1 | !> @file lpm_advec.f90 |
---|
2 | !------------------------------------------------------------------------------! |
---|
3 | ! This file is part of PALM. |
---|
4 | ! |
---|
5 | ! PALM is free software: you can redistribute it and/or modify it under the |
---|
6 | ! terms of the GNU General Public License as published by the Free Software |
---|
7 | ! Foundation, either version 3 of the License, or (at your option) any later |
---|
8 | ! version. |
---|
9 | ! |
---|
10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
13 | ! |
---|
14 | ! You should have received a copy of the GNU General Public License along with |
---|
15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
16 | ! |
---|
17 | ! Copyright 1997-2017 Leibniz Universitaet Hannover |
---|
18 | !------------------------------------------------------------------------------! |
---|
19 | ! |
---|
20 | ! Current revisions: |
---|
21 | ! ------------------ |
---|
22 | ! |
---|
23 | ! |
---|
24 | ! Former revisions: |
---|
25 | ! ----------------- |
---|
26 | ! $Id: lpm_advec.f90 2233 2017-05-30 18:08:54Z suehring $ |
---|
27 | ! |
---|
28 | ! 2232 2017-05-30 17:47:52Z suehring |
---|
29 | ! Adjustments to new topography and surface concept |
---|
30 | ! |
---|
31 | ! 2100 2017-01-05 16:40:16Z suehring |
---|
32 | ! Prevent extremely large SGS-velocities in regions where TKE is zero, e.g. |
---|
33 | ! at the begin of simulations and/or in non-turbulent regions. |
---|
34 | ! |
---|
35 | ! 2000 2016-08-20 18:09:15Z knoop |
---|
36 | ! Forced header and separation lines into 80 columns |
---|
37 | ! |
---|
38 | ! 1936 2016-06-13 13:37:44Z suehring |
---|
39 | ! Formatting adjustments |
---|
40 | ! |
---|
41 | ! 1929 2016-06-09 16:25:25Z suehring |
---|
42 | ! Put stochastic equation in an extra subroutine. |
---|
43 | ! Set flag for stochastic equation to communicate whether a particle is near |
---|
44 | ! topography. This case, memory and drift term are disabled in the Weil equation. |
---|
45 | ! |
---|
46 | ! Enable vertical logarithmic interpolation also above topography. This case, |
---|
47 | ! set a lower limit for the friction velocity, as it can become very small |
---|
48 | ! in narrow street canyons, leading to too large particle speeds. |
---|
49 | ! |
---|
50 | ! 1888 2016-04-21 12:20:49Z suehring |
---|
51 | ! Bugfix concerning logarithmic interpolation of particle speed |
---|
52 | ! |
---|
53 | ! 1822 2016-04-07 07:49:42Z hoffmann |
---|
54 | ! Random velocity fluctuations for particles added. Terminal fall velocity |
---|
55 | ! for droplets is calculated from a parameterization (which is better than |
---|
56 | ! the previous, physically correct calculation, which demands a very short |
---|
57 | ! time step that is not used in the model). |
---|
58 | ! |
---|
59 | ! Unused variables deleted. |
---|
60 | ! |
---|
61 | ! 1691 2015-10-26 16:17:44Z maronga |
---|
62 | ! Renamed prandtl_layer to constant_flux_layer. |
---|
63 | ! |
---|
64 | ! 1685 2015-10-08 07:32:13Z raasch |
---|
65 | ! TKE check for negative values (so far, only zero value was checked) |
---|
66 | ! offset_ocean_nzt_m1 removed |
---|
67 | ! |
---|
68 | ! 1682 2015-10-07 23:56:08Z knoop |
---|
69 | ! Code annotations made doxygen readable |
---|
70 | ! |
---|
71 | ! 1583 2015-04-15 12:16:27Z suehring |
---|
72 | ! Bugfix: particle advection within Prandtl-layer in case of Galilei |
---|
73 | ! transformation. |
---|
74 | ! |
---|
75 | ! 1369 2014-04-24 05:57:38Z raasch |
---|
76 | ! usage of module interfaces removed |
---|
77 | ! |
---|
78 | ! 1359 2014-04-11 17:15:14Z hoffmann |
---|
79 | ! New particle structure integrated. |
---|
80 | ! Kind definition added to all floating point numbers. |
---|
81 | ! |
---|
82 | ! 1322 2014-03-20 16:38:49Z raasch |
---|
83 | ! REAL constants defined as wp_kind |
---|
84 | ! |
---|
85 | ! 1320 2014-03-20 08:40:49Z raasch |
---|
86 | ! ONLY-attribute added to USE-statements, |
---|
87 | ! kind-parameters added to all INTEGER and REAL declaration statements, |
---|
88 | ! kinds are defined in new module kinds, |
---|
89 | ! revision history before 2012 removed, |
---|
90 | ! comment fields (!:) to be used for variable explanations added to |
---|
91 | ! all variable declaration statements |
---|
92 | ! |
---|
93 | ! 1314 2014-03-14 18:25:17Z suehring |
---|
94 | ! Vertical logarithmic interpolation of horizontal particle speed for particles |
---|
95 | ! between roughness height and first vertical grid level. |
---|
96 | ! |
---|
97 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
98 | ! code put under GPL (PALM 3.9) |
---|
99 | ! |
---|
100 | ! 849 2012-03-15 10:35:09Z raasch |
---|
101 | ! initial revision (former part of advec_particles) |
---|
102 | ! |
---|
103 | ! |
---|
104 | ! Description: |
---|
105 | ! ------------ |
---|
106 | !> Calculation of new particle positions due to advection using a simple Euler |
---|
107 | !> scheme. Particles may feel inertia effects. SGS transport can be included |
---|
108 | !> using the stochastic model of Weil et al. (2004, JAS, 61, 2877-2887). |
---|
109 | !------------------------------------------------------------------------------! |
---|
110 | SUBROUTINE lpm_advec (ip,jp,kp) |
---|
111 | |
---|
112 | |
---|
113 | USE arrays_3d, & |
---|
114 | ONLY: de_dx, de_dy, de_dz, diss, e, km, u, v, w, zu, zw |
---|
115 | |
---|
116 | USE cpulog |
---|
117 | |
---|
118 | USE pegrid |
---|
119 | |
---|
120 | USE control_parameters, & |
---|
121 | ONLY: atmos_ocean_sign, cloud_droplets, constant_flux_layer, dt_3d, & |
---|
122 | dt_3d_reached_l, dz, g, kappa, topography, u_gtrans, v_gtrans |
---|
123 | |
---|
124 | USE grid_variables, & |
---|
125 | ONLY: ddx, dx, ddy, dy |
---|
126 | |
---|
127 | USE indices, & |
---|
128 | ONLY: nzb, nzb_max, nzt, wall_flags_0 |
---|
129 | |
---|
130 | USE kinds |
---|
131 | |
---|
132 | USE particle_attributes, & |
---|
133 | ONLY: block_offset, c_0, dt_min_part, grid_particles, & |
---|
134 | iran_part, log_z_z0, number_of_particles, number_of_sublayers, & |
---|
135 | particles, particle_groups, offset_ocean_nzt, sgs_wf_part, & |
---|
136 | use_sgs_for_particles, vertical_particle_advection, z0_av_global |
---|
137 | |
---|
138 | USE statistics, & |
---|
139 | ONLY: hom |
---|
140 | |
---|
141 | USE surface_mod, & |
---|
142 | ONLY: surf_def_h, surf_lsm_h, surf_usm_h |
---|
143 | |
---|
144 | IMPLICIT NONE |
---|
145 | |
---|
146 | INTEGER(iwp) :: agp !< loop variable |
---|
147 | INTEGER(iwp) :: gp_outside_of_building(1:8) !< number of grid points used for particle interpolation in case of topography |
---|
148 | INTEGER(iwp) :: i !< index variable along x |
---|
149 | INTEGER(iwp) :: ip !< index variable along x |
---|
150 | INTEGER(iwp) :: ilog !< index variable along x |
---|
151 | INTEGER(iwp) :: j !< index variable along y |
---|
152 | INTEGER(iwp) :: jp !< index variable along y |
---|
153 | INTEGER(iwp) :: jlog !< index variable along y |
---|
154 | INTEGER(iwp) :: k !< index variable along z |
---|
155 | INTEGER(iwp) :: k_wall !< vertical index of topography top |
---|
156 | INTEGER(iwp) :: kp !< index variable along z |
---|
157 | INTEGER(iwp) :: kw !< index variable along z |
---|
158 | INTEGER(iwp) :: n !< loop variable over all particles in a grid box |
---|
159 | INTEGER(iwp) :: nb !< block number particles are sorted in |
---|
160 | INTEGER(iwp) :: num_gp !< number of adjacent grid points inside topography |
---|
161 | INTEGER(iwp) :: surf_start !< Index on surface data-type for current grid box |
---|
162 | |
---|
163 | INTEGER(iwp), DIMENSION(0:7) :: start_index !< start particle index for current block |
---|
164 | INTEGER(iwp), DIMENSION(0:7) :: end_index !< start particle index for current block |
---|
165 | |
---|
166 | REAL(wp) :: aa !< dummy argument for horizontal particle interpolation |
---|
167 | REAL(wp) :: bb !< dummy argument for horizontal particle interpolation |
---|
168 | REAL(wp) :: cc !< dummy argument for horizontal particle interpolation |
---|
169 | REAL(wp) :: d_sum !< dummy argument for horizontal particle interpolation in case of topography |
---|
170 | REAL(wp) :: d_z_p_z0 !< inverse of interpolation length for logarithmic interpolation |
---|
171 | REAL(wp) :: dd !< dummy argument for horizontal particle interpolation |
---|
172 | REAL(wp) :: de_dx_int_l !< x/y-interpolated TKE gradient (x) at particle position at lower vertical level |
---|
173 | REAL(wp) :: de_dx_int_u !< x/y-interpolated TKE gradient (x) at particle position at upper vertical level |
---|
174 | REAL(wp) :: de_dy_int_l !< x/y-interpolated TKE gradient (y) at particle position at lower vertical level |
---|
175 | REAL(wp) :: de_dy_int_u !< x/y-interpolated TKE gradient (y) at particle position at upper vertical level |
---|
176 | REAL(wp) :: de_dt !< temporal derivative of TKE experienced by the particle |
---|
177 | REAL(wp) :: de_dt_min !< lower level for temporal TKE derivative |
---|
178 | REAL(wp) :: de_dz_int_l !< x/y-interpolated TKE gradient (z) at particle position at lower vertical level |
---|
179 | REAL(wp) :: de_dz_int_u !< x/y-interpolated TKE gradient (z) at particle position at upper vertical level |
---|
180 | REAL(wp) :: diameter !< diamter of droplet |
---|
181 | REAL(wp) :: diss_int_l !< x/y-interpolated dissipation at particle position at lower vertical level |
---|
182 | REAL(wp) :: diss_int_u !< x/y-interpolated dissipation at particle position at upper vertical level |
---|
183 | REAL(wp) :: dt_gap !< remaining time until particle time integration reaches LES time |
---|
184 | REAL(wp) :: dt_particle_m !< previous particle time step |
---|
185 | REAL(wp) :: e_int_l !< x/y-interpolated TKE at particle position at lower vertical level |
---|
186 | REAL(wp) :: e_int_u !< x/y-interpolated TKE at particle position at upper vertical level |
