1 | !> @file lpm_advec.f90 |
---|
2 | !--------------------------------------------------------------------------------! |
---|
3 | ! This file is part of PALM. |
---|
4 | ! |
---|
5 | ! PALM is free software: you can redistribute it and/or modify it under the terms |
---|
6 | ! of the GNU General Public License as published by the Free Software Foundation, |
---|
7 | ! either version 3 of the License, or (at your option) any later version. |
---|
8 | ! |
---|
9 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
10 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
11 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
12 | ! |
---|
13 | ! You should have received a copy of the GNU General Public License along with |
---|
14 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
15 | ! |
---|
16 | ! Copyright 1997-2016 Leibniz Universitaet Hannover |
---|
17 | !--------------------------------------------------------------------------------! |
---|
18 | ! |
---|
19 | ! Current revisions: |
---|
20 | ! ------------------ |
---|
21 | ! Formatting adjustments |
---|
22 | ! |
---|
23 | ! Former revisions: |
---|
24 | ! ----------------- |
---|
25 | ! $Id: lpm_advec.f90 1936 2016-06-13 13:37:44Z suehring $ |
---|
26 | ! |
---|
27 | ! 1929 2016-06-09 16:25:25Z suehring |
---|
28 | ! Put stochastic equation in an extra subroutine. |
---|
29 | ! Set flag for stochastic equation to communicate whether a particle is near |
---|
30 | ! topography. This case, memory and drift term are disabled in the Weil equation. |
---|
31 | ! |
---|
32 | ! Enable vertical logarithmic interpolation also above topography. This case, |
---|
33 | ! set a lower limit for the friction velocity, as it can become very small |
---|
34 | ! in narrow street canyons, leading to too large particle speeds. |
---|
35 | ! |
---|
36 | ! 1888 2016-04-21 12:20:49Z suehring |
---|
37 | ! Bugfix concerning logarithmic interpolation of particle speed |
---|
38 | ! |
---|
39 | ! 1822 2016-04-07 07:49:42Z hoffