[828] | 1 | MODULE lpm_collision_kernels_mod |
---|
[790] | 2 | |
---|
| 3 | !------------------------------------------------------------------------------! |
---|
| 4 | ! Current revisions: |
---|
| 5 | ! ----------------- |
---|
[836] | 6 | ! |
---|
[829] | 7 | ! |
---|
| 8 | ! Former revisions: |
---|
| 9 | ! ----------------- |
---|
| 10 | ! $Id: lpm_collision_kernels.f90 836 2012-02-22 11:34:15Z gryschka $ |
---|
| 11 | ! |
---|
[836] | 12 | ! 835 2012-02-22 11:21:19Z raasch $ |
---|
| 13 | ! Bugfix: array diss can be used only in case of Wang kernel |
---|
| 14 | ! |
---|
[829] | 15 | ! 828 2012-02-21 12:00:36Z raasch |
---|
[828] | 16 | ! code has been completely reformatted, routine colker renamed |
---|
| 17 | ! recalculate_kernel, |
---|
| 18 | ! routine init_kernels added, radius is now communicated to the collision |
---|
| 19 | ! routines by array radclass |
---|
[790] | 20 | ! |
---|
[828] | 21 | ! Bugfix: transformation factor for dissipation changed from 1E5 to 1E4 |
---|
| 22 | ! |
---|
[826] | 23 | ! 825 2012-02-19 03:03:44Z raasch |
---|
| 24 | ! routine renamed from wang_kernel to lpm_collision_kernels, |
---|
| 25 | ! turbulence_effects on collision replaced by wang_kernel |
---|
| 26 | ! |
---|
[800] | 27 | ! 799 2011-12-21 17:48:03Z franke |
---|
| 28 | ! speed optimizations and formatting |
---|
| 29 | ! Bugfix: iq=1 is not allowed (routine effic) |
---|
| 30 | ! Bugfix: replaced stop by ec=0.0 in case of very small ec (routine effic) |
---|
| 31 | ! |
---|
[791] | 32 | ! 790 2011-11-29 03:11:20Z raasch |
---|
| 33 | ! initial revision |
---|
[790] | 34 | ! |
---|
| 35 | ! Description: |
---|
| 36 | ! ------------ |
---|
[828] | 37 | ! This module calculates collision efficiencies either due to pure gravitational |
---|
| 38 | ! effects (Hall kernel, see Hall, 1980: J. Atmos. Sci., 2486-2507) or |
---|
| 39 | ! including the effects of (SGS) turbulence (Wang kernel, see Wang and |
---|
| 40 | ! Grabowski, 2009: Atmos. Sci. Lett., 10, 1-8). The original code has been |
---|
| 41 | ! provided by L.-P. Wang but is substantially reformatted and speed optimized |
---|
| 42 | ! here. |
---|
| 43 | ! |
---|
| 44 | ! ATTENTION: |
---|
| 45 | ! Physical quantities (like g, densities, etc.) used in this module still |
---|
| 46 | ! have to be adjusted to those values used in the main PALM code. |
---|
| 47 | ! Also, quantities in CGS-units should be converted to SI-units eventually. |
---|
[790] | 48 | !------------------------------------------------------------------------------! |
---|
| 49 | |
---|
| 50 | USE arrays_3d |
---|
| 51 | USE cloud_parameters |
---|
| 52 | USE constants |
---|
| 53 | USE particle_attributes |
---|
[828] | 54 | USE pegrid |
---|
[790] | 55 | |
---|
[828] | 56 | |
---|
[790] | 57 | IMPLICIT NONE |
---|
| 58 | |
---|
| 59 | PRIVATE |
---|
| 60 | |
---|
[828] | 61 | PUBLIC ckernel, init_kernels, rclass_lbound, rclass_ubound, & |
---|
| 62 | recalculate_kernel |
---|
[790] | 63 | |
---|
[828] | 64 | REAL :: epsilon, eps2, rclass_lbound, rclass_ubound, urms, urms2 |
---|
[790] | 65 | |
---|
[828] | 66 | REAL, DIMENSION(:), ALLOCATABLE :: epsclass, radclass, winf |
---|
| 67 | REAL, DIMENSION(:,:), ALLOCATABLE :: ec, ecf, gck, hkernel, hwratio |
---|
| 68 | REAL, DIMENSION(:,:,:), ALLOCATABLE :: ckernel |
---|
[792] | 69 | |
---|
[828] | 70 | SAVE |
---|
[792] | 71 | |
---|
[790] | 72 | ! |
---|
| 73 | !-- Public interfaces |
---|
[828] | 74 | INTERFACE init_kernels |
---|
| 75 | MODULE PROCEDURE init_kernels |
---|
| 76 | END INTERFACE init_kernels |
---|
[790] | 77 | |
---|
[828] | 78 | INTERFACE recalculate_kernel |
---|
| 79 | MODULE PROCEDURE recalculate_kernel |
---|
| 80 | END INTERFACE recalculate_kernel |
---|
[790] | 81 | |
---|
| 82 | |
---|
[828] | 83 | CONTAINS |
---|
[790] | 84 | |
---|
[792] | 85 | |
---|
[828] | 86 | SUBROUTINE init_kernels |
---|
| 87 | !------------------------------------------------------------------------------! |
---|
| 88 | ! Initialization of the collision efficiency matrix with fixed radius and |
---|
| 89 | ! dissipation classes, calculated at simulation start only. |
---|
| 90 | !------------------------------------------------------------------------------! |
---|
[792] | 91 | |
---|
[828] | 92 | IMPLICIT NONE |
---|
[792] | 93 | |
---|
[828] | 94 | INTEGER :: i, j, k |
---|
[790] | 95 | |
---|
[828] | 96 | |
---|
| 97 | ! |
---|
| 98 | !-- Calculate collision efficiencies for fixed radius- and dissipation |
---|
| 99 | !-- classes |
---|
| 100 | IF ( collision_kernel(6:9) == 'fast' ) THEN |
---|
| 101 | |
---|
| 102 | ALLOCATE( ckernel(1:radius_classes,1:radius_classes, & |
---|
| 103 | 0:dissipation_classes), epsclass(1:dissipation_classes), & |
---|
| 104 | radclass(1:radius_classes) ) |
---|
| 105 | |
---|
| 106 | ! |
---|
| 107 | !-- Calculate the radius class bounds with logarithmic distances |