---|
187 | REAL(wp) :: e_mean_int !< horizontal mean TKE at particle height |
---|
188 | REAL(wp) :: exp_arg !< |
---|
189 | REAL(wp) :: exp_term !< |
---|
190 | REAL(wp) :: gg !< dummy argument for horizontal particle interpolation |
---|
191 | REAL(wp) :: height_p !< dummy argument for logarithmic interpolation |
---|
192 | REAL(wp) :: lagr_timescale !< Lagrangian timescale |
---|
193 | REAL(wp) :: location(1:30,1:3) !< wall locations |
---|
194 | REAL(wp) :: log_z_z0_int !< logarithmus used for surface_layer interpolation |
---|
195 | REAL(wp) :: random_gauss !< |
---|
196 | REAL(wp) :: RL !< Lagrangian autocorrelation coefficient |
---|
197 | REAL(wp) :: rg1 !< Gaussian distributed random number |
---|
198 | REAL(wp) :: rg2 !< Gaussian distributed random number |
---|
199 | REAL(wp) :: rg3 !< Gaussian distributed random number |
---|
200 | REAL(wp) :: sigma !< velocity standard deviation |
---|
201 | REAL(wp) :: u_int_l !< x/y-interpolated u-component at particle position at lower vertical level |
---|
202 | REAL(wp) :: u_int_u !< x/y-interpolated u-component at particle position at upper vertical level |
---|
203 | REAL(wp) :: us_int !< friction velocity at particle grid box |
---|
204 | REAL(wp) :: usws_int !< surface momentum flux (u component) at particle grid box |
---|
205 | REAL(wp) :: v_int_l !< x/y-interpolated v-component at particle position at lower vertical level |
---|
206 | REAL(wp) :: v_int_u !< x/y-interpolated v-component at particle position at upper vertical level |
---|
207 | REAL(wp) :: vsws_int !< surface momentum flux (u component) at particle grid box |
---|
208 | REAL(wp) :: vv_int !< |
---|
209 | REAL(wp) :: w_int_l !< x/y-interpolated w-component at particle position at lower vertical level |
---|
210 | REAL(wp) :: w_int_u !< x/y-interpolated w-component at particle position at upper vertical level |
---|
211 | REAL(wp) :: w_s !< terminal velocity of droplets |
---|
212 | REAL(wp) :: x !< dummy argument for horizontal particle interpolation |
---|
213 | REAL(wp) :: y !< dummy argument for horizontal particle interpolation |
---|
214 | REAL(wp) :: z_p !< surface layer height (0.5 dz) |
---|
215 | |
---|
216 | REAL(wp), PARAMETER :: a_rog = 9.65_wp !< parameter for fall velocity |
---|
217 | REAL(wp), PARAMETER :: b_rog = 10.43_wp !< parameter for fall velocity |
---|
218 | REAL(wp), PARAMETER :: c_rog = 0.6_wp !< parameter for fall velocity |
---|
219 | REAL(wp), PARAMETER :: k_cap_rog = 4.0_wp !< parameter for fall velocity |
---|
220 | REAL(wp), PARAMETER :: k_low_rog = 12.0_wp !< parameter for fall velocity |
---|
221 | REAL(wp), PARAMETER :: d0_rog = 0.745_wp !< separation diameter |
---|
222 | |
---|
223 | REAL(wp), DIMENSION(1:30) :: d_gp_pl !< dummy argument for particle interpolation scheme in case of topography |
---|
224 | REAL(wp), DIMENSION(1:30) :: de_dxi !< horizontal TKE gradient along x at adjacent wall |
---|
225 | REAL(wp), DIMENSION(1:30) :: de_dyi !< horizontal TKE gradient along y at adjacent wall |
---|
226 | REAL(wp), DIMENSION(1:30) :: de_dzi !< horizontal TKE gradient along z at adjacent wall |
---|
227 | REAL(wp), DIMENSION(1:30) :: dissi !< dissipation at adjacent wall |
---|
228 | REAL(wp), DIMENSION(1:30) :: ei !< TKE at adjacent wall |
---|
229 | |
---|
230 | REAL(wp), DIMENSION(number_of_particles) :: term_1_2 !< flag to communicate whether a particle is near topography or not |
---|
231 | REAL(wp), DIMENSION(number_of_particles) :: dens_ratio !< |
---|
232 | REAL(wp), DIMENSION(number_of_particles) :: de_dx_int !< horizontal TKE gradient along x at particle position |
---|
233 | REAL(wp), DIMENSION(number_of_particles) :: de_dy_int !< horizontal TKE gradient along y at particle position |
---|
234 | REAL(wp), DIMENSION(number_of_particles) :: de_dz_int !< horizontal TKE gradient along z at particle position |
---|
235 | REAL(wp), DIMENSION(number_of_particles) :: diss_int !< dissipation at particle position |
---|
236 | REAL(wp), DIMENSION(number_of_particles) :: dt_particle !< particle time step |
---|
237 | REAL(wp), DIMENSION(number_of_particles) :: e_int !< TKE at particle position |
---|
238 | REAL(wp), DIMENSION(number_of_particles) :: fs_int !< weighting factor for subgrid-scale particle speed |
---|
239 | REAL(wp), DIMENSION(number_of_particles) :: u_int !< u-component of particle speed |
---|
240 | REAL(wp), DIMENSION(number_of_particles) :: v_int !< v-component of particle speed |
---|
241 | REAL(wp), DIMENSION(number_of_particles) :: w_int !< w-component of particle speed |
---|
242 | REAL(wp), DIMENSION(number_of_particles) :: xv !< x-position |
---|
243 | REAL(wp), DIMENSION(number_of_particles) :: yv !< y-position |
---|
244 | REAL(wp), DIMENSION(number_of_particles) :: zv !< z-position |
---|
245 | |
---|
246 | REAL(wp), DIMENSION(number_of_particles, 3) :: rg !< vector of Gaussian distributed random numbers |
---|
247 | |
---|
248 | CALL cpu_log( log_point_s(44), 'lpm_advec', 'continue' ) |
---|
249 | |
---|
250 | ! |
---|
251 | !-- Determine height of Prandtl layer and distance between Prandtl-layer |
---|
252 | !-- height and horizontal mean roughness height, which are required for |
---|
253 | !-- vertical logarithmic interpolation of horizontal particle speeds |
---|
254 | !-- (for particles below first vertical grid level). |
---|
255 | z_p = zu(nzb+1) - zw(nzb) |
---|
256 | d_z_p_z0 = 1.0_wp / ( z_p - z0_av_global ) |
---|
257 | |
---|
258 | start_index = grid_particles(kp,jp,ip)%start_index |
---|
259 | end_index = grid_particles(kp,jp,ip)%end_index |
---|
260 | |
---|
261 | xv = particles(1:number_of_particles)%x |
---|
262 | yv = particles(1:number_of_particles)%y |
---|
263 | zv = particles(1:number_of_particles)%z |
---|
264 | |
---|
265 | DO nb = 0, 7 |
---|
266 | |
---|
267 | i = ip |
---|
268 | j = jp + block_offset(nb)%j_off |
---|
269 | k = kp + block_offset(nb)%k_off |
---|
270 | ! |
---|
271 | !-- Interpolate u velocity-component |
---|
272 | DO n = start_index(nb), end_index(nb) |
---|
273 | ! |
---|
274 | !-- Interpolation of the u velocity component onto particle position. |
---|
275 | !-- Particles are interpolation bi-linearly in the horizontal and a |
---|
276 | !-- linearly in the vertical. An exception is made for particles below |
---|
277 | !-- the first vertical grid level in case of a prandtl layer. In this |
---|
278 | !-- case the horizontal particle velocity components are determined using |
---|
279 | !-- Monin-Obukhov relations (if branch). |
---|
280 | !-- First, check if particle is located below first vertical grid level |
---|
281 | !-- above topography (Prandtl-layer height) |
---|
282 | ilog = ( particles(n)%x + 0.5_wp * dx ) * ddx |
---|
283 | jlog = ( particles(n)%y + 0.5_wp * dy ) * ddy |
---|
284 | ! |
---|
285 | !-- Determine vertical index of topography top |
---|
286 | k_wall = MAXLOC( & |
---|
287 | MERGE( 1, 0, & |
---|
288 | BTEST( wall_flags_0(nzb:nzb_max,jlog,ilog), 12 ) & |
---|
289 | ), DIM = 1 & |
---|
290 | ) - 1 |
---|
291 | |
---|
292 | IF ( constant_flux_layer .AND. zv(n) - zw(k_wall) < z_p ) THEN |
---|
293 | ! |
---|
294 | !-- Resolved-scale horizontal particle velocity is zero below z0. |
---|
295 | IF ( zv(n) - zw(k_wall) < z0_av_global ) THEN |
---|
296 | u_int(n) = 0.0_wp |
---|
297 | ELSE |
---|
298 | ! |
---|
299 | !-- Determine the sublayer. Further used as index. |
---|
300 | height_p = ( zv(n) - zw(k_wall) - z0_av_global ) & |
---|
301 | * REAL( number_of_sublayers, KIND=wp ) & |
---|
302 | * d_z_p_z0 |
---|
303 | ! |
---|
304 | !-- Calculate LOG(z/z0) for exact particle height. Therefore, |
---|
305 | !-- interpolate linearly between precalculated logarithm. |
---|
306 | log_z_z0_int = log_z_z0(INT(height_p)) & |
---|
307 | + ( height_p - INT(height_p) ) & |
---|
308 | * ( log_z_z0(INT(height_p)+1) & |
---|
309 | - log_z_z0(INT(height_p)) & |
---|
310 | ) |
---|
311 | ! |
---|
312 | !-- Get friction velocity and momentum flux from new surface data |
---|
313 | !-- types. |
---|
314 | IF ( surf_def_h(0)%start_index(jlog,ilog) <= & |
---|
315 | surf_def_h(0)%end_index(jlog,ilog) ) THEN |
---|
316 | surf_start = surf_def_h(0)%start_index(jlog,ilog) |
---|
317 | !-- Limit friction velocity. In narrow canyons or holes the |
---|
318 | !-- friction velocity can become very small, resulting in a too |
---|
319 | !-- large particle speed. |
---|
320 | us_int = MAX( surf_def_h(0)%us(surf_start), 0.01_wp ) |
---|
321 | usws_int = surf_def_h(0)%usws(surf_start) |
---|
322 | ELSEIF ( surf_lsm_h%start_index(jlog,ilog) <= & |
---|
323 | surf_lsm_h%end_index(jlog,ilog) ) THEN |
---|
324 | surf_start = surf_lsm_h%start_index(jlog,ilog) |
---|
325 | us_int = MAX( surf_lsm_h%us(surf_start), 0.01_wp ) |
---|
326 | usws_int = surf_lsm_h%usws(surf_start) |
---|
327 | ELSEIF ( surf_usm_h%start_index(jlog,ilog) <= & |
---|
328 | surf_usm_h%end_index(jlog,ilog) ) THEN |
---|
329 | surf_start = surf_usm_h%start_index(jlog,ilog) |
---|
330 | us_int = MAX( surf_usm_h%us(surf_start), 0.01_wp ) |
---|
331 | usws_int = surf_usm_h%usws(surf_start) |
---|
332 | ENDIF |
---|
333 | |
---|
334 | ! |
---|
335 | !-- Neutral solution is applied for all situations, e.g. also for |
---|
336 | !-- unstable and stable situations. Even though this is not exact |
---|
337 | !-- this saves a lot of CPU time since several calls of intrinsic |
---|
338 | !-- FORTRAN procedures (LOG, ATAN) are avoided, This is justified |
---|
339 | !-- as sensitivity studies revealed no significant effect of |
---|
340 | !-- using the neutral solution also for un/stable situations. |
---|
341 | u_int(n) = -usws_int / ( us_int * kappa + 1E-10_wp ) & |
---|
342 | * log_z_z0_int - u_gtrans |
---|
343 | |
---|
344 | ENDIF |
---|
345 | ! |
---|
346 | !-- Particle above the first grid level. Bi-linear interpolation in the |
