1 | MODULE lpm_collision_kernels_mod |
---|
2 | |
---|
3 | !------------------------------------------------------------------------------! |
---|
4 | ! Current revisions: |
---|
5 | ! ----------------- |
---|
6 | ! |
---|
7 | ! |
---|
8 | ! Former revisions: |
---|
9 | ! ----------------- |
---|
10 | ! $Id: lpm_collision_kernels.f90 850 2012-03-15 12:09:25Z gryschka $ |
---|
11 | ! |
---|
12 | ! 849 2012-03-15 10:35:09Z raasch |
---|
13 | ! routine collision_efficiency_rogers added (moved from former advec_particles |
---|
14 | ! to here) |
---|
15 | ! |
---|
16 | ! 835 2012-02-22 11:21:19Z raasch $ |
---|
17 | ! Bugfix: array diss can be used only in case of Wang kernel |
---|
18 | ! |
---|
19 | ! 828 2012-02-21 12:00:36Z raasch |
---|
20 | ! code has been completely reformatted, routine colker renamed |
---|
21 | ! recalculate_kernel, |
---|
22 | ! routine init_kernels added, radius is now communicated to the collision |
---|
23 | ! routines by array radclass |
---|
24 | ! |
---|
25 | ! Bugfix: transformation factor for dissipation changed from 1E5 to 1E4 |
---|
26 | ! |
---|
27 | ! 825 2012-02-19 03:03:44Z raasch |
---|
28 | ! routine renamed from wang_kernel to lpm_collision_kernels, |
---|
29 | ! turbulence_effects on collision replaced by wang_kernel |
---|
30 | ! |
---|
31 | ! 799 2011-12-21 17:48:03Z franke |
---|
32 | ! speed optimizations and formatting |
---|
33 | ! Bugfix: iq=1 is not allowed (routine effic) |
---|
34 | ! Bugfix: replaced stop by ec=0.0 in case of very small ec (routine effic) |
---|
35 | ! |
---|
36 | ! 790 2011-11-29 03:11:20Z raasch |
---|
37 | ! initial revision |
---|
38 | ! |
---|
39 | ! Description: |
---|
40 | ! ------------ |
---|
41 | ! This module calculates collision efficiencies either due to pure gravitational |
---|
42 | ! effects (Hall kernel, see Hall, 1980: J. Atmos. Sci., 2486-2507) or |
---|
43 | ! including the effects of (SGS) turbulence (Wang kernel, see Wang and |
---|
44 | ! Grabowski, 2009: Atmos. Sci. Lett., 10, 1-8). The original code has been |
---|
45 | ! provided by L.-P. Wang but is substantially reformatted and speed optimized |
---|
46 | ! here. |
---|
47 | ! |
---|
48 | ! ATTENTION: |
---|
49 | ! Physical quantities (like g, densities, etc.) used in this module still |
---|
50 | ! have to be adjusted to those values used in the main PALM code. |
---|
51 | ! Also, quantities in CGS-units should be converted to SI-units eventually. |
---|
52 | !------------------------------------------------------------------------------! |
---|
53 | |
---|
54 | USE arrays_3d |
---|
55 | USE cloud_parameters |
---|
56 | USE constants |
---|
57 | USE particle_attributes |
---|
58 | USE pegrid |
---|
59 | |
---|
60 | |
---|
61 | IMPLICIT NONE |
---|
62 | |
---|
63 | PRIVATE |
---|
64 | |
---|
65 | PUBLIC ckernel, collision_efficiency_rogers, init_kernels, & |
---|
66 | rclass_lbound, rclass_ubound, recalculate_kernel |
---|
67 | |
---|
68 | REAL :: epsilon, eps2, rclass_lbound, rclass_ubound, urms, urms2 |
---|
69 | |
---|
70 | REAL, DIMENSION(:), ALLOCATABLE :: epsclass, radclass, winf |
---|
71 | REAL, DIMENSION(:,:), ALLOCATABLE :: ec, ecf, gck, hkernel, hwratio |
---|
72 | REAL, DIMENSION(:,:,:), ALLOCATABLE :: ckernel |
---|
73 | |
---|
74 | SAVE |
---|
75 | |
---|
76 | ! |
---|
77 | !-- Public interfaces |
---|
78 | INTERFACE collision_efficiency_rogers |
---|
79 | MODULE PROCEDURE collision_efficiency_rogers |
---|
80 | END INTERFACE collision_efficiency_rogers |
---|
81 | |
---|
82 | INTERFACE init_kernels |
---|
83 | MODULE PROCEDURE init_kernels |
---|
84 | END INTERFACE init_kernels |
---|
85 | |
---|
86 | INTERFACE recalculate_kernel |
---|
87 | MODULE PROCEDURE recalculate_kernel |
---|
88 | END INTERFACE recalculate_kernel |
---|
89 | |
---|
90 | |
---|
91 | CONTAINS |
---|
92 | |
---|
93 | |
---|
94 | SUBROUTINE init_kernels |
---|
95 | !------------------------------------------------------------------------------! |
---|
96 | ! Initialization of the collision efficiency matrix with fixed radius and |
---|
97 | ! dissipation classes, calculated at simulation start only. |
---|
98 | !------------------------------------------------------------------------------! |
---|
99 | |
---|
100 | IMPLICIT NONE |
---|
101 | |
---|
102 | INTEGER :: i, j, k |
---|
103 | |
---|
104 | |
---|
105 | ! |
---|
106 | !-- Calculate collision efficiencies for fixed radius- and dissipation |
---|
107 | !-- classes |
---|
108 | IF ( collision_kernel(6:9) == 'fast' ) THEN |
---|
109 | |
---|
110 | ALLOCATE( ckernel(1:radius_classes,1:radius_classes, & |
---|
111 | 0:dissipation_classes), epsclass(1:dissipation_classes), & |
---|
112 | radclass(1:radius_classes) ) |
---|
113 | |
---|
114 | ! |
---|
115 | !-- Calculate the radius class bounds with logarithmic distances |
---|
116 | !-- in the interval [1.0E-6, 2.0E-4] m |
---|
117 | rclass_lbound = LOG( 1.0E-6 ) |
---|
118 | rclass_ubound = LOG( 2.0E-4 ) |
---|
119 | radclass(1) = 1.0E-6 |
---|
120 | DO i = 2, radius_classes |
