[828] | 1 | MODULE lpm_collision_kernels_mod |
---|
[790] | 2 | |
---|
| 3 | !------------------------------------------------------------------------------! |
---|
| 4 | ! Current revisions: |
---|
| 5 | ! ----------------- |
---|
[829] | 6 | ! |
---|
| 7 | ! |
---|
| 8 | ! Former revisions: |
---|
| 9 | ! ----------------- |
---|
| 10 | ! $Id: lpm_collision_kernels.f90 829 2012-02-21 12:24:53Z maronga $ |
---|
| 11 | ! |
---|
| 12 | ! 828 2012-02-21 12:00:36Z raasch |
---|
[828] | 13 | ! code has been completely reformatted, routine colker renamed |
---|
| 14 | ! recalculate_kernel, |
---|
| 15 | ! routine init_kernels added, radius is now communicated to the collision |
---|
| 16 | ! routines by array radclass |
---|
[790] | 17 | ! |
---|
[828] | 18 | ! Bugfix: transformation factor for dissipation changed from 1E5 to 1E4 |
---|
| 19 | ! |
---|
[826] | 20 | ! 825 2012-02-19 03:03:44Z raasch |
---|
| 21 | ! routine renamed from wang_kernel to lpm_collision_kernels, |
---|
| 22 | ! turbulence_effects on collision replaced by wang_kernel |
---|
| 23 | ! |
---|
[800] | 24 | ! 799 2011-12-21 17:48:03Z franke |
---|
| 25 | ! speed optimizations and formatting |
---|
| 26 | ! Bugfix: iq=1 is not allowed (routine effic) |
---|
| 27 | ! Bugfix: replaced stop by ec=0.0 in case of very small ec (routine effic) |
---|
| 28 | ! |
---|
[791] | 29 | ! 790 2011-11-29 03:11:20Z raasch |
---|
| 30 | ! initial revision |
---|
[790] | 31 | ! |
---|
| 32 | ! Description: |
---|
| 33 | ! ------------ |
---|
[828] | 34 | ! This module calculates collision efficiencies either due to pure gravitational |
---|
| 35 | ! effects (Hall kernel, see Hall, 1980: J. Atmos. Sci., 2486-2507) or |
---|
| 36 | ! including the effects of (SGS) turbulence (Wang kernel, see Wang and |
---|
| 37 | ! Grabowski, 2009: Atmos. Sci. Lett., 10, 1-8). The original code has been |
---|
| 38 | ! provided by L.-P. Wang but is substantially reformatted and speed optimized |
---|
| 39 | ! here. |
---|
| 40 | ! |
---|
| 41 | ! ATTENTION: |
---|
| 42 | ! Physical quantities (like g, densities, etc.) used in this module still |
---|
| 43 | ! have to be adjusted to those values used in the main PALM code. |
---|
| 44 | ! Also, quantities in CGS-units should be converted to SI-units eventually. |
---|
[790] | 45 | !------------------------------------------------------------------------------! |
---|
| 46 | |
---|
| 47 | USE arrays_3d |
---|
| 48 | USE cloud_parameters |
---|
| 49 | USE constants |
---|
| 50 | USE particle_attributes |
---|
[828] | 51 | USE pegrid |
---|
[790] | 52 | |
---|
[828] | 53 | |
---|
[790] | 54 | IMPLICIT NONE |
---|
| 55 | |
---|
| 56 | PRIVATE |
---|
| 57 | |
---|
[828] | 58 | PUBLIC ckernel, init_kernels, rclass_lbound, rclass_ubound, & |
---|
| 59 | recalculate_kernel |
---|
[790] | 60 | |
---|
[828] | 61 | REAL :: epsilon, eps2, rclass_lbound, rclass_ubound, urms, urms2 |
---|
[790] | 62 | |
---|
[828] | 63 | REAL, DIMENSION(:), ALLOCATABLE :: epsclass, radclass, winf |
---|
| 64 | REAL, DIMENSION(:,:), ALLOCATABLE :: ec, ecf, gck, hkernel, hwratio |
---|
| 65 | REAL, DIMENSION(:,:,:), ALLOCATABLE :: ckernel |
---|
[792] | 66 | |
---|
[828] | 67 | SAVE |
---|
[792] | 68 | |
---|
[790] | 69 | ! |
---|
| 70 | !-- Public interfaces |
---|
[828] | 71 | INTERFACE init_kernels |
---|
| 72 | MODULE PROCEDURE init_kernels |
---|
| 73 | END INTERFACE init_kernels |
---|
[790] | 74 | |
---|
[828] | 75 | INTERFACE recalculate_kernel |
---|
| 76 | MODULE PROCEDURE recalculate_kernel |
---|
| 77 | END INTERFACE recalculate_kernel |
---|
[790] | 78 | |
---|
| 79 | |
---|
[828] | 80 | CONTAINS |
---|
[790] | 81 | |
---|
[792] | 82 | |
---|
[828] | 83 | SUBROUTINE init_kernels |
---|
| 84 | !------------------------------------------------------------------------------! |
---|
| 85 | ! Initialization of the collision efficiency matrix with fixed radius and |
---|
| 86 | ! dissipation classes, calculated at simulation start only. |
---|
| 87 | !------------------------------------------------------------------------------! |
---|
[792] | 88 | |
---|
[828] | 89 | IMPLICIT NONE |
---|
[792] | 90 | |
---|
[828] | 91 | INTEGER :: i, j, k |
---|
[790] | 92 | |
---|
[828] | 93 | |
---|
| 94 | ! |
---|
| 95 | !-- Calculate collision efficiencies for fixed radius- and dissipation |
---|
| 96 | !-- classes |
---|
| 97 | IF ( collision_kernel(6:9) == 'fast' ) THEN |
---|
| 98 | |
---|
| 99 | ALLOCATE( ckernel(1:radius_classes,1:radius_classes, & |
---|
| 100 | 0:dissipation_classes), epsclass(1:dissipation_classes), & |
---|
| 101 | radclass(1:radius_classes) ) |
---|
| 102 | |
---|
| 103 | ! |
---|
| 104 | !-- Calculate the radius class bounds with logarithmic distances |
---|
| 105 | !-- in the interval [1.0E-6, 2.0E-4] m |
---|
| 106 | rclass_lbound = LOG( 1.0E-6 ) |
---|