---|
| 108 | !-- in the interval [1.0E-6, 2.0E-4] m |
---|
| 109 | rclass_lbound = LOG( 1.0E-6 ) |
---|
| 110 | rclass_ubound = LOG( 2.0E-4 ) |
---|
| 111 | radclass(1) = 1.0E-6 |
---|
| 112 | DO i = 2, radius_classes |
---|
| 113 | radclass(i) = EXP( rclass_lbound + & |
---|
| 114 | ( rclass_ubound - rclass_lbound ) * ( i-1.0 ) /& |
---|
| 115 | ( radius_classes - 1.0 ) ) |
---|
| 116 | ! IF ( myid == 0 ) THEN |
---|
| 117 | ! PRINT*, 'i=', i, ' r = ', radclass(i)*1.0E6 |
---|
| 118 | ! ENDIF |
---|
| 119 | ENDDO |
---|
| 120 | ! |
---|
| 121 | !-- Collision routines expect radius to be in cm |
---|
| 122 | radclass = radclass * 100.0 |
---|
| 123 | |
---|
| 124 | ! |
---|
| 125 | !-- Set the class bounds for dissipation in interval [0, 1000] cm**2/s**3 |
---|
| 126 | DO i = 1, dissipation_classes |
---|
| 127 | epsclass(i) = 1000.0 * REAL( i ) / dissipation_classes |
---|
| 128 | ! IF ( myid == 0 ) THEN |
---|
| 129 | ! PRINT*, 'i=', i, ' eps = ', epsclass(i) |
---|
| 130 | ! ENDIF |
---|
| 131 | ENDDO |
---|
| 132 | ! |
---|
| 133 | !-- Calculate collision efficiencies of the Wang/ayala kernel |
---|
| 134 | ALLOCATE( ec(1:radius_classes,1:radius_classes), & |
---|
| 135 | ecf(1:radius_classes,1:radius_classes), & |
---|
| 136 | gck(1:radius_classes,1:radius_classes), & |
---|
| 137 | winf(1:radius_classes) ) |
---|
| 138 | |
---|
| 139 | DO k = 1, dissipation_classes |
---|
| 140 | |
---|
| 141 | epsilon = epsclass(k) |
---|
| 142 | urms = 202.0 * ( epsilon / 400.0 )**( 1.0 / 3.0 ) |
---|
| 143 | |
---|
| 144 | CALL turbsd |
---|
| 145 | CALL turb_enhance_eff |
---|
| 146 | CALL effic |
---|
| 147 | |
---|
| 148 | DO j = 1, radius_classes |
---|
| 149 | DO i = 1, radius_classes |
---|
| 150 | ckernel(i,j,k) = ec(i,j) * gck(i,j) * ecf(i,j) |
---|
| 151 | ENDDO |
---|
| 152 | ENDDO |
---|
| 153 | |
---|
| 154 | ENDDO |
---|
| 155 | |
---|
| 156 | ! |
---|
| 157 | !-- Calculate collision efficiencies of the Hall kernel |
---|
| 158 | ALLOCATE( hkernel(1:radius_classes,1:radius_classes), & |
---|
| 159 | hwratio(1:radius_classes,1:radius_classes) ) |
---|
| 160 | |
---|
| 161 | CALL fallg |
---|
| 162 | CALL effic |
---|
| 163 | |
---|
| 164 | DO j = 1, radius_classes |
---|
| 165 | DO i = 1, radius_classes |
---|
| 166 | hkernel(i,j) = pi * ( radclass(j) + radclass(i) )**2 & |
---|
| 167 | * ec(i,j) * ABS( winf(j) - winf(i) ) |
---|
| 168 | ckernel(i,j,0) = hkernel(i,j) ! hall kernel stored on index 0 |
---|
| 169 | ENDDO |
---|
| 170 | ENDDO |
---|
| 171 | |
---|
| 172 | ! |
---|
| 173 | !-- Test output of efficiencies |
---|
| 174 | IF ( j == -1 ) THEN |
---|
| 175 | |
---|
| 176 | PRINT*, '*** Hall kernel' |
---|
| 177 | WRITE ( *,'(5X,20(F4.0,1X))' ) ( radclass(i)*1.0E4, i = 1,radius_classes ) |
---|
| 178 | DO j = 1, radius_classes |
---|
| 179 | WRITE ( *,'(F4.0,1X,20(F4.2,1X))' ) radclass(j), ( hkernel(i,j), i = 1,radius_classes ) |
---|
| 180 | ENDDO |
---|
| 181 | |
---|
| 182 | DO k = 1, dissipation_classes |
---|
| 183 | DO i = 1, radius_classes |
---|
| 184 | DO j = 1, radius_classes |
---|
| 185 | IF ( hkernel(i,j) == 0.0 ) THEN |
---|
| 186 | hwratio(i,j) = 9999999.9 |
---|
| 187 | ELSE |
---|
| 188 | hwratio(i,j) = ckernel(i,j,k) / hkernel(i,j) |
---|
| 189 | ENDIF |
---|
| 190 | ENDDO |
---|
| 191 | ENDDO |
---|
| 192 | |
---|
| 193 | PRINT*, '*** epsilon = ', epsclass(k) |
---|
| 194 | WRITE ( *,'(5X,20(F4.0,1X))' ) ( radclass(i)*1.0E4, i = 1,radius_classes ) |
---|
| 195 | DO j = 1, radius_classes |
---|
| 196 | ! WRITE ( *,'(F4.0,1X,20(F4.2,1X))' ) radclass(j)*1.0E4, ( ckernel(i,j,k), i = 1,radius_classes ) |
---|
| 197 | WRITE ( *,'(F4.0,1X,20(F4.2,1X))' ) radclass(j)*1.0E4, ( hwratio(i,j), i = 1,radius_classes ) |
---|
| 198 | ENDDO |
---|
| 199 | ENDDO |
---|
| 200 | |
---|
| 201 | ENDIF |
---|
| 202 | |
---|
| 203 | DEALLOCATE( ec, ecf, epsclass, gck, hkernel, winf ) |
---|
| 204 | |
---|
| 205 | ckernel = ckernel * 1.0E-6 ! kernel is needed in m**3/s |
---|
| 206 | |
---|
| 207 | ELSEIF( collision_kernel == 'hall' .OR. collision_kernel == 'wang' ) & |
---|
| 208 | THEN |
---|
| 209 | ! |
---|
| 210 | !-- Initial settings for Hall- and Wang-Kernel |
---|
| 211 | !-- To be done: move here parts from turbsd, fallg, ecoll, etc. |
---|
| 212 | ENDIF |
---|
| 213 | |
---|
| 214 | END SUBROUTINE init_kernels |
---|
| 215 | |
---|
| 216 | |
---|
[790] | 217 | !------------------------------------------------------------------------------! |
---|
[828] | 218 | ! Calculation of collision kernels during each timestep and for each grid box |
---|
[790] | 219 | !------------------------------------------------------------------------------! |
---|
[828] | 220 | SUBROUTINE recalculate_kernel( i1, j1, k1 ) |
---|
[790] | 221 | |
---|
| 222 | USE arrays_3d |
---|
| 223 | USE cloud_parameters |
---|
| 224 | USE constants |
---|