---|
121 | radclass(i) = EXP( rclass_lbound + & |
---|
122 | ( rclass_ubound - rclass_lbound ) * ( i-1.0 ) /& |
---|
123 | ( radius_classes - 1.0 ) ) |
---|
124 | ! IF ( myid == 0 ) THEN |
---|
125 | ! PRINT*, 'i=', i, ' r = ', radclass(i)*1.0E6 |
---|
126 | ! ENDIF |
---|
127 | ENDDO |
---|
128 | ! |
---|
129 | !-- Collision routines expect radius to be in cm |
---|
130 | radclass = radclass * 100.0 |
---|
131 | |
---|
132 | ! |
---|
133 | !-- Set the class bounds for dissipation in interval [0, 1000] cm**2/s**3 |
---|
134 | DO i = 1, dissipation_classes |
---|
135 | epsclass(i) = 1000.0 * REAL( i ) / dissipation_classes |
---|
136 | ! IF ( myid == 0 ) THEN |
---|
137 | ! PRINT*, 'i=', i, ' eps = ', epsclass(i) |
---|
138 | ! ENDIF |
---|
139 | ENDDO |
---|
140 | ! |
---|
141 | !-- Calculate collision efficiencies of the Wang/ayala kernel |
---|
142 | ALLOCATE( ec(1:radius_classes,1:radius_classes), & |
---|
143 | ecf(1:radius_classes,1:radius_classes), & |
---|
144 | gck(1:radius_classes,1:radius_classes), & |
---|
145 | winf(1:radius_classes) ) |
---|
146 | |
---|
147 | DO k = 1, dissipation_classes |
---|
148 | |
---|
149 | epsilon = epsclass(k) |
---|
150 | urms = 202.0 * ( epsilon / 400.0 )**( 1.0 / 3.0 ) |
---|
151 | |
---|
152 | CALL turbsd |
---|
153 | CALL turb_enhance_eff |
---|
154 | CALL effic |
---|
155 | |
---|
156 | DO j = 1, radius_classes |
---|
157 | DO i = 1, radius_classes |
---|
158 | ckernel(i,j,k) = ec(i,j) * gck(i,j) * ecf(i,j) |
---|
159 | ENDDO |
---|
160 | ENDDO |
---|
161 | |
---|
162 | ENDDO |
---|
163 | |
---|
164 | ! |
---|
165 | !-- Calculate collision efficiencies of the Hall kernel |
---|
166 | ALLOCATE( hkernel(1:radius_classes,1:radius_classes), & |
---|
167 | hwratio(1:radius_classes,1:radius_classes) ) |
---|
168 | |
---|
169 | CALL fallg |
---|
170 | CALL effic |
---|
171 | |
---|
172 | DO j = 1, radius_classes |
---|
173 | DO i = 1, radius_classes |
---|
174 | hkernel(i,j) = pi * ( radclass(j) + radclass(i) )**2 & |
---|
175 | * ec(i,j) * ABS( winf(j) - winf(i) ) |
---|
176 | ckernel(i,j,0) = hkernel(i,j) ! hall kernel stored on index 0 |
---|
177 | ENDDO |
---|
178 | ENDDO |
---|
179 | |
---|
180 | ! |
---|
181 | !-- Test output of efficiencies |
---|
182 | IF ( j == -1 ) THEN |
---|
183 | |
---|
184 | PRINT*, '*** Hall kernel' |
---|
185 | WRITE ( *,'(5X,20(F4.0,1X))' ) ( radclass(i)*1.0E4, i = 1,radius_classes ) |
---|
186 | DO j = 1, radius_classes |
---|
187 | WRITE ( *,'(F4.0,1X,20(F4.2,1X))' ) radclass(j), ( hkernel(i,j), i = 1,radius_classes ) |
---|
188 | ENDDO |
---|
189 | |
---|
190 | DO k = 1, dissipation_classes |
---|
191 | DO i = 1, radius_classes |
---|
192 | DO j = 1, radius_classes |
---|
193 | IF ( hkernel(i,j) == 0.0 ) THEN |
---|
194 | hwratio(i,j) = 9999999.9 |
---|
195 | ELSE |
---|
196 | hwratio(i,j) = ckernel(i,j,k) / hkernel(i,j) |
---|
197 | ENDIF |
---|
198 | ENDDO |
---|
199 | ENDDO |
---|
200 | |
---|
201 | PRINT*, '*** epsilon = ', epsclass(k) |
---|
202 | WRITE ( *,'(5X,20(F4.0,1X))' ) ( radclass(i)*1.0E4, i = 1,radius_classes ) |
---|
203 | DO j = 1, radius_classes |
---|
204 | ! WRITE ( *,'(F4.0,1X,20(F4.2,1X))' ) radclass(j)*1.0E4, ( ckernel(i,j,k), i = 1,radius_classes ) |
---|
205 | WRITE ( *,'(F4.0,1X,20(F4.2,1X))' ) radclass(j)*1.0E4, ( hwratio(i,j), i = 1,radius_classes ) |
---|
206 | ENDDO |
---|
207 | ENDDO |
---|
208 | |
---|
209 | ENDIF |
---|
210 | |
---|
211 | DEALLOCATE( ec, ecf, epsclass, gck, hkernel, winf ) |
---|
212 | |
---|
213 | ckernel = ckernel * 1.0E-6 ! kernel is needed in m**3/s |
---|
214 | |
---|
215 | ELSEIF( collision_kernel == 'hall' .OR. collision_kernel == 'wang' ) & |
---|
216 | THEN |
---|
217 | ! |
---|
218 | !-- Initial settings for Hall- and Wang-Kernel |
---|
219 | !-- To be done: move here parts from turbsd, fallg, ecoll, etc. |
---|
220 | ENDIF |
---|
221 | |
---|
222 | END SUBROUTINE init_kernels |
---|
223 | |
---|
224 | |
---|
225 | !------------------------------------------------------------------------------! |
---|
226 | ! Calculation of collision kernels during each timestep and for each grid box |
---|
227 | !------------------------------------------------------------------------------! |
---|
228 | SUBROUTINE recalculate_kernel( i1, j1, k1 ) |
---|
229 | |
---|
230 | USE arrays_3d |
---|
231 | USE cloud_parameters |
---|
232 | USE constants |
---|
233 | USE cpulog |
---|
234 | USE indices |
---|
235 | USE interfaces |
---|
236 | USE particle_attributes |
---|
237 | |
---|
238 | IMPLICIT NONE |
---|
239 | |
---|
240 | INTEGER :: i, i1, j, j1, k1, pend, pstart |
---|
241 | |
---|
242 | |
---|
243 | pstart = prt_start_index(k1,j1,i1) |
---|
244 | pend = prt_start_index(k1,j1,i1) + prt_count(k1,j1,i1) - 1 |
---|
245 | radius_classes = prt_count(k1,j1,i1) |
---|
246 | |
---|
247 | ALLOCATE( ec(1:radius_classes,1:radius_classes), & |
---|
248 | radclass(1:radius_classes), winf(1:radius_classes) ) |
---|
249 | |
---|
250 | ! |
---|
