| 210 | ENDDO |
---|
| 211 | ENDDO |
---|
| 212 | ENDIF |
---|
[849] | 213 | |
---|
[1359] | 214 | psi = 1 |
---|
| 215 | pse = prt_count(k,j,i) |
---|
[849] | 216 | |
---|
| 217 | ! |
---|
[1359] | 218 | !-- Now apply the different kernels |
---|
| 219 | IF ( ( hall_kernel .OR. wang_kernel ) .AND. & |
---|
| 220 | use_kernel_tables ) THEN |
---|
[849] | 221 | ! |
---|
[1359] | 222 | !-- Fast method with pre-calculated efficiencies for |
---|
| 223 | !-- discrete radius- and dissipation-classes. |
---|
| 224 | !-- |
---|
| 225 | !-- Determine dissipation class index of this gridbox |
---|
| 226 | IF ( wang_kernel ) THEN |
---|
| 227 | eclass = INT( diss(k,j,i) * 1.0E4_wp / 1000.0_wp * & |
---|
| 228 | dissipation_classes ) + 1 |
---|
| 229 | epsilon = diss(k,j,i) |
---|
| 230 | ELSE |
---|
| 231 | epsilon = 0.0_wp |
---|
| 232 | ENDIF |
---|
| 233 | IF ( hall_kernel .OR. epsilon * 1.0E4_wp < 0.001_wp ) THEN |
---|
| 234 | eclass = 0 ! Hall kernel is used |
---|
| 235 | ELSE |
---|
| 236 | eclass = MIN( dissipation_classes, eclass ) |
---|
| 237 | ENDIF |
---|
| 238 | |
---|
[849] | 239 | ! |
---|
[1359] | 240 | !-- Droplet collision are calculated using collision-coalescence |
---|
| 241 | !-- formulation proposed by Wang (see PALM documentation) |
---|
| 242 | !-- Since new radii after collision are defined by radii of all |
---|
| 243 | !-- droplets before collision, temporary fields for new radii and |
---|
| 244 | !-- weighting factors are needed |
---|
| 245 | ALLOCATE(rad(1:prt_count(k,j,i)), weight(1:prt_count(k,j,i))) |
---|
[849] | 246 | |
---|
[1359] | 247 | rad = 0.0_wp |
---|
| 248 | weight = 0.0_wp |
---|
[849] | 249 | |
---|
[1359] | 250 | sum1v(1:prt_count(k,j,i)) = 0.0_wp |
---|
| 251 | sum2v(1:prt_count(k,j,i)) = 0.0_wp |
---|
[1071] | 252 | |
---|
[1359] | 253 | DO n = 1, prt_count(k,j,i) |
---|
[1071] | 254 | |
---|
[1359] | 255 | rclass_l = particles(n)%class |
---|
[849] | 256 | ! |
---|
[1359] | 257 | !-- Mass added due to collisions with smaller droplets |
---|
| 258 | DO is = n+1, prt_count(k,j,i) |
---|
| 259 | rclass_s = particles(is)%class |
---|
| 260 | auxs = ckernel(rclass_l,rclass_s,eclass) * particles(is)%weight_factor |
---|
| 261 | auxn = ckernel(rclass_s,rclass_l,eclass) * particles(n)%weight_factor |
---|
| 262 | IF ( particles(is)%radius < particles(n)%radius ) THEN |
---|
| 263 | sum1v(n) = sum1v(n) + particles(is)%radius**3 * auxs |
---|
| 264 | sum2v(is) = sum2v(is) + auxn |
---|
| 265 | ELSE |
---|
| 266 | sum2v(n) = sum2v(n) + auxs |
---|
| 267 | sum1v(is) = sum1v(is) + particles(n)%radius**3 * auxn |
---|
| 268 | ENDIF |
---|
| 269 | ENDDO |