---|
347 | !-- horizontal and linear interpolation in the vertical direction. |
---|
348 | ELSE |
---|
349 | |
---|
350 | x = xv(n) + ( 0.5_wp - i ) * dx |
---|
351 | y = yv(n) - j * dy |
---|
352 | aa = x**2 + y**2 |
---|
353 | bb = ( dx - x )**2 + y**2 |
---|
354 | cc = x**2 + ( dy - y )**2 |
---|
355 | dd = ( dx - x )**2 + ( dy - y )**2 |
---|
356 | gg = aa + bb + cc + dd |
---|
357 | |
---|
358 | u_int_l = ( ( gg - aa ) * u(k,j,i) + ( gg - bb ) * u(k,j,i+1) & |
---|
359 | + ( gg - cc ) * u(k,j+1,i) + ( gg - dd ) * & |
---|
360 | u(k,j+1,i+1) ) / ( 3.0_wp * gg ) - u_gtrans |
---|
361 | |
---|
362 | IF ( k == nzt ) THEN |
---|
363 | u_int(n) = u_int_l |
---|
364 | ELSE |
---|
365 | u_int_u = ( ( gg-aa ) * u(k+1,j,i) + ( gg-bb ) * u(k+1,j,i+1) & |
---|
366 | + ( gg-cc ) * u(k+1,j+1,i) + ( gg-dd ) * & |
---|
367 | u(k+1,j+1,i+1) ) / ( 3.0_wp * gg ) - u_gtrans |
---|
368 | u_int(n) = u_int_l + ( zv(n) - zu(k) ) / dz * & |
---|
369 | ( u_int_u - u_int_l ) |
---|
370 | ENDIF |
---|
371 | |
---|
372 | ENDIF |
---|
373 | |
---|
374 | ENDDO |
---|
375 | |
---|
376 | i = ip + block_offset(nb)%i_off |
---|
377 | j = jp |
---|
378 | k = kp + block_offset(nb)%k_off |
---|
379 | ! |
---|
380 | !-- Same procedure for interpolation of the v velocity-component |
---|
381 | DO n = start_index(nb), end_index(nb) |
---|
382 | |
---|
383 | ilog = ( particles(n)%x + 0.5_wp * dx ) * ddx |
---|
384 | jlog = ( particles(n)%y + 0.5_wp * dy ) * ddy |
---|
385 | ! |
---|
386 | !-- Determine vertical index of topography top |
---|
387 | k_wall = MAXLOC( & |
---|
388 | MERGE( 1, 0, & |
---|
389 | BTEST( wall_flags_0(nzb:nzb_max,jlog,ilog), 12 ) & |
---|
390 | ), DIM = 1 & |
---|
391 | ) - 1 |
---|
392 | |
---|
393 | IF ( constant_flux_layer .AND. zv(n) - zw(k_wall) < z_p ) THEN |
---|
394 | IF ( zv(n) - zw(k_wall) < z0_av_global ) THEN |
---|
395 | ! |
---|
396 | !-- Resolved-scale horizontal particle velocity is zero below z0. |
---|
397 | v_int(n) = 0.0_wp |
---|
398 | ELSE |
---|
399 | ! |
---|
400 | !-- Determine the sublayer. Further used as index. Please note, |
---|
401 | !-- logarithmus can not be reused from above, as in in case of |
---|
402 | !-- topography particle on u-grid can be above surface-layer height, |
---|
403 | !-- whereas it can be below on v-grid. |
---|
404 | height_p = ( zv(n) - zw(k_wall) - z0_av_global ) & |
---|
405 | * REAL( number_of_sublayers, KIND=wp ) & |
---|
406 | * d_z_p_z0 |
---|
407 | ! |
---|
408 | !-- Calculate LOG(z/z0) for exact particle height. Therefore, |
---|
409 | !-- interpolate linearly between precalculated logarithm. |
---|
410 | log_z_z0_int = log_z_z0(INT(height_p)) & |
---|
411 | + ( height_p - INT(height_p) ) & |
---|
412 | * ( log_z_z0(INT(height_p)+1) & |
---|
413 | - log_z_z0(INT(height_p)) & |
---|
414 | ) |
---|
415 | ! |
---|
416 | !-- Get friction velocity and momentum flux from new surface data |
---|
417 | !-- types. |
---|
418 | IF ( surf_def_h(0)%start_index(jlog,ilog) <= & |
---|
419 | surf_def_h(0)%end_index(jlog,ilog) ) THEN |
---|
420 | surf_start = surf_def_h(0)%start_index(jlog,ilog) |
---|
421 | !-- Limit friction velocity. In narrow canyons or holes the |
---|
422 | !-- friction velocity can become very small, resulting in a too |
---|
423 | !-- large particle speed. |
---|
424 | us_int = MAX( surf_def_h(0)%us(surf_start), 0.01_wp ) |
---|
425 | vsws_int = surf_def_h(0)%usws(surf_start) |
---|
426 | ELSEIF ( surf_lsm_h%start_index(jlog,ilog) <= & |
---|
427 | surf_lsm_h%end_index(jlog,ilog) ) THEN |
---|
428 | surf_start = surf_lsm_h%start_index(jlog,ilog) |
---|
429 | us_int = MAX( surf_lsm_h%us(surf_start), 0.01_wp ) |
---|
430 | vsws_int = surf_lsm_h%usws(surf_start) |
---|
431 | ELSEIF ( surf_usm_h%start_index(jlog,ilog) <= & |
---|
432 | surf_usm_h%end_index(jlog,ilog) ) THEN |
---|
433 | surf_start = surf_usm_h%start_index(jlog,ilog) |
---|
434 | us_int = MAX( surf_usm_h%us(surf_start), 0.01_wp ) |
---|
435 | vsws_int = surf_usm_h%usws(surf_start) |
---|
436 | ENDIF |
---|
437 | ! |
---|
438 | !-- Neutral solution is applied for all situations, e.g. also for |
---|
439 | !-- unstable and stable situations. Even though this is not exact |
---|
440 | !-- this saves a lot of CPU time since several calls of intrinsic |
---|
441 | !-- FORTRAN procedures (LOG, ATAN) are avoided, This is justified |
---|
442 | !-- as sensitivity studies revealed no significant effect of |
---|
443 | !-- using the neutral solution also for un/stable situations. |
---|
444 | v_int(n) = -vsws_int / ( us_int * kappa + 1E-10_wp ) & |
---|
445 | * log_z_z0_int - v_gtrans |
---|
446 | |
---|
447 | ENDIF |
---|
448 | |
---|
449 | ELSE |
---|
450 | x = xv(n) - i * dx |
---|
451 | y = yv(n) + ( 0.5_wp - j ) * dy |
---|
452 | aa = x**2 + y**2 |
---|
453 | bb = ( dx - x )**2 + y**2 |
---|
454 | cc = x**2 + ( dy - y )**2 |
---|
455 | dd = ( dx - x )**2 + ( dy - y )**2 |
---|
456 | gg = aa + bb + cc + dd |
---|
457 | |
---|
458 | v_int_l = ( ( gg - aa ) * v(k,j,i) + ( gg - bb ) * v(k,j,i+1) & |
---|
459 | + ( gg - cc ) * v(k,j+1,i) + ( gg - dd ) * v(k,j+1,i+1) & |
---|
460 | ) / ( 3.0_wp * gg ) - v_gtrans |
---|
461 | |
---|
462 | IF ( k == nzt ) THEN |
---|
463 | v_int(n) = v_int_l |
---|
464 | ELSE |
---|
465 | v_int_u = ( ( gg-aa ) * v(k+1,j,i) + ( gg-bb ) * v(k+1,j,i+1) & |
---|
466 | + ( gg-cc ) * v(k+1,j+1,i) + ( gg-dd ) * v(k+1,j+1,i+1) & |
---|
467 | ) / ( 3.0_wp * gg ) - v_gtrans |
---|
468 | v_int(n) = v_int_l + ( zv(n) - zu(k) ) / dz * & |
---|
469 | ( v_int_u - v_int_l ) |
---|
470 | ENDIF |
---|
471 | |
---|
472 | ENDIF |
---|
473 | |
---|
474 | ENDDO |
---|
475 | |
---|
476 | i = ip + block_offset(nb)%i_off |
---|
477 | j = jp + block_offset(nb)%j_off |
---|
478 | k = kp - 1 |
---|
479 | ! |
---|
480 | !-- Same procedure for interpolation of the w velocity-component |
---|
481 | DO n = start_index(nb), end_index(nb) |
---|
482 | |
---|
483 | IF ( vertical_particle_advection(particles(n)%group) ) THEN |
---|
484 | |
---|
485 | x = xv(n) - i * dx |
---|
486 | y = yv(n) - j * dy |
---|
487 | aa = x**2 + y**2 |
---|
488 | bb = ( dx - x )**2 + y**2 |
---|
489 | cc = x**2 + ( dy - y )**2 |
---|
490 | dd = ( dx - x )**2 + ( dy - y )**2 |
---|
491 | gg = aa + bb + cc + dd |
---|
492 | |
---|
493 | w_int_l = ( ( gg - aa ) * w(k,j,i) + ( gg - bb ) * w(k,j,i+1) & |
---|
494 | + ( gg - cc ) * w(k,j+1,i) + ( gg - dd ) * w(k,j+1,i+1) & |
---|
495 | ) / ( 3.0_wp * gg ) |
---|
496 | |
---|
497 | IF ( k == nzt ) THEN |
---|
498 | w_int(n) = w_int_l |
---|
499 | ELSE |
---|
500 | w_int_u = ( ( gg-aa ) * w(k+1,j,i) + & |
---|
501 | ( gg-bb ) * w(k+1,j,i+1) + & |
---|
502 | ( gg-cc ) * w(k+1,j+1,i) + & |
---|
503 | ( gg-dd ) * w(k+1,j+1,i+1) & |
---|
504 | ) / ( 3.0_wp * gg ) |
---|
505 | w_int(n) = w_int_l + ( zv(n) - zw(k) ) / dz * & |
---|
506 | ( w_int_u - w_int_l ) |
---|
507 | ENDIF |
---|
508 | |
---|
509 | ELSE |
---|
510 | |
---|
511 | w_int(n) = 0.0_wp |
---|
512 | |
---|
513 | ENDIF |
---|
514 | |
---|
515 | ENDDO |
---|
516 | |
---|
517 | ENDDO |
---|
518 | |
---|
519 | !-- Interpolate and calculate quantities needed for calculating the SGS |
---|
520 | !-- velocities |
---|
521 | IF ( use_sgs_for_particles .AND. .NOT. cloud_droplets ) THEN |
---|
522 | |
---|
523 | IF ( topography == 'flat' ) THEN |
---|
524 | |
---|
525 | DO nb = 0,7 |
---|
526 | |
---|
527 | i = ip + block_offset(nb)%i_off |
---|
528 | j = jp + block_offset(nb)%j_off |
---|
529 | k = kp + block_offset(nb)%k_off |
---|
530 | |
---|
531 | DO n = start_index(nb), end_index(nb) |
---|
532 | ! |
---|
533 | !-- Interpolate TKE |
---|
534 | x = xv(n) - i * dx |
---|
535 | y = yv(n) - j * dy |
---|
536 | aa = x**2 + y**2 |
---|
537 | bb = ( dx - x )**2 + y**2 |
---|
538 | cc = x**2 + ( dy - y )**2 |
---|
539 | dd = ( dx - x )**2 + ( dy - y )**2 |
---|
540 | gg = aa + bb + cc + dd |
---|
541 | |
---|
542 | e_int_l = ( ( gg-aa ) * e(k,j,i) + ( gg-bb ) * e(k,j,i+1) & |
---|
543 | + ( gg-cc ) * e(k,j+1,i) + ( gg-dd ) * e(k,j+1,i+1) & |
---|
544 | ) / ( 3.0_wp * gg ) |
---|
545 | |
---|
546 | IF ( k+1 == nzt+1 ) THEN |
---|
547 | e_int(n) = e_int_l |
---|
548 | ELSE |
---|
549 | e_int_u = ( ( gg - aa ) * e(k+1,j,i) + & |
---|
550 | ( gg - bb ) * e(k+1,j,i+1) + & |
---|
551 | ( gg - cc ) * e(k+1,j+1,i) + & |
---|
552 | ( gg - dd ) * e(k+1,j+1,i+1) & |
---|
553 | ) / ( 3.0_wp * gg ) |
---|
554 | e_int(n) = e_int_l + ( zv(n) - zu(k) ) / dz * & |
---|
555 | ( e_int_u - e_int_l ) |
---|
556 | ENDIF |
---|
557 | ! |
---|
558 | !-- Needed to avoid NaN particle velocities (this might not be |
---|
559 | !-- required any more) |
---|
560 | IF ( e_int(n) <= 0.0_wp ) THEN |
---|
561 | e_int(n) = 1.0E-20_wp |
---|
562 | ENDIF |
---|
563 | ! |
---|
564 | !-- Interpolate the TKE gradient along x (adopt incides i,j,k and |
---|
565 | !-- all position variables from above (TKE)) |
---|
566 | de_dx_int_l = ( ( gg - aa ) * de_dx(k,j,i) + & |
---|
567 | ( gg - bb ) * de_dx(k,j,i+1) + & |
---|
568 | ( gg - cc ) * de_dx(k,j+1,i) + & |
---|
569 | ( gg - dd ) * de_dx(k,j+1,i+1) & |
---|
570 | ) / ( 3.0_wp * gg ) |
---|
571 | |
---|
572 | IF ( ( k+1 == nzt+1 ) .OR. ( k == nzb ) ) THEN |
---|
573 | de_dx_int(n) = de_dx_int_l |
---|
574 | ELSE |
---|
575 | de_dx_int_u = ( ( gg - aa ) * de_dx(k+1,j,i) + & |
---|
576 | ( gg - bb ) * de_dx(k+1,j,i+1) + & |
---|
577 | ( gg - cc ) * de_dx(k+1,j+1,i) + & |
---|
578 | ( gg - dd ) * de_dx(k+1,j+1,i+1) & |
---|
579 | ) / ( 3.0_wp * gg ) |
---|
580 | de_dx_int(n) = de_dx_int_l + ( zv(n) - zu(k) ) / dz * & |
---|
581 | ( de_dx_int_u - de_dx_int_l ) |
---|
582 | ENDIF |
---|
583 | ! |
---|
584 | !-- Interpolate the TKE gradient along y |
---|
585 | de_dy_int_l = ( ( gg - aa ) * de_dy(k,j,i) + & |
---|
586 | ( gg - bb ) * de_dy(k,j,i+1) + & |
---|
587 | ( gg - cc ) * de_dy(k,j+1,i) + & |
---|