| 107 | rclass_ubound = LOG( 2.0E-4 ) |
---|
| 108 | radclass(1) = 1.0E-6 |
---|
| 109 | DO i = 2, radius_classes |
---|
| 110 | radclass(i) = EXP( rclass_lbound + & |
---|
| 111 | ( rclass_ubound - rclass_lbound ) * ( i-1.0 ) /& |
---|
| 112 | ( radius_classes - 1.0 ) ) |
---|
| 113 | ! IF ( myid == 0 ) THEN |
---|
| 114 | ! PRINT*, 'i=', i, ' r = ', radclass(i)*1.0E6 |
---|
| 115 | ! ENDIF |
---|
| 116 | ENDDO |
---|
| 117 | ! |
---|
| 118 | !-- Collision routines expect radius to be in cm |
---|
| 119 | radclass = radclass * 100.0 |
---|
| 120 | |
---|
| 121 | ! |
---|
| 122 | !-- Set the class bounds for dissipation in interval [0, 1000] cm**2/s**3 |
---|
| 123 | DO i = 1, dissipation_classes |
---|
| 124 | epsclass(i) = 1000.0 * REAL( i ) / dissipation_classes |
---|
| 125 | ! IF ( myid == 0 ) THEN |
---|
| 126 | ! PRINT*, 'i=', i, ' eps = ', epsclass(i) |
---|
| 127 | ! ENDIF |
---|
| 128 | ENDDO |
---|
| 129 | ! |
---|
| 130 | !-- Calculate collision efficiencies of the Wang/ayala kernel |
---|
| 131 | ALLOCATE( ec(1:radius_classes,1:radius_classes), & |
---|
| 132 | ecf(1:radius_classes,1:radius_classes), & |
---|
| 133 | gck(1:radius_classes,1:radius_classes), & |
---|
| 134 | winf(1:radius_classes) ) |
---|
| 135 | |
---|
| 136 | DO k = 1, dissipation_classes |
---|
| 137 | |
---|
| 138 | epsilon = epsclass(k) |
---|
| 139 | urms = 202.0 * ( epsilon / 400.0 )**( 1.0 / 3.0 ) |
---|
| 140 | |
---|
| 141 | CALL turbsd |
---|
| 142 | CALL turb_enhance_eff |
---|
| 143 | CALL effic |
---|
| 144 | |
---|
| 145 | DO j = 1, radius_classes |
---|
| 146 | DO i = 1, radius_classes |
---|
| 147 | ckernel(i,j,k) = ec(i,j) * gck(i,j) * ecf(i,j) |
---|
| 148 | ENDDO |
---|
| 149 | ENDDO |
---|
| 150 | |
---|
| 151 | ENDDO |
---|
| 152 | |
---|
| 153 | ! |
---|
| 154 | !-- Calculate collision efficiencies of the Hall kernel |
---|
| 155 | ALLOCATE( hkernel(1:radius_classes,1:radius_classes), & |
---|
| 156 | hwratio(1:radius_classes,1:radius_classes) ) |
---|
| 157 | |
---|
| 158 | CALL fallg |
---|
| 159 | CALL effic |
---|
| 160 | |
---|
| 161 | DO j = 1, radius_classes |
---|
| 162 | DO i = 1, radius_classes |
---|
| 163 | hkernel(i,j) = pi * ( radclass(j) + radclass(i) )**2 & |
---|
| 164 | * ec(i,j) * ABS( winf(j) - winf(i) ) |
---|
| 165 | ckernel(i,j,0) = hkernel(i,j) ! hall kernel stored on index 0 |
---|
| 166 | ENDDO |
---|
| 167 | ENDDO |
---|
| 168 | |
---|
| 169 | ! |
---|
| 170 | !-- Test output of efficiencies |
---|
| 171 | IF ( j == -1 ) THEN |
---|
| 172 | |
---|
| 173 | PRINT*, '*** Hall kernel' |
---|
| 174 | WRITE ( *,'(5X,20(F4.0,1X))' ) ( radclass(i)*1.0E4, i = 1,radius_classes ) |
---|
| 175 | DO j = 1, radius_classes |
---|
| 176 | WRITE ( *,'(F4.0,1X,20(F4.2,1X))' ) radclass(j), ( hkernel(i,j), i = 1,radius_classes ) |
---|
| 177 | ENDDO |
---|
| 178 | |
---|
| 179 | DO k = 1, dissipation_classes |
---|
| 180 | DO i = 1, radius_classes |
---|
| 181 | DO j = 1, radius_classes |
---|
| 182 | IF ( hkernel(i,j) == 0.0 ) THEN |
---|
| 183 | hwratio(i,j) = 9999999.9 |
---|
| 184 | ELSE |
---|
| 185 | hwratio(i,j) = ckernel(i,j,k) / hkernel(i,j) |
---|
| 186 | ENDIF |
---|
| 187 | ENDDO |
---|
| 188 | ENDDO |
---|
| 189 | |
---|
| 190 | PRINT*, '*** epsilon = ', epsclass(k) |
---|
| 191 | WRITE ( *,'(5X,20(F4.0,1X))' ) ( radclass(i)*1.0E4, i = 1,radius_classes ) |
---|
| 192 | DO j = 1, radius_classes |
---|
| 193 | ! WRITE ( *,'(F4.0,1X,20(F4.2,1X))' ) radclass(j)*1.0E4, ( ckernel(i,j,k), i = 1,radius_classes ) |
---|
| 194 | WRITE ( *,'(F4.0,1X,20(F4.2,1X))' ) radclass(j)*1.0E4, ( hwratio(i,j), i = 1,radius_classes ) |
---|
| 195 | ENDDO |
---|
| 196 | ENDDO |
---|
| 197 | |
---|
| 198 | ENDIF |
---|
| 199 | |
---|
| 200 | DEALLOCATE( ec, ecf, epsclass, gck, hkernel, winf ) |
---|
| 201 | |
---|
| 202 | ckernel = ckernel * 1.0E-6 ! kernel is needed in m**3/s |
---|
| 203 | |
---|
| 204 | ELSEIF( collision_kernel == 'hall' .OR. collision_kernel == 'wang' ) & |
---|
| 205 | THEN |
---|
| 206 | ! |
---|
| 207 | !-- Initial settings for Hall- and Wang-Kernel |
---|
| 208 | !-- To be done: move here parts from turbsd, fallg, ecoll, etc. |
---|
| 209 | ENDIF |
---|
| 210 | |
---|
| 211 | END SUBROUTINE init_kernels |
---|
| 212 | |
---|
| 213 | |
---|
[790] | 214 | !------------------------------------------------------------------------------! |
---|
[828] | 215 | ! Calculation of collision kernels during each timestep and for each grid box |
---|
[790] | 216 | !------------------------------------------------------------------------------! |
---|
[828] | 217 | SUBROUTINE recalculate_kernel( i1, j1, k1 ) |
---|
[790] | 218 | |
---|
| 219 | USE arrays_3d |
---|
| 220 | USE cloud_parameters |
---|
| 221 | USE constants |
---|
[792] | 222 | USE cpulog |
---|
[790] | 223 | USE indices |
---|
[792] | 224 | USE interfaces |