251 | !-- Store particle radii on the radclass array. Collision routines |
---|
252 | !-- expect radii to be in cm. |
---|
253 | radclass(1:radius_classes) = particles(pstart:pend)%radius * 100.0 |
---|
254 | |
---|
255 | IF ( wang_kernel ) THEN |
---|
256 | epsilon = diss(k1,j1,i1) * 1.0E4 ! dissipation rate in cm**2/s**-3 |
---|
257 | ELSE |
---|
258 | epsilon = 0.0 |
---|
259 | ENDIF |
---|
260 | urms = 202.0 * ( epsilon / 400.0 )**( 0.33333333333 ) |
---|
261 | |
---|
262 | IF ( wang_kernel .AND. epsilon > 0.001 ) THEN |
---|
263 | ! |
---|
264 | !-- Call routines to calculate efficiencies for the Wang kernel |
---|
265 | ALLOCATE( gck(1:radius_classes,1:radius_classes), & |
---|
266 | ecf(1:radius_classes,1:radius_classes) ) |
---|
267 | |
---|
268 | CALL turbsd |
---|
269 | CALL turb_enhance_eff |
---|
270 | CALL effic |
---|
271 | |
---|
272 | DO j = 1, radius_classes |
---|
273 | DO i = 1, radius_classes |
---|
274 | ckernel(pstart+i-1,pstart+j-1,1) = ec(i,j) * gck(i,j) * ecf(i,j) |
---|
275 | ENDDO |
---|
276 | ENDDO |
---|
277 | |
---|
278 | DEALLOCATE( gck, ecf ) |
---|
279 | |
---|
280 | ELSE |
---|
281 | ! |
---|
282 | !-- Call routines to calculate efficiencies for the Hall kernel |
---|
283 | CALL fallg |
---|
284 | CALL effic |
---|
285 | |
---|
286 | DO j = 1, radius_classes |
---|
287 | DO i = 1, radius_classes |
---|
288 | ckernel(pstart+i-1,pstart+j-1,1) = pi * & |
---|
289 | ( radclass(j) + radclass(i) )**2 & |
---|
290 | * ec(i,j) * ABS( winf(j) - winf(i) ) |
---|
291 | ENDDO |
---|
292 | ENDDO |
---|
293 | |
---|
294 | ENDIF |
---|
295 | |
---|
296 | ckernel = ckernel * 1.0E-6 ! kernel is needed in m**3/s |
---|
297 | |
---|
298 | DEALLOCATE( ec, radclass, winf ) |
---|
299 | |
---|
300 | END SUBROUTINE recalculate_kernel |
---|
301 | |
---|
302 | |
---|
303 | !------------------------------------------------------------------------------! |
---|
304 | ! Calculation of gck |
---|
305 | ! This is from Aayala 2008b, page 37ff. |
---|
306 | ! Necessary input parameters: water density, radii of droplets, air density, |
---|
307 | ! air viscosity, turbulent dissipation rate, taylor microscale reynolds number, |
---|
308 | ! gravitational acceleration --> to be replaced by PALM parameters |
---|
309 | !------------------------------------------------------------------------------! |
---|
310 | SUBROUTINE turbsd |
---|
311 | |
---|
312 | USE constants |
---|
313 | USE cloud_parameters |
---|
314 | USE particle_attributes |
---|
315 | USE arrays_3d |
---|
316 | |
---|
317 | IMPLICIT NONE |
---|
318 | |
---|
319 | INTEGER :: i, j |
---|
320 | |
---|
321 | LOGICAL, SAVE :: first = .TRUE. |
---|
322 | |
---|
323 | REAL :: ao, ao_gr, bbb, be, b1, b2, ccc, c1, c1_gr, c2, d1, d2, eta, & |
---|
324 | e1, e2, fao_gr, fr, grfin, lambda, lambda_re, lf, rc, rrp, & |
---|
325 | sst, tauk, tl, t2, tt, t1, vk, vrms1xy, vrms2xy, v1, v1v2xy, & |
---|
326 | v1xysq, v2, v2xysq, wrfin, wrgrav2, wrtur2xy, xx, yy, z |
---|
327 | |
---|
328 | REAL, SAVE :: airdens, airvisc, anu, gravity, waterdens |
---|
329 | |
---|
330 | REAL, DIMENSION(1:radius_classes) :: st, tau |
---|
331 | |
---|
332 | |
---|
333 | ! |
---|
334 | !-- Initial assignment of constants |
---|
335 | IF ( first ) THEN |
---|
336 | |
---|
337 | first = .FALSE. |
---|
338 | airvisc = 0.1818 ! dynamic viscosity in mg/cm*s |
---|
339 | airdens = 1.2250 ! air density in mg/cm**3 |
---|
340 | waterdens = 1000.0 ! water density in mg/cm**3 |
---|
341 | gravity = 980.6650 ! in cm/s**2 |
---|
342 | anu = airvisc/airdens ! kinetic viscosity in cm**2/s |
---|
343 | |
---|
344 | ENDIF |
---|
345 | |
---|
346 | lambda = urms * SQRT( 15.0 * anu / epsilon ) ! in cm |
---|
347 | lambda_re = urms**2 * SQRT( 15.0 / epsilon / anu ) |
---|
348 | tl = urms**2 / epsilon ! in s |
---|
349 | lf = 0.5 * urms**3 / epsilon ! in cm |
---|
350 | tauk = SQRT( anu / epsilon ) ! in s |
---|
351 | eta = ( anu**3 / epsilon )**0.25 ! in cm |
---|
352 | vk = eta / tauk ! in cm/s |
---|
353 | |
---|
354 | ao = ( 11.0 + 7.0 * lambda_re ) / ( 205.0 + lambda_re ) |
---|
355 | tt = SQRT( 2.0 * lambda_re / ( SQRT( 15.0 ) * ao ) ) * tauk ! in s |
---|
356 | |
---|
357 | CALL fallg ! gives winf in cm/s |
---|
358 | |
---|
359 | DO i = 1, radius_classes |
---|
360 | tau(i) = winf(i) / gravity ! in s |
---|
361 | st(i) = tau(i) / tauk |
---|
362 | ENDDO |
---|
363 | |
---|
364 | ! |
---|
365 | !-- Calculate wr (from Aayala 2008b, page 38f) |
---|
366 | z = tt / tl |
---|
367 | be = SQRT( 2.0 ) * lambda / lf |
---|
368 | bbb = SQRT( 1.0 - 2.0 * be**2 ) |
---|
369 | d1 = ( 1.0 + bbb ) / ( 2.0 * bbb ) |
---|
370 | e1 = lf * ( 1.0 + bbb ) * 0.5 ! in cm |
---|
371 | d2 = ( 1.0 - bbb ) * 0.5 / bbb |
---|
372 | e2 = lf * ( 1.0 - bbb ) * 0.5 ! in cm |
---|
373 | ccc = SQRT( 1.0 - 2.0 * z**2 ) |
---|
374 | b1 = ( 1.0 + ccc ) * 0.5 / ccc |
---|
375 | c1 = tl * ( 1.0 + ccc ) * 0.5 ! in s |
---|
376 | b2 = ( 1.0 - ccc ) * 0.5 / ccc |
---|
377 | c2 = tl * ( 1.0 - ccc ) * 0.5 ! in s |
---|
378 | |
---|
379 | DO i = 1, radius_classes |