588 | ( gg - dd ) * de_dy(k,j+1,i+1) & |
---|
589 | ) / ( 3.0_wp * gg ) |
---|
590 | IF ( ( k+1 == nzt+1 ) .OR. ( k == nzb ) ) THEN |
---|
591 | de_dy_int(n) = de_dy_int_l |
---|
592 | ELSE |
---|
593 | de_dy_int_u = ( ( gg - aa ) * de_dy(k+1,j,i) + & |
---|
594 | ( gg - bb ) * de_dy(k+1,j,i+1) + & |
---|
595 | ( gg - cc ) * de_dy(k+1,j+1,i) + & |
---|
596 | ( gg - dd ) * de_dy(k+1,j+1,i+1) & |
---|
597 | ) / ( 3.0_wp * gg ) |
---|
598 | de_dy_int(n) = de_dy_int_l + ( zv(n) - zu(k) ) / dz * & |
---|
599 | ( de_dy_int_u - de_dy_int_l ) |
---|
600 | ENDIF |
---|
601 | |
---|
602 | ! |
---|
603 | !-- Interpolate the TKE gradient along z |
---|
604 | IF ( zv(n) < 0.5_wp * dz ) THEN |
---|
605 | de_dz_int(n) = 0.0_wp |
---|
606 | ELSE |
---|
607 | de_dz_int_l = ( ( gg - aa ) * de_dz(k,j,i) + & |
---|
608 | ( gg - bb ) * de_dz(k,j,i+1) + & |
---|
609 | ( gg - cc ) * de_dz(k,j+1,i) + & |
---|
610 | ( gg - dd ) * de_dz(k,j+1,i+1) & |
---|
611 | ) / ( 3.0_wp * gg ) |
---|
612 | |
---|
613 | IF ( ( k+1 == nzt+1 ) .OR. ( k == nzb ) ) THEN |
---|
614 | de_dz_int(n) = de_dz_int_l |
---|
615 | ELSE |
---|
616 | de_dz_int_u = ( ( gg - aa ) * de_dz(k+1,j,i) + & |
---|
617 | ( gg - bb ) * de_dz(k+1,j,i+1) + & |
---|
618 | ( gg - cc ) * de_dz(k+1,j+1,i) + & |
---|
619 | ( gg - dd ) * de_dz(k+1,j+1,i+1) & |
---|
620 | ) / ( 3.0_wp * gg ) |
---|
621 | de_dz_int(n) = de_dz_int_l + ( zv(n) - zu(k) ) / dz * & |
---|
622 | ( de_dz_int_u - de_dz_int_l ) |
---|
623 | ENDIF |
---|
624 | ENDIF |
---|
625 | |
---|
626 | ! |
---|
627 | !-- Interpolate the dissipation of TKE |
---|
628 | diss_int_l = ( ( gg - aa ) * diss(k,j,i) + & |
---|
629 | ( gg - bb ) * diss(k,j,i+1) + & |
---|
630 | ( gg - cc ) * diss(k,j+1,i) + & |
---|
631 | ( gg - dd ) * diss(k,j+1,i+1) & |
---|
632 | ) / ( 3.0_wp * gg ) |
---|
633 | |
---|
634 | IF ( k == nzt ) THEN |
---|
635 | diss_int(n) = diss_int_l |
---|
636 | ELSE |
---|
637 | diss_int_u = ( ( gg - aa ) * diss(k+1,j,i) + & |
---|
638 | ( gg - bb ) * diss(k+1,j,i+1) + & |
---|
639 | ( gg - cc ) * diss(k+1,j+1,i) + & |
---|
640 | ( gg - dd ) * diss(k+1,j+1,i+1) & |
---|
641 | ) / ( 3.0_wp * gg ) |
---|
642 | diss_int(n) = diss_int_l + ( zv(n) - zu(k) ) / dz * & |
---|
643 | ( diss_int_u - diss_int_l ) |
---|
644 | ENDIF |
---|
645 | |
---|
646 | ! |
---|
647 | !-- Set flag for stochastic equation. |
---|
648 | term_1_2(n) = 1.0_wp |
---|
649 | |
---|
650 | ENDDO |
---|
651 | ENDDO |
---|
652 | |
---|
653 | ELSE ! non-flat topography, e.g., buildings |
---|
654 | |
---|
655 | DO n = 1, number_of_particles |
---|
656 | i = particles(n)%x * ddx |
---|
657 | j = particles(n)%y * ddy |
---|
658 | k = ( zv(n) + 0.5_wp * dz * atmos_ocean_sign ) / dz & |
---|
659 | + offset_ocean_nzt ! only exact if eq.dist |
---|
660 | ! |
---|
661 | !-- In case that there are buildings it has to be determined |
---|
662 | !-- how many of the gridpoints defining the particle box are |
---|
663 | !-- situated within a building |
---|
664 | !-- gp_outside_of_building(1): i,j,k |
---|
665 | !-- gp_outside_of_building(2): i,j+1,k |
---|
666 | !-- gp_outside_of_building(3): i,j,k+1 |
---|
667 | !-- gp_outside_of_building(4): i,j+1,k+1 |
---|
668 | !-- gp_outside_of_building(5): i+1,j,k |
---|
669 | !-- gp_outside_of_building(6): i+1,j+1,k |
---|
670 | !-- gp_outside_of_building(7): i+1,j,k+1 |
---|
671 | !-- gp_outside_of_building(8): i+1,j+1,k+1 |
---|
672 | |
---|
673 | gp_outside_of_building = 0 |
---|
674 | location = 0.0_wp |
---|
675 | num_gp = 0 |
---|
676 | |
---|
677 | ! |
---|
678 | !-- Determine vertical index of topography top at (j,i) |
---|
679 | k_wall = MAXLOC( & |
---|
680 | MERGE( 1, 0, & |
---|
681 | BTEST( wall_flags_0(nzb:nzb_max,j,i), 12 ) & |
---|
682 | ), DIM = 1 & |
---|
683 | ) - 1 |
---|
684 | ! |
---|
685 | !-- To do: Reconsider order of computations in order to avoid |
---|
686 | !-- unnecessary index calculations. |
---|
687 | IF ( k > k_wall .OR. k_wall == 0 ) THEN |
---|
688 | num_gp = num_gp + 1 |
---|
689 | gp_outside_of_building(1) = 1 |
---|
690 | location(num_gp,1) = i * dx |
---|
691 | location(num_gp,2) = j * dy |
---|
692 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
693 | ei(num_gp) = e(k,j,i) |
---|
694 | dissi(num_gp) = diss(k,j,i) |
---|
695 | de_dxi(num_gp) = de_dx(k,j,i) |
---|
696 | de_dyi(num_gp) = de_dy(k,j,i) |
---|
697 | de_dzi(num_gp) = de_dz(k,j,i) |
---|
698 | ENDIF |
---|
699 | |
---|
700 | ! |
---|
701 | !-- Determine vertical index of topography top at (j+1,i) |
---|
702 | k_wall = MAXLOC( & |
---|
703 | MERGE( 1, 0, & |
---|
704 | BTEST( wall_flags_0(nzb:nzb_max,j+1,i), 12 ) & |
---|
705 | ), DIM = 1 & |
---|
706 | ) - 1 |
---|
707 | IF ( k > k_wall .OR. k_wall == 0 ) THEN |
---|
708 | num_gp = num_gp + 1 |
---|
709 | gp_outside_of_building(2) = 1 |
---|
710 | location(num_gp,1) = i * dx |
---|
711 | location(num_gp,2) = (j+1) * dy |
---|
712 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
713 | ei(num_gp) = e(k,j+1,i) |
---|
714 | dissi(num_gp) = diss(k,j+1,i) |
---|
715 | de_dxi(num_gp) = de_dx(k,j+1,i) |
---|
716 | de_dyi(num_gp) = de_dy(k,j+1,i) |
---|
717 | de_dzi(num_gp) = de_dz(k,j+1,i) |
---|
718 | ENDIF |
---|
719 | |
---|
720 | ! |
---|
721 | !-- Determine vertical index of topography top at (j,i) |
---|
722 | k_wall = MAXLOC( & |
---|
723 | MERGE( 1, 0, & |
---|
724 | BTEST( wall_flags_0(nzb:nzb_max,j,i), 12 ) & |
---|
725 | ), DIM = 1 & |
---|
726 | ) - 1 |
---|
727 | IF ( k+1 > k_wall .OR. k_wall == 0 ) THEN |
---|
728 | num_gp = num_gp + 1 |
---|
729 | gp_outside_of_building(3) = 1 |
---|
730 | location(num_gp,1) = i * dx |
---|
731 | location(num_gp,2) = j * dy |
---|
732 | location(num_gp,3) = (k+1) * dz - 0.5_wp * dz |
---|
733 | ei(num_gp) = e(k+1,j,i) |
---|
734 | dissi(num_gp) = diss(k+1,j,i) |
---|
735 | de_dxi(num_gp) = de_dx(k+1,j,i) |
---|
736 | de_dyi(num_gp) = de_dy(k+1,j,i) |
---|
737 | de_dzi(num_gp) = de_dz(k+1,j,i) |
---|
738 | ENDIF |
---|
739 | |
---|
740 | ! |
---|
741 | !-- Determine vertical index of topography top at (j+1,i) |
---|
742 | k_wall = MAXLOC( & |
---|
743 | MERGE( 1, 0, & |
---|
744 | BTEST( wall_flags_0(nzb:nzb_max,j+1,i), 12 ) & |
---|
745 | ), DIM = 1 & |
---|
746 | ) - 1 |
---|
747 | IF ( k+1 > k_wall .OR. k_wall == 0 ) THEN |
---|
748 | num_gp = num_gp + 1 |
---|
749 | gp_outside_of_building(4) = 1 |
---|
750 | location(num_gp,1) = i * dx |
---|
751 | location(num_gp,2) = (j+1) * dy |
---|
752 | location(num_gp,3) = (k+1) * dz - 0.5_wp * dz |
---|
753 | ei(num_gp) = e(k+1,j+1,i) |
---|
754 | dissi(num_gp) = diss(k+1,j+1,i) |
---|
755 | de_dxi(num_gp) = de_dx(k+1,j+1,i) |
---|
756 | de_dyi(num_gp) = de_dy(k+1,j+1,i) |
---|
757 | de_dzi(num_gp) = de_dz(k+1,j+1,i) |
---|
758 | ENDIF |
---|
759 | |
---|
760 | ! |
---|
761 | !-- Determine vertical index of topography top at (j,i+1) |
---|
762 | k_wall = MAXLOC( & |
---|
763 | MERGE( 1, 0, & |
---|
764 | BTEST( wall_flags_0(nzb:nzb_max,j,i+1), 12 ) & |
---|
765 | ), DIM = 1 & |
---|
766 | ) - 1 |
---|
767 | IF ( k > k_wall .OR. k_wall == 0 ) THEN |
---|
768 | num_gp = num_gp + 1 |
---|
769 | gp_outside_of_building(5) = 1 |
---|
770 | location(num_gp,1) = (i+1) * dx |
---|
771 | location(num_gp,2) = j * dy |
---|
772 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
773 | ei(num_gp) = e(k,j,i+1) |
---|
774 | dissi(num_gp) = diss(k,j,i+1) |
---|
775 | de_dxi(num_gp) = de_dx(k,j,i+1) |
---|
776 | de_dyi(num_gp) = de_dy(k,j,i+1) |
---|
777 | de_dzi(num_gp) = de_dz(k,j,i+1) |
---|
778 | ENDIF |
---|
779 | |
---|
780 | ! |
---|
781 | !-- Determine vertical index of topography top at (j+1,i+1) |
---|
782 | k_wall = MAXLOC( & |
---|
783 | MERGE( 1, 0, & |
---|
784 | BTEST( wall_flags_0(nzb:nzb_max,j+1,i+1), 12 )& |
---|
785 | ), DIM = 1 & |
---|
786 | ) - 1 |
---|
787 | IF ( k > k_wall .OR. k_wall == 0 ) THEN |
---|
788 | num_gp = num_gp + 1 |
---|
789 | gp_outside_of_building(6) = 1 |
---|
790 | location(num_gp,1) = (i+1) * dx |
---|
791 | location(num_gp,2) = (j+1) * dy |
---|
792 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
793 | ei(num_gp) = e(k,j+1,i+1) |
---|
794 | dissi(num_gp) = diss(k,j+1,i+1) |
---|
795 | de_dxi(num_gp) = de_dx(k,j+1,i+1) |
---|
796 | de_dyi(num_gp) = de_dy(k,j+1,i+1) |
---|
797 | de_dzi(num_gp) = de_dz(k,j+1,i+1) |
---|
798 | ENDIF |
---|
799 | |
---|
800 | ! |
---|
801 | !-- Determine vertical index of topography top at (j,i+1) |
---|
802 | k_wall = MAXLOC( & |
---|
803 | MERGE( 1, 0, & |
---|
804 | BTEST( wall_flags_0(nzb:nzb_max,j,i+1), 12 ) & |
---|
805 | ), DIM = 1 & |
---|
806 | ) - 1 |
---|
807 | IF ( k+1 > k_wall .OR. k_wall == 0 ) THEN |
---|
808 | num_gp = num_gp + 1 |
---|
809 | gp_outside_of_building(7) = 1 |
---|
810 | location(num_gp,1) = (i+1) * dx |
---|
811 | location(num_gp,2) = j * dy |
---|
812 | location(num_gp,3) = (k+1) * dz - 0.5_wp * dz |
---|
813 | ei(num_gp) = e(k+1,j,i+1) |
---|
814 | dissi(num_gp) = diss(k+1,j,i+1) |
---|
815 | de_dxi(num_gp) = de_dx(k+1,j,i+1) |
---|
816 | de_dyi(num_gp) = de_dy(k+1,j,i+1) |
---|
817 | de_dzi(num_gp) = de_dz(k+1,j,i+1) |
---|
818 | ENDIF |
---|
819 | |
---|
820 | ! |
---|
821 | !-- Determine vertical index of topography top at (j+1,i+1) |
---|
822 | k_wall = MAXLOC( & |
---|
823 | MERGE( 1, 0, & |
---|
824 | BTEST( wall_flags_0(nzb:nzb_max,j+1,i+1), 12 )& |
---|
825 | ), DIM = 1 & |
---|
826 | ) - 1 |
---|
827 | IF ( k+1 > k_wall .OR. k_wall == 0) THEN |
---|
828 | num_gp = num_gp + 1 |
---|
829 | gp_outside_of_building(8) = 1 |
---|
830 | location(num_gp,1) = (i+1) * dx |
---|
831 | location(num_gp,2) = (j+1) * dy |
---|
832 | location(num_gp,3) = (k+1) * dz - 0.5_wp * dz |
---|
833 | ei(num_gp) = e(k+1,j+1,i+1) |
---|
834 | dissi(num_gp) = diss(k+1,j+1,i+1) |
---|
835 | de_dxi(num_gp) = de_dx(k+1,j+1,i+1) |
---|
836 | de_dyi(num_gp) = de_dy(k+1,j+1,i+1) |
---|
837 | de_dzi(num_gp) = de_dz(k+1,j+1,i+1) |