---|
[790] | 225 | USE particle_attributes |
---|
| 226 | |
---|
| 227 | IMPLICIT NONE |
---|
| 228 | |
---|
[828] | 229 | INTEGER :: i, i1, j, j1, k1, pend, pstart |
---|
[790] | 230 | |
---|
| 231 | |
---|
[828] | 232 | pstart = prt_start_index(k1,j1,i1) |
---|
| 233 | pend = prt_start_index(k1,j1,i1) + prt_count(k1,j1,i1) - 1 |
---|
| 234 | radius_classes = prt_count(k1,j1,i1) |
---|
[792] | 235 | |
---|
[828] | 236 | ALLOCATE( ec(1:radius_classes,1:radius_classes), & |
---|
| 237 | radclass(1:radius_classes), winf(1:radius_classes) ) |
---|
[790] | 238 | |
---|
[828] | 239 | ! |
---|
| 240 | !-- Store particle radii on the radclass array. Collision routines |
---|
| 241 | !-- expect radii to be in cm. |
---|
| 242 | radclass(1:radius_classes) = particles(pstart:pend)%radius * 100.0 |
---|
[790] | 243 | |
---|
[828] | 244 | epsilon = diss(k1,j1,i1) * 1.0E4 ! dissipation rate in cm**2/s**-3 |
---|
| 245 | urms = 202.0 * ( epsilon / 400.0 )**( 0.33333333333 ) |
---|
[790] | 246 | |
---|
[828] | 247 | IF ( wang_kernel .AND. epsilon > 0.001 ) THEN |
---|
| 248 | ! |
---|
| 249 | !-- Call routines to calculate efficiencies for the Wang kernel |
---|
| 250 | ALLOCATE( gck(1:radius_classes,1:radius_classes), & |
---|
| 251 | ecf(1:radius_classes,1:radius_classes) ) |
---|
[790] | 252 | |
---|
[828] | 253 | CALL turbsd |
---|
| 254 | CALL turb_enhance_eff |
---|
| 255 | CALL effic |
---|
[790] | 256 | |
---|
[828] | 257 | DO j = 1, radius_classes |
---|
| 258 | DO i = 1, radius_classes |
---|
| 259 | ckernel(pstart+i-1,pstart+j-1,1) = ec(i,j) * gck(i,j) * ecf(i,j) |
---|
[790] | 260 | ENDDO |
---|
[828] | 261 | ENDDO |
---|
[790] | 262 | |
---|
[828] | 263 | DEALLOCATE( gck, ecf ) |
---|
[790] | 264 | |
---|
| 265 | ELSE |
---|
[828] | 266 | ! |
---|
| 267 | !-- Call routines to calculate efficiencies for the Hall kernel |
---|
[790] | 268 | CALL fallg |
---|
| 269 | CALL effic |
---|
| 270 | |
---|
[828] | 271 | DO j = 1, radius_classes |
---|
| 272 | DO i = 1, radius_classes |
---|
| 273 | ckernel(pstart+i-1,pstart+j-1,1) = pi * & |
---|
| 274 | ( radclass(j) + radclass(i) )**2 & |
---|
| 275 | * ec(i,j) * ABS( winf(j) - winf(i) ) |
---|
[790] | 276 | ENDDO |
---|
| 277 | ENDDO |
---|
| 278 | |
---|
| 279 | ENDIF |
---|
| 280 | |
---|
[828] | 281 | ckernel = ckernel * 1.0E-6 ! kernel is needed in m**3/s |
---|
[790] | 282 | |
---|
[828] | 283 | DEALLOCATE( ec, radclass, winf ) |
---|
[790] | 284 | |
---|
[828] | 285 | END SUBROUTINE recalculate_kernel |
---|
[790] | 286 | |
---|
[828] | 287 | |
---|
[790] | 288 | !------------------------------------------------------------------------------! |
---|
[828] | 289 | ! Calculation of gck |
---|
| 290 | ! This is from Aayala 2008b, page 37ff. |
---|
| 291 | ! Necessary input parameters: water density, radii of droplets, air density, |
---|
| 292 | ! air viscosity, turbulent dissipation rate, taylor microscale reynolds number, |
---|
| 293 | ! gravitational acceleration --> to be replaced by PALM parameters |
---|
[790] | 294 | !------------------------------------------------------------------------------! |
---|
[792] | 295 | SUBROUTINE turbsd |
---|
[799] | 296 | |
---|
[790] | 297 | USE constants |
---|
| 298 | USE cloud_parameters |
---|
| 299 | USE particle_attributes |
---|
| 300 | USE arrays_3d |
---|
| 301 | |
---|
| 302 | IMPLICIT NONE |
---|
| 303 | |
---|
[828] | 304 | INTEGER :: i, j |
---|
[790] | 305 | |
---|
[828] | 306 | LOGICAL, SAVE :: first = .TRUE. |
---|
[790] | 307 | |
---|
[828] | 308 | REAL :: ao, ao_gr, bbb, be, b1, b2, ccc, c1, c1_gr, c2, d1, d2, eta, & |
---|
| 309 | e1, e2, fao_gr, fr, grfin, lambda, lambda_re, lf, rc, rrp, & |
---|
| 310 | sst, tauk, tl, t2, tt, t1, vk, vrms1xy, vrms2xy, v1, v1v2xy, & |
---|
| 311 | v1xysq, v2, v2xysq, wrfin, wrgrav2, wrtur2xy, xx, yy, z |
---|
[799] | 312 | |
---|
[828] | 313 | REAL, SAVE :: airdens, airvisc, anu, gravity, waterdens |
---|
[799] | 314 | |
---|
[828] | 315 | REAL, DIMENSION(1:radius_classes) :: st, tau |
---|
[790] | 316 | |
---|
[828] | 317 | |
---|
[799] | 318 | ! |
---|
[828] | 319 | !-- Initial assignment of constants |
---|
[799] | 320 | IF ( first ) THEN |
---|
[790] | 321 | |
---|
[799] | 322 | first = .FALSE. |
---|
[828] | 323 | airvisc = 0.1818 ! dynamic viscosity in mg/cm*s |
---|
| 324 | airdens = 1.2250 ! air density in mg/cm**3 |
---|
| 325 | waterdens = 1000.0 ! water density in mg/cm**3 |
---|
| 326 | gravity = 980.6650 ! in cm/s**2 |
---|
[799] | 327 | anu = airvisc/airdens ! kinetic viscosity in cm**2/s |
---|
[790] | 328 | |
---|
[799] | 329 | ENDIF |
---|
[790] | 330 | |
---|
[828] | 331 | lambda = urms * SQRT( 15.0 * anu / epsilon ) ! in cm |
---|
| 332 | lambda_re = urms**2 * SQRT( 15.0 / epsilon / anu ) |
---|
| 333 | tl = urms**2 / epsilon ! in s |
---|
| 334 | lf = 0.5 * urms**3 / epsilon ! in cm |