[792] | 225 | USE cpulog |
---|
[790] | 226 | USE indices |
---|
[792] | 227 | USE interfaces |
---|
[790] | 228 | USE particle_attributes |
---|
| 229 | |
---|
| 230 | IMPLICIT NONE |
---|
| 231 | |
---|
[828] | 232 | INTEGER :: i, i1, j, j1, k1, pend, pstart |
---|
[790] | 233 | |
---|
| 234 | |
---|
[828] | 235 | pstart = prt_start_index(k1,j1,i1) |
---|
| 236 | pend = prt_start_index(k1,j1,i1) + prt_count(k1,j1,i1) - 1 |
---|
| 237 | radius_classes = prt_count(k1,j1,i1) |
---|
[792] | 238 | |
---|
[828] | 239 | ALLOCATE( ec(1:radius_classes,1:radius_classes), & |
---|
| 240 | radclass(1:radius_classes), winf(1:radius_classes) ) |
---|
[790] | 241 | |
---|
[828] | 242 | ! |
---|
| 243 | !-- Store particle radii on the radclass array. Collision routines |
---|
| 244 | !-- expect radii to be in cm. |
---|
| 245 | radclass(1:radius_classes) = particles(pstart:pend)%radius * 100.0 |
---|
[790] | 246 | |
---|
[835] | 247 | IF ( wang_kernel ) THEN |
---|
| 248 | epsilon = diss(k1,j1,i1) * 1.0E4 ! dissipation rate in cm**2/s**-3 |
---|
| 249 | ELSE |
---|
| 250 | epsilon = 0.0 |
---|
| 251 | ENDIF |
---|
[828] | 252 | urms = 202.0 * ( epsilon / 400.0 )**( 0.33333333333 ) |
---|
[790] | 253 | |
---|
[828] | 254 | IF ( wang_kernel .AND. epsilon > 0.001 ) THEN |
---|
| 255 | ! |
---|
| 256 | !-- Call routines to calculate efficiencies for the Wang kernel |
---|
| 257 | ALLOCATE( gck(1:radius_classes,1:radius_classes), & |
---|
| 258 | ecf(1:radius_classes,1:radius_classes) ) |
---|
[790] | 259 | |
---|
[828] | 260 | CALL turbsd |
---|
| 261 | CALL turb_enhance_eff |
---|
| 262 | CALL effic |
---|
[790] | 263 | |
---|
[828] | 264 | DO j = 1, radius_classes |
---|
| 265 | DO i = 1, radius_classes |
---|
| 266 | ckernel(pstart+i-1,pstart+j-1,1) = ec(i,j) * gck(i,j) * ecf(i,j) |
---|
[790] | 267 | ENDDO |
---|
[828] | 268 | ENDDO |
---|
[790] | 269 | |
---|
[828] | 270 | DEALLOCATE( gck, ecf ) |
---|
[790] | 271 | |
---|
| 272 | ELSE |
---|
[828] | 273 | ! |
---|
| 274 | !-- Call routines to calculate efficiencies for the Hall kernel |
---|
[790] | 275 | CALL fallg |
---|
| 276 | CALL effic |
---|
| 277 | |
---|
[828] | 278 | DO j = 1, radius_classes |
---|
| 279 | DO i = 1, radius_classes |
---|
| 280 | ckernel(pstart+i-1,pstart+j-1,1) = pi * & |
---|
| 281 | ( radclass(j) + radclass(i) )**2 & |
---|
| 282 | * ec(i,j) * ABS( winf(j) - winf(i) ) |
---|
[790] | 283 | ENDDO |
---|
| 284 | ENDDO |
---|
| 285 | |
---|
| 286 | ENDIF |
---|
| 287 | |
---|
[828] | 288 | ckernel = ckernel * 1.0E-6 ! kernel is needed in m**3/s |
---|
[790] | 289 | |
---|
[828] | 290 | DEALLOCATE( ec, radclass, winf ) |
---|
[790] | 291 | |
---|
[828] | 292 | END SUBROUTINE recalculate_kernel |
---|
[790] | 293 | |
---|
[828] | 294 | |
---|
[790] | 295 | !------------------------------------------------------------------------------! |
---|
[828] | 296 | ! Calculation of gck |
---|
| 297 | ! This is from Aayala 2008b, page 37ff. |
---|
| 298 | ! Necessary input parameters: water density, radii of droplets, air density, |
---|
| 299 | ! air viscosity, turbulent dissipation rate, taylor microscale reynolds number, |
---|
| 300 | ! gravitational acceleration --> to be replaced by PALM parameters |
---|
[790] | 301 | !------------------------------------------------------------------------------! |
---|
[792] | 302 | SUBROUTINE turbsd |
---|
[799] | 303 | |
---|
[790] | 304 | USE constants |
---|
| 305 | USE cloud_parameters |
---|
| 306 | USE particle_attributes |
---|
| 307 | USE arrays_3d |
---|
| 308 | |
---|
| 309 | IMPLICIT NONE |
---|
| 310 | |
---|
[828] | 311 | INTEGER :: i, j |
---|
[790] | 312 | |
---|
[828] | 313 | LOGICAL, SAVE :: first = .TRUE. |
---|
[790] | 314 | |
---|
[828] | 315 | REAL :: ao, ao_gr, bbb, be, b1, b2, ccc, c1, c1_gr, c2, d1, d2, eta, & |
---|
| 316 | e1, e2, fao_gr, fr, grfin, lambda, lambda_re, lf, rc, rrp, & |
---|
| 317 | sst, tauk, tl, t2, tt, t1, vk, vrms1xy, vrms2xy, v1, v1v2xy, & |
---|
| 318 | v1xysq, v2, v2xysq, wrfin, wrgrav2, wrtur2xy, xx, yy, z |
---|
[799] | 319 | |
---|
[828] | 320 | REAL, SAVE :: airdens, airvisc, anu, gravity, waterdens |
---|
[799] | 321 | |
---|
[828] | 322 | REAL, DIMENSION(1:radius_classes) :: st, tau |
---|
[790] | 323 | |
---|
[828] | 324 | |
---|
[799] | 325 | ! |
---|
[828] | 326 | !-- Initial assignment of constants |
---|
[799] | 327 | IF ( first ) THEN |
---|
[790] | 328 | |
---|
[799] | 329 | first = .FALSE. |
---|
[828] | 330 | airvisc = 0.1818 ! dynamic viscosity in mg/cm*s |
---|
| 331 | airdens = 1.2250 ! air density in mg/cm**3 |
---|
| 332 | waterdens = 1000.0 ! water density in mg/cm**3 |
---|
| 333 | gravity = 980.6650 ! in cm/s**2 |
---|
[799] | 334 | anu = airvisc/airdens ! kinetic viscosity in cm**2/s |
---|
[790] | 335 | |
---|
[799] | 336 | ENDIF |
---|
[790] | 337 | |
---|
[828] | 338 | lambda = urms * SQRT( 15.0 * anu / epsilon ) ! in cm |