---|
838 | ENDIF |
---|
839 | ! |
---|
840 | !-- If all gridpoints are situated outside of a building, then the |
---|
841 | !-- ordinary interpolation scheme can be used. |
---|
842 | IF ( num_gp == 8 ) THEN |
---|
843 | |
---|
844 | x = particles(n)%x - i * dx |
---|
845 | y = particles(n)%y - j * dy |
---|
846 | aa = x**2 + y**2 |
---|
847 | bb = ( dx - x )**2 + y**2 |
---|
848 | cc = x**2 + ( dy - y )**2 |
---|
849 | dd = ( dx - x )**2 + ( dy - y )**2 |
---|
850 | gg = aa + bb + cc + dd |
---|
851 | |
---|
852 | e_int_l = ( ( gg - aa ) * e(k,j,i) + ( gg - bb ) * e(k,j,i+1) & |
---|
853 | + ( gg - cc ) * e(k,j+1,i) + ( gg - dd ) * e(k,j+1,i+1) & |
---|
854 | ) / ( 3.0_wp * gg ) |
---|
855 | |
---|
856 | IF ( k == nzt ) THEN |
---|
857 | e_int(n) = e_int_l |
---|
858 | ELSE |
---|
859 | e_int_u = ( ( gg - aa ) * e(k+1,j,i) + & |
---|
860 | ( gg - bb ) * e(k+1,j,i+1) + & |
---|
861 | ( gg - cc ) * e(k+1,j+1,i) + & |
---|
862 | ( gg - dd ) * e(k+1,j+1,i+1) & |
---|
863 | ) / ( 3.0_wp * gg ) |
---|
864 | e_int(n) = e_int_l + ( zv(n) - zu(k) ) / dz * & |
---|
865 | ( e_int_u - e_int_l ) |
---|
866 | ENDIF |
---|
867 | ! |
---|
868 | !-- Needed to avoid NaN particle velocities (this might not be |
---|
869 | !-- required any more) |
---|
870 | IF ( e_int(n) <= 0.0_wp ) THEN |
---|
871 | e_int(n) = 1.0E-20_wp |
---|
872 | ENDIF |
---|
873 | ! |
---|
874 | !-- Interpolate the TKE gradient along x (adopt incides i,j,k |
---|
875 | !-- and all position variables from above (TKE)) |
---|
876 | de_dx_int_l = ( ( gg - aa ) * de_dx(k,j,i) + & |
---|
877 | ( gg - bb ) * de_dx(k,j,i+1) + & |
---|
878 | ( gg - cc ) * de_dx(k,j+1,i) + & |
---|
879 | ( gg - dd ) * de_dx(k,j+1,i+1) & |
---|
880 | ) / ( 3.0_wp * gg ) |
---|
881 | |
---|
882 | IF ( ( k == nzt ) .OR. ( k == nzb ) ) THEN |
---|
883 | de_dx_int(n) = de_dx_int_l |
---|
884 | ELSE |
---|
885 | de_dx_int_u = ( ( gg - aa ) * de_dx(k+1,j,i) + & |
---|
886 | ( gg - bb ) * de_dx(k+1,j,i+1) + & |
---|
887 | ( gg - cc ) * de_dx(k+1,j+1,i) + & |
---|
888 | ( gg - dd ) * de_dx(k+1,j+1,i+1) & |
---|
889 | ) / ( 3.0_wp * gg ) |
---|
890 | de_dx_int(n) = de_dx_int_l + ( zv(n) - zu(k) ) / & |
---|
891 | dz * ( de_dx_int_u - de_dx_int_l ) |
---|
892 | ENDIF |
---|
893 | |
---|
894 | ! |
---|
895 | !-- Interpolate the TKE gradient along y |
---|
896 | de_dy_int_l = ( ( gg - aa ) * de_dy(k,j,i) + & |
---|
897 | ( gg - bb ) * de_dy(k,j,i+1) + & |
---|
898 | ( gg - cc ) * de_dy(k,j+1,i) + & |
---|
899 | ( gg - dd ) * de_dy(k,j+1,i+1) & |
---|
900 | ) / ( 3.0_wp * gg ) |
---|
901 | IF ( ( k+1 == nzt+1 ) .OR. ( k == nzb ) ) THEN |
---|
902 | de_dy_int(n) = de_dy_int_l |
---|
903 | ELSE |
---|
904 | de_dy_int_u = ( ( gg - aa ) * de_dy(k+1,j,i) + & |
---|
905 | ( gg - bb ) * de_dy(k+1,j,i+1) + & |
---|
906 | ( gg - cc ) * de_dy(k+1,j+1,i) + & |
---|
907 | ( gg - dd ) * de_dy(k+1,j+1,i+1) & |
---|
908 | ) / ( 3.0_wp * gg ) |
---|
909 | de_dy_int(n) = de_dy_int_l + ( zv(n) - zu(k) ) / & |
---|
910 | dz * ( de_dy_int_u - de_dy_int_l ) |
---|
911 | ENDIF |
---|
912 | |
---|
913 | ! |
---|
914 | !-- Interpolate the TKE gradient along z |
---|
915 | IF ( zv(n) < 0.5_wp * dz ) THEN |
---|
916 | de_dz_int(n) = 0.0_wp |
---|
917 | ELSE |
---|
918 | de_dz_int_l = ( ( gg - aa ) * de_dz(k,j,i) + & |
---|
919 | ( gg - bb ) * de_dz(k,j,i+1) + & |
---|
920 | ( gg - cc ) * de_dz(k,j+1,i) + & |
---|
921 | ( gg - dd ) * de_dz(k,j+1,i+1) & |
---|
922 | ) / ( 3.0_wp * gg ) |
---|
923 | |
---|
924 | IF ( ( k+1 == nzt+1 ) .OR. ( k == nzb ) ) THEN |
---|
925 | de_dz_int(n) = de_dz_int_l |
---|
926 | ELSE |
---|
927 | de_dz_int_u = ( ( gg - aa ) * de_dz(k+1,j,i) + & |
---|
928 | ( gg - bb ) * de_dz(k+1,j,i+1) + & |
---|
929 | ( gg - cc ) * de_dz(k+1,j+1,i) + & |
---|
930 | ( gg - dd ) * de_dz(k+1,j+1,i+1) & |
---|
931 | ) / ( 3.0_wp * gg ) |
---|
932 | de_dz_int(n) = de_dz_int_l + ( zv(n) - zu(k) ) /& |
---|
933 | dz * ( de_dz_int_u - de_dz_int_l ) |
---|
934 | ENDIF |
---|
935 | ENDIF |
---|
936 | |
---|
937 | ! |
---|
938 | !-- Interpolate the dissipation of TKE |
---|
939 | diss_int_l = ( ( gg - aa ) * diss(k,j,i) + & |
---|
940 | ( gg - bb ) * diss(k,j,i+1) + & |
---|
941 | ( gg - cc ) * diss(k,j+1,i) + & |
---|
942 | ( gg - dd ) * diss(k,j+1,i+1) & |
---|
943 | ) / ( 3.0_wp * gg ) |
---|
944 | |
---|
945 | IF ( k == nzt ) THEN |
---|
946 | diss_int(n) = diss_int_l |
---|
947 | ELSE |
---|
948 | diss_int_u = ( ( gg - aa ) * diss(k+1,j,i) + & |
---|
949 | ( gg - bb ) * diss(k+1,j,i+1) + & |
---|
950 | ( gg - cc ) * diss(k+1,j+1,i) + & |
---|
951 | ( gg - dd ) * diss(k+1,j+1,i+1) & |
---|
952 | ) / ( 3.0_wp * gg ) |
---|
953 | diss_int(n) = diss_int_l + ( zv(n) - zu(k) ) / dz *& |
---|
954 | ( diss_int_u - diss_int_l ) |
---|
955 | ENDIF |
---|
956 | ! |
---|
957 | !-- Set flag for stochastic equation. |
---|
958 | term_1_2(n) = 1.0_wp |
---|
959 | |
---|
960 | ELSE |
---|
961 | |
---|
962 | ! |
---|
963 | !-- If wall between gridpoint 1 and gridpoint 5, then |
---|
964 | !-- Neumann boundary condition has to be applied |
---|
965 | IF ( gp_outside_of_building(1) == 1 .AND. & |
---|
966 | gp_outside_of_building(5) == 0 ) THEN |
---|
967 | num_gp = num_gp + 1 |
---|
968 | location(num_gp,1) = i * dx + 0.5_wp * dx |
---|
969 | location(num_gp,2) = j * dy |
---|
970 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
971 | ei(num_gp) = e(k,j,i) |
---|
972 | dissi(num_gp) = diss(k,j,i) |
---|
973 | de_dxi(num_gp) = 0.0_wp |
---|
974 | de_dyi(num_gp) = de_dy(k,j,i) |
---|
975 | de_dzi(num_gp) = de_dz(k,j,i) |
---|
976 | ENDIF |
---|
977 | |
---|
978 | IF ( gp_outside_of_building(5) == 1 .AND. & |
---|
979 | gp_outside_of_building(1) == 0 ) THEN |
---|
980 | num_gp = num_gp + 1 |
---|
981 | location(num_gp,1) = i * dx + 0.5_wp * dx |
---|
982 | location(num_gp,2) = j * dy |
---|
983 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
984 | ei(num_gp) = e(k,j,i+1) |
---|
985 | dissi(num_gp) = diss(k,j,i+1) |
---|
986 | de_dxi(num_gp) = 0.0_wp |
---|
987 | de_dyi(num_gp) = de_dy(k,j,i+1) |
---|
988 | de_dzi(num_gp) = de_dz(k,j,i+1) |
---|
989 | ENDIF |
---|
990 | |
---|
991 | ! |
---|
992 | !-- If wall between gridpoint 5 and gridpoint 6, then |
---|
993 | !-- then Neumann boundary condition has to be applied |
---|
994 | IF ( gp_outside_of_building(5) == 1 .AND. & |
---|
995 | gp_outside_of_building(6) == 0 ) THEN |
---|
996 | num_gp = num_gp + 1 |
---|
997 | location(num_gp,1) = (i+1) * dx |
---|
998 | location(num_gp,2) = j * dy + 0.5_wp * dy |
---|
999 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
1000 | ei(num_gp) = e(k,j,i+1) |
---|
1001 | dissi(num_gp) = diss(k,j,i+1) |
---|
1002 | de_dxi(num_gp) = de_dx(k,j,i+1) |
---|
1003 | de_dyi(num_gp) = 0.0_wp |
---|
1004 | de_dzi(num_gp) = de_dz(k,j,i+1) |
---|
1005 | ENDIF |
---|
1006 | |
---|
1007 | IF ( gp_outside_of_building(6) == 1 .AND. & |
---|
1008 | gp_outside_of_building(5) == 0 ) THEN |
---|
1009 | num_gp = num_gp + 1 |
---|
1010 | location(num_gp,1) = (i+1) * dx |
---|
1011 | location(num_gp,2) = j * dy + 0.5_wp * dy |
---|
1012 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
1013 | ei(num_gp) = e(k,j+1,i+1) |
---|
1014 | dissi(num_gp) = diss(k,j+1,i+1) |
---|
1015 | de_dxi(num_gp) = de_dx(k,j+1,i+1) |
---|
1016 | de_dyi(num_gp) = 0.0_wp |
---|
1017 | de_dzi(num_gp) = de_dz(k,j+1,i+1) |
---|
1018 | ENDIF |
---|
1019 | |
---|
1020 | ! |
---|
1021 | !-- If wall between gridpoint 2 and gridpoint 6, then |
---|
1022 | !-- Neumann boundary condition has to be applied |
---|
1023 | IF ( gp_outside_of_building(2) == 1 .AND. & |
---|
1024 | gp_outside_of_building(6) == 0 ) THEN |
---|
1025 | num_gp = num_gp + 1 |
---|
1026 | location(num_gp,1) = i * dx + 0.5_wp * dx |
---|
1027 | location(num_gp,2) = (j+1) * dy |
---|
1028 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
1029 | ei(num_gp) = e(k,j+1,i) |
---|
1030 | dissi(num_gp) = diss(k,j+1,i) |
---|
1031 | de_dxi(num_gp) = 0.0_wp |
---|
1032 | de_dyi(num_gp) = de_dy(k,j+1,i) |
---|
1033 | de_dzi(num_gp) = de_dz(k,j+1,i) |
---|
1034 | ENDIF |
---|
1035 | |
---|
1036 | IF ( gp_outside_of_building(6) == 1 .AND. & |
---|
1037 | gp_outside_of_building(2) == 0 ) THEN |
---|
1038 | num_gp = num_gp + 1 |
---|
1039 | location(num_gp,1) = i * dx + 0.5_wp * dx |
---|
1040 | location(num_gp,2) = (j+1) * dy |
---|
1041 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
1042 | ei(num_gp) = e(k,j+1,i+1) |
---|
1043 | dissi(num_gp) = diss(k,j+1,i+1) |
---|
1044 | de_dxi(num_gp) = 0.0_wp |
---|
1045 | de_dyi(num_gp) = de_dy(k,j+1,i+1) |
---|
1046 | de_dzi(num_gp) = de_dz(k,j+1,i+1) |
---|
1047 | ENDIF |
---|
1048 | |
---|
1049 | ! |
---|
1050 | !-- If wall between gridpoint 1 and gridpoint 2, then |
---|
1051 | !-- Neumann boundary condition has to be applied |
---|
1052 | IF ( gp_outside_of_building(1) == 1 .AND. & |
---|
1053 | gp_outside_of_building(2) == 0 ) THEN |
---|
1054 | num_gp = num_gp + 1 |
---|
1055 | location(num_gp,1) = i * dx |
---|
1056 | location(num_gp,2) = j * dy + 0.5_wp * dy |
---|
1057 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
1058 | ei(num_gp) = e(k,j,i) |
---|
1059 | dissi(num_gp) = diss(k,j,i) |
---|
1060 | de_dxi(num_gp) = de_dx(k,j,i) |
---|
1061 | de_dyi(num_gp) = 0.0_wp |
---|
1062 | de_dzi(num_gp) = de_dz(k,j,i) |
---|
1063 | ENDIF |
---|
1064 | |
---|
1065 | IF ( gp_outside_of_building(2) == 1 .AND. & |
---|
1066 | gp_outside_of_building(1) == 0 ) THEN |
---|
1067 | num_gp = num_gp + 1 |
---|
1068 | location(num_gp,1) = i * dx |
---|
1069 | location(num_gp,2) = j * dy + 0.5_wp * dy |
---|
1070 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
1071 | ei(num_gp) = e(k,j+1,i) |
---|
1072 | dissi(num_gp) = diss(k,j+1,i) |
---|
1073 | de_dxi(num_gp) = de_dx(k,j+1,i) |
---|
1074 | de_dyi(num_gp) = 0.0_wp |
---|
1075 | de_dzi(num_gp) = de_dz(k,j+1,i) |