---|
| 335 | tauk = SQRT( anu / epsilon ) ! in s |
---|
| 336 | eta = ( anu**3 / epsilon )**0.25 ! in cm |
---|
| 337 | vk = eta / tauk ! in cm/s |
---|
[790] | 338 | |
---|
[828] | 339 | ao = ( 11.0 + 7.0 * lambda_re ) / ( 205.0 + lambda_re ) |
---|
| 340 | tt = SQRT( 2.0 * lambda_re / ( SQRT( 15.0 ) * ao ) ) * tauk ! in s |
---|
[799] | 341 | |
---|
[828] | 342 | CALL fallg ! gives winf in cm/s |
---|
[790] | 343 | |
---|
[828] | 344 | DO i = 1, radius_classes |
---|
| 345 | tau(i) = winf(i) / gravity ! in s |
---|
| 346 | st(i) = tau(i) / tauk |
---|
[790] | 347 | ENDDO |
---|
| 348 | |
---|
[828] | 349 | ! |
---|
| 350 | !-- Calculate wr (from Aayala 2008b, page 38f) |
---|
| 351 | z = tt / tl |
---|
| 352 | be = SQRT( 2.0 ) * lambda / lf |
---|
| 353 | bbb = SQRT( 1.0 - 2.0 * be**2 ) |
---|
| 354 | d1 = ( 1.0 + bbb ) / ( 2.0 * bbb ) |
---|
| 355 | e1 = lf * ( 1.0 + bbb ) * 0.5 ! in cm |
---|
| 356 | d2 = ( 1.0 - bbb ) * 0.5 / bbb |
---|
| 357 | e2 = lf * ( 1.0 - bbb ) * 0.5 ! in cm |
---|
| 358 | ccc = SQRT( 1.0 - 2.0 * z**2 ) |
---|
| 359 | b1 = ( 1.0 + ccc ) * 0.5 / ccc |
---|
| 360 | c1 = tl * ( 1.0 + ccc ) * 0.5 ! in s |
---|
| 361 | b2 = ( 1.0 - ccc ) * 0.5 / ccc |
---|
| 362 | c2 = tl * ( 1.0 - ccc ) * 0.5 ! in s |
---|
[790] | 363 | |
---|
[828] | 364 | DO i = 1, radius_classes |
---|
[790] | 365 | |
---|
[828] | 366 | v1 = winf(i) ! in cm/s |
---|
| 367 | t1 = tau(i) ! in s |
---|
[790] | 368 | |
---|
[828] | 369 | DO j = 1, i |
---|
| 370 | rrp = radclass(i) + radclass(j) ! radius in cm |
---|
| 371 | v2 = winf(j) ! in cm/s |
---|
| 372 | t2 = tau(j) ! in s |
---|
[790] | 373 | |
---|
[828] | 374 | v1xysq = b1 * d1 * phi(c1,e1,v1,t1) - b1 * d2 * phi(c1,e2,v1,t1) & |
---|
| 375 | - b2 * d1 * phi(c2,e1,v1,t1) + b2 * d2 * phi(c2,e2,v1,t1) |
---|
| 376 | v1xysq = v1xysq * urms**2 / t1 ! in cm**2/s**2 |
---|
| 377 | vrms1xy = SQRT( v1xysq ) ! in cm/s |
---|
[790] | 378 | |
---|
[828] | 379 | v2xysq = b1 * d1 * phi(c1,e1,v2,t2) - b1 * d2 * phi(c1,e2,v2,t2) & |
---|
| 380 | - b2 * d1 * phi(c2,e1,v2,t2) + b2 * d2 * phi(c2,e2,v2,t2) |
---|
| 381 | v2xysq = v2xysq * urms**2 / t2 ! in cm**2/s**2 |
---|
| 382 | vrms2xy = SQRT( v2xysq ) ! in cm/s |
---|
[790] | 383 | |
---|
[828] | 384 | IF ( winf(i) >= winf(j) ) THEN |
---|
[799] | 385 | v1 = winf(i) |
---|
[790] | 386 | t1 = tau(i) |
---|
[799] | 387 | v2 = winf(j) |
---|
[790] | 388 | t2 = tau(j) |
---|
| 389 | ELSE |
---|
[799] | 390 | v1 = winf(j) |
---|
[790] | 391 | t1 = tau(j) |
---|
[799] | 392 | v2 = winf(i) |
---|
[790] | 393 | t2 = tau(i) |
---|
| 394 | ENDIF |
---|
| 395 | |
---|
[828] | 396 | v1v2xy = b1 * d1 * zhi(c1,e1,v1,t1,v2,t2) - & |
---|
| 397 | b1 * d2 * zhi(c1,e2,v1,t1,v2,t2) - & |
---|
| 398 | b2 * d1 * zhi(c2,e1,v1,t1,v2,t2) + & |
---|
| 399 | b2 * d2* zhi(c2,e2,v1,t1,v2,t2) |
---|
| 400 | fr = d1 * EXP( -rrp / e1 ) - d2 * EXP( -rrp / e2 ) |
---|
| 401 | v1v2xy = v1v2xy * fr * urms**2 / tau(i) / tau(j) ! in cm**2/s**2 |
---|
| 402 | wrtur2xy = vrms1xy**2 + vrms2xy**2 - 2.0 * v1v2xy ! in cm**2/s**2 |
---|
| 403 | IF ( wrtur2xy < 0.0 ) wrtur2xy = 0.0 |
---|
| 404 | wrgrav2 = pi / 8.0 * ( winf(j) - winf(i) )**2 |
---|
| 405 | wrfin = SQRT( ( 2.0 / pi ) * ( wrtur2xy + wrgrav2) ) ! in cm/s |
---|
[790] | 406 | |
---|
[828] | 407 | ! |
---|
| 408 | !-- Calculate gr |
---|
| 409 | IF ( st(j) > st(i) ) THEN |
---|
| 410 | sst = st(j) |
---|
[790] | 411 | ELSE |
---|
[828] | 412 | sst = st(i) |
---|
[790] | 413 | ENDIF |
---|
| 414 | |
---|
[828] | 415 | xx = -0.1988 * sst**4 + 1.5275 * sst**3 - 4.2942 * sst**2 + & |
---|
| 416 | 5.3406 * sst |
---|
| 417 | IF ( xx < 0.0 ) xx = 0.0 |
---|
| 418 | yy = 0.1886 * EXP( 20.306 / lambda_re ) |
---|
[790] | 419 | |
---|
[828] | 420 | c1_gr = xx / ( gravity / vk * tauk )**yy |
---|
[790] | 421 | |
---|
[828] | 422 | ao_gr = ao + ( pi / 8.0) * ( gravity / vk * tauk )**2 |
---|
| 423 | fao_gr = 20.115 * SQRT( ao_gr / lambda_re ) |
---|
| 424 | rc = SQRT( fao_gr * ABS( st(j) - st(i) ) ) * eta ! in cm |
---|
[790] | 425 | |
---|
[828] | 426 | grfin = ( ( eta**2 + rc**2 ) / ( rrp**2 + rc**2) )**( c1_gr*0.5 ) |
---|
| 427 | IF ( grfin < 1.0 ) grfin = 1.0 |
---|
[790] | 428 | |
---|
[828] | 429 | gck(i,j) = 2.0 * pi * rrp**2 * wrfin * grfin ! in cm**3/s |
---|
[790] | 430 | gck(j,i) = gck(i,j) |
---|
| 431 | |
---|
| 432 | ENDDO |
---|
| 433 | ENDDO |
---|
| 434 | |
---|
[828] | 435 | END SUBROUTINE turbsd |
---|
[790] | 436 | |
---|
[828] | 437 | |
---|
[790] | 438 | !------------------------------------------------------------------------------! |
---|
[828] | 439 | ! phi as a function |
---|
[790] | 440 | !------------------------------------------------------------------------------! |
---|
[828] | 441 | REAL FUNCTION phi( a, b, vsett, tau0 ) |
---|
[790] | 442 | |
---|
| 443 | IMPLICIT NONE |
---|
| 444 | |