---|
| 339 | lambda_re = urms**2 * SQRT( 15.0 / epsilon / anu ) |
---|
| 340 | tl = urms**2 / epsilon ! in s |
---|
| 341 | lf = 0.5 * urms**3 / epsilon ! in cm |
---|
| 342 | tauk = SQRT( anu / epsilon ) ! in s |
---|
| 343 | eta = ( anu**3 / epsilon )**0.25 ! in cm |
---|
| 344 | vk = eta / tauk ! in cm/s |
---|
[790] | 345 | |
---|
[828] | 346 | ao = ( 11.0 + 7.0 * lambda_re ) / ( 205.0 + lambda_re ) |
---|
| 347 | tt = SQRT( 2.0 * lambda_re / ( SQRT( 15.0 ) * ao ) ) * tauk ! in s |
---|
[799] | 348 | |
---|
[828] | 349 | CALL fallg ! gives winf in cm/s |
---|
[790] | 350 | |
---|
[828] | 351 | DO i = 1, radius_classes |
---|
| 352 | tau(i) = winf(i) / gravity ! in s |
---|
| 353 | st(i) = tau(i) / tauk |
---|
[790] | 354 | ENDDO |
---|
| 355 | |
---|
[828] | 356 | ! |
---|
| 357 | !-- Calculate wr (from Aayala 2008b, page 38f) |
---|
| 358 | z = tt / tl |
---|
| 359 | be = SQRT( 2.0 ) * lambda / lf |
---|
| 360 | bbb = SQRT( 1.0 - 2.0 * be**2 ) |
---|
| 361 | d1 = ( 1.0 + bbb ) / ( 2.0 * bbb ) |
---|
| 362 | e1 = lf * ( 1.0 + bbb ) * 0.5 ! in cm |
---|
| 363 | d2 = ( 1.0 - bbb ) * 0.5 / bbb |
---|
| 364 | e2 = lf * ( 1.0 - bbb ) * 0.5 ! in cm |
---|
| 365 | ccc = SQRT( 1.0 - 2.0 * z**2 ) |
---|
| 366 | b1 = ( 1.0 + ccc ) * 0.5 / ccc |
---|
| 367 | c1 = tl * ( 1.0 + ccc ) * 0.5 ! in s |
---|
| 368 | b2 = ( 1.0 - ccc ) * 0.5 / ccc |
---|
| 369 | c2 = tl * ( 1.0 - ccc ) * 0.5 ! in s |
---|
[790] | 370 | |
---|
[828] | 371 | DO i = 1, radius_classes |
---|
[790] | 372 | |
---|
[828] | 373 | v1 = winf(i) ! in cm/s |
---|
| 374 | t1 = tau(i) ! in s |
---|
[790] | 375 | |
---|
[828] | 376 | DO j = 1, i |
---|
| 377 | rrp = radclass(i) + radclass(j) ! radius in cm |
---|
| 378 | v2 = winf(j) ! in cm/s |
---|
| 379 | t2 = tau(j) ! in s |
---|
[790] | 380 | |
---|
[828] | 381 | v1xysq = b1 * d1 * phi(c1,e1,v1,t1) - b1 * d2 * phi(c1,e2,v1,t1) & |
---|
| 382 | - b2 * d1 * phi(c2,e1,v1,t1) + b2 * d2 * phi(c2,e2,v1,t1) |
---|
| 383 | v1xysq = v1xysq * urms**2 / t1 ! in cm**2/s**2 |
---|
| 384 | vrms1xy = SQRT( v1xysq ) ! in cm/s |
---|
[790] | 385 | |
---|
[828] | 386 | v2xysq = b1 * d1 * phi(c1,e1,v2,t2) - b1 * d2 * phi(c1,e2,v2,t2) & |
---|
| 387 | - b2 * d1 * phi(c2,e1,v2,t2) + b2 * d2 * phi(c2,e2,v2,t2) |
---|
| 388 | v2xysq = v2xysq * urms**2 / t2 ! in cm**2/s**2 |
---|
| 389 | vrms2xy = SQRT( v2xysq ) ! in cm/s |
---|
[790] | 390 | |
---|
[828] | 391 | IF ( winf(i) >= winf(j) ) THEN |
---|
[799] | 392 | v1 = winf(i) |
---|
[790] | 393 | t1 = tau(i) |
---|
[799] | 394 | v2 = winf(j) |
---|
[790] | 395 | t2 = tau(j) |
---|
| 396 | ELSE |
---|
[799] | 397 | v1 = winf(j) |
---|
[790] | 398 | t1 = tau(j) |
---|
[799] | 399 | v2 = winf(i) |
---|
[790] | 400 | t2 = tau(i) |
---|
| 401 | ENDIF |
---|
| 402 | |
---|
[828] | 403 | v1v2xy = b1 * d1 * zhi(c1,e1,v1,t1,v2,t2) - & |
---|
| 404 | b1 * d2 * zhi(c1,e2,v1,t1,v2,t2) - & |
---|
| 405 | b2 * d1 * zhi(c2,e1,v1,t1,v2,t2) + & |
---|
| 406 | b2 * d2* zhi(c2,e2,v1,t1,v2,t2) |
---|
| 407 | fr = d1 * EXP( -rrp / e1 ) - d2 * EXP( -rrp / e2 ) |
---|
| 408 | v1v2xy = v1v2xy * fr * urms**2 / tau(i) / tau(j) ! in cm**2/s**2 |
---|
| 409 | wrtur2xy = vrms1xy**2 + vrms2xy**2 - 2.0 * v1v2xy ! in cm**2/s**2 |
---|
| 410 | IF ( wrtur2xy < 0.0 ) wrtur2xy = 0.0 |
---|
| 411 | wrgrav2 = pi / 8.0 * ( winf(j) - winf(i) )**2 |
---|
| 412 | wrfin = SQRT( ( 2.0 / pi ) * ( wrtur2xy + wrgrav2) ) ! in cm/s |
---|
[790] | 413 | |
---|
[828] | 414 | ! |
---|
| 415 | !-- Calculate gr |
---|
| 416 | IF ( st(j) > st(i) ) THEN |
---|
| 417 | sst = st(j) |
---|
[790] | 418 | ELSE |
---|
[828] | 419 | sst = st(i) |
---|
[790] | 420 | ENDIF |
---|
| 421 | |
---|
[828] | 422 | xx = -0.1988 * sst**4 + 1.5275 * sst**3 - 4.2942 * sst**2 + & |
---|
| 423 | 5.3406 * sst |
---|
| 424 | IF ( xx < 0.0 ) xx = 0.0 |
---|
| 425 | yy = 0.1886 * EXP( 20.306 / lambda_re ) |
---|
[790] | 426 | |
---|
[828] | 427 | c1_gr = xx / ( gravity / vk * tauk )**yy |
---|
[790] | 428 | |
---|
[828] | 429 | ao_gr = ao + ( pi / 8.0) * ( gravity / vk * tauk )**2 |
---|
| 430 | fao_gr = 20.115 * SQRT( ao_gr / lambda_re ) |
---|
| 431 | rc = SQRT( fao_gr * ABS( st(j) - st(i) ) ) * eta ! in cm |
---|
[790] | 432 | |
---|
[828] | 433 | grfin = ( ( eta**2 + rc**2 ) / ( rrp**2 + rc**2) )**( c1_gr*0.5 ) |
---|
| 434 | IF ( grfin < 1.0 ) grfin = 1.0 |
---|
[790] | 435 | |
---|
[828] | 436 | gck(i,j) = 2.0 * pi * rrp**2 * wrfin * grfin ! in cm**3/s |
---|
[790] | 437 | gck(j,i) = gck(i,j) |
---|
| 438 | |
---|
| 439 | ENDDO |
---|
| 440 | ENDDO |
---|
| 441 | |
---|
[828] | 442 | END SUBROUTINE turbsd |
---|
[790] | 443 | |
---|
[828] | 444 | |
---|
[790] | 445 | !------------------------------------------------------------------------------! |
---|
[828] | 446 | ! phi as a function |
---|
[790] | 447 | !------------------------------------------------------------------------------! |