---|
| 270 | ENDDO |
---|
| 271 | rclass_v = particles(1:prt_count(k,j,i))%class |
---|
| 272 | DO n = 1, prt_count(k,j,i) |
---|
| 273 | ck(n) = ckernel(rclass_v(n),rclass_v(n),eclass) |
---|
| 274 | ENDDO |
---|
| 275 | r3v = particles(1:prt_count(k,j,i))%radius**3 |
---|
| 276 | DO n = 1, prt_count(k,j,i) |
---|
| 277 | sum3 = 0.0_wp |
---|
| 278 | ddV = ddx * ddy / dz |
---|
[849] | 279 | ! |
---|
[1359] | 280 | !-- Change of the current weighting factor |
---|
| 281 | sum3 = 1 - dt_3d * ddV * & |
---|
| 282 | ck(n) * & |
---|
| 283 | ( particles(n)%weight_factor - 1 ) * 0.5_wp - & |
---|
| 284 | dt_3d * ddV * sum2v(n) |
---|
| 285 | weight(n) = particles(n)%weight_factor * sum3 |
---|
[849] | 286 | ! |
---|
[1359] | 287 | !-- Change of the current droplet radius |
---|
| 288 | rad(n) = ( (r3v(n) + dt_3d * ddV * (sum1v(n) - sum2v(n) * r3v(n)) )/& |
---|
| 289 | sum3 )**0.33333333333333_wp |
---|
[849] | 290 | |
---|
[1359] | 291 | ql_vp(k,j,i) = ql_vp(k,j,i) + weight(n) & |
---|
| 292 | * rad(n)**3 |
---|
[849] | 293 | |
---|
[1359] | 294 | ENDDO |
---|
| 295 | IF ( ANY(weight < 0.0_wp) ) THEN |
---|
| 296 | WRITE( message_string, * ) 'negative weighting' |
---|
| 297 | CALL message( 'lpm_droplet_collision', 'PA0028', & |
---|
| 298 | 2, 2, -1, 6, 1 ) |
---|
| 299 | ENDIF |
---|
[849] | 300 | |
---|
[1359] | 301 | particles(psi:pse)%radius = rad(1:prt_count(k,j,i)) |
---|
| 302 | particles(psi:pse)%weight_factor = weight(1:prt_count(k,j,i)) |
---|
[849] | 303 | |
---|
[1359] | 304 | DEALLOCATE(rad, weight) |
---|
[849] | 305 | |
---|
[1359] | 306 | ELSEIF ( ( hall_kernel .OR. wang_kernel ) .AND. & |
---|
| 307 | .NOT. use_kernel_tables ) THEN |
---|
[849] | 308 | ! |
---|
[1359] | 309 | !-- Collision efficiencies are calculated for every new |
---|
| 310 | !-- grid box. First, allocate memory for kernel table. |
---|
| 311 | !-- Third dimension is 1, because table is re-calculated for |
---|
| 312 | !-- every new dissipation value. |
---|
| 313 | ALLOCATE( ckernel(1:prt_count(k,j,i),1:prt_count(k,j,i),1:1) ) |
---|
[849] | 314 | ! |
---|
[1359] | 315 | !-- Now calculate collision efficiencies for this box |
---|
| 316 | CALL recalculate_kernel( i, j, k ) |
---|
[849] | 317 | |
---|
[1071] | 318 | ! |
---|
[1359] | 319 | !-- Droplet collision are calculated using collision-coalescence |
---|
| 320 | !-- formulation proposed by Wang (see PALM documentation) |
---|
| 321 | !-- Since new radii after collision are defined by radii of all |
---|
| 322 | !-- droplets before collision, temporary fields for new radii and |
---|
| 323 | !-- weighting factors are needed |
---|