---|
380 | |
---|
381 | v1 = winf(i) ! in cm/s |
---|
382 | t1 = tau(i) ! in s |
---|
383 | |
---|
384 | DO j = 1, i |
---|
385 | rrp = radclass(i) + radclass(j) ! radius in cm |
---|
386 | v2 = winf(j) ! in cm/s |
---|
387 | t2 = tau(j) ! in s |
---|
388 | |
---|
389 | v1xysq = b1 * d1 * phi(c1,e1,v1,t1) - b1 * d2 * phi(c1,e2,v1,t1) & |
---|
390 | - b2 * d1 * phi(c2,e1,v1,t1) + b2 * d2 * phi(c2,e2,v1,t1) |
---|
391 | v1xysq = v1xysq * urms**2 / t1 ! in cm**2/s**2 |
---|
392 | vrms1xy = SQRT( v1xysq ) ! in cm/s |
---|
393 | |
---|
394 | v2xysq = b1 * d1 * phi(c1,e1,v2,t2) - b1 * d2 * phi(c1,e2,v2,t2) & |
---|
395 | - b2 * d1 * phi(c2,e1,v2,t2) + b2 * d2 * phi(c2,e2,v2,t2) |
---|
396 | v2xysq = v2xysq * urms**2 / t2 ! in cm**2/s**2 |
---|
397 | vrms2xy = SQRT( v2xysq ) ! in cm/s |
---|
398 | |
---|
399 | IF ( winf(i) >= winf(j) ) THEN |
---|
400 | v1 = winf(i) |
---|
401 | t1 = tau(i) |
---|
402 | v2 = winf(j) |
---|
403 | t2 = tau(j) |
---|
404 | ELSE |
---|
405 | v1 = winf(j) |
---|
406 | t1 = tau(j) |
---|
407 | v2 = winf(i) |
---|
408 | t2 = tau(i) |
---|
409 | ENDIF |
---|
410 | |
---|
411 | v1v2xy = b1 * d1 * zhi(c1,e1,v1,t1,v2,t2) - & |
---|
412 | b1 * d2 * zhi(c1,e2,v1,t1,v2,t2) - & |
---|
413 | b2 * d1 * zhi(c2,e1,v1,t1,v2,t2) + & |
---|
414 | b2 * d2* zhi(c2,e2,v1,t1,v2,t2) |
---|
415 | fr = d1 * EXP( -rrp / e1 ) - d2 * EXP( -rrp / e2 ) |
---|
416 | v1v2xy = v1v2xy * fr * urms**2 / tau(i) / tau(j) ! in cm**2/s**2 |
---|
417 | wrtur2xy = vrms1xy**2 + vrms2xy**2 - 2.0 * v1v2xy ! in cm**2/s**2 |
---|
418 | IF ( wrtur2xy < 0.0 ) wrtur2xy = 0.0 |
---|
419 | wrgrav2 = pi / 8.0 * ( winf(j) - winf(i) )**2 |
---|
420 | wrfin = SQRT( ( 2.0 / pi ) * ( wrtur2xy + wrgrav2) ) ! in cm/s |
---|
421 | |
---|
422 | ! |
---|
423 | !-- Calculate gr |
---|
424 | IF ( st(j) > st(i) ) THEN |
---|
425 | sst = st(j) |
---|
426 | ELSE |
---|
427 | sst = st(i) |
---|
428 | ENDIF |
---|
429 | |
---|
430 | xx = -0.1988 * sst**4 + 1.5275 * sst**3 - 4.2942 * sst**2 + & |
---|
431 | 5.3406 * sst |
---|
432 | IF ( xx < 0.0 ) xx = 0.0 |
---|
433 | yy = 0.1886 * EXP( 20.306 / lambda_re ) |
---|
434 | |
---|
435 | c1_gr = xx / ( gravity / vk * tauk )**yy |
---|
436 | |
---|
437 | ao_gr = ao + ( pi / 8.0) * ( gravity / vk * tauk )**2 |
---|
438 | fao_gr = 20.115 * SQRT( ao_gr / lambda_re ) |
---|
439 | rc = SQRT( fao_gr * ABS( st(j) - st(i) ) ) * eta ! in cm |
---|
440 | |
---|
441 | grfin = ( ( eta**2 + rc**2 ) / ( rrp**2 + rc**2) )**( c1_gr*0.5 ) |
---|
442 | IF ( grfin < 1.0 ) grfin = 1.0 |
---|
443 | |
---|
444 | gck(i,j) = 2.0 * pi * rrp**2 * wrfin * grfin ! in cm**3/s |
---|
445 | gck(j,i) = gck(i,j) |
---|
446 | |
---|
447 | ENDDO |
---|
448 | ENDDO |
---|
449 | |
---|
450 | END SUBROUTINE turbsd |
---|
451 | |
---|
452 | |
---|
453 | !------------------------------------------------------------------------------! |
---|
454 | ! phi as a function |
---|
455 | !------------------------------------------------------------------------------! |
---|
456 | REAL FUNCTION phi( a, b, vsett, tau0 ) |
---|
457 | |
---|
458 | IMPLICIT NONE |
---|
459 | |
---|
460 | REAL :: a, aa1, b, tau0, vsett |
---|
461 | |
---|
462 | aa1 = 1.0 / tau0 + 1.0 / a + vsett / b |
---|
463 | phi = 1.0 / aa1 - 0.5 * vsett / b / aa1**2 ! in s |
---|
464 | |
---|
465 | END FUNCTION phi |
---|
466 | |
---|
467 | |
---|
468 | !------------------------------------------------------------------------------! |
---|
469 | ! zeta as a function |
---|
470 | !------------------------------------------------------------------------------! |
---|
471 | REAL FUNCTION zhi( a, b, vsett1, tau1, vsett2, tau2 ) |
---|
472 | |
---|
473 | IMPLICIT NONE |
---|
474 | |
---|
475 | REAL :: a, aa1, aa2, aa3, aa4, aa5, aa6, b, tau1, tau2, vsett1, vsett2 |
---|
476 | |
---|
477 | aa1 = vsett2 / b - 1.0 / tau2 - 1.0 / a |
---|
478 | aa2 = vsett1 / b + 1.0 / tau1 + 1.0 / a |
---|
479 | aa3 = ( vsett1 - vsett2 ) / b + 1.0 / tau1 + 1.0 / tau2 |
---|
480 | aa4 = ( vsett2 / b )**2 - ( 1.0 / tau2 + 1.0 / a )**2 |
---|
481 | aa5 = vsett2 / b + 1.0 / tau2 + 1.0 / a |
---|
482 | aa6 = 1.0 / tau1 - 1.0 / a + ( 1.0 / tau2 + 1.0 / a) * vsett1 / vsett2 |
---|
483 | zhi = (1.0 / aa1 - 1.0 / aa2 ) * ( vsett1 - vsett2 ) * 0.5 / b / aa3**2 & |
---|
484 | + (4.0 / aa4 - 1.0 / aa5**2 - 1.0 / aa1**2 ) * vsett2 * 0.5 / b /aa6& |
---|
485 | + (2.0 * ( b / aa2 - b / aa1 ) - vsett1 / aa2**2 + vsett2 / aa1**2 )& |
---|
486 | * 0.5 / b / aa3 ! in s**2 |
---|
487 | |
---|
488 | END FUNCTION zhi |
---|
489 | |
---|
490 | |
---|
491 | !------------------------------------------------------------------------------! |
---|
492 | ! Calculation of terminal velocity winf |
---|
493 | !------------------------------------------------------------------------------! |
---|
494 | SUBROUTINE fallg |
---|
495 | |
---|
496 | USE constants |
---|
497 | USE cloud_parameters |
---|
498 | USE particle_attributes |
---|
499 | USE arrays_3d |
---|
500 | |
---|
501 | IMPLICIT NONE |
---|
502 | |
---|
503 | INTEGER :: i, j |