---|
[828] | 448 | REAL FUNCTION phi( a, b, vsett, tau0 ) |
---|
[790] | 449 | |
---|
| 450 | IMPLICIT NONE |
---|
| 451 | |
---|
[828] | 452 | REAL :: a, aa1, b, tau0, vsett |
---|
[790] | 453 | |
---|
[828] | 454 | aa1 = 1.0 / tau0 + 1.0 / a + vsett / b |
---|
| 455 | phi = 1.0 / aa1 - 0.5 * vsett / b / aa1**2 ! in s |
---|
[790] | 456 | |
---|
[828] | 457 | END FUNCTION phi |
---|
[792] | 458 | |
---|
[790] | 459 | |
---|
| 460 | !------------------------------------------------------------------------------! |
---|
[828] | 461 | ! zeta as a function |
---|
[790] | 462 | !------------------------------------------------------------------------------! |
---|
[828] | 463 | REAL FUNCTION zhi( a, b, vsett1, tau1, vsett2, tau2 ) |
---|
[790] | 464 | |
---|
| 465 | IMPLICIT NONE |
---|
| 466 | |
---|
[828] | 467 | REAL :: a, aa1, aa2, aa3, aa4, aa5, aa6, b, tau1, tau2, vsett1, vsett2 |
---|
[790] | 468 | |
---|
[828] | 469 | aa1 = vsett2 / b - 1.0 / tau2 - 1.0 / a |
---|
| 470 | aa2 = vsett1 / b + 1.0 / tau1 + 1.0 / a |
---|
| 471 | aa3 = ( vsett1 - vsett2 ) / b + 1.0 / tau1 + 1.0 / tau2 |
---|
| 472 | aa4 = ( vsett2 / b )**2 - ( 1.0 / tau2 + 1.0 / a )**2 |
---|
| 473 | aa5 = vsett2 / b + 1.0 / tau2 + 1.0 / a |
---|
| 474 | aa6 = 1.0 / tau1 - 1.0 / a + ( 1.0 / tau2 + 1.0 / a) * vsett1 / vsett2 |
---|
| 475 | zhi = (1.0 / aa1 - 1.0 / aa2 ) * ( vsett1 - vsett2 ) * 0.5 / b / aa3**2 & |
---|
| 476 | + (4.0 / aa4 - 1.0 / aa5**2 - 1.0 / aa1**2 ) * vsett2 * 0.5 / b /aa6& |
---|
| 477 | + (2.0 * ( b / aa2 - b / aa1 ) - vsett1 / aa2**2 + vsett2 / aa1**2 )& |
---|
| 478 | * 0.5 / b / aa3 ! in s**2 |
---|
[799] | 479 | |
---|
[828] | 480 | END FUNCTION zhi |
---|
[790] | 481 | |
---|
[828] | 482 | |
---|
[790] | 483 | !------------------------------------------------------------------------------! |
---|
[828] | 484 | ! Calculation of terminal velocity winf |
---|
[790] | 485 | !------------------------------------------------------------------------------! |
---|
[828] | 486 | SUBROUTINE fallg |
---|
[790] | 487 | |
---|
| 488 | USE constants |
---|
| 489 | USE cloud_parameters |
---|
| 490 | USE particle_attributes |
---|
| 491 | USE arrays_3d |
---|
| 492 | |
---|
[828] | 493 | IMPLICIT NONE |
---|
[790] | 494 | |
---|
[828] | 495 | INTEGER :: i, j |
---|
[790] | 496 | |
---|
[828] | 497 | LOGICAL, SAVE :: first = .TRUE. |
---|
[790] | 498 | |
---|
[828] | 499 | REAL, SAVE :: cunh, eta, grav, phy, py, rhoa, rhow, sigma, stb, stok, & |
---|
| 500 | t0, xlamb |
---|
[790] | 501 | |
---|
[828] | 502 | REAL :: bond, x, xrey, y |
---|
[799] | 503 | |
---|
[828] | 504 | REAL, DIMENSION(1:7), SAVE :: b |
---|
| 505 | REAL, DIMENSION(1:6), SAVE :: c |
---|
[799] | 506 | |
---|
| 507 | ! |
---|
[828] | 508 | !-- Initial assignment of constants |
---|
| 509 | IF ( first ) THEN |
---|
[799] | 510 | |
---|
[828] | 511 | first = .FALSE. |
---|
| 512 | b = (/ -0.318657E1, 0.992696E0, -0.153193E-2, -0.987059E-3, & |
---|
| 513 | -0.578878E-3, 0.855176E-4, -0.327815E-5 /) |
---|
| 514 | c = (/ -0.500015E1, 0.523778E1, -0.204914E1, 0.475294E0, & |
---|
| 515 | -0.542819E-1, 0.238449E-2 /) |
---|
[790] | 516 | |
---|
[828] | 517 | eta = 1.818E-4 ! in poise = g/(cm s) |
---|
| 518 | xlamb = 6.62E-6 ! in cm |
---|
| 519 | rhow = 1.0 ! in g/cm**3 |
---|
| 520 | rhoa = 1.225E-3 ! in g/cm**3 |
---|
| 521 | grav = 980.665 ! in cm/s**2 |
---|
| 522 | cunh = 1.257 * xlamb ! in cm |
---|
| 523 | t0 = 273.15 ! in K |
---|
| 524 | sigma = 76.1 - 0.155 * ( 293.15 - t0 ) ! in N/m = g/s**2 |
---|
| 525 | stok = 2.0 * grav * ( rhow - rhoa ) / ( 9.0 * eta ) ! in 1/(cm s) |
---|
| 526 | stb = 32.0 * rhoa * ( rhow - rhoa) * grav / (3.0 * eta * eta) |
---|
| 527 | ! in 1/cm**3 |
---|
| 528 | phy = sigma**3 * rhoa**2 / ( eta**4 * grav * ( rhow - rhoa ) ) |
---|
| 529 | py = phy**( 1.0 / 6.0 ) |
---|
[790] | 530 | |
---|
[828] | 531 | ENDIF |
---|
[790] | 532 | |
---|
[828] | 533 | DO j = 1, radius_classes |
---|
[790] | 534 | |
---|
[828] | 535 | IF ( radclass(j) <= 1.0E-3 ) THEN |
---|
[799] | 536 | |
---|
[828] | 537 | winf(j) = stok * ( radclass(j)**2 + cunh * radclass(j) ) ! in cm/s |
---|
[790] | 538 | |
---|
[828] | 539 | ELSEIF ( radclass(j) > 1.0E-3 .AND. radclass(j) <= 5.35E-2 ) THEN |
---|
[790] | 540 | |
---|
[828] | 541 | x = LOG( stb * radclass(j)**3 ) |
---|
| 542 | y = 0.0 |
---|
[790] | 543 | |
---|
[828] | 544 | DO i = 1, 7 |
---|
| 545 | y = y + b(i) * x**(i-1) |
---|
| 546 | ENDDO |
---|
[790] | 547 | |
---|
[828] | 548 | xrey = ( 1.0 + cunh / radclass(j) ) * EXP( y ) |
---|
| 549 | winf(j) = xrey * eta / ( 2.0 * rhoa * radclass(j) ) ! in cm/s |
---|
[790] | 550 | |
---|
[828] | 551 | ELSEIF ( radclass(j) > 5.35E-2 ) THEN |
---|
[790] | 552 | |
---|
[828] | 553 | IF ( radclass(j) > 0.35 ) THEN |
---|
| 554 | bond = grav * ( rhow - rhoa ) * 0.35**2 / sigma |
---|
| 555 | ELSE |