| 324 | ALLOCATE(rad(1:prt_count(k,j,i)), weight(1:prt_count(k,j,i))) |
---|
[849] | 325 | |
---|
[1359] | 326 | rad = 0.0_wp |
---|
| 327 | weight = 0.0_wp |
---|
[1071] | 328 | |
---|
[1359] | 329 | DO n = psi, pse, 1 |
---|
[1071] | 330 | |
---|
[1359] | 331 | sum1 = 0.0_wp |
---|
| 332 | sum2 = 0.0_wp |
---|
| 333 | sum3 = 0.0_wp |
---|
[849] | 334 | ! |
---|
[1359] | 335 | !-- Mass added due to collisions with smaller droplets |
---|
| 336 | DO is = psi, n-1 |
---|
| 337 | sum1 = sum1 + ( particles(is)%radius**3 * & |
---|
| 338 | ckernel(n,is,1) * & |
---|
| 339 | particles(is)%weight_factor ) |
---|
| 340 | ENDDO |
---|
[849] | 341 | ! |
---|
[1359] | 342 | !-- Rate of collisions with larger droplets |
---|
| 343 | DO is = n+1, pse |
---|
| 344 | sum2 = sum2 + ( ckernel(n,is,1) * & |
---|
| 345 | particles(is)%weight_factor ) |
---|
| 346 | ENDDO |
---|
[849] | 347 | |
---|
[1359] | 348 | r3 = particles(n)%radius**3 |
---|
| 349 | ddV = ddx * ddy / dz |
---|
| 350 | is = 1 |
---|
[849] | 351 | ! |
---|
[1071] | 352 | !-- Change of the current weighting factor |
---|
[1359] | 353 | sum3 = 1 - dt_3d * ddV * & |
---|
| 354 | ckernel(n,n,1) * & |
---|
| 355 | ( particles(n)%weight_factor - 1 ) * 0.5_wp - & |
---|
| 356 | dt_3d * ddV * sum2 |
---|
| 357 | weight(n-is+1) = particles(n)%weight_factor * sum3 |
---|
[849] | 358 | ! |
---|
[1071] | 359 | !-- Change of the current droplet radius |
---|
[1359] | 360 | rad(n-is+1) = ( (r3 + dt_3d * ddV * (sum1 - sum2 * r3) )/& |
---|
| 361 | sum3 )**0.33333333333333_wp |
---|
[849] | 362 | |
---|
[1359] | 363 | IF ( weight(n-is+1) < 0.0_wp ) THEN |
---|
| 364 | WRITE( message_string, * ) 'negative weighting', & |
---|
| 365 | 'factor: ', weight(n-is+1) |
---|
| 366 | CALL message( 'lpm_droplet_collision', 'PA0037', & |
---|
| 367 | 2, 2, -1, 6, 1 ) |
---|
| 368 | ENDIF |
---|
[849] | 369 | |
---|
[1359] | 370 | ql_vp(k,j,i) = ql_vp(k,j,i) + weight(n-is+1) & |
---|
| 371 | * rad(n-is+1)**3 |
---|
[849] | 372 | |
---|
[1359] | 373 | ENDDO |
---|
[849] | 374 | |
---|
[1359] | 375 | particles(psi:pse)%radius = rad(1:prt_count(k,j,i)) |
---|
| 376 | particles(psi:pse)%weight_factor = weight(1:prt_count(k,j,i)) |
---|
[849] | 377 | |
---|
[1359] | 378 | DEALLOCATE( rad, weight, ckernel ) |
---|
[1071] | 379 | |
---|
[1359] | 380 | ELSEIF ( palm_kernel ) THEN |
---|
[849] | 381 | ! |
---|
[1359] | 382 | !-- PALM collision kernel |
---|
[849] | 383 | ! |
---|
[1359] | 384 | !-- Calculate the mean radius of all those particles which |
---|
| 385 | !-- are of smaller size than the current particle and |
---|
| 386 | !-- use this radius for calculating the collision efficiency |