---|
[828] | 445 | REAL :: a, aa1, b, tau0, vsett |
---|
[790] | 446 | |
---|
[828] | 447 | aa1 = 1.0 / tau0 + 1.0 / a + vsett / b |
---|
| 448 | phi = 1.0 / aa1 - 0.5 * vsett / b / aa1**2 ! in s |
---|
[790] | 449 | |
---|
[828] | 450 | END FUNCTION phi |
---|
[792] | 451 | |
---|
[790] | 452 | |
---|
| 453 | !------------------------------------------------------------------------------! |
---|
[828] | 454 | ! zeta as a function |
---|
[790] | 455 | !------------------------------------------------------------------------------! |
---|
[828] | 456 | REAL FUNCTION zhi( a, b, vsett1, tau1, vsett2, tau2 ) |
---|
[790] | 457 | |
---|
| 458 | IMPLICIT NONE |
---|
| 459 | |
---|
[828] | 460 | REAL :: a, aa1, aa2, aa3, aa4, aa5, aa6, b, tau1, tau2, vsett1, vsett2 |
---|
[790] | 461 | |
---|
[828] | 462 | aa1 = vsett2 / b - 1.0 / tau2 - 1.0 / a |
---|
| 463 | aa2 = vsett1 / b + 1.0 / tau1 + 1.0 / a |
---|
| 464 | aa3 = ( vsett1 - vsett2 ) / b + 1.0 / tau1 + 1.0 / tau2 |
---|
| 465 | aa4 = ( vsett2 / b )**2 - ( 1.0 / tau2 + 1.0 / a )**2 |
---|
| 466 | aa5 = vsett2 / b + 1.0 / tau2 + 1.0 / a |
---|
| 467 | aa6 = 1.0 / tau1 - 1.0 / a + ( 1.0 / tau2 + 1.0 / a) * vsett1 / vsett2 |
---|
| 468 | zhi = (1.0 / aa1 - 1.0 / aa2 ) * ( vsett1 - vsett2 ) * 0.5 / b / aa3**2 & |
---|
| 469 | + (4.0 / aa4 - 1.0 / aa5**2 - 1.0 / aa1**2 ) * vsett2 * 0.5 / b /aa6& |
---|
| 470 | + (2.0 * ( b / aa2 - b / aa1 ) - vsett1 / aa2**2 + vsett2 / aa1**2 )& |
---|
| 471 | * 0.5 / b / aa3 ! in s**2 |
---|
[799] | 472 | |
---|
[828] | 473 | END FUNCTION zhi |
---|
[790] | 474 | |
---|
[828] | 475 | |
---|
[790] | 476 | !------------------------------------------------------------------------------! |
---|
[828] | 477 | ! Calculation of terminal velocity winf |
---|
[790] | 478 | !------------------------------------------------------------------------------! |
---|
[828] | 479 | SUBROUTINE fallg |
---|
[790] | 480 | |
---|
| 481 | USE constants |
---|
| 482 | USE cloud_parameters |
---|
| 483 | USE particle_attributes |
---|
| 484 | USE arrays_3d |
---|
| 485 | |
---|
[828] | 486 | IMPLICIT NONE |
---|
[790] | 487 | |
---|
[828] | 488 | INTEGER :: i, j |
---|
[790] | 489 | |
---|
[828] | 490 | LOGICAL, SAVE :: first = .TRUE. |
---|
[790] | 491 | |
---|
[828] | 492 | REAL, SAVE :: cunh, eta, grav, phy, py, rhoa, rhow, sigma, stb, stok, & |
---|
| 493 | t0, xlamb |
---|
[790] | 494 | |
---|
[828] | 495 | REAL :: bond, x, xrey, y |
---|
[799] | 496 | |
---|
[828] | 497 | REAL, DIMENSION(1:7), SAVE :: b |
---|
| 498 | REAL, DIMENSION(1:6), SAVE :: c |
---|
[799] | 499 | |
---|
| 500 | ! |
---|
[828] | 501 | !-- Initial assignment of constants |
---|
| 502 | IF ( first ) THEN |
---|
[799] | 503 | |
---|
[828] | 504 | first = .FALSE. |
---|
| 505 | b = (/ -0.318657E1, 0.992696E0, -0.153193E-2, -0.987059E-3, & |
---|
| 506 | -0.578878E-3, 0.855176E-4, -0.327815E-5 /) |
---|
| 507 | c = (/ -0.500015E1, 0.523778E1, -0.204914E1, 0.475294E0, & |
---|
| 508 | -0.542819E-1, 0.238449E-2 /) |
---|
[790] | 509 | |
---|
[828] | 510 | eta = 1.818E-4 ! in poise = g/(cm s) |
---|
| 511 | xlamb = 6.62E-6 ! in cm |
---|
| 512 | rhow = 1.0 ! in g/cm**3 |
---|
| 513 | rhoa = 1.225E-3 ! in g/cm**3 |
---|
| 514 | grav = 980.665 ! in cm/s**2 |
---|
| 515 | cunh = 1.257 * xlamb ! in cm |
---|
| 516 | t0 = 273.15 ! in K |
---|
| 517 | sigma = 76.1 - 0.155 * ( 293.15 - t0 ) ! in N/m = g/s**2 |
---|
| 518 | stok = 2.0 * grav * ( rhow - rhoa ) / ( 9.0 * eta ) ! in 1/(cm s) |
---|
| 519 | stb = 32.0 * rhoa * ( rhow - rhoa) * grav / (3.0 * eta * eta) |
---|
| 520 | ! in 1/cm**3 |
---|
| 521 | phy = sigma**3 * rhoa**2 / ( eta**4 * grav * ( rhow - rhoa ) ) |
---|
| 522 | py = phy**( 1.0 / 6.0 ) |
---|
[790] | 523 | |
---|
[828] | 524 | ENDIF |
---|
[790] | 525 | |
---|
[828] | 526 | DO j = 1, radius_classes |
---|
[790] | 527 | |
---|
[828] | 528 | IF ( radclass(j) <= 1.0E-3 ) THEN |
---|
[799] | 529 | |
---|
[828] | 530 | winf(j) = stok * ( radclass(j)**2 + cunh * radclass(j) ) ! in cm/s |
---|
[790] | 531 | |
---|
[828] | 532 | ELSEIF ( radclass(j) > 1.0E-3 .AND. radclass(j) <= 5.35E-2 ) THEN |
---|
[790] | 533 | |
---|
[828] | 534 | x = LOG( stb * radclass(j)**3 ) |
---|
| 535 | y = 0.0 |
---|
[790] | 536 | |
---|
[828] | 537 | DO i = 1, 7 |
---|
| 538 | y = y + b(i) * x**(i-1) |
---|
| 539 | ENDDO |
---|
[790] | 540 | |
---|
[828] | 541 | xrey = ( 1.0 + cunh / radclass(j) ) * EXP( y ) |
---|
| 542 | winf(j) = xrey * eta / ( 2.0 * rhoa * radclass(j) ) ! in cm/s |
---|
[790] | 543 | |
---|
[828] | 544 | ELSEIF ( radclass(j) > 5.35E-2 ) THEN |
---|
[790] | 545 | |
---|
[828] | 546 | IF ( radclass(j) > 0.35 ) THEN |
---|
| 547 | bond = grav * ( rhow - rhoa ) * 0.35**2 / sigma |
---|
| 548 | ELSE |
---|
| 549 | bond = grav * ( rhow - rhoa ) * radclass(j)**2 / sigma |
---|
| 550 | ENDIF |
---|