---|
| 556 | bond = grav * ( rhow - rhoa ) * radclass(j)**2 / sigma |
---|
| 557 | ENDIF |
---|
[790] | 558 | |
---|
[828] | 559 | x = LOG( 16.0 * bond * py / 3.0 ) |
---|
| 560 | y = 0.0 |
---|
[790] | 561 | |
---|
[828] | 562 | DO i = 1, 6 |
---|
| 563 | y = y + c(i) * x**(i-1) |
---|
| 564 | ENDDO |
---|
[790] | 565 | |
---|
[828] | 566 | xrey = py * EXP( y ) |
---|
[790] | 567 | |
---|
[828] | 568 | IF ( radclass(j) > 0.35 ) THEN |
---|
| 569 | winf(j) = xrey * eta / ( 2.0 * rhoa * 0.35 ) ! in cm/s |
---|
| 570 | ELSE |
---|
| 571 | winf(j) = xrey * eta / ( 2.0 * rhoa * radclass(j) ) ! in cm/s |
---|
| 572 | ENDIF |
---|
[790] | 573 | |
---|
[828] | 574 | ENDIF |
---|
[790] | 575 | |
---|
[828] | 576 | ENDDO |
---|
[790] | 577 | |
---|
[828] | 578 | END SUBROUTINE fallg |
---|
[790] | 579 | |
---|
[828] | 580 | |
---|
[790] | 581 | !------------------------------------------------------------------------------! |
---|
[828] | 582 | ! Calculation of collision efficencies for the Hall kernel |
---|
[790] | 583 | !------------------------------------------------------------------------------! |
---|
[828] | 584 | SUBROUTINE effic |
---|
[790] | 585 | |
---|
[828] | 586 | USE arrays_3d |
---|
| 587 | USE cloud_parameters |
---|
| 588 | USE constants |
---|
| 589 | USE particle_attributes |
---|
[790] | 590 | |
---|
[828] | 591 | IMPLICIT NONE |
---|
[790] | 592 | |
---|
[828] | 593 | INTEGER :: i, iq, ir, j, k, kk |
---|
[790] | 594 | |
---|
[828] | 595 | INTEGER, DIMENSION(:), ALLOCATABLE :: ira |
---|
[790] | 596 | |
---|
[828] | 597 | LOGICAL, SAVE :: first = .TRUE. |
---|
[790] | 598 | |
---|
[828] | 599 | REAL :: ek, particle_radius, pp, qq, rq |
---|
[790] | 600 | |
---|
[828] | 601 | REAL, DIMENSION(1:21), SAVE :: rat |
---|
| 602 | REAL, DIMENSION(1:15), SAVE :: r0 |
---|
| 603 | REAL, DIMENSION(1:15,1:21), SAVE :: ecoll |
---|
[790] | 604 | |
---|
[792] | 605 | ! |
---|
[828] | 606 | !-- Initial assignment of constants |
---|
| 607 | IF ( first ) THEN |
---|
[790] | 608 | |
---|
[792] | 609 | first = .FALSE. |
---|
[828] | 610 | r0 = (/ 6.0, 8.0, 10.0, 15.0, 20.0, 25.0, 30.0, 40.0, 50.0, 60., & |
---|
| 611 | 70.0, 100.0, 150.0, 200.0, 300.0 /) |
---|
| 612 | rat = (/ 0.00, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, & |
---|
| 613 | 0.50, 0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95, & |
---|
| 614 | 1.00 /) |
---|
[790] | 615 | |
---|
[828] | 616 | ecoll(:,1) = (/0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, & |
---|
| 617 | 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001/) |
---|
| 618 | ecoll(:,2) = (/0.003, 0.003, 0.003, 0.004, 0.005, 0.005, 0.005, & |
---|
| 619 | 0.010, 0.100, 0.050, 0.200, 0.500, 0.770, 0.870, 0.970/) |
---|
| 620 | ecoll(:,3) = (/0.007, 0.007, 0.007, 0.008, 0.009, 0.010, 0.010, & |
---|
| 621 | 0.070, 0.400, 0.430, 0.580, 0.790, 0.930, 0.960, 1.000/) |
---|
| 622 | ecoll(:,4) = (/0.009, 0.009, 0.009, 0.012, 0.015, 0.010, 0.020, & |
---|
| 623 | 0.280, 0.600, 0.640, 0.750, 0.910, 0.970, 0.980, 1.000/) |
---|
| 624 | ecoll(:,5) = (/0.014, 0.014, 0.014, 0.015, 0.016, 0.030, 0.060, & |
---|
| 625 | 0.500, 0.700, 0.770, 0.840, 0.950, 0.970, 1.000, 1.000/) |
---|
| 626 | ecoll(:,6) = (/0.017, 0.017, 0.017, 0.020, 0.022, 0.060, 0.100, & |
---|
| 627 | 0.620, 0.780, 0.840, 0.880, 0.950, 1.000, 1.000, 1.000/) |
---|
| 628 | ecoll(:,7) = (/0.030, 0.030, 0.024, 0.022, 0.032, 0.062, 0.200, & |
---|
| 629 | 0.680, 0.830, 0.870, 0.900, 0.950, 1.000, 1.000, 1.000/) |
---|
| 630 | ecoll(:,8) = (/0.025, 0.025, 0.025, 0.036, 0.043, 0.130, 0.270, & |
---|
| 631 | 0.740, 0.860, 0.890, 0.920, 1.000, 1.000, 1.000, 1.000/) |
---|
| 632 | ecoll(:,9) = (/0.027, 0.027, 0.027, 0.040, 0.052, 0.200, 0.400, & |
---|
| 633 | 0.780, 0.880, 0.900, 0.940, 1.000, 1.000, 1.000, 1.000/) |
---|
| 634 | ecoll(:,10)= (/0.030, 0.030, 0.030, 0.047, 0.064, 0.250, 0.500, & |
---|
| 635 | 0.800, 0.900, 0.910, 0.950, 1.000, 1.000, 1.000, 1.000/) |
---|
| 636 | ecoll(:,11)= (/0.040, 0.040, 0.033, 0.037, 0.068, 0.240, 0.550, & |
---|
| 637 | 0.800, 0.900, 0.910, 0.950, 1.000, 1.000, 1.000, 1.000/) |
---|
| 638 | ecoll(:,12)= (/0.035, 0.035, 0.035, 0.055, 0.079, 0.290, 0.580, & |
---|
| 639 | 0.800, 0.900, 0.910, 0.950, 1.000, 1.000, 1.000, 1.000/) |
---|
| 640 | ecoll(:,13)= (/0.037, 0.037, 0.037, 0.062, 0.082, 0.290, 0.590, & |
---|
| 641 | 0.780, 0.900, 0.910, 0.950, 1.000, 1.000, 1.000, 1.000/) |
---|
| 642 | ecoll(:,14)= (/0.037, 0.037, 0.037, 0.060, 0.080, 0.290, 0.580, & |
---|
| 643 | 0.770, 0.890, 0.910, 0.950, 1.000, 1.000, 1.000, 1.000/) |
---|
| 644 | ecoll(:,15)= (/0.037, 0.037, 0.037, 0.041, 0.075, 0.250, 0.540, & |
---|
| 645 | 0.760, 0.880, 0.920, 0.950, 1.000, 1.000, 1.000, 1.000/) |
---|
| 646 | ecoll(:,16)= (/0.037, 0.037, 0.037, 0.052, 0.067, 0.250, 0.510, & |
---|
| 647 | 0.770, 0.880, 0.930, 0.970, 1.000, 1.000, 1.000, 1.000/) |