---|
| 387 | DO n = psi+prt_count(k,j,i)-1, psi+1, -1 |
---|
[849] | 388 | |
---|
[1359] | 389 | sl_r3 = 0.0_wp |
---|
| 390 | sl_r4 = 0.0_wp |
---|
[849] | 391 | |
---|
[1359] | 392 | DO is = n-1, psi, -1 |
---|
| 393 | IF ( particles(is)%radius < particles(n)%radius ) & |
---|
| 394 | THEN |
---|
| 395 | sl_r3 = sl_r3 + particles(is)%weight_factor & |
---|
| 396 | * particles(is)%radius**3 |
---|
| 397 | sl_r4 = sl_r4 + particles(is)%weight_factor & |
---|
| 398 | * particles(is)%radius**4 |
---|
| 399 | ENDIF |
---|
| 400 | ENDDO |
---|
[849] | 401 | |
---|
[1359] | 402 | IF ( ( sl_r3 ) > 0.0_wp ) THEN |
---|
| 403 | mean_r = ( sl_r4 ) / ( sl_r3 ) |
---|
[849] | 404 | |
---|
[1359] | 405 | CALL collision_efficiency_rogers( mean_r, & |
---|
| 406 | particles(n)%radius, & |
---|
| 407 | effective_coll_efficiency ) |
---|
[849] | 408 | |
---|
[1359] | 409 | ELSE |
---|
| 410 | effective_coll_efficiency = 0.0_wp |
---|
| 411 | ENDIF |
---|
[849] | 412 | |
---|
[1359] | 413 | IF ( effective_coll_efficiency > 1.0_wp .OR. & |
---|
| 414 | effective_coll_efficiency < 0.0_wp ) & |
---|
| 415 | THEN |
---|
| 416 | WRITE( message_string, * ) 'collision_efficien' , & |
---|
| 417 | 'cy out of range:' ,effective_coll_efficiency |
---|
| 418 | CALL message( 'lpm_droplet_collision', 'PA0145', 2, & |
---|
| 419 | 2, -1, 6, 1 ) |
---|
| 420 | ENDIF |
---|
[849] | 421 | |
---|
| 422 | ! |
---|
[1359] | 423 | !-- Interpolation of liquid water content |
---|
| 424 | ii = particles(n)%x * ddx |
---|
| 425 | jj = particles(n)%y * ddy |
---|
| 426 | kk = ( particles(n)%z + 0.5_wp * dz ) / dz |
---|
[849] | 427 | |
---|
[1359] | 428 | x = particles(n)%x - ii * dx |
---|
| 429 | y = particles(n)%y - jj * dy |
---|
| 430 | aa = x**2 + y**2 |
---|
| 431 | bb = ( dx - x )**2 + y**2 |
---|
| 432 | cc = x**2 + ( dy - y )**2 |
---|
| 433 | dd = ( dx - x )**2 + ( dy - y )**2 |
---|
| 434 | gg = aa + bb + cc + dd |
---|
[849] | 435 | |
---|
[1359] | 436 | ql_int_l = ( (gg-aa) * ql(kk,jj,ii) + (gg-bb) * & |
---|
| 437 | ql(kk,jj,ii+1) & |
---|
| 438 | + (gg-cc) * ql(kk,jj+1,ii) + ( gg-dd ) * & |
---|
| 439 | ql(kk,jj+1,ii+1) & |
---|
| 440 | ) / ( 3.0_wp * gg ) |
---|
[849] | 441 | |
---|
[1359] | 442 | ql_int_u = ( (gg-aa) * ql(kk+1,jj,ii) + (gg-bb) * & |
---|
| 443 | ql(kk+1,jj,ii+1) & |
---|
| 444 | + (gg-cc) * ql(kk+1,jj+1,ii) + (gg-dd) * & |
---|
| 445 | ql(kk+1,jj+1,ii+1) & |
---|
| 446 | ) / ( 3.0_wp * gg ) |
---|
[849] | 447 | |
---|
[1359] | 448 | ql_int = ql_int_l + ( particles(n)%z - zu(kk) ) / dz *& |
---|
| 449 | ( ql_int_u - ql_int_l ) |
---|
[849] | 450 | |
---|
| 451 | ! |
---|
[1359] | 452 | !-- Interpolate u velocity-component |
---|
| 453 | ii = ( particles(n)%x + 0.5_wp * dx ) * ddx |
---|
| 454 | jj = particles(n)%y * ddy |
---|
| 455 | kk = ( particles(n)%z + 0.5_wp * dz ) / dz ! only if equidistant |
---|
[849] | 456 | |
---|
[1359] | 457 | IF ( ( particles(n)%z - zu(kk) ) > ( 0.5_wp * dz ) ) kk = kk+1 |
---|
[849] | 458 | |
---|
[1359] | 459 | x = particles(n)%x + ( 0.5_wp - ii ) * dx |
---|
| 460 | y = particles(n)%y - jj * dy |
---|
| 461 | aa = x**2 + y**2 |
---|
| 462 | bb = ( dx - x )**2 + y**2 |
---|
| 463 | cc = x**2 + ( dy - y )**2 |
---|
| 464 | dd = ( dx - x )**2 + ( dy - y )**2 |
---|
| 465 | gg = aa + bb + cc + dd |
---|
[849] | 466 | |
---|
[1359] | 467 | u_int_l = ( (gg-aa) * u(kk,jj,ii) + (gg-bb) * & |
---|
| 468 | u(kk,jj,ii+1) & |
---|
| 469 | + (gg-cc) * u(kk,jj+1,ii) + (gg-dd) * & |
---|
| 470 | u(kk,jj+1,ii+1) & |
---|
| 471 | ) / ( 3.0_wp * gg ) - u_gtrans |
---|
| 472 | IF ( kk+1 == nzt+1 ) THEN |
---|
| 473 | u_int = u_int_l |
---|
| 474 | ELSE |
---|
| 475 | u_int_u = ( (gg-aa) * u(kk+1,jj,ii) + (gg-bb) * & |
---|
| 476 | u(kk+1,jj,ii+1) & |
---|
| 477 | + (gg-cc) * u(kk+1,jj+1,ii) + (gg-dd) * & |
---|
| 478 | u(kk+1,jj+1,ii+1) & |
---|
| 479 | ) / ( 3.0_wp * gg ) - u_gtrans |
---|
| 480 | u_int = u_int_l + ( particles(n)%z - zu(kk) ) / dz & |
---|
| 481 | * ( u_int_u - u_int_l ) |
---|
| 482 | ENDIF |
---|
[849] | 483 | |
---|
| 484 | ! |
---|
[1359] | 485 | !-- Same procedure for interpolation of the v velocity-component |
---|
| 486 | !-- (adopt index k from u velocity-component) |
---|
| 487 | ii = particles(n)%x * ddx |
---|
| 488 | jj = ( particles(n)%y + 0.5_wp * dy ) * ddy |
---|
[849] | 489 | |
---|
[1359] | 490 | x = particles(n)%x - ii * dx |
---|
| 491 | y = particles(n)%y + ( 0.5_wp - jj ) * dy |
---|
| 492 | aa = x**2 + y**2 |
---|
| 493 | bb = ( dx - x )**2 + y**2 |
---|
| 494 | cc = x**2 + ( dy - y )**2 |
---|
| 495 | dd = ( dx - x )**2 + ( dy - y )**2 |
---|
| 496 | gg = aa + bb + cc + dd |
---|
[849] | 497 | |
---|
[1359] | 498 | v_int_l = ( ( gg-aa ) * v(kk,jj,ii) + ( gg-bb ) * & |
---|
| 499 | v(kk,jj,ii+1) & |
---|
| 500 | + ( gg-cc ) * v(kk,jj+1,ii) + ( gg-dd ) * & |
---|
| 501 | v(kk,jj+1,ii+1) & |
---|
| 502 | ) / ( 3.0_wp * gg ) - v_gtrans |
---|
| 503 | IF ( kk+1 == nzt+1 ) THEN |
---|
| 504 | v_int = v_int_l |
---|
| 505 | ELSE |
---|
| 506 | v_int_u = ( (gg-aa) * v(kk+1,jj,ii) + (gg-bb) * & |
---|
| 507 | v(kk+1,jj,ii+1) & |
---|
| 508 | + (gg-cc) * v(kk+1,jj+1,ii) + (gg-dd) * & |
---|
| 509 | v(kk+1,jj+1,ii+1) & |
---|
| 510 | ) / ( 3.0_wp * gg ) - v_gtrans |
---|
| 511 | v_int = v_int_l + ( particles(n)%z - zu(kk) ) / dz & |