---|
504 | |
---|
505 | LOGICAL, SAVE :: first = .TRUE. |
---|
506 | |
---|
507 | REAL, SAVE :: cunh, eta, grav, phy, py, rhoa, rhow, sigma, stb, stok, & |
---|
508 | t0, xlamb |
---|
509 | |
---|
510 | REAL :: bond, x, xrey, y |
---|
511 | |
---|
512 | REAL, DIMENSION(1:7), SAVE :: b |
---|
513 | REAL, DIMENSION(1:6), SAVE :: c |
---|
514 | |
---|
515 | ! |
---|
516 | !-- Initial assignment of constants |
---|
517 | IF ( first ) THEN |
---|
518 | |
---|
519 | first = .FALSE. |
---|
520 | b = (/ -0.318657E1, 0.992696E0, -0.153193E-2, -0.987059E-3, & |
---|
521 | -0.578878E-3, 0.855176E-4, -0.327815E-5 /) |
---|
522 | c = (/ -0.500015E1, 0.523778E1, -0.204914E1, 0.475294E0, & |
---|
523 | -0.542819E-1, 0.238449E-2 /) |
---|
524 | |
---|
525 | eta = 1.818E-4 ! in poise = g/(cm s) |
---|
526 | xlamb = 6.62E-6 ! in cm |
---|
527 | rhow = 1.0 ! in g/cm**3 |
---|
528 | rhoa = 1.225E-3 ! in g/cm**3 |
---|
529 | grav = 980.665 ! in cm/s**2 |
---|
530 | cunh = 1.257 * xlamb ! in cm |
---|
531 | t0 = 273.15 ! in K |
---|
532 | sigma = 76.1 - 0.155 * ( 293.15 - t0 ) ! in N/m = g/s**2 |
---|
533 | stok = 2.0 * grav * ( rhow - rhoa ) / ( 9.0 * eta ) ! in 1/(cm s) |
---|
534 | stb = 32.0 * rhoa * ( rhow - rhoa) * grav / (3.0 * eta * eta) |
---|
535 | ! in 1/cm**3 |
---|
536 | phy = sigma**3 * rhoa**2 / ( eta**4 * grav * ( rhow - rhoa ) ) |
---|
537 | py = phy**( 1.0 / 6.0 ) |
---|
538 | |
---|
539 | ENDIF |
---|
540 | |
---|
541 | DO j = 1, radius_classes |
---|
542 | |
---|
543 | IF ( radclass(j) <= 1.0E-3 ) THEN |
---|
544 | |
---|
545 | winf(j) = stok * ( radclass(j)**2 + cunh * radclass(j) ) ! in cm/s |
---|
546 | |
---|
547 | ELSEIF ( radclass(j) > 1.0E-3 .AND. radclass(j) <= 5.35E-2 ) THEN |
---|
548 | |
---|
549 | x = LOG( stb * radclass(j)**3 ) |
---|
550 | y = 0.0 |
---|
551 | |
---|
552 | DO i = 1, 7 |
---|
553 | y = y + b(i) * x**(i-1) |
---|
554 | ENDDO |
---|
555 | |
---|
556 | xrey = ( 1.0 + cunh / radclass(j) ) * EXP( y ) |
---|
557 | winf(j) = xrey * eta / ( 2.0 * rhoa * radclass(j) ) ! in cm/s |
---|
558 | |
---|
559 | ELSEIF ( radclass(j) > 5.35E-2 ) THEN |
---|
560 | |
---|
561 | IF ( radclass(j) > 0.35 ) THEN |
---|
562 | bond = grav * ( rhow - rhoa ) * 0.35**2 / sigma |
---|
563 | ELSE |
---|
564 | bond = grav * ( rhow - rhoa ) * radclass(j)**2 / sigma |
---|
565 | ENDIF |
---|
566 | |
---|
567 | x = LOG( 16.0 * bond * py / 3.0 ) |
---|
568 | y = 0.0 |
---|
569 | |
---|
570 | DO i = 1, 6 |
---|
571 | y = y + c(i) * x**(i-1) |
---|
572 | ENDDO |
---|
573 | |
---|
574 | xrey = py * EXP( y ) |
---|
575 | |
---|
576 | IF ( radclass(j) > 0.35 ) THEN |
---|
577 | winf(j) = xrey * eta / ( 2.0 * rhoa * 0.35 ) ! in cm/s |
---|
578 | ELSE |
---|
579 | winf(j) = xrey * eta / ( 2.0 * rhoa * radclass(j) ) ! in cm/s |
---|
580 | ENDIF |
---|
581 | |
---|
582 | ENDIF |
---|
583 | |
---|
584 | ENDDO |
---|
585 | |
---|
586 | END SUBROUTINE fallg |
---|
587 | |
---|
588 | |
---|
589 | !------------------------------------------------------------------------------! |
---|
590 | ! Calculation of collision efficencies for the Hall kernel |
---|
591 | !------------------------------------------------------------------------------! |
---|
592 | SUBROUTINE effic |
---|
593 | |
---|
594 | USE arrays_3d |
---|
595 | USE cloud_parameters |
---|
596 | USE constants |
---|
597 | USE particle_attributes |
---|
598 | |
---|
599 | IMPLICIT NONE |
---|
600 | |
---|
601 | INTEGER :: i, iq, ir, j, k, kk |
---|
602 | |
---|
603 | INTEGER, DIMENSION(:), ALLOCATABLE :: ira |
---|
604 | |
---|
605 | LOGICAL, SAVE :: first = .TRUE. |
---|
606 | |
---|
607 | REAL :: ek, particle_radius, pp, qq, rq |
---|
608 | |
---|
609 | REAL, DIMENSION(1:21), SAVE :: rat |
---|
610 | REAL, DIMENSION(1:15), SAVE :: r0 |
---|
611 | REAL, DIMENSION(1:15,1:21), SAVE :: ecoll |
---|
612 | |
---|
613 | ! |
---|
614 | !-- Initial assignment of constants |
---|
615 | IF ( first ) THEN |
---|
616 | |
---|
617 | first = .FALSE. |
---|
618 | r0 = (/ 6.0, 8.0, 10.0, 15.0, 20.0, 25.0, 30.0, 40.0, 50.0, 60., & |
---|
619 | 70.0, 100.0, 150.0, 200.0, 300.0 /) |
---|
620 | rat = (/ 0.00, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, & |
---|
621 | 0.50, 0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95, & |
---|
622 | 1.00 /) |
---|
623 | |
---|
624 | ecoll(:,1) = (/0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, & |
---|
625 | 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001/) |
---|
626 | ecoll(:,2) = (/0.003, 0.003, 0.003, 0.004, 0.005, 0.005, 0.005, & |
---|
627 | 0.010, 0.100, 0.050, 0.200, 0.500, 0.770, 0.870, 0.970/) |
---|
628 | ecoll(:,3) = (/0.007, 0.007, 0.007, 0.008, 0.009, 0.010, 0.010, & |
---|
629 | 0.070, 0.400, 0.430, 0.580, 0.790, 0.930, 0.960, 1.000/) |
---|
630 | ecoll(:,4) = (/0.009, 0.009, 0.009, 0.012, 0.015, 0.010, 0.020, & |
---|
631 | 0.280, 0.600, 0.640, 0.750, 0.910, 0.970, 0.980, 1.000/) |
---|
632 | ecoll(:,5) = (/0.014, 0.014, 0.014, 0.015, 0.016, 0.030, 0.060, & |
---|