---|
| 648 | ecoll(:,17)= (/0.037, 0.037, 0.037, 0.047, 0.057, 0.250, 0.490, & |
---|
| 649 | 0.770, 0.890, 0.950, 1.000, 1.000, 1.000, 1.000, 1.000/) |
---|
| 650 | ecoll(:,18)= (/0.036, 0.036, 0.036, 0.042, 0.048, 0.230, 0.470, & |
---|
| 651 | 0.780, 0.920, 1.000, 1.020, 1.020, 1.020, 1.020, 1.020/) |
---|
| 652 | ecoll(:,19)= (/0.040, 0.040, 0.035, 0.033, 0.040, 0.112, 0.450, & |
---|
| 653 | 0.790, 1.010, 1.030, 1.040, 1.040, 1.040, 1.040, 1.040/) |
---|
| 654 | ecoll(:,20)= (/0.033, 0.033, 0.033, 0.033, 0.033, 0.119, 0.470, & |
---|
| 655 | 0.950, 1.300, 1.700, 2.300, 2.300, 2.300, 2.300, 2.300/) |
---|
| 656 | ecoll(:,21)= (/0.027, 0.027, 0.027, 0.027, 0.027, 0.125, 0.520, & |
---|
| 657 | 1.400, 2.300, 3.000, 4.000, 4.000, 4.000, 4.000, 4.000/) |
---|
| 658 | ENDIF |
---|
[790] | 659 | |
---|
[792] | 660 | ! |
---|
[828] | 661 | !-- Calculate the radius class index of particles with respect to array r |
---|
| 662 | ALLOCATE( ira(1:radius_classes) ) |
---|
| 663 | DO j = 1, radius_classes |
---|
| 664 | particle_radius = radclass(j) * 1.0E4 ! in microm |
---|
| 665 | DO k = 1, 15 |
---|
| 666 | IF ( particle_radius < r0(k) ) THEN |
---|
| 667 | ira(j) = k |
---|
| 668 | EXIT |
---|
| 669 | ENDIF |
---|
| 670 | ENDDO |
---|
| 671 | IF ( particle_radius >= r0(15) ) ira(j) = 16 |
---|
| 672 | ENDDO |
---|
[790] | 673 | |
---|
[792] | 674 | ! |
---|
[828] | 675 | !-- Two-dimensional linear interpolation of the collision efficiency. |
---|
| 676 | !-- Radius has to be in µm |
---|
| 677 | DO j = 1, radius_classes |
---|
| 678 | DO i = 1, j |
---|
[792] | 679 | |
---|
[828] | 680 | ir = ira(j) |
---|
| 681 | rq = radclass(i) / radclass(j) |
---|
| 682 | iq = INT( rq * 20 ) + 1 |
---|
| 683 | iq = MAX( iq , 2) |
---|
[792] | 684 | |
---|
[828] | 685 | IF ( ir < 16 ) THEN |
---|
| 686 | IF ( ir >= 2 ) THEN |
---|
| 687 | pp = ( ( radclass(j) * 1.0E04 ) - r0(ir-1) ) / & |
---|
| 688 | ( r0(ir) - r0(ir-1) ) |
---|
| 689 | qq = ( rq- rat(iq-1) ) / ( rat(iq) - rat(iq-1) ) |
---|
| 690 | ec(j,i) = ( 1.0-pp ) * ( 1.0-qq ) * ecoll(ir-1,iq-1) & |
---|
| 691 | + pp * ( 1.0-qq ) * ecoll(ir,iq-1) & |
---|
| 692 | + qq * ( 1.0-pp ) * ecoll(ir-1,iq) & |
---|
| 693 | + pp * qq * ecoll(ir,iq) |
---|
| 694 | ELSE |
---|
| 695 | qq = ( rq - rat(iq-1) ) / ( rat(iq) - rat(iq-1) ) |
---|
| 696 | ec(j,i) = (1.0-qq) * ecoll(1,iq-1) + qq * ecoll(1,iq) |
---|
| 697 | ENDIF |
---|
| 698 | ELSE |
---|
| 699 | qq = ( rq - rat(iq-1) ) / ( rat(iq) - rat(iq-1) ) |
---|
| 700 | ek = ( 1.0 - qq ) * ecoll(15,iq-1) + qq * ecoll(15,iq) |
---|
| 701 | ec(j,i) = MIN( ek, 1.0 ) |
---|
| 702 | ENDIF |
---|
[792] | 703 | |
---|
[828] | 704 | ec(i,j) = ec(j,i) |
---|
| 705 | IF ( ec(i,j) < 1.0E-20 ) ec(i,j) = 0.0 |
---|
[792] | 706 | |
---|
[828] | 707 | ENDDO |
---|
| 708 | ENDDO |
---|
[792] | 709 | |
---|
[828] | 710 | DEALLOCATE( ira ) |
---|
[792] | 711 | |
---|
[828] | 712 | END SUBROUTINE effic |
---|
[792] | 713 | |
---|
| 714 | |
---|
[790] | 715 | !------------------------------------------------------------------------------! |
---|
[828] | 716 | ! Calculation of enhancement factor for collision efficencies due to turbulence |
---|
[790] | 717 | !------------------------------------------------------------------------------! |
---|
[828] | 718 | SUBROUTINE turb_enhance_eff |
---|
[790] | 719 | |
---|
| 720 | USE constants |
---|
| 721 | USE cloud_parameters |
---|
| 722 | USE particle_attributes |
---|
| 723 | USE arrays_3d |
---|
| 724 | |
---|
[828] | 725 | IMPLICIT NONE |
---|
[790] | 726 | |
---|
[828] | 727 | INTEGER :: i, ik, iq, ir, j, k, kk |
---|
[790] | 728 | |
---|
[828] | 729 | INTEGER, DIMENSION(:), ALLOCATABLE :: ira |
---|
[790] | 730 | |
---|
[828] | 731 | REAL :: particle_radius, pp, qq, rq, x1, x2, x3, y1, y2, y3 |
---|
[790] | 732 | |
---|
[828] | 733 | LOGICAL, SAVE :: first = .TRUE. |
---|
[799] | 734 | |
---|
[828] | 735 | REAL, DIMENSION(1:11), SAVE :: rat |
---|
| 736 | REAL, DIMENSION(1:7), SAVE :: r0 |
---|
| 737 | REAL, DIMENSION(1:7,1:11), SAVE :: ecoll_100, ecoll_400 |
---|
[799] | 738 | |
---|
| 739 | ! |
---|
[828] | 740 | !-- Initial assignment of constants |
---|
| 741 | IF ( first ) THEN |
---|
[799] | 742 | |
---|
[828] | 743 | first = .FALSE. |
---|
[799] | 744 | |
---|
[828] | 745 | r0 = (/ 10.0, 20.0, 30.0, 40.0, 50.0, 60.0, 100.0 /) |
---|
| 746 | rat = (/ 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0 /) |
---|
| 747 | ! |
---|
| 748 | !-- In 100 cm^2/s^3 |
---|
| 749 | ecoll_100(:,1) = (/1.74, 1.74, 1.773, 1.49, 1.207, 1.207, 1.0 /) |
---|
| 750 | ecoll_100(:,2) = (/1.46, 1.46, 1.421, 1.245, 1.069, 1.069, 1.0 /) |
---|
| 751 | ecoll_100(:,3) = (/1.32, 1.32, 1.245, 1.123, 1.000, 1.000, 1.0 /) |
---|
| 752 | ecoll_100(:,4) = (/1.250, 1.250, 1.148, 1.087, 1.025, 1.025, 1.0 /) |
---|
| 753 | ecoll_100(:,5) = (/1.186, 1.186, 1.066, 1.060, 1.056, 1.056, 1.0 /) |