---|
| 512 | * ( v_int_u - v_int_l ) |
---|
| 513 | ENDIF |
---|
[849] | 514 | |
---|
| 515 | ! |
---|
[1359] | 516 | !-- Same procedure for interpolation of the w velocity-component |
---|
| 517 | !-- (adopt index i from v velocity-component) |
---|
| 518 | jj = particles(n)%y * ddy |
---|
| 519 | kk = particles(n)%z / dz |
---|
[849] | 520 | |
---|
[1359] | 521 | x = particles(n)%x - ii * dx |
---|
| 522 | y = particles(n)%y - jj * dy |
---|
| 523 | aa = x**2 + y**2 |
---|
| 524 | bb = ( dx - x )**2 + y**2 |
---|
| 525 | cc = x**2 + ( dy - y )**2 |
---|
| 526 | dd = ( dx - x )**2 + ( dy - y )**2 |
---|
| 527 | gg = aa + bb + cc + dd |
---|
[849] | 528 | |
---|
[1359] | 529 | w_int_l = ( ( gg-aa ) * w(kk,jj,ii) + ( gg-bb ) * & |
---|
| 530 | w(kk,jj,ii+1) & |
---|
| 531 | + ( gg-cc ) * w(kk,jj+1,ii) + ( gg-dd ) * & |
---|
| 532 | w(kk,jj+1,ii+1) & |
---|
| 533 | ) / ( 3.0_wp * gg ) |
---|
| 534 | IF ( kk+1 == nzt+1 ) THEN |
---|
| 535 | w_int = w_int_l |
---|
| 536 | ELSE |
---|
| 537 | w_int_u = ( (gg-aa) * w(kk+1,jj,ii) + (gg-bb) * & |
---|
| 538 | w(kk+1,jj,ii+1) & |
---|
| 539 | + (gg-cc) * w(kk+1,jj+1,ii) + (gg-dd) * & |
---|
| 540 | w(kk+1,jj+1,ii+1) & |
---|
| 541 | ) / ( 3.0_wp * gg ) |
---|
| 542 | w_int = w_int_l + ( particles(n)%z - zw(kk) ) / dz & |
---|
| 543 | * ( w_int_u - w_int_l ) |
---|
| 544 | ENDIF |
---|
[849] | 545 | |
---|
| 546 | ! |
---|
[1359] | 547 | !-- Change in radius due to collision |
---|
| 548 | delta_r = effective_coll_efficiency / 3.0_wp & |
---|
| 549 | * pi * sl_r3 * ddx * ddy / dz & |
---|
| 550 | * SQRT( ( u_int - particles(n)%speed_x )**2 & |
---|
| 551 | + ( v_int - particles(n)%speed_y )**2 & |
---|
| 552 | + ( w_int - particles(n)%speed_z )**2 & |
---|
| 553 | ) * dt_3d |
---|
[849] | 554 | ! |
---|
[1359] | 555 | !-- Change in volume due to collision |
---|
| 556 | delta_v = particles(n)%weight_factor & |
---|
| 557 | * ( ( particles(n)%radius + delta_r )**3 & |
---|
| 558 | - particles(n)%radius**3 ) |
---|
[849] | 559 | |
---|
| 560 | ! |
---|
[1359] | 561 | !-- Check if collected particles provide enough LWC for |
---|
| 562 | !-- volume change of collector particle |
---|
| 563 | IF ( delta_v >= sl_r3 .AND. sl_r3 > 0.0_wp ) THEN |
---|
[849] | 564 | |
---|
[1359] | 565 | delta_r = ( ( sl_r3/particles(n)%weight_factor ) & |
---|
| 566 | + particles(n)%radius**3 )**( 1.0_wp / 3.0_wp ) & |
---|
| 567 | - particles(n)%radius |
---|
[849] | 568 | |
---|
[1359] | 569 | DO is = n-1, psi, -1 |
---|
| 570 | IF ( particles(is)%radius < particles(n)%radius ) THEN |
---|
| 571 | particles(is)%weight_factor = 0.0_wp |
---|