---|
1076 | ENDIF |
---|
1077 | |
---|
1078 | ! |
---|
1079 | !-- If wall between gridpoint 3 and gridpoint 7, then |
---|
1080 | !-- Neumann boundary condition has to be applied |
---|
1081 | IF ( gp_outside_of_building(3) == 1 .AND. & |
---|
1082 | gp_outside_of_building(7) == 0 ) THEN |
---|
1083 | num_gp = num_gp + 1 |
---|
1084 | location(num_gp,1) = i * dx + 0.5_wp * dx |
---|
1085 | location(num_gp,2) = j * dy |
---|
1086 | location(num_gp,3) = k * dz + 0.5_wp * dz |
---|
1087 | ei(num_gp) = e(k+1,j,i) |
---|
1088 | dissi(num_gp) = diss(k+1,j,i) |
---|
1089 | de_dxi(num_gp) = 0.0_wp |
---|
1090 | de_dyi(num_gp) = de_dy(k+1,j,i) |
---|
1091 | de_dzi(num_gp) = de_dz(k+1,j,i) |
---|
1092 | ENDIF |
---|
1093 | |
---|
1094 | IF ( gp_outside_of_building(7) == 1 .AND. & |
---|
1095 | gp_outside_of_building(3) == 0 ) THEN |
---|
1096 | num_gp = num_gp + 1 |
---|
1097 | location(num_gp,1) = i * dx + 0.5_wp * dx |
---|
1098 | location(num_gp,2) = j * dy |
---|
1099 | location(num_gp,3) = k * dz + 0.5_wp * dz |
---|
1100 | ei(num_gp) = e(k+1,j,i+1) |
---|
1101 | dissi(num_gp) = diss(k+1,j,i+1) |
---|
1102 | de_dxi(num_gp) = 0.0_wp |
---|
1103 | de_dyi(num_gp) = de_dy(k+1,j,i+1) |
---|
1104 | de_dzi(num_gp) = de_dz(k+1,j,i+1) |
---|
1105 | ENDIF |
---|
1106 | |
---|
1107 | ! |
---|
1108 | !-- If wall between gridpoint 7 and gridpoint 8, then |
---|
1109 | !-- Neumann boundary condition has to be applied |
---|
1110 | IF ( gp_outside_of_building(7) == 1 .AND. & |
---|
1111 | gp_outside_of_building(8) == 0 ) THEN |
---|
1112 | num_gp = num_gp + 1 |
---|
1113 | location(num_gp,1) = (i+1) * dx |
---|
1114 | location(num_gp,2) = j * dy + 0.5_wp * dy |
---|
1115 | location(num_gp,3) = k * dz + 0.5_wp * dz |
---|
1116 | ei(num_gp) = e(k+1,j,i+1) |
---|
1117 | dissi(num_gp) = diss(k+1,j,i+1) |
---|
1118 | de_dxi(num_gp) = de_dx(k+1,j,i+1) |
---|
1119 | de_dyi(num_gp) = 0.0_wp |
---|
1120 | de_dzi(num_gp) = de_dz(k+1,j,i+1) |
---|
1121 | ENDIF |
---|
1122 | |
---|
1123 | IF ( gp_outside_of_building(8) == 1 .AND. & |
---|
1124 | gp_outside_of_building(7) == 0 ) THEN |
---|
1125 | num_gp = num_gp + 1 |
---|
1126 | location(num_gp,1) = (i+1) * dx |
---|
1127 | location(num_gp,2) = j * dy + 0.5_wp * dy |
---|
1128 | location(num_gp,3) = k * dz + 0.5_wp * dz |
---|
1129 | ei(num_gp) = e(k+1,j+1,i+1) |
---|
1130 | dissi(num_gp) = diss(k+1,j+1,i+1) |
---|
1131 | de_dxi(num_gp) = de_dx(k+1,j+1,i+1) |
---|
1132 | de_dyi(num_gp) = 0.0_wp |
---|
1133 | de_dzi(num_gp) = de_dz(k+1,j+1,i+1) |
---|
1134 | ENDIF |
---|
1135 | |
---|
1136 | ! |
---|
1137 | !-- If wall between gridpoint 4 and gridpoint 8, then |
---|
1138 | !-- Neumann boundary condition has to be applied |
---|
1139 | IF ( gp_outside_of_building(4) == 1 .AND. & |
---|
1140 | gp_outside_of_building(8) == 0 ) THEN |
---|
1141 | num_gp = num_gp + 1 |
---|
1142 | location(num_gp,1) = i * dx + 0.5_wp * dx |
---|
1143 | location(num_gp,2) = (j+1) * dy |
---|
1144 | location(num_gp,3) = k * dz + 0.5_wp * dz |
---|
1145 | ei(num_gp) = e(k+1,j+1,i) |
---|
1146 | dissi(num_gp) = diss(k+1,j+1,i) |
---|
1147 | de_dxi(num_gp) = 0.0_wp |
---|
1148 | de_dyi(num_gp) = de_dy(k+1,j+1,i) |
---|
1149 | de_dzi(num_gp) = de_dz(k+1,j+1,i) |
---|
1150 | ENDIF |
---|
1151 | |
---|
1152 | IF ( gp_outside_of_building(8) == 1 .AND. & |
---|
1153 | gp_outside_of_building(4) == 0 ) THEN |
---|
1154 | num_gp = num_gp + 1 |
---|
1155 | location(num_gp,1) = i * dx + 0.5_wp * dx |
---|
1156 | location(num_gp,2) = (j+1) * dy |
---|
1157 | location(num_gp,3) = k * dz + 0.5_wp * dz |
---|
1158 | ei(num_gp) = e(k+1,j+1,i+1) |
---|
1159 | dissi(num_gp) = diss(k+1,j+1,i+1) |
---|
1160 | de_dxi(num_gp) = 0.0_wp |
---|
1161 | de_dyi(num_gp) = de_dy(k+1,j+1,i+1) |
---|
1162 | de_dzi(num_gp) = de_dz(k+1,j+1,i+1) |
---|
1163 | ENDIF |
---|
1164 | |
---|
1165 | ! |
---|
1166 | !-- If wall between gridpoint 3 and gridpoint 4, then |
---|
1167 | !-- Neumann boundary condition has to be applied |
---|
1168 | IF ( gp_outside_of_building(3) == 1 .AND. & |
---|
1169 | gp_outside_of_building(4) == 0 ) THEN |
---|
1170 | num_gp = num_gp + 1 |
---|
1171 | location(num_gp,1) = i * dx |
---|
1172 | location(num_gp,2) = j * dy + 0.5_wp * dy |
---|
1173 | location(num_gp,3) = k * dz + 0.5_wp * dz |
---|
1174 | ei(num_gp) = e(k+1,j,i) |
---|
1175 | dissi(num_gp) = diss(k+1,j,i) |
---|
1176 | de_dxi(num_gp) = de_dx(k+1,j,i) |
---|
1177 | de_dyi(num_gp) = 0.0_wp |
---|
1178 | de_dzi(num_gp) = de_dz(k+1,j,i) |
---|
1179 | ENDIF |
---|
1180 | |
---|
1181 | IF ( gp_outside_of_building(4) == 1 .AND. & |
---|
1182 | gp_outside_of_building(3) == 0 ) THEN |
---|
1183 | num_gp = num_gp + 1 |
---|
1184 | location(num_gp,1) = i * dx |
---|
1185 | location(num_gp,2) = j * dy + 0.5_wp * dy |
---|
1186 | location(num_gp,3) = k * dz + 0.5_wp * dz |
---|
1187 | ei(num_gp) = e(k+1,j+1,i) |
---|
1188 | dissi(num_gp) = diss(k+1,j+1,i) |
---|
1189 | de_dxi(num_gp) = de_dx(k+1,j+1,i) |
---|
1190 | de_dyi(num_gp) = 0.0_wp |
---|
1191 | de_dzi(num_gp) = de_dz(k+1,j+1,i) |
---|
1192 | ENDIF |
---|
1193 | |
---|
1194 | ! |
---|
1195 | !-- If wall between gridpoint 1 and gridpoint 3, then |
---|
1196 | !-- Neumann boundary condition has to be applied |
---|
1197 | !-- (only one case as only building beneath is possible) |
---|
1198 | IF ( gp_outside_of_building(1) == 0 .AND. & |
---|
1199 | gp_outside_of_building(3) == 1 ) THEN |
---|
1200 | num_gp = num_gp + 1 |
---|
1201 | location(num_gp,1) = i * dx |
---|
1202 | location(num_gp,2) = j * dy |
---|
1203 | location(num_gp,3) = k * dz |
---|
1204 | ei(num_gp) = e(k+1,j,i) |
---|
1205 | dissi(num_gp) = diss(k+1,j,i) |
---|
1206 | de_dxi(num_gp) = de_dx(k+1,j,i) |
---|
1207 | de_dyi(num_gp) = de_dy(k+1,j,i) |
---|
1208 | de_dzi(num_gp) = 0.0_wp |
---|
1209 | ENDIF |
---|
1210 | |
---|
1211 | ! |
---|
1212 | !-- If wall between gridpoint 5 and gridpoint 7, then |
---|
1213 | !-- Neumann boundary condition has to be applied |
---|
1214 | !-- (only one case as only building beneath is possible) |
---|
1215 | IF ( gp_outside_of_building(5) == 0 .AND. & |
---|
1216 | gp_outside_of_building(7) == 1 ) THEN |
---|
1217 | num_gp = num_gp + 1 |
---|
1218 | location(num_gp,1) = (i+1) * dx |
---|
1219 | location(num_gp,2) = j * dy |
---|
1220 | location(num_gp,3) = k * dz |
---|
1221 | ei(num_gp) = e(k+1,j,i+1) |
---|
1222 | dissi(num_gp) = diss(k+1,j,i+1) |
---|
1223 | de_dxi(num_gp) = de_dx(k+1,j,i+1) |
---|
1224 | de_dyi(num_gp) = de_dy(k+1,j,i+1) |
---|
1225 | de_dzi(num_gp) = 0.0_wp |
---|
1226 | ENDIF |
---|
1227 | |
---|
1228 | ! |
---|
1229 | !-- If wall between gridpoint 2 and gridpoint 4, then |
---|
1230 | !-- Neumann boundary condition has to be applied |
---|
1231 | !-- (only one case as only building beneath is possible) |
---|
1232 | IF ( gp_outside_of_building(2) == 0 .AND. & |
---|
1233 | gp_outside_of_building(4) == 1 ) THEN |
---|
1234 | num_gp = num_gp + 1 |
---|
1235 | location(num_gp,1) = i * dx |
---|
1236 | location(num_gp,2) = (j+1) * dy |
---|
1237 | location(num_gp,3) = k * dz |
---|
1238 | ei(num_gp) = e(k+1,j+1,i) |
---|
1239 | dissi(num_gp) = diss(k+1,j+1,i) |
---|
1240 | de_dxi(num_gp) = de_dx(k+1,j+1,i) |
---|
1241 | de_dyi(num_gp) = de_dy(k+1,j+1,i) |
---|
1242 | de_dzi(num_gp) = 0.0_wp |
---|
1243 | ENDIF |
---|
1244 | |
---|
1245 | ! |
---|
1246 | !-- If wall between gridpoint 6 and gridpoint 8, then |
---|
1247 | !-- Neumann boundary condition has to be applied |
---|
1248 | !-- (only one case as only building beneath is possible) |
---|
1249 | IF ( gp_outside_of_building(6) == 0 .AND. & |
---|
1250 | gp_outside_of_building(8) == 1 ) THEN |
---|
1251 | num_gp = num_gp + 1 |
---|
1252 | location(num_gp,1) = (i+1) * dx |
---|
1253 | location(num_gp,2) = (j+1) * dy |
---|
1254 | location(num_gp,3) = k * dz |
---|
1255 | ei(num_gp) = e(k+1,j+1,i+1) |
---|
1256 | dissi(num_gp) = diss(k+1,j+1,i+1) |
---|
1257 | de_dxi(num_gp) = de_dx(k+1,j+1,i+1) |
---|
1258 | de_dyi(num_gp) = de_dy(k+1,j+1,i+1) |
---|
1259 | de_dzi(num_gp) = 0.0_wp |
---|
1260 | ENDIF |
---|
1261 | |
---|
1262 | ! |
---|
1263 | !-- Carry out the interpolation |
---|
1264 | IF ( num_gp == 1 ) THEN |
---|
1265 | ! |
---|
1266 | !-- If only one of the gridpoints is situated outside of the |
---|
1267 | !-- building, it follows that the values at the particle |
---|
1268 | !-- location are the same as the gridpoint values |
---|
1269 | e_int(n) = ei(num_gp) |
---|
1270 | diss_int(n) = dissi(num_gp) |
---|
1271 | de_dx_int(n) = de_dxi(num_gp) |
---|
1272 | de_dy_int(n) = de_dyi(num_gp) |
---|
1273 | de_dz_int(n) = de_dzi(num_gp) |
---|
1274 | ! |
---|
1275 | !-- Set flag for stochastic equation which disables calculation |
---|
1276 | !-- of drift and memory term near topography. |
---|
1277 | term_1_2(n) = 0.0_wp |
---|
1278 | ELSE IF ( num_gp > 1 ) THEN |
---|
1279 | |
---|
1280 | d_sum = 0.0_wp |
---|
1281 | ! |
---|
1282 | !-- Evaluation of the distances between the gridpoints |
---|
1283 | !-- contributing to the interpolated values, and the particle |
---|
1284 | !-- location |
---|
1285 | DO agp = 1, num_gp |
---|
1286 | d_gp_pl(agp) = ( particles(n)%x-location(agp,1) )**2 & |
---|
1287 | + ( particles(n)%y-location(agp,2) )**2 & |
---|
1288 | + ( zv(n)-location(agp,3) )**2 |
---|
1289 | d_sum = d_sum + d_gp_pl(agp) |
---|
1290 | ENDDO |
---|
1291 | |
---|
1292 | ! |
---|
1293 | !-- Finally the interpolation can be carried out |
---|
1294 | e_int(n) = 0.0_wp |
---|
1295 | diss_int(n) = 0.0_wp |
---|
1296 | de_dx_int(n) = 0.0_wp |
---|
1297 | de_dy_int(n) = 0.0_wp |
---|
1298 | de_dz_int(n) = 0.0_wp |
---|
1299 | DO agp = 1, num_gp |
---|
1300 | e_int(n) = e_int(n) + ( d_sum - d_gp_pl(agp) ) * & |
---|
1301 | ei(agp) / ( (num_gp-1) * d_sum ) |
---|
1302 | diss_int(n) = diss_int(n) + ( d_sum - d_gp_pl(agp) ) * & |
---|