633 | 0.500, 0.700, 0.770, 0.840, 0.950, 0.970, 1.000, 1.000/) |
---|
634 | ecoll(:,6) = (/0.017, 0.017, 0.017, 0.020, 0.022, 0.060, 0.100, & |
---|
635 | 0.620, 0.780, 0.840, 0.880, 0.950, 1.000, 1.000, 1.000/) |
---|
636 | ecoll(:,7) = (/0.030, 0.030, 0.024, 0.022, 0.032, 0.062, 0.200, & |
---|
637 | 0.680, 0.830, 0.870, 0.900, 0.950, 1.000, 1.000, 1.000/) |
---|
638 | ecoll(:,8) = (/0.025, 0.025, 0.025, 0.036, 0.043, 0.130, 0.270, & |
---|
639 | 0.740, 0.860, 0.890, 0.920, 1.000, 1.000, 1.000, 1.000/) |
---|
640 | ecoll(:,9) = (/0.027, 0.027, 0.027, 0.040, 0.052, 0.200, 0.400, & |
---|
641 | 0.780, 0.880, 0.900, 0.940, 1.000, 1.000, 1.000, 1.000/) |
---|
642 | ecoll(:,10)= (/0.030, 0.030, 0.030, 0.047, 0.064, 0.250, 0.500, & |
---|
643 | 0.800, 0.900, 0.910, 0.950, 1.000, 1.000, 1.000, 1.000/) |
---|
644 | ecoll(:,11)= (/0.040, 0.040, 0.033, 0.037, 0.068, 0.240, 0.550, & |
---|
645 | 0.800, 0.900, 0.910, 0.950, 1.000, 1.000, 1.000, 1.000/) |
---|
646 | ecoll(:,12)= (/0.035, 0.035, 0.035, 0.055, 0.079, 0.290, 0.580, & |
---|
647 | 0.800, 0.900, 0.910, 0.950, 1.000, 1.000, 1.000, 1.000/) |
---|
648 | ecoll(:,13)= (/0.037, 0.037, 0.037, 0.062, 0.082, 0.290, 0.590, & |
---|
649 | 0.780, 0.900, 0.910, 0.950, 1.000, 1.000, 1.000, 1.000/) |
---|
650 | ecoll(:,14)= (/0.037, 0.037, 0.037, 0.060, 0.080, 0.290, 0.580, & |
---|
651 | 0.770, 0.890, 0.910, 0.950, 1.000, 1.000, 1.000, 1.000/) |
---|
652 | ecoll(:,15)= (/0.037, 0.037, 0.037, 0.041, 0.075, 0.250, 0.540, & |
---|
653 | 0.760, 0.880, 0.920, 0.950, 1.000, 1.000, 1.000, 1.000/) |
---|
654 | ecoll(:,16)= (/0.037, 0.037, 0.037, 0.052, 0.067, 0.250, 0.510, & |
---|
655 | 0.770, 0.880, 0.930, 0.970, 1.000, 1.000, 1.000, 1.000/) |
---|
656 | ecoll(:,17)= (/0.037, 0.037, 0.037, 0.047, 0.057, 0.250, 0.490, & |
---|
657 | 0.770, 0.890, 0.950, 1.000, 1.000, 1.000, 1.000, 1.000/) |
---|
658 | ecoll(:,18)= (/0.036, 0.036, 0.036, 0.042, 0.048, 0.230, 0.470, & |
---|
659 | 0.780, 0.920, 1.000, 1.020, 1.020, 1.020, 1.020, 1.020/) |
---|
660 | ecoll(:,19)= (/0.040, 0.040, 0.035, 0.033, 0.040, 0.112, 0.450, & |
---|
661 | 0.790, 1.010, 1.030, 1.040, 1.040, 1.040, 1.040, 1.040/) |
---|
662 | ecoll(:,20)= (/0.033, 0.033, 0.033, 0.033, 0.033, 0.119, 0.470, & |
---|
663 | 0.950, 1.300, 1.700, 2.300, 2.300, 2.300, 2.300, 2.300/) |
---|
664 | ecoll(:,21)= (/0.027, 0.027, 0.027, 0.027, 0.027, 0.125, 0.520, & |
---|
665 | 1.400, 2.300, 3.000, 4.000, 4.000, 4.000, 4.000, 4.000/) |
---|
666 | ENDIF |
---|
667 | |
---|
668 | ! |
---|
669 | !-- Calculate the radius class index of particles with respect to array r |
---|
670 | ALLOCATE( ira(1:radius_classes) ) |
---|
671 | DO j = 1, radius_classes |
---|
672 | particle_radius = radclass(j) * 1.0E4 ! in microm |
---|
673 | DO k = 1, 15 |
---|
674 | IF ( particle_radius < r0(k) ) THEN |
---|
675 | ira(j) = k |
---|
676 | EXIT |
---|
677 | ENDIF |
---|
678 | ENDDO |
---|
679 | IF ( particle_radius >= r0(15) ) ira(j) = 16 |
---|
680 | ENDDO |
---|
681 | |
---|
682 | ! |
---|
683 | !-- Two-dimensional linear interpolation of the collision efficiency. |
---|
684 | !-- Radius has to be in µm |
---|
685 | DO j = 1, radius_classes |
---|
686 | DO i = 1, j |
---|
687 | |
---|
688 | ir = ira(j) |
---|
689 | rq = radclass(i) / radclass(j) |
---|
690 | iq = INT( rq * 20 ) + 1 |
---|
691 | iq = MAX( iq , 2) |
---|
692 | |
---|
693 | IF ( ir < 16 ) THEN |
---|
694 | IF ( ir >= 2 ) THEN |
---|
695 | pp = ( ( radclass(j) * 1.0E04 ) - r0(ir-1) ) / & |
---|
696 | ( r0(ir) - r0(ir-1) ) |
---|
697 | qq = ( rq- rat(iq-1) ) / ( rat(iq) - rat(iq-1) ) |
---|
698 | ec(j,i) = ( 1.0-pp ) * ( 1.0-qq ) * ecoll(ir-1,iq-1) & |
---|
699 | + pp * ( 1.0-qq ) * ecoll(ir,iq-1) & |
---|
700 | + qq * ( 1.0-pp ) * ecoll(ir-1,iq) & |
---|
701 | + pp * qq * ecoll(ir,iq) |
---|
702 | ELSE |
---|
703 | qq = ( rq - rat(iq-1) ) / ( rat(iq) - rat(iq-1) ) |
---|
704 | ec(j,i) = (1.0-qq) * ecoll(1,iq-1) + qq * ecoll(1,iq) |
---|
705 | ENDIF |
---|
706 | ELSE |
---|
707 | qq = ( rq - rat(iq-1) ) / ( rat(iq) - rat(iq-1) ) |
---|
708 | ek = ( 1.0 - qq ) * ecoll(15,iq-1) + qq * ecoll(15,iq) |
---|
709 | ec(j,i) = MIN( ek, 1.0 ) |
---|
710 | ENDIF |
---|
711 | |
---|
712 | ec(i,j) = ec(j,i) |
---|
713 | IF ( ec(i,j) < 1.0E-20 ) ec(i,j) = 0.0 |
---|
714 | |
---|
715 | ENDDO |
---|
716 | ENDDO |
---|
717 | |
---|
718 | DEALLOCATE( ira ) |
---|
719 | |
---|
720 | END SUBROUTINE effic |
---|
721 | |
---|
722 | |
---|
723 | !------------------------------------------------------------------------------! |
---|
724 | ! Calculation of enhancement factor for collision efficencies due to turbulence |
---|
725 | !------------------------------------------------------------------------------! |
---|
726 | SUBROUTINE turb_enhance_eff |
---|
727 | |
---|
728 | USE constants |
---|
729 | USE cloud_parameters |
---|
730 | USE particle_attributes |
---|
731 | USE arrays_3d |
---|
732 | |
---|
733 | IMPLICIT NONE |
---|
734 | |
---|
735 | INTEGER :: i, ik, iq, ir, j, k, kk |
---|
736 | |
---|
737 | INTEGER, DIMENSION(:), ALLOCATABLE :: ira |