| 572 | particles(is)%particle_mask = .FALSE. |
---|
| 573 | deleted_particles = deleted_particles + 1 |
---|
| 574 | ENDIF |
---|
| 575 | ENDDO |
---|
[849] | 576 | |
---|
[1359] | 577 | ELSE IF ( delta_v < sl_r3 .AND. sl_r3 > 0.0_wp ) THEN |
---|
[849] | 578 | |
---|
[1359] | 579 | DO is = n-1, psi, -1 |
---|
| 580 | IF ( particles(is)%radius < particles(n)%radius & |
---|
| 581 | .AND. sl_r3 > 0.0_wp ) THEN |
---|
| 582 | particles(is)%weight_factor = & |
---|
| 583 | ( ( particles(is)%weight_factor & |
---|
| 584 | * ( particles(is)%radius**3 ) ) & |
---|
| 585 | - ( delta_v & |
---|
| 586 | * particles(is)%weight_factor & |
---|
| 587 | * ( particles(is)%radius**3 ) & |
---|
| 588 | / sl_r3 ) ) & |
---|
| 589 | / ( particles(is)%radius**3 ) |
---|
[849] | 590 | |
---|
[1359] | 591 | IF ( particles(is)%weight_factor < 0.0_wp ) THEN |
---|
| 592 | WRITE( message_string, * ) 'negative ', & |
---|
| 593 | 'weighting factor: ', & |
---|
| 594 | particles(is)%weight_factor |
---|
| 595 | CALL message( 'lpm_droplet_collision', & |
---|
| 596 | 'PA0039', & |
---|
| 597 | 2, 2, -1, 6, 1 ) |
---|
[849] | 598 | ENDIF |
---|
[1359] | 599 | ENDIF |
---|
| 600 | ENDDO |
---|
[849] | 601 | |
---|
[1359] | 602 | ENDIF |
---|
[849] | 603 | |
---|
[1359] | 604 | particles(n)%radius = particles(n)%radius + delta_r |
---|
| 605 | ql_vp(k,j,i) = ql_vp(k,j,i) + & |
---|
| 606 | particles(n)%weight_factor * & |
---|
| 607 | ( particles(n)%radius**3 ) |
---|
| 608 | ENDDO |
---|
[849] | 609 | |
---|
[1359] | 610 | ql_vp(k,j,i) = ql_vp(k,j,i) + particles(psi)%weight_factor & |
---|
| 611 | * particles(psi)%radius**3 |
---|
[849] | 612 | |
---|
[1359] | 613 | ENDIF ! collision kernel |
---|
[849] | 614 | |
---|
[1359] | 615 | ELSE IF ( prt_count(k,j,i) == 1 ) THEN |
---|
[1071] | 616 | |
---|
[1359] | 617 | psi = 1 |
---|
| 618 | |
---|
[1071] | 619 | ! |
---|
[1359] | 620 | !-- Calculate change of weighting factor due to self collision |
---|
| 621 | IF ( ( hall_kernel .OR. wang_kernel ) .AND. & |
---|
| 622 | use_kernel_tables ) THEN |
---|
[1071] | 623 | |
---|
[1359] | 624 | IF ( wang_kernel ) THEN |
---|
| 625 | eclass = INT( diss(k,j,i) * 1.0E4_wp / 1000.0_wp * & |
---|
| 626 | dissipation_classes ) + 1 |
---|
| 627 | epsilon = diss(k,j,i) |
---|
| 628 | ELSE |
---|
| 629 | epsilon = 0.0_wp |
---|
| 630 | ENDIF |
---|
| 631 | IF ( hall_kernel .OR. epsilon * 1.0E4_wp < 0.001_wp ) THEN |
---|
| 632 | eclass = 0 ! Hall kernel is used |
---|
| 633 | ELSE |
---|
| 634 | eclass = MIN( dissipation_classes, eclass ) |
---|
| 635 | ENDIF |
---|
[1071] | 636 | |
---|
[1359] | 637 | ddV = ddx * ddy / dz |
---|