---|
| 754 | ecoll_100(:,6) = (/1.045, 1.045, 1.000, 1.014, 1.028, 1.028, 1.0 /) |
---|
| 755 | ecoll_100(:,7) = (/1.070, 1.070, 1.030, 1.038, 1.046, 1.046, 1.0 /) |
---|
| 756 | ecoll_100(:,8) = (/1.000, 1.000, 1.054, 1.042, 1.029, 1.029, 1.0 /) |
---|
| 757 | ecoll_100(:,9) = (/1.223, 1.223, 1.117, 1.069, 1.021, 1.021, 1.0 /) |
---|
| 758 | ecoll_100(:,10)= (/1.570, 1.570, 1.244, 1.166, 1.088, 1.088, 1.0 /) |
---|
| 759 | ecoll_100(:,11)= (/20.3, 20.3, 14.6 , 8.61, 2.60, 2.60 , 1.0 /) |
---|
| 760 | ! |
---|
| 761 | !-- In 400 cm^2/s^3 |
---|
| 762 | ecoll_400(:,1) = (/4.976, 4.976, 3.593, 2.519, 1.445, 1.445, 1.0 /) |
---|
| 763 | ecoll_400(:,2) = (/2.984, 2.984, 2.181, 1.691, 1.201, 1.201, 1.0 /) |
---|
| 764 | ecoll_400(:,3) = (/1.988, 1.988, 1.475, 1.313, 1.150, 1.150, 1.0 /) |
---|
| 765 | ecoll_400(:,4) = (/1.490, 1.490, 1.187, 1.156, 1.126, 1.126, 1.0 /) |
---|
| 766 | ecoll_400(:,5) = (/1.249, 1.249, 1.088, 1.090, 1.092, 1.092, 1.0 /) |
---|
| 767 | ecoll_400(:,6) = (/1.139, 1.139, 1.130, 1.091, 1.051, 1.051, 1.0 /) |
---|
| 768 | ecoll_400(:,7) = (/1.220, 1.220, 1.190, 1.138, 1.086, 1.086, 1.0 /) |
---|
| 769 | ecoll_400(:,8) = (/1.325, 1.325, 1.267, 1.165, 1.063, 1.063, 1.0 /) |
---|
| 770 | ecoll_400(:,9) = (/1.716, 1.716, 1.345, 1.223, 1.100, 1.100, 1.0 /) |
---|
| 771 | ecoll_400(:,10)= (/3.788, 3.788, 1.501, 1.311, 1.120, 1.120, 1.0 /) |
---|
| 772 | ecoll_400(:,11)= (/36.52, 36.52, 19.16, 22.80, 26.0, 26.0, 1.0 /) |
---|
[799] | 773 | |
---|
[828] | 774 | ENDIF |
---|
[790] | 775 | |
---|
[828] | 776 | ! |
---|
| 777 | !-- Calculate the radius class index of particles with respect to array r0 |
---|
| 778 | ALLOCATE( ira(1:radius_classes) ) |
---|
[790] | 779 | |
---|
[828] | 780 | DO j = 1, radius_classes |
---|
| 781 | particle_radius = radclass(j) * 1.0E4 ! in microm |
---|
| 782 | DO k = 1, 7 |
---|
| 783 | IF ( particle_radius < r0(k) ) THEN |
---|
| 784 | ira(j) = k |
---|
| 785 | EXIT |
---|
| 786 | ENDIF |
---|
| 787 | ENDDO |
---|
| 788 | IF ( particle_radius >= r0(7) ) ira(j) = 8 |
---|
| 789 | ENDDO |
---|
[799] | 790 | |
---|
| 791 | ! |
---|
[828] | 792 | !-- Two-dimensional linear interpolation of the collision efficiencies |
---|
| 793 | DO j = 1, radius_classes |
---|
| 794 | DO i = 1, j |
---|
[799] | 795 | |
---|
[828] | 796 | ir = ira(j) |
---|
| 797 | rq = radclass(i) / radclass(j) |
---|
[799] | 798 | |
---|
[828] | 799 | DO kk = 2, 11 |
---|
| 800 | IF ( rq <= rat(kk) ) THEN |
---|
| 801 | iq = kk |
---|
| 802 | EXIT |
---|
| 803 | ENDIF |
---|
| 804 | ENDDO |
---|
[790] | 805 | |
---|
[828] | 806 | y1 = 1.0 ! 0 cm2/s3 |
---|
| 807 | ! |
---|
| 808 | !-- 100 cm2/s3, 400 cm2/s3 |
---|
| 809 | IF ( ir < 8 ) THEN |
---|
| 810 | IF ( ir >= 2 ) THEN |
---|
| 811 | pp = ( radclass(j)*1.0E4 - r0(ir-1) ) / ( r0(ir) - r0(ir-1) ) |
---|
| 812 | qq = ( rq - rat(iq-1) ) / ( rat(iq) - rat(iq-1) ) |
---|
| 813 | y2 = ( 1.0-pp ) * ( 1.0-qq ) * ecoll_100(ir-1,iq-1) + & |
---|
| 814 | pp * ( 1.0-qq ) * ecoll_100(ir,iq-1) + & |
---|
| 815 | qq * ( 10.-pp ) * ecoll_100(ir-1,iq) + & |
---|
| 816 | pp * qq * ecoll_100(ir,iq) |
---|
| 817 | y3 = ( 1.0-pp ) * ( 1.0-qq ) * ecoll_400(ir-1,iq-1) + & |
---|
| 818 | pp * ( 1.0-qq ) * ecoll_400(ir,iq-1) + & |
---|
| 819 | qq * ( 1.0-pp ) * ecoll_400(ir-1,iq) + & |
---|
| 820 | pp * qq * ecoll_400(ir,iq) |
---|
| 821 | ELSE |
---|
| 822 | qq = ( rq - rat(iq-1) ) / ( rat(iq) - rat(iq-1) ) |
---|
| 823 | y2 = ( 1.0-qq ) * ecoll_100(1,iq-1) + qq * ecoll_100(1,iq) |
---|
| 824 | y3 = ( 1.0-qq ) * ecoll_400(1,iq-1) + qq * ecoll_400(1,iq) |
---|
| 825 | ENDIF |
---|
| 826 | ELSE |
---|
| 827 | qq = ( rq - rat(iq-1) ) / ( rat(iq) - rat(iq-1) ) |
---|
| 828 | y2 = ( 1.0-qq ) * ecoll_100(7,iq-1) + qq * ecoll_100(7,iq) |
---|
| 829 | y3 = ( 1.0-qq ) * ecoll_400(7,iq-1) + qq * ecoll_400(7,iq) |
---|
| 830 | ENDIF |
---|
| 831 | ! |
---|
| 832 | !-- Linear interpolation of dissipation rate in cm2/s3 |
---|
| 833 | IF ( epsilon <= 100.0 ) THEN |
---|
| 834 | ecf(j,i) = ( epsilon - 100.0 ) / ( 0.0 - 100.0 ) * y1 & |
---|
| 835 | + ( epsilon - 0.0 ) / ( 100.0 - 0.0 ) * y2 |
---|
| 836 | ELSEIF ( epsilon <= 600.0 ) THEN |
---|
| 837 | ecf(j,i) = ( epsilon - 400.0 ) / ( 100.0 - 400.0 ) * y2 & |
---|
| 838 | + ( epsilon - 100.0 ) / ( 400.0 - 100.0 ) * y3 |
---|
| 839 | ELSE |
---|
| 840 | ecf(j,i) = ( 600.0 - 400.0 ) / ( 100.0 - 400.0 ) * y2 & |
---|
| 841 | + ( 600.0 - 100.0 ) / ( 400.0 - 100.0 ) * y3 |
---|
| 842 | ENDIF |
---|
[790] | 843 | |
---|
[828] | 844 | IF ( ecf(j,i) < 1.0 ) ecf(j,i) = 1.0 |
---|
[790] | 845 | |
---|
[828] | 846 | ecf(i,j) = ecf(j,i) |
---|
[790] | 847 | |
---|
[828] | 848 | ENDDO |
---|
| 849 | ENDDO |
---|
[790] | 850 | |
---|
[828] | 851 | END SUBROUTINE turb_enhance_eff |
---|
[790] | 852 | |
---|
[825] | 853 | END MODULE lpm_collision_kernels_mod |
---|