1303 | dissi(agp) / ( (num_gp-1) * d_sum ) |
---|
1304 | de_dx_int(n) = de_dx_int(n) + ( d_sum - d_gp_pl(agp) ) * & |
---|
1305 | de_dxi(agp) / ( (num_gp-1) * d_sum ) |
---|
1306 | de_dy_int(n) = de_dy_int(n) + ( d_sum - d_gp_pl(agp) ) * & |
---|
1307 | de_dyi(agp) / ( (num_gp-1) * d_sum ) |
---|
1308 | de_dz_int(n) = de_dz_int(n) + ( d_sum - d_gp_pl(agp) ) * & |
---|
1309 | de_dzi(agp) / ( (num_gp-1) * d_sum ) |
---|
1310 | ENDDO |
---|
1311 | |
---|
1312 | ENDIF |
---|
1313 | e_int(n) = MAX( 1E-20_wp, e_int(n) ) |
---|
1314 | diss_int(n) = MAX( 1E-20_wp, diss_int(n) ) |
---|
1315 | de_dx_int(n) = MAX( 1E-20_wp, de_dx_int(n) ) |
---|
1316 | de_dy_int(n) = MAX( 1E-20_wp, de_dy_int(n) ) |
---|
1317 | de_dz_int(n) = MAX( 1E-20_wp, de_dz_int(n) ) |
---|
1318 | ! |
---|
1319 | !-- Set flag for stochastic equation which disables calculation |
---|
1320 | !-- of drift and memory term near topography. |
---|
1321 | term_1_2(n) = 0.0_wp |
---|
1322 | ENDIF |
---|
1323 | ENDDO |
---|
1324 | ENDIF |
---|
1325 | |
---|
1326 | DO nb = 0,7 |
---|
1327 | i = ip + block_offset(nb)%i_off |
---|
1328 | j = jp + block_offset(nb)%j_off |
---|
1329 | k = kp + block_offset(nb)%k_off |
---|
1330 | |
---|
1331 | DO n = start_index(nb), end_index(nb) |
---|
1332 | ! |
---|
1333 | !-- Vertical interpolation of the horizontally averaged SGS TKE and |
---|
1334 | !-- resolved-scale velocity variances and use the interpolated values |
---|
1335 | !-- to calculate the coefficient fs, which is a measure of the ratio |
---|
1336 | !-- of the subgrid-scale turbulent kinetic energy to the total amount |
---|
1337 | !-- of turbulent kinetic energy. |
---|
1338 | IF ( k == 0 ) THEN |
---|
1339 | e_mean_int = hom(0,1,8,0) |
---|
1340 | ELSE |
---|
1341 | e_mean_int = hom(k,1,8,0) + & |
---|
1342 | ( hom(k+1,1,8,0) - hom(k,1,8,0) ) / & |
---|
1343 | ( zu(k+1) - zu(k) ) * & |
---|
1344 | ( zv(n) - zu(k) ) |
---|
1345 | ENDIF |
---|
1346 | |
---|
1347 | kw = kp - 1 |
---|
1348 | |
---|
1349 | IF ( k == 0 ) THEN |
---|
1350 | aa = hom(k+1,1,30,0) * ( zv(n) / & |
---|
1351 | ( 0.5_wp * ( zu(k+1) - zu(k) ) ) ) |
---|
1352 | bb = hom(k+1,1,31,0) * ( zv(n) / & |
---|
1353 | ( 0.5_wp * ( zu(k+1) - zu(k) ) ) ) |
---|
1354 | cc = hom(kw+1,1,32,0) * ( zv(n) / & |
---|
1355 | ( 1.0_wp * ( zw(kw+1) - zw(kw) ) ) ) |
---|
1356 | ELSE |
---|
1357 | aa = hom(k,1,30,0) + ( hom(k+1,1,30,0) - hom(k,1,30,0) ) * & |
---|
1358 | ( ( zv(n) - zu(k) ) / ( zu(k+1) - zu(k) ) ) |
---|
1359 | bb = hom(k,1,31,0) + ( hom(k+1,1,31,0) - hom(k,1,31,0) ) * & |
---|
1360 | ( ( zv(n) - zu(k) ) / ( zu(k+1) - zu(k) ) ) |
---|
1361 | cc = hom(kw,1,32,0) + ( hom(kw+1,1,32,0)-hom(kw,1,32,0) ) * & |
---|
1362 | ( ( zv(n) - zw(kw) ) / ( zw(kw+1)-zw(kw) ) ) |
---|
1363 | ENDIF |
---|
1364 | |
---|
1365 | vv_int = ( 1.0_wp / 3.0_wp ) * ( aa + bb + cc ) |
---|
1366 | ! |
---|
1367 | !-- Needed to avoid NaN particle velocities. The value of 1.0 is just |
---|
1368 | !-- an educated guess for the given case. |
---|
1369 | IF ( vv_int + ( 2.0_wp / 3.0_wp ) * e_mean_int == 0.0_wp ) THEN |
---|
1370 | fs_int(n) = 1.0_wp |
---|
1371 | ELSE |
---|
1372 | fs_int(n) = ( 2.0_wp / 3.0_wp ) * e_mean_int / & |
---|
1373 | ( vv_int + ( 2.0_wp / 3.0_wp ) * e_mean_int ) |
---|
1374 | ENDIF |
---|
1375 | |
---|
1376 | ENDDO |
---|
1377 | ENDDO |
---|
1378 | |
---|
1379 | DO n = 1, number_of_particles |
---|
1380 | |
---|
1381 | rg(n,1) = random_gauss( iran_part, 5.0_wp ) |
---|
1382 | rg(n,2) = random_gauss( iran_part, 5.0_wp ) |
---|
1383 | rg(n,3) = random_gauss( iran_part, 5.0_wp ) |
---|
1384 | |
---|
1385 | ENDDO |
---|
1386 | |
---|
1387 | DO n = 1, number_of_particles |
---|
1388 | ! |
---|
1389 | !-- Calculate the Lagrangian timescale according to Weil et al. (2004). |
---|
1390 | lagr_timescale = ( 4.0_wp * e_int(n) + 1E-20_wp ) / & |
---|
1391 | ( 3.0_wp * fs_int(n) * c_0 * diss_int(n) + 1E-20_wp ) |
---|
1392 | |
---|
1393 | ! |
---|
1394 | !-- Calculate the next particle timestep. dt_gap is the time needed to |
---|
1395 | !-- complete the current LES timestep. |
---|
1396 | dt_gap = dt_3d - particles(n)%dt_sum |
---|
1397 | dt_particle(n) = MIN( dt_3d, 0.025_wp * lagr_timescale, dt_gap ) |
---|
1398 | |
---|
1399 | ! |
---|
1400 | !-- The particle timestep should not be too small in order to prevent |
---|
1401 | !-- the number of particle timesteps of getting too large |
---|
1402 | IF ( dt_particle(n) < dt_min_part .AND. dt_min_part < dt_gap ) THEN |
---|
1403 | dt_particle(n) = dt_min_part |
---|
1404 | ENDIF |
---|
1405 | |
---|
1406 | ! |
---|
1407 | !-- Calculate the SGS velocity components |
---|
1408 | IF ( particles(n)%age == 0.0_wp ) THEN |
---|
1409 | ! |
---|
1410 | !-- For new particles the SGS components are derived from the SGS |
---|
1411 | !-- TKE. Limit the Gaussian random number to the interval |
---|
1412 | !-- [-5.0*sigma, 5.0*sigma] in order to prevent the SGS velocities |
---|
1413 | !-- from becoming unrealistically large. |
---|
1414 | particles(n)%rvar1 = SQRT( 2.0_wp * sgs_wf_part * e_int(n) + 1E-20_wp ) * & |
---|
1415 | ( rg(n,1) - 1.0_wp ) |
---|
1416 | particles(n)%rvar2 = SQRT( 2.0_wp * sgs_wf_part * e_int(n) + 1E-20_wp ) * & |
---|
1417 | ( rg(n,2) - 1.0_wp ) |
---|
1418 | particles(n)%rvar3 = SQRT( 2.0_wp * sgs_wf_part * e_int(n) + 1E-20_wp ) * & |
---|
1419 | ( rg(n,3) - 1.0_wp ) |
---|
1420 | |
---|
1421 | ELSE |
---|
1422 | ! |
---|
1423 | !-- Restriction of the size of the new timestep: compared to the |
---|
1424 | !-- previous timestep the increase must not exceed 200% |
---|
1425 | |
---|
1426 | dt_particle_m = particles(n)%age - particles(n)%age_m |
---|
1427 | IF ( dt_particle(n) > 2.0_wp * dt_particle_m ) THEN |
---|
1428 | dt_particle(n) = 2.0_wp * dt_particle_m |
---|
1429 | ENDIF |
---|
1430 | |
---|
1431 | ! |
---|
1432 | !-- For old particles the SGS components are correlated with the |
---|
1433 | !-- values from the previous timestep. Random numbers have also to |
---|
1434 | !-- be limited (see above). |
---|
1435 | !-- As negative values for the subgrid TKE are not allowed, the |
---|
1436 | !-- change of the subgrid TKE with time cannot be smaller than |
---|
1437 | !-- -e_int(n)/dt_particle. This value is used as a lower boundary |
---|
1438 | !-- value for the change of TKE |
---|
1439 | |
---|
1440 | de_dt_min = - e_int(n) / dt_particle(n) |
---|
1441 | |
---|
1442 | de_dt = ( e_int(n) - particles(n)%e_m ) / dt_particle_m |
---|
1443 | |
---|
1444 | IF ( de_dt < de_dt_min ) THEN |
---|
1445 | de_dt = de_dt_min |
---|
1446 | ENDIF |
---|
1447 | |
---|
1448 | CALL weil_stochastic_eq(particles(n)%rvar1, fs_int(n), e_int(n), & |
---|
1449 | de_dx_int(n), de_dt, diss_int(n), & |
---|
1450 | dt_particle(n), rg(n,1), term_1_2(n) ) |
---|
1451 | |
---|
1452 | CALL weil_stochastic_eq(particles(n)%rvar2, fs_int(n), e_int(n), & |
---|
1453 | de_dy_int(n), de_dt, diss_int(n), & |
---|
1454 | dt_particle(n), rg(n,2), term_1_2(n) ) |
---|
1455 | |
---|
1456 | CALL weil_stochastic_eq(particles(n)%rvar3, fs_int(n), e_int(n), & |
---|
1457 | de_dz_int(n), de_dt, diss_int(n), & |
---|
1458 | dt_particle(n), rg(n,3), term_1_2(n) ) |
---|
1459 | |
---|
1460 | ENDIF |
---|
1461 | |
---|
1462 | u_int(n) = u_int(n) + particles(n)%rvar1 |
---|
1463 | v_int(n) = v_int(n) + particles(n)%rvar2 |
---|
1464 | w_int(n) = w_int(n) + particles(n)%rvar3 |
---|
1465 | ! |
---|
1466 | !-- Store the SGS TKE of the current timelevel which is needed for |
---|
1467 | !-- for calculating the SGS particle velocities at the next timestep |
---|
1468 | particles(n)%e_m = e_int(n) |
---|
1469 | ENDDO |
---|
1470 | |
---|
1471 | ELSE |
---|
1472 | ! |
---|
1473 | !-- If no SGS velocities are used, only the particle timestep has to |
---|
1474 | !-- be set |
---|
1475 | dt_particle = dt_3d |
---|
1476 | |
---|
1477 | ENDIF |
---|
1478 | ! |
---|
1479 | !-- Store the old age of the particle ( needed to prevent that a |
---|
1480 | !-- particle crosses several PEs during one timestep, and for the |
---|
1481 | !-- evaluation of the subgrid particle velocity fluctuations ) |
---|
1482 | particles(1:number_of_particles)%age_m = particles(1:number_of_particles)%age |
---|
1483 | |
---|
1484 | dens_ratio = particle_groups(particles(1:number_of_particles)%group)%density_ratio |
---|
1485 | |
---|
1486 | IF ( ANY( dens_ratio == 0.0_wp ) ) THEN |
---|
1487 | DO n = 1, number_of_particles |
---|
1488 | |
---|
1489 | ! |
---|
1490 | !-- Particle advection |
---|
1491 | IF ( dens_ratio(n) == 0.0_wp ) THEN |
---|
1492 | ! |
---|
1493 | !-- Pure passive transport (without particle inertia) |
---|
1494 | particles(n)%x = xv(n) + u_int(n) * dt_particle(n) |
---|
1495 | particles(n)%y = yv(n) + v_int(n) * dt_particle(n) |
---|
1496 | particles(n)%z = zv(n) + w_int(n) * dt_particle(n) |
---|
1497 | |
---|
1498 | particles(n)%speed_x = u_int(n) |
---|
1499 | particles(n)%speed_y = v_int(n) |
---|
1500 | particles(n)%speed_z = w_int(n) |
---|
1501 | |
---|
1502 | ELSE |
---|
1503 | ! |
---|
1504 | !-- Transport of particles with inertia |
---|
1505 | particles(n)%x = particles(n)%x + particles(n)%speed_x * & |
---|
1506 | dt_particle(n) |
---|
1507 | particles(n)%y = particles(n)%y + particles(n)%speed_y * & |
---|
1508 | dt_particle(n) |
---|
1509 | particles(n)%z = particles(n)%z + particles(n)%speed_z * & |
---|
1510 | dt_particle(n) |
---|
1511 | |
---|
1512 | ! |
---|
1513 | !-- Update of the particle velocity |
---|
1514 | IF ( cloud_droplets ) THEN |
---|
1515 | ! |
---|
1516 | !-- Terminal velocity is computed for vertical direction (Rogers et |
---|
1517 | !-- al., 1993, J. Appl. Meteorol.) |
---|
1518 | diameter = particles(n)%radius * 2000.0_wp !diameter in mm |
---|
1519 | IF ( diameter <= d0_rog ) THEN |
---|
1520 | w_s = k_cap_rog * diameter * ( 1.0_wp - EXP( -k_low_rog * diameter ) ) |
---|
1521 | ELSE |