| 638 | rclass_l = particles(psi)%class |
---|
| 639 | sum3 = 1 - dt_3d * ddV * & |
---|
| 640 | ( ckernel(rclass_l,rclass_l,eclass) * & |
---|
| 641 | ( particles(psi)%weight_factor-1 ) * 0.5_wp ) |
---|
[1071] | 642 | |
---|
[1359] | 643 | particles(psi)%radius = ( particles(psi)%radius**3 / & |
---|
| 644 | sum3 )**0.33333333333333_wp |
---|
| 645 | particles(psi)%weight_factor = particles(psi)%weight_factor & |
---|
| 646 | * sum3 |
---|
[1071] | 647 | |
---|
[1359] | 648 | ELSE IF ( ( hall_kernel .OR. wang_kernel ) .AND. & |
---|
| 649 | .NOT. use_kernel_tables ) THEN |
---|
[1071] | 650 | ! |
---|
[1359] | 651 | !-- Collision efficiencies are calculated for every new |
---|
| 652 | !-- grid box. First, allocate memory for kernel table. |
---|
| 653 | !-- Third dimension is 1, because table is re-calculated for |
---|
| 654 | !-- every new dissipation value. |
---|
| 655 | ALLOCATE( ckernel(psi:psi, psi:psi, 1:1) ) |
---|
[1071] | 656 | ! |
---|
[1359] | 657 | !-- Now calculate collision efficiencies for this box |
---|
| 658 | CALL recalculate_kernel( i, j, k ) |
---|
[1071] | 659 | |
---|
[1359] | 660 | ddV = ddx * ddy / dz |
---|
| 661 | sum3 = 1 - dt_3d * ddV * ( ckernel(psi,psi,1) * & |
---|
| 662 | ( particles(psi)%weight_factor - 1 ) * 0.5_wp ) |
---|
[1071] | 663 | |
---|
[1359] | 664 | particles(psi)%radius = ( particles(psi)%radius**3 / & |
---|
| 665 | sum3 )**0.33333333333333_wp |
---|
| 666 | particles(psi)%weight_factor = particles(psi)%weight_factor & |
---|
| 667 | * sum3 |
---|
[1071] | 668 | |
---|
[1359] | 669 | DEALLOCATE( ckernel ) |
---|
| 670 | ENDIF |
---|
[1071] | 671 | |
---|
[1359] | 672 | ql_vp(k,j,i) = particles(psi)%weight_factor * & |
---|
| 673 | particles(psi)%radius**3 |
---|
| 674 | ENDIF |
---|
[849] | 675 | |
---|
| 676 | ! |
---|
[1359] | 677 | !-- Check if condensation of LWC was conserved during collision process |
---|
| 678 | IF ( ql_v(k,j,i) /= 0.0_wp ) THEN |
---|
| 679 | IF ( ql_vp(k,j,i) / ql_v(k,j,i) >= 1.0001_wp .OR. & |
---|
| 680 | ql_vp(k,j,i) / ql_v(k,j,i) <= 0.9999_wp ) THEN |
---|
| 681 | WRITE( message_string, * ) 'LWC is not conserved during',& |
---|
| 682 | ' collision! ', & |
---|
| 683 | 'LWC after condensation: ', & |
---|
| 684 | ql_v(k,j,i), & |
---|
| 685 | ' LWC after collision: ', & |
---|
| 686 | ql_vp(k,j,i) |
---|
| 687 | CALL message( 'lpm_droplet_collision', 'PA0040', & |
---|
| 688 | 2, 2, -1, 6, 1 ) |
---|
| 689 | ENDIF |
---|
| 690 | ENDIF |
---|
[849] | 691 | |
---|
| 692 | CALL cpu_log( log_point_s(43), 'lpm_droplet_coll', 'stop' ) |
---|
| 693 | |
---|
[1359] | 694 | END SUBROUTINE lpm_droplet_collision |
---|