[790] | 551 | |
---|
[828] | 552 | x = LOG( 16.0 * bond * py / 3.0 ) |
---|
| 553 | y = 0.0 |
---|
[790] | 554 | |
---|
[828] | 555 | DO i = 1, 6 |
---|
| 556 | y = y + c(i) * x**(i-1) |
---|
| 557 | ENDDO |
---|
[790] | 558 | |
---|
[828] | 559 | xrey = py * EXP( y ) |
---|
[790] | 560 | |
---|
[828] | 561 | IF ( radclass(j) > 0.35 ) THEN |
---|
| 562 | winf(j) = xrey * eta / ( 2.0 * rhoa * 0.35 ) ! in cm/s |
---|
| 563 | ELSE |
---|
| 564 | winf(j) = xrey * eta / ( 2.0 * rhoa * radclass(j) ) ! in cm/s |
---|
| 565 | ENDIF |
---|
[790] | 566 | |
---|
[828] | 567 | ENDIF |
---|
[790] | 568 | |
---|
[828] | 569 | ENDDO |
---|
[790] | 570 | |
---|
[828] | 571 | END SUBROUTINE fallg |
---|
[790] | 572 | |
---|
[828] | 573 | |
---|
[790] | 574 | !------------------------------------------------------------------------------! |
---|
[828] | 575 | ! Calculation of collision efficencies for the Hall kernel |
---|
[790] | 576 | !------------------------------------------------------------------------------! |
---|
[828] | 577 | SUBROUTINE effic |
---|
[790] | 578 | |
---|
[828] | 579 | USE arrays_3d |
---|
| 580 | USE cloud_parameters |
---|
| 581 | USE constants |
---|
| 582 | USE particle_attributes |
---|
[790] | 583 | |
---|
[828] | 584 | IMPLICIT NONE |
---|
[790] | 585 | |
---|
[828] | 586 | INTEGER :: i, iq, ir, j, k, kk |
---|
[790] | 587 | |
---|
[828] | 588 | INTEGER, DIMENSION(:), ALLOCATABLE :: ira |
---|
[790] | 589 | |
---|
[828] | 590 | LOGICAL, SAVE :: first = .TRUE. |
---|
[790] | 591 | |
---|
[828] | 592 | REAL :: ek, particle_radius, pp, qq, rq |
---|
[790] | 593 | |
---|
[828] | 594 | REAL, DIMENSION(1:21), SAVE :: rat |
---|
| 595 | REAL, DIMENSION(1:15), SAVE :: r0 |
---|
| 596 | REAL, DIMENSION(1:15,1:21), SAVE :: ecoll |
---|
[790] | 597 | |
---|
[792] | 598 | ! |
---|
[828] | 599 | !-- Initial assignment of constants |
---|
| 600 | IF ( first ) THEN |
---|
[790] | 601 | |
---|
[792] | 602 | first = .FALSE. |
---|
[828] | 603 | r0 = (/ 6.0, 8.0, 10.0, 15.0, 20.0, 25.0, 30.0, 40.0, 50.0, 60., & |
---|
| 604 | 70.0, 100.0, 150.0, 200.0, 300.0 /) |
---|
| 605 | rat = (/ 0.00, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, & |
---|
| 606 | 0.50, 0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95, & |
---|
| 607 | 1.00 /) |
---|
[790] | 608 | |
---|
[828] | 609 | ecoll(:,1) = (/0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, & |
---|
| 610 | 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001, 0.001/) |
---|
| 611 | ecoll(:,2) = (/0.003, 0.003, 0.003, 0.004, 0.005, 0.005, 0.005, & |
---|
| 612 | 0.010, 0.100, 0.050, 0.200, 0.500, 0.770, 0.870, 0.970/) |
---|
| 613 | ecoll(:,3) = (/0.007, 0.007, 0.007, 0.008, 0.009, 0.010, 0.010, & |
---|
| 614 | 0.070, 0.400, 0.430, 0.580, 0.790, 0.930, 0.960, 1.000/) |
---|
| 615 | ecoll(:,4) = (/0.009, 0.009, 0.009, 0.012, 0.015, 0.010, 0.020, & |
---|
| 616 | 0.280, 0.600, 0.640, 0.750, 0.910, 0.970, 0.980, 1.000/) |
---|
| 617 | ecoll(:,5) = (/0.014, 0.014, 0.014, 0.015, 0.016, 0.030, 0.060, & |
---|
| 618 | 0.500, 0.700, 0.770, 0.840, 0.950, 0.970, 1.000, 1.000/) |
---|
| 619 | ecoll(:,6) = (/0.017, 0.017, 0.017, 0.020, 0.022, 0.060, 0.100, & |
---|
| 620 | 0.620, 0.780, 0.840, 0.880, 0.950, 1.000, 1.000, 1.000/) |
---|
| 621 | ecoll(:,7) = (/0.030, 0.030, 0.024, 0.022, 0.032, 0.062, 0.200, & |
---|
| 622 | 0.680, 0.830, 0.870, 0.900, 0.950, 1.000, 1.000, 1.000/) |
---|
| 623 | ecoll(:,8) = (/0.025, 0.025, 0.025, 0.036, 0.043, 0.130, 0.270, & |
---|
| 624 | 0.740, 0.860, 0.890, 0.920, 1.000, 1.000, 1.000, 1.000/) |
---|
| 625 | ecoll(:,9) = (/0.027, 0.027, 0.027, 0.040, 0.052, 0.200, 0.400, & |
---|
| 626 | 0.780, 0.880, 0.900, 0.940, 1.000, 1.000, 1.000, 1.000/) |
---|
| 627 | ecoll(:,10)= (/0.030, 0.030, 0.030, 0.047, 0.064, 0.250, 0.500, & |
---|
| 628 | 0.800, 0.900, 0.910, 0.950, 1.000, 1.000, 1.000, 1.000/) |
---|
| 629 | ecoll(:,11)= (/0.040, 0.040, 0.033, 0.037, 0.068, 0.240, 0.550, & |
---|
| 630 | 0.800, 0.900, 0.910, 0.950, 1.000, 1.000, 1.000, 1.000/) |
---|
| 631 | ecoll(:,12)= (/0.035, 0.035, 0.035, 0.055, 0.079, 0.290, 0.580, & |
---|
| 632 | 0.800, 0.900, 0.910, 0.950, 1.000, 1.000, 1.000, 1.000/) |
---|
| 633 | ecoll(:,13)= (/0.037, 0.037, 0.037, 0.062, 0.082, 0.290, 0.590, & |
---|
| 634 | 0.780, 0.900, 0.910, 0.950, 1.000, 1.000, 1.000, 1.000/) |
---|
| 635 | ecoll(:,14)= (/0.037, 0.037, 0.037, 0.060, 0.080, 0.290, 0.580, & |
---|
| 636 | 0.770, 0.890, 0.910, 0.950, 1.000, 1.000, 1.000, 1.000/) |
---|
| 637 | ecoll(:,15)= (/0.037, 0.037, 0.037, 0.041, 0.075, 0.250, 0.540, & |
---|
| 638 | 0.760, 0.880, 0.920, 0.950, 1.000, 1.000, 1.000, 1.000/) |
---|
| 639 | ecoll(:,16)= (/0.037, 0.037, 0.037, 0.052, 0.067, 0.250, 0.510, & |
---|
| 640 | 0.770, 0.880, 0.930, 0.970, 1.000, 1.000, 1.000, 1.000/) |
---|
| 641 | ecoll(:,17)= (/0.037, 0.037, 0.037, 0.047, 0.057, 0.250, 0.490, & |