---|
738 | |
---|
739 | REAL :: particle_radius, pp, qq, rq, x1, x2, x3, y1, y2, y3 |
---|
740 | |
---|
741 | LOGICAL, SAVE :: first = .TRUE. |
---|
742 | |
---|
743 | REAL, DIMENSION(1:11), SAVE :: rat |
---|
744 | REAL, DIMENSION(1:7), SAVE :: r0 |
---|
745 | REAL, DIMENSION(1:7,1:11), SAVE :: ecoll_100, ecoll_400 |
---|
746 | |
---|
747 | ! |
---|
748 | !-- Initial assignment of constants |
---|
749 | IF ( first ) THEN |
---|
750 | |
---|
751 | first = .FALSE. |
---|
752 | |
---|
753 | r0 = (/ 10.0, 20.0, 30.0, 40.0, 50.0, 60.0, 100.0 /) |
---|
754 | rat = (/ 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0 /) |
---|
755 | ! |
---|
756 | !-- In 100 cm^2/s^3 |
---|
757 | ecoll_100(:,1) = (/1.74, 1.74, 1.773, 1.49, 1.207, 1.207, 1.0 /) |
---|
758 | ecoll_100(:,2) = (/1.46, 1.46, 1.421, 1.245, 1.069, 1.069, 1.0 /) |
---|
759 | ecoll_100(:,3) = (/1.32, 1.32, 1.245, 1.123, 1.000, 1.000, 1.0 /) |
---|
760 | ecoll_100(:,4) = (/1.250, 1.250, 1.148, 1.087, 1.025, 1.025, 1.0 /) |
---|
761 | ecoll_100(:,5) = (/1.186, 1.186, 1.066, 1.060, 1.056, 1.056, 1.0 /) |
---|
762 | ecoll_100(:,6) = (/1.045, 1.045, 1.000, 1.014, 1.028, 1.028, 1.0 /) |
---|
763 | ecoll_100(:,7) = (/1.070, 1.070, 1.030, 1.038, 1.046, 1.046, 1.0 /) |
---|
764 | ecoll_100(:,8) = (/1.000, 1.000, 1.054, 1.042, 1.029, 1.029, 1.0 /) |
---|
765 | ecoll_100(:,9) = (/1.223, 1.223, 1.117, 1.069, 1.021, 1.021, 1.0 /) |
---|
766 | ecoll_100(:,10)= (/1.570, 1.570, 1.244, 1.166, 1.088, 1.088, 1.0 /) |
---|
767 | ecoll_100(:,11)= (/20.3, 20.3, 14.6 , 8.61, 2.60, 2.60 , 1.0 /) |
---|
768 | ! |
---|
769 | !-- In 400 cm^2/s^3 |
---|
770 | ecoll_400(:,1) = (/4.976, 4.976, 3.593, 2.519, 1.445, 1.445, 1.0 /) |
---|
771 | ecoll_400(:,2) = (/2.984, 2.984, 2.181, 1.691, 1.201, 1.201, 1.0 /) |
---|
772 | ecoll_400(:,3) = (/1.988, 1.988, 1.475, 1.313, 1.150, 1.150, 1.0 /) |
---|
773 | ecoll_400(:,4) = (/1.490, 1.490, 1.187, 1.156, 1.126, 1.126, 1.0 /) |
---|
774 | ecoll_400(:,5) = (/1.249, 1.249, 1.088, 1.090, 1.092, 1.092, 1.0 /) |
---|
775 | ecoll_400(:,6) = (/1.139, 1.139, 1.130, 1.091, 1.051, 1.051, 1.0 /) |
---|
776 | ecoll_400(:,7) = (/1.220, 1.220, 1.190, 1.138, 1.086, 1.086, 1.0 /) |
---|
777 | ecoll_400(:,8) = (/1.325, 1.325, 1.267, 1.165, 1.063, 1.063, 1.0 /) |
---|
778 | ecoll_400(:,9) = (/1.716, 1.716, 1.345, 1.223, 1.100, 1.100, 1.0 /) |
---|
779 | ecoll_400(:,10)= (/3.788, 3.788, 1.501, 1.311, 1.120, 1.120, 1.0 /) |
---|
780 | ecoll_400(:,11)= (/36.52, 36.52, 19.16, 22.80, 26.0, 26.0, 1.0 /) |
---|
781 | |
---|
782 | ENDIF |
---|
783 | |
---|
784 | ! |
---|
785 | !-- Calculate the radius class index of particles with respect to array r0 |
---|
786 | ALLOCATE( ira(1:radius_classes) ) |
---|
787 | |
---|
788 | DO j = 1, radius_classes |
---|
789 | particle_radius = radclass(j) * 1.0E4 ! in microm |
---|
790 | DO k = 1, 7 |
---|
791 | IF ( particle_radius < r0(k) ) THEN |
---|
792 | ira(j) = k |
---|
793 | EXIT |
---|
794 | ENDIF |
---|
795 | ENDDO |
---|
796 | IF ( particle_radius >= r0(7) ) ira(j) = 8 |
---|
797 | ENDDO |
---|
798 | |
---|
799 | ! |
---|
800 | !-- Two-dimensional linear interpolation of the collision efficiencies |
---|
801 | DO j = 1, radius_classes |
---|
802 | DO i = 1, j |
---|
803 | |
---|
804 | ir = ira(j) |
---|
805 | rq = radclass(i) / radclass(j) |
---|
806 | |
---|
807 | DO kk = 2, 11 |
---|
808 | IF ( rq <= rat(kk) ) THEN |
---|
809 | iq = kk |
---|
810 | EXIT |
---|
811 | ENDIF |
---|
812 | ENDDO |
---|
813 | |
---|
814 | y1 = 1.0 ! 0 cm2/s3 |
---|
815 | ! |
---|
816 | !-- 100 cm2/s3, 400 cm2/s3 |
---|
817 | IF ( ir < 8 ) THEN |
---|
818 | IF ( ir >= 2 ) THEN |
---|
819 | pp = ( radclass(j)*1.0E4 - r0(ir-1) ) / ( r0(ir) - r0(ir-1) ) |
---|
820 | qq = ( rq - rat(iq-1) ) / ( rat(iq) - rat(iq-1) ) |
---|
821 | y2 = ( 1.0-pp ) * ( 1.0-qq ) * ecoll_100(ir-1,iq-1) + & |
---|
822 | pp * ( 1.0-qq ) * ecoll_100(ir,iq-1) + & |
---|
823 | qq * ( 10.-pp ) * ecoll_100(ir-1,iq) + & |
---|
824 | pp * qq * ecoll_100(ir,iq) |
---|
825 | y3 = ( 1.0-pp ) * ( 1.0-qq ) * ecoll_400(ir-1,iq-1) + & |
---|
826 | pp * ( 1.0-qq ) * ecoll_400(ir,iq-1) + & |
---|
827 | qq * ( 1.0-pp ) * ecoll_400(ir-1,iq) + & |
---|
828 | pp * qq * ecoll_400(ir,iq) |
---|
829 | ELSE |
---|
830 | qq = ( rq - rat(iq-1) ) / ( rat(iq) - rat(iq-1) ) |
---|
831 | y2 = ( 1.0-qq ) * ecoll_100(1,iq-1) + qq * ecoll_100(1,iq) |
---|
832 | y3 = ( 1.0-qq ) * ecoll_400(1,iq-1) + qq * ecoll_400(1,iq) |
---|
833 | ENDIF |
---|
834 | ELSE |
---|
835 | qq = ( rq - rat(iq-1) ) / ( rat(iq) - rat(iq-1) ) |
---|
836 | y2 = ( 1.0-qq ) * ecoll_100(7,iq-1) + qq * ecoll_100(7,iq) |
---|
837 | y3 = ( 1.0-qq ) * ecoll_400(7,iq-1) + qq * ecoll_400(7,iq) |
---|
838 | ENDIF |
---|
839 | ! |
---|
840 | !-- Linear interpolation of dissipation rate in cm2/s3 |
---|
841 | IF ( epsilon <= 100.0 ) THEN |
---|
842 | ecf(j,i) = ( epsilon - 100.0 ) / ( 0.0 - 100.0 ) * y1 & |
---|
843 | + ( epsilon - 0.0 ) / ( 100.0 - 0.0 ) * y2 |
---|
844 | ELSEIF ( epsilon <= 600.0 ) THEN |
---|