---|
1522 | w_s = a_rog - b_rog * EXP( -c_rog * diameter ) |
---|
1523 | ENDIF |
---|
1524 | |
---|
1525 | ! |
---|
1526 | !-- If selected, add random velocities following Soelch and Kaercher |
---|
1527 | !-- (2010, Q. J. R. Meteorol. Soc.) |
---|
1528 | IF ( use_sgs_for_particles ) THEN |
---|
1529 | lagr_timescale = km(kp,jp,ip) / MAX( e(kp,jp,ip), 1.0E-20_wp ) |
---|
1530 | RL = EXP( -1.0_wp * dt_3d / lagr_timescale ) |
---|
1531 | sigma = SQRT( e(kp,jp,ip) ) |
---|
1532 | |
---|
1533 | rg1 = random_gauss( iran_part, 5.0_wp ) - 1.0_wp |
---|
1534 | rg2 = random_gauss( iran_part, 5.0_wp ) - 1.0_wp |
---|
1535 | rg3 = random_gauss( iran_part, 5.0_wp ) - 1.0_wp |
---|
1536 | |
---|
1537 | particles(n)%rvar1 = RL * particles(n)%rvar1 + & |
---|
1538 | SQRT( 1.0_wp - RL**2 ) * sigma * rg1 |
---|
1539 | particles(n)%rvar2 = RL * particles(n)%rvar2 + & |
---|
1540 | SQRT( 1.0_wp - RL**2 ) * sigma * rg2 |
---|
1541 | particles(n)%rvar3 = RL * particles(n)%rvar3 + & |
---|
1542 | SQRT( 1.0_wp - RL**2 ) * sigma * rg3 |
---|
1543 | |
---|
1544 | particles(n)%speed_x = u_int(n) + particles(n)%rvar1 |
---|
1545 | particles(n)%speed_y = v_int(n) + particles(n)%rvar2 |
---|
1546 | particles(n)%speed_z = w_int(n) + particles(n)%rvar3 - w_s |
---|
1547 | ELSE |
---|
1548 | particles(n)%speed_x = u_int(n) |
---|
1549 | particles(n)%speed_y = v_int(n) |
---|
1550 | particles(n)%speed_z = w_int(n) - w_s |
---|
1551 | ENDIF |
---|
1552 | |
---|
1553 | ELSE |
---|
1554 | |
---|
1555 | IF ( use_sgs_for_particles ) THEN |
---|
1556 | exp_arg = particle_groups(particles(n)%group)%exp_arg |
---|
1557 | exp_term = EXP( -exp_arg * dt_particle(n) ) |
---|
1558 | ELSE |
---|
1559 | exp_arg = particle_groups(particles(n)%group)%exp_arg |
---|
1560 | exp_term = particle_groups(particles(n)%group)%exp_term |
---|
1561 | ENDIF |
---|
1562 | particles(n)%speed_x = particles(n)%speed_x * exp_term + & |
---|
1563 | u_int(n) * ( 1.0_wp - exp_term ) |
---|
1564 | particles(n)%speed_y = particles(n)%speed_y * exp_term + & |
---|
1565 | v_int(n) * ( 1.0_wp - exp_term ) |
---|
1566 | particles(n)%speed_z = particles(n)%speed_z * exp_term + & |
---|
1567 | ( w_int(n) - ( 1.0_wp - dens_ratio(n) ) * & |
---|
1568 | g / exp_arg ) * ( 1.0_wp - exp_term ) |
---|
1569 | ENDIF |
---|
1570 | |
---|
1571 | ENDIF |
---|
1572 | |
---|
1573 | ENDDO |
---|
1574 | |
---|
1575 | ELSE |
---|
1576 | |
---|
1577 | DO n = 1, number_of_particles |
---|
1578 | |
---|
1579 | !-- Transport of particles with inertia |
---|
1580 | particles(n)%x = xv(n) + particles(n)%speed_x * dt_particle(n) |
---|
1581 | particles(n)%y = yv(n) + particles(n)%speed_y * dt_particle(n) |
---|
1582 | particles(n)%z = zv(n) + particles(n)%speed_z * dt_particle(n) |
---|
1583 | ! |
---|
1584 | !-- Update of the particle velocity |
---|
1585 | IF ( cloud_droplets ) THEN |
---|
1586 | ! |
---|
1587 | !-- Terminal velocity is computed for vertical direction (Rogers et al., |
---|
1588 | !-- 1993, J. Appl. Meteorol.) |
---|
1589 | diameter = particles(n)%radius * 2000.0_wp !diameter in mm |
---|
1590 | IF ( diameter <= d0_rog ) THEN |
---|
1591 | w_s = k_cap_rog * diameter * ( 1.0_wp - EXP( -k_low_rog * diameter ) ) |
---|
1592 | ELSE |
---|
1593 | w_s = a_rog - b_rog * EXP( -c_rog * diameter ) |
---|
1594 | ENDIF |
---|
1595 | |
---|
1596 | ! |
---|
1597 | !-- If selected, add random velocities following Soelch and Kaercher |
---|
1598 | !-- (2010, Q. J. R. Meteorol. Soc.) |
---|
1599 | IF ( use_sgs_for_particles ) THEN |
---|
1600 | lagr_timescale = km(kp,jp,ip) / MAX( e(kp,jp,ip), 1.0E-20_wp ) |
---|
1601 | RL = EXP( -1.0_wp * dt_3d / lagr_timescale ) |
---|
1602 | sigma = SQRT( e(kp,jp,ip) ) |
---|
1603 | |
---|
1604 | rg1 = random_gauss( iran_part, 5.0_wp ) - 1.0_wp |
---|
1605 | rg2 = random_gauss( iran_part, 5.0_wp ) - 1.0_wp |
---|
1606 | rg3 = random_gauss( iran_part, 5.0_wp ) - 1.0_wp |
---|
1607 | |
---|
1608 | particles(n)%rvar1 = RL * particles(n)%rvar1 + & |
---|
1609 | SQRT( 1.0_wp - RL**2 ) * sigma * rg1 |
---|
1610 | particles(n)%rvar2 = RL * particles(n)%rvar2 + & |
---|
1611 | SQRT( 1.0_wp - RL**2 ) * sigma * rg2 |
---|
1612 | particles(n)%rvar3 = RL * particles(n)%rvar3 + & |
---|
1613 | SQRT( 1.0_wp - RL**2 ) * sigma * rg3 |
---|
1614 | |
---|
1615 | particles(n)%speed_x = u_int(n) + particles(n)%rvar1 |
---|
1616 | particles(n)%speed_y = v_int(n) + particles(n)%rvar2 |
---|
1617 | particles(n)%speed_z = w_int(n) + particles(n)%rvar3 - w_s |
---|
1618 | ELSE |
---|
1619 | particles(n)%speed_x = u_int(n) |
---|
1620 | particles(n)%speed_y = v_int(n) |
---|
1621 | particles(n)%speed_z = w_int(n) - w_s |
---|
1622 | ENDIF |
---|
1623 | |
---|
1624 | ELSE |
---|
1625 | |
---|
1626 | IF ( use_sgs_for_particles ) THEN |
---|
1627 | exp_arg = particle_groups(particles(n)%group)%exp_arg |
---|
1628 | exp_term = EXP( -exp_arg * dt_particle(n) ) |
---|
1629 | ELSE |
---|
1630 | exp_arg = particle_groups(particles(n)%group)%exp_arg |
---|
1631 | exp_term = particle_groups(particles(n)%group)%exp_term |
---|
1632 | ENDIF |
---|
1633 | particles(n)%speed_x = particles(n)%speed_x * exp_term + & |
---|
1634 | u_int(n) * ( 1.0_wp - exp_term ) |
---|
1635 | particles(n)%speed_y = particles(n)%speed_y * exp_term + & |
---|
1636 | v_int(n) * ( 1.0_wp - exp_term ) |
---|
1637 | particles(n)%speed_z = particles(n)%speed_z * exp_term + & |
---|
1638 | ( w_int(n) - ( 1.0_wp - dens_ratio(n) ) * g / & |
---|
1639 | exp_arg ) * ( 1.0_wp - exp_term ) |
---|
1640 | ENDIF |
---|
1641 | |
---|
1642 | ENDDO |
---|
1643 | |
---|
1644 | ENDIF |
---|
1645 | |
---|
1646 | DO n = 1, number_of_particles |
---|
1647 | ! |
---|
1648 | !-- Increment the particle age and the total time that the particle |
---|
1649 | !-- has advanced within the particle timestep procedure |
---|
1650 | particles(n)%age = particles(n)%age + dt_particle(n) |
---|
1651 | particles(n)%dt_sum = particles(n)%dt_sum + dt_particle(n) |
---|
1652 | |
---|
1653 | ! |
---|
1654 | !-- Check whether there is still a particle that has not yet completed |
---|
1655 | !-- the total LES timestep |
---|
1656 | IF ( ( dt_3d - particles(n)%dt_sum ) > 1E-8_wp ) THEN |
---|
1657 | dt_3d_reached_l = .FALSE. |
---|
1658 | ENDIF |
---|
1659 | |
---|
1660 | ENDDO |
---|
1661 | |
---|
1662 | CALL cpu_log( log_point_s(44), 'lpm_advec', 'pause' ) |
---|
1663 | |
---|
1664 | |
---|
1665 | END SUBROUTINE lpm_advec |
---|
1666 | |
---|
1667 | ! Description: |
---|
1668 | ! ------------ |
---|
1669 | !> Calculation of subgrid-scale particle speed using the stochastic model |
---|
1670 | !> of Weil et al. (2004, JAS, 61, 2877-2887). |
---|
1671 | !------------------------------------------------------------------------------! |
---|
1672 | SUBROUTINE weil_stochastic_eq( v_sgs, fs_n, e_n, dedxi_n, dedt_n, diss_n, & |
---|
1673 | dt_n, rg_n, fac ) |
---|
1674 | |
---|
1675 | USE kinds |
---|
1676 | |
---|
1677 | USE particle_attributes, & |
---|
1678 | ONLY: c_0, sgs_wf_part |
---|
1679 | |
---|
1680 | IMPLICIT NONE |
---|
1681 | |
---|
1682 | REAL(wp) :: a1 !< dummy argument |
---|
1683 | REAL(wp) :: dedt_n !< time derivative of TKE at particle position |
---|
1684 | REAL(wp) :: dedxi_n !< horizontal derivative of TKE at particle position |
---|
1685 | REAL(wp) :: diss_n !< dissipation at particle position |
---|
1686 | REAL(wp) :: dt_n !< particle timestep |
---|
1687 | REAL(wp) :: e_n !< TKE at particle position |
---|
1688 | REAL(wp) :: fac !< flag to identify adjacent topography |
---|
1689 | REAL(wp) :: fs_n !< weighting factor to prevent that subgrid-scale particle speed becomes too large |
---|
1690 | REAL(wp) :: sgs_w !< constant (1/3) |
---|
1691 | REAL(wp) :: rg_n !< random number |
---|
1692 | REAL(wp) :: term1 !< memory term |
---|
1693 | REAL(wp) :: term2 !< drift correction term |
---|
1694 | REAL(wp) :: term3 !< random term |
---|
1695 | REAL(wp) :: v_sgs !< subgrid-scale velocity component |
---|
1696 | |
---|
1697 | !-- At first, limit TKE to a small non-zero number, in order to prevent |
---|
1698 | !-- the occurrence of extremely large SGS-velocities in case TKE is zero, |
---|
1699 | !-- (could occur at the simulation begin). |
---|
1700 | e_n = MAX( e_n, 1E-20_wp ) |
---|
1701 | ! |
---|
1702 | !-- Please note, terms 1 and 2 (drift and memory term, respectively) are |
---|
1703 | !-- multiplied by a flag to switch of both terms near topography. |
---|
1704 | !-- This is necessary, as both terms may cause a subgrid-scale velocity build up |
---|
1705 | !-- if particles are trapped in regions with very small TKE, e.g. in narrow street |
---|
1706 | !-- canyons resolved by only a few grid points. Hence, term 1 and term 2 are |
---|
1707 | !-- disabled if one of the adjacent grid points belongs to topography. |
---|
1708 | !-- Moreover, in this case, the previous subgrid-scale component is also set |
---|
1709 | !-- to zero. |
---|
1710 | |
---|
1711 | a1 = fs_n * c_0 * diss_n |
---|
1712 | ! |
---|
1713 | !-- Memory term |
---|
1714 | term1 = - a1 * v_sgs * dt_n / ( 4.0_wp * sgs_wf_part * e_n + 1E-20_wp ) & |
---|
1715 | * fac |
---|
1716 | ! |
---|
1717 | !-- Drift correction term |
---|
1718 | term2 = ( ( dedt_n * v_sgs / e_n ) + dedxi_n ) * 0.5_wp * dt_n & |
---|
1719 | * fac |
---|
1720 | ! |
---|
1721 | !-- Random term |
---|
1722 | term3 = SQRT( MAX( a1, 1E-20 ) ) * ( rg_n - 1.0_wp ) * SQRT( dt_n ) |
---|
1723 | ! |
---|
1724 | !-- In cese one of the adjacent grid-boxes belongs to topograhy, the previous |
---|
1725 | !-- subgrid-scale velocity component is set to zero, in order to prevent a |
---|
1726 | !-- velocity build-up. |
---|
1727 | |
---|
1728 | !-- This case, set also previous subgrid-scale component to zero. |
---|
1729 | v_sgs = v_sgs * fac + term1 + term2 + term3 |
---|
1730 | |
---|
1731 | END SUBROUTINE weil_stochastic_eq |
---|