---|
| 642 | 0.770, 0.890, 0.950, 1.000, 1.000, 1.000, 1.000, 1.000/) |
---|
| 643 | ecoll(:,18)= (/0.036, 0.036, 0.036, 0.042, 0.048, 0.230, 0.470, & |
---|
| 644 | 0.780, 0.920, 1.000, 1.020, 1.020, 1.020, 1.020, 1.020/) |
---|
| 645 | ecoll(:,19)= (/0.040, 0.040, 0.035, 0.033, 0.040, 0.112, 0.450, & |
---|
| 646 | 0.790, 1.010, 1.030, 1.040, 1.040, 1.040, 1.040, 1.040/) |
---|
| 647 | ecoll(:,20)= (/0.033, 0.033, 0.033, 0.033, 0.033, 0.119, 0.470, & |
---|
| 648 | 0.950, 1.300, 1.700, 2.300, 2.300, 2.300, 2.300, 2.300/) |
---|
| 649 | ecoll(:,21)= (/0.027, 0.027, 0.027, 0.027, 0.027, 0.125, 0.520, & |
---|
| 650 | 1.400, 2.300, 3.000, 4.000, 4.000, 4.000, 4.000, 4.000/) |
---|
| 651 | ENDIF |
---|
[790] | 652 | |
---|
[792] | 653 | ! |
---|
[828] | 654 | !-- Calculate the radius class index of particles with respect to array r |
---|
| 655 | ALLOCATE( ira(1:radius_classes) ) |
---|
| 656 | DO j = 1, radius_classes |
---|
| 657 | particle_radius = radclass(j) * 1.0E4 ! in microm |
---|
| 658 | DO k = 1, 15 |
---|
| 659 | IF ( particle_radius < r0(k) ) THEN |
---|
| 660 | ira(j) = k |
---|
| 661 | EXIT |
---|
| 662 | ENDIF |
---|
| 663 | ENDDO |
---|
| 664 | IF ( particle_radius >= r0(15) ) ira(j) = 16 |
---|
| 665 | ENDDO |
---|
[790] | 666 | |
---|
[792] | 667 | ! |
---|
[828] | 668 | !-- Two-dimensional linear interpolation of the collision efficiency. |
---|
| 669 | !-- Radius has to be in µm |
---|
| 670 | DO j = 1, radius_classes |
---|
| 671 | DO i = 1, j |
---|
[792] | 672 | |
---|
[828] | 673 | ir = ira(j) |
---|
| 674 | rq = radclass(i) / radclass(j) |
---|
| 675 | iq = INT( rq * 20 ) + 1 |
---|
| 676 | iq = MAX( iq , 2) |
---|
[792] | 677 | |
---|
[828] | 678 | IF ( ir < 16 ) THEN |
---|
| 679 | IF ( ir >= 2 ) THEN |
---|
| 680 | pp = ( ( radclass(j) * 1.0E04 ) - r0(ir-1) ) / & |
---|
| 681 | ( r0(ir) - r0(ir-1) ) |
---|
| 682 | qq = ( rq- rat(iq-1) ) / ( rat(iq) - rat(iq-1) ) |
---|
| 683 | ec(j,i) = ( 1.0-pp ) * ( 1.0-qq ) * ecoll(ir-1,iq-1) & |
---|
| 684 | + pp * ( 1.0-qq ) * ecoll(ir,iq-1) & |
---|
| 685 | + qq * ( 1.0-pp ) * ecoll(ir-1,iq) & |
---|
| 686 | + pp * qq * ecoll(ir,iq) |
---|
| 687 | ELSE |
---|
| 688 | qq = ( rq - rat(iq-1) ) / ( rat(iq) - rat(iq-1) ) |
---|
| 689 | ec(j,i) = (1.0-qq) * ecoll(1,iq-1) + qq * ecoll(1,iq) |
---|
| 690 | ENDIF |
---|
| 691 | ELSE |
---|
| 692 | qq = ( rq - rat(iq-1) ) / ( rat(iq) - rat(iq-1) ) |
---|
| 693 | ek = ( 1.0 - qq ) * ecoll(15,iq-1) + qq * ecoll(15,iq) |
---|
| 694 | ec(j,i) = MIN( ek, 1.0 ) |
---|
| 695 | ENDIF |
---|
[792] | 696 | |
---|
[828] | 697 | ec(i,j) = ec(j,i) |
---|
| 698 | IF ( ec(i,j) < 1.0E-20 ) ec(i,j) = 0.0 |
---|
[792] | 699 | |
---|
[828] | 700 | ENDDO |
---|
| 701 | ENDDO |
---|
[792] | 702 | |
---|
[828] | 703 | DEALLOCATE( ira ) |
---|
[792] | 704 | |
---|
[828] | 705 | END SUBROUTINE effic |
---|
[792] | 706 | |
---|
| 707 | |
---|
[790] | 708 | !------------------------------------------------------------------------------! |
---|
[828] | 709 | ! Calculation of enhancement factor for collision efficencies due to turbulence |
---|
[790] | 710 | !------------------------------------------------------------------------------! |
---|
[828] | 711 | SUBROUTINE turb_enhance_eff |
---|
[790] | 712 | |
---|
| 713 | USE constants |
---|
| 714 | USE cloud_parameters |
---|
| 715 | USE particle_attributes |
---|
| 716 | USE arrays_3d |
---|
| 717 | |
---|
[828] | 718 | IMPLICIT NONE |
---|
[790] | 719 | |
---|
[828] | 720 | INTEGER :: i, ik, iq, ir, j, k, kk |
---|
[790] | 721 | |
---|
[828] | 722 | INTEGER, DIMENSION(:), ALLOCATABLE :: ira |
---|
[790] | 723 | |
---|
[828] | 724 | REAL :: particle_radius, pp, qq, rq, x1, x2, x3, y1, y2, y3 |
---|
[790] | 725 | |
---|
[828] | 726 | LOGICAL, SAVE :: first = .TRUE. |
---|
[799] | 727 | |
---|
[828] | 728 | REAL, DIMENSION(1:11), SAVE :: rat |
---|
| 729 | REAL, DIMENSION(1:7), SAVE :: r0 |
---|
| 730 | REAL, DIMENSION(1:7,1:11), SAVE :: ecoll_100, ecoll_400 |
---|
[799] | 731 | |
---|
| 732 | ! |
---|
[828] | 733 | !-- Initial assignment of constants |
---|
| 734 | IF ( first ) THEN |
---|
[799] | 735 | |
---|
[828] | 736 | first = .FALSE. |
---|
[799] | 737 | |
---|
[828] | 738 | r0 = (/ 10.0, 20.0, 30.0, 40.0, 50.0, 60.0, 100.0 /) |
---|
| 739 | rat = (/ 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0 /) |
---|
| 740 | ! |
---|
| 741 | !-- In 100 cm^2/s^3 |
---|
| 742 | ecoll_100(:,1) = (/1.74, 1.74, 1.773, 1.49, 1.207, 1.207, 1.0 /) |
---|
| 743 | ecoll_100(:,2) = (/1.46, 1.46, 1.421, 1.245, 1.069, 1.069, 1.0 /) |
---|
| 744 | ecoll_100(:,3) = (/1.32, 1.32, 1.245, 1.123, 1.000, 1.000, 1.0 /) |
---|
| 745 | ecoll_100(:,4) = (/1.250, 1.250, 1.148, 1.087, 1.025, 1.025, 1.0 /) |
---|
| 746 | ecoll_100(:,5) = (/1.186, 1.186, 1.066, 1.060, 1.056, 1.056, 1.0 /) |