845 | ecf(j,i) = ( epsilon - 400.0 ) / ( 100.0 - 400.0 ) * y2 & |
---|
846 | + ( epsilon - 100.0 ) / ( 400.0 - 100.0 ) * y3 |
---|
847 | ELSE |
---|
848 | ecf(j,i) = ( 600.0 - 400.0 ) / ( 100.0 - 400.0 ) * y2 & |
---|
849 | + ( 600.0 - 100.0 ) / ( 400.0 - 100.0 ) * y3 |
---|
850 | ENDIF |
---|
851 | |
---|
852 | IF ( ecf(j,i) < 1.0 ) ecf(j,i) = 1.0 |
---|
853 | |
---|
854 | ecf(i,j) = ecf(j,i) |
---|
855 | |
---|
856 | ENDDO |
---|
857 | ENDDO |
---|
858 | |
---|
859 | END SUBROUTINE turb_enhance_eff |
---|
860 | |
---|
861 | |
---|
862 | |
---|
863 | SUBROUTINE collision_efficiency_rogers( mean_r, r, e) |
---|
864 | !------------------------------------------------------------------------------! |
---|
865 | ! Collision efficiencies from table 8.2 in Rogers and Yau (1989, 3rd edition). |
---|
866 | ! Values are calculated from table by bilinear interpolation. |
---|
867 | !------------------------------------------------------------------------------! |
---|
868 | |
---|
869 | IMPLICIT NONE |
---|
870 | |
---|
871 | INTEGER :: i, j, k |
---|
872 | |
---|
873 | LOGICAL, SAVE :: first = .TRUE. |
---|
874 | |
---|
875 | REAL :: aa, bb, cc, dd, dx, dy, e, gg, mean_r, mean_rm, r, & |
---|
876 | rm, x, y |
---|
877 | |
---|
878 | REAL, DIMENSION(1:9), SAVE :: collected_r = 0.0 |
---|
879 | REAL, DIMENSION(1:19), SAVE :: collector_r = 0.0 |
---|
880 | REAL, DIMENSION(1:9,1:19), SAVE :: ef = 0.0 |
---|
881 | |
---|
882 | mean_rm = mean_r * 1.0E06 |
---|
883 | rm = r * 1.0E06 |
---|
884 | |
---|
885 | IF ( first ) THEN |
---|
886 | |
---|
887 | collected_r = (/ 2.0, 3.0, 4.0, 6.0, 8.0, 10.0, 15.0, 20.0, 25.0 /) |
---|
888 | collector_r = (/ 10.0, 20.0, 30.0, 40.0, 50.0, 60.0, 80.0, 100.0, & |
---|
889 | 150.0, 200.0, 300.0, 400.0, 500.0, 600.0, 1000.0, & |
---|
890 | 1400.0, 1800.0, 2400.0, 3000.0 /) |
---|
891 | |
---|
892 | ef(:,1) = (/0.017, 0.027, 0.037, 0.052, 0.052, 0.052, 0.052, 0.0, & |
---|
893 | 0.0 /) |
---|
894 | ef(:,2) = (/0.001, 0.016, 0.027, 0.060, 0.12, 0.17, 0.17, 0.17, 0.0 /) |
---|
895 | ef(:,3) = (/0.001, 0.001, 0.02, 0.13, 0.28, 0.37, 0.54, 0.55, 0.47/) |
---|
896 | ef(:,4) = (/0.001, 0.001, 0.02, 0.23, 0.4, 0.55, 0.7, 0.75, 0.75/) |
---|
897 | ef(:,5) = (/0.01, 0.01, 0.03, 0.3, 0.4, 0.58, 0.73, 0.75, 0.79/) |
---|
898 | ef(:,6) = (/0.01, 0.01, 0.13, 0.38, 0.57, 0.68, 0.80, 0.86, 0.91/) |
---|
899 | ef(:,7) = (/0.01, 0.085, 0.23, 0.52, 0.68, 0.76, 0.86, 0.92, 0.95/) |
---|
900 | ef(:,8) = (/0.01, 0.14, 0.32, 0.60, 0.73, 0.81, 0.90, 0.94, 0.96/) |
---|
901 | ef(:,9) = (/0.025, 0.25, 0.43, 0.66, 0.78, 0.83, 0.92, 0.95, 0.96/) |
---|
902 | ef(:,10)= (/0.039, 0.3, 0.46, 0.69, 0.81, 0.87, 0.93, 0.95, 0.96/) |
---|
903 | ef(:,11)= (/0.095, 0.33, 0.51, 0.72, 0.82, 0.87, 0.93, 0.96, 0.97/) |
---|
904 | ef(:,12)= (/0.098, 0.36, 0.51, 0.73, 0.83, 0.88, 0.93, 0.96, 0.97/) |
---|
905 | ef(:,13)= (/0.1, 0.36, 0.52, 0.74, 0.83, 0.88, 0.93, 0.96, 0.97/) |
---|
906 | ef(:,14)= (/0.17, 0.4, 0.54, 0.72, 0.83, 0.88, 0.94, 0.98, 1.0 /) |
---|
907 | ef(:,15)= (/0.15, 0.37, 0.52, 0.74, 0.82, 0.88, 0.94, 0.98, 1.0 /) |
---|
908 | ef(:,16)= (/0.11, 0.34, 0.49, 0.71, 0.83, 0.88, 0.94, 0.95, 1.0 /) |
---|
909 | ef(:,17)= (/0.08, 0.29, 0.45, 0.68, 0.8, 0.86, 0.96, 0.94, 1.0 /) |
---|
910 | ef(:,18)= (/0.04, 0.22, 0.39, 0.62, 0.75, 0.83, 0.92, 0.96, 1.0 /) |
---|
911 | ef(:,19)= (/0.02, 0.16, 0.33, 0.55, 0.71, 0.81, 0.90, 0.94, 1.0 /) |
---|
912 | |
---|
913 | ENDIF |
---|
914 | |
---|
915 | DO k = 1, 8 |
---|
916 | IF ( collected_r(k) <= mean_rm ) i = k |
---|
917 | ENDDO |
---|
918 | |
---|
919 | DO k = 1, 18 |
---|
920 | IF ( collector_r(k) <= rm ) j = k |
---|
921 | ENDDO |
---|
922 | |
---|
923 | IF ( rm < 10.0 ) THEN |
---|
924 | e = 0.0 |
---|
925 | ELSEIF ( mean_rm < 2.0 ) THEN |
---|
926 | e = 0.001 |
---|
927 | ELSEIF ( mean_rm >= 25.0 ) THEN |
---|
928 | IF( j <= 2 ) e = 0.0 |
---|
929 | IF( j == 3 ) e = 0.47 |
---|
930 | IF( j == 4 ) e = 0.8 |
---|
931 | IF( j == 5 ) e = 0.9 |
---|
932 | IF( j >=6 ) e = 1.0 |
---|
933 | ELSEIF ( rm >= 3000.0 ) THEN |
---|
934 | IF( i == 1 ) e = 0.02 |
---|
935 | IF( i == 2 ) e = 0.16 |
---|
936 | IF( i == 3 ) e = 0.33 |
---|
937 | IF( i == 4 ) e = 0.55 |
---|
938 | IF( i == 5 ) e = 0.71 |
---|
939 | IF( i == 6 ) e = 0.81 |
---|
940 | IF( i == 7 ) e = 0.90 |
---|
941 | IF( i >= 8 ) e = 0.94 |
---|
942 | ELSE |
---|
943 | x = mean_rm - collected_r(i) |
---|
944 | y = rm - collector_r(j) |
---|
945 | dx = collected_r(i+1) - collected_r(i) |
---|
946 | dy = collector_r(j+1) - collector_r(j) |
---|
947 | aa = x**2 + y**2 |
---|
948 | bb = ( dx - x )**2 + y**2 |
---|
949 | cc = x**2 + ( dy - y )**2 |
---|
950 | dd = ( dx - x )**2 + ( dy - y )**2 |
---|
951 | gg = aa + bb + cc + dd |
---|
952 | |
---|
953 | e = ( (gg-aa)*ef(i,j) + (gg-bb)*ef(i+1,j) + (gg-cc)*ef(i,j+1) + & |
---|
954 | (gg-dd)*ef(i+1,j+1) ) / (3.0*gg) |
---|
955 | ENDIF |
---|
956 | |
---|
957 | END SUBROUTINE collision_efficiency_rogers |
---|
958 | |
---|
959 | END MODULE lpm_collision_kernels_mod |
---|