---|
| 747 | ecoll_100(:,6) = (/1.045, 1.045, 1.000, 1.014, 1.028, 1.028, 1.0 /) |
---|
| 748 | ecoll_100(:,7) = (/1.070, 1.070, 1.030, 1.038, 1.046, 1.046, 1.0 /) |
---|
| 749 | ecoll_100(:,8) = (/1.000, 1.000, 1.054, 1.042, 1.029, 1.029, 1.0 /) |
---|
| 750 | ecoll_100(:,9) = (/1.223, 1.223, 1.117, 1.069, 1.021, 1.021, 1.0 /) |
---|
| 751 | ecoll_100(:,10)= (/1.570, 1.570, 1.244, 1.166, 1.088, 1.088, 1.0 /) |
---|
| 752 | ecoll_100(:,11)= (/20.3, 20.3, 14.6 , 8.61, 2.60, 2.60 , 1.0 /) |
---|
| 753 | ! |
---|
| 754 | !-- In 400 cm^2/s^3 |
---|
| 755 | ecoll_400(:,1) = (/4.976, 4.976, 3.593, 2.519, 1.445, 1.445, 1.0 /) |
---|
| 756 | ecoll_400(:,2) = (/2.984, 2.984, 2.181, 1.691, 1.201, 1.201, 1.0 /) |
---|
| 757 | ecoll_400(:,3) = (/1.988, 1.988, 1.475, 1.313, 1.150, 1.150, 1.0 /) |
---|
| 758 | ecoll_400(:,4) = (/1.490, 1.490, 1.187, 1.156, 1.126, 1.126, 1.0 /) |
---|
| 759 | ecoll_400(:,5) = (/1.249, 1.249, 1.088, 1.090, 1.092, 1.092, 1.0 /) |
---|
| 760 | ecoll_400(:,6) = (/1.139, 1.139, 1.130, 1.091, 1.051, 1.051, 1.0 /) |
---|
| 761 | ecoll_400(:,7) = (/1.220, 1.220, 1.190, 1.138, 1.086, 1.086, 1.0 /) |
---|
| 762 | ecoll_400(:,8) = (/1.325, 1.325, 1.267, 1.165, 1.063, 1.063, 1.0 /) |
---|
| 763 | ecoll_400(:,9) = (/1.716, 1.716, 1.345, 1.223, 1.100, 1.100, 1.0 /) |
---|
| 764 | ecoll_400(:,10)= (/3.788, 3.788, 1.501, 1.311, 1.120, 1.120, 1.0 /) |
---|
| 765 | ecoll_400(:,11)= (/36.52, 36.52, 19.16, 22.80, 26.0, 26.0, 1.0 /) |
---|
[799] | 766 | |
---|
[828] | 767 | ENDIF |
---|
[790] | 768 | |
---|
[828] | 769 | ! |
---|
| 770 | !-- Calculate the radius class index of particles with respect to array r0 |
---|
| 771 | ALLOCATE( ira(1:radius_classes) ) |
---|
[790] | 772 | |
---|
[828] | 773 | DO j = 1, radius_classes |
---|
| 774 | particle_radius = radclass(j) * 1.0E4 ! in microm |
---|
| 775 | DO k = 1, 7 |
---|
| 776 | IF ( particle_radius < r0(k) ) THEN |
---|
| 777 | ira(j) = k |
---|
| 778 | EXIT |
---|
| 779 | ENDIF |
---|
| 780 | ENDDO |
---|
| 781 | IF ( particle_radius >= r0(7) ) ira(j) = 8 |
---|
| 782 | ENDDO |
---|
[799] | 783 | |
---|
| 784 | ! |
---|
[828] | 785 | !-- Two-dimensional linear interpolation of the collision efficiencies |
---|
| 786 | DO j = 1, radius_classes |
---|
| 787 | DO i = 1, j |
---|
[799] | 788 | |
---|
[828] | 789 | ir = ira(j) |
---|
| 790 | rq = radclass(i) / radclass(j) |
---|
[799] | 791 | |
---|
[828] | 792 | DO kk = 2, 11 |
---|
| 793 | IF ( rq <= rat(kk) ) THEN |
---|
| 794 | iq = kk |
---|
| 795 | EXIT |
---|
| 796 | ENDIF |
---|
| 797 | ENDDO |
---|
[790] | 798 | |
---|
[828] | 799 | y1 = 1.0 ! 0 cm2/s3 |
---|
| 800 | ! |
---|
| 801 | !-- 100 cm2/s3, 400 cm2/s3 |
---|
| 802 | IF ( ir < 8 ) THEN |
---|
| 803 | IF ( ir >= 2 ) THEN |
---|
| 804 | pp = ( radclass(j)*1.0E4 - r0(ir-1) ) / ( r0(ir) - r0(ir-1) ) |
---|
| 805 | qq = ( rq - rat(iq-1) ) / ( rat(iq) - rat(iq-1) ) |
---|
| 806 | y2 = ( 1.0-pp ) * ( 1.0-qq ) * ecoll_100(ir-1,iq-1) + & |
---|
| 807 | pp * ( 1.0-qq ) * ecoll_100(ir,iq-1) + & |
---|
| 808 | qq * ( 10.-pp ) * ecoll_100(ir-1,iq) + & |
---|
| 809 | pp * qq * ecoll_100(ir,iq) |
---|
| 810 | y3 = ( 1.0-pp ) * ( 1.0-qq ) * ecoll_400(ir-1,iq-1) + & |
---|
| 811 | pp * ( 1.0-qq ) * ecoll_400(ir,iq-1) + & |
---|
| 812 | qq * ( 1.0-pp ) * ecoll_400(ir-1,iq) + & |
---|
| 813 | pp * qq * ecoll_400(ir,iq) |
---|
| 814 | ELSE |
---|
| 815 | qq = ( rq - rat(iq-1) ) / ( rat(iq) - rat(iq-1) ) |
---|
| 816 | y2 = ( 1.0-qq ) * ecoll_100(1,iq-1) + qq * ecoll_100(1,iq) |
---|
| 817 | y3 = ( 1.0-qq ) * ecoll_400(1,iq-1) + qq * ecoll_400(1,iq) |
---|
| 818 | ENDIF |
---|
| 819 | ELSE |
---|
| 820 | qq = ( rq - rat(iq-1) ) / ( rat(iq) - rat(iq-1) ) |
---|
| 821 | y2 = ( 1.0-qq ) * ecoll_100(7,iq-1) + qq * ecoll_100(7,iq) |
---|
| 822 | y3 = ( 1.0-qq ) * ecoll_400(7,iq-1) + qq * ecoll_400(7,iq) |
---|
| 823 | ENDIF |
---|
| 824 | ! |
---|
| 825 | !-- Linear interpolation of dissipation rate in cm2/s3 |
---|
| 826 | IF ( epsilon <= 100.0 ) THEN |
---|
| 827 | ecf(j,i) = ( epsilon - 100.0 ) / ( 0.0 - 100.0 ) * y1 & |
---|
| 828 | + ( epsilon - 0.0 ) / ( 100.0 - 0.0 ) * y2 |
---|
| 829 | ELSEIF ( epsilon <= 600.0 ) THEN |
---|
| 830 | ecf(j,i) = ( epsilon - 400.0 ) / ( 100.0 - 400.0 ) * y2 & |
---|
| 831 | + ( epsilon - 100.0 ) / ( 400.0 - 100.0 ) * y3 |
---|
| 832 | ELSE |
---|
| 833 | ecf(j,i) = ( 600.0 - 400.0 ) / ( 100.0 - 400.0 ) * y2 & |
---|
| 834 | + ( 600.0 - 100.0 ) / ( 400.0 - 100.0 ) * y3 |
---|
| 835 | ENDIF |
---|
[790] | 836 | |
---|
[828] | 837 | IF ( ecf(j,i) < 1.0 ) ecf(j,i) = 1.0 |
---|
[790] | 838 | |
---|
[828] | 839 | ecf(i,j) = ecf(j,i) |
---|
[790] | 840 | |
---|
[828] | 841 | ENDDO |
---|
| 842 | ENDDO |
---|
[790] | 843 | |
---|
[828] | 844 | END SUBROUTINE turb_enhance_eff |
---|
[790] | 845 | |
---|
[825] | 846 | END MODULE lpm_collision_kernels_mod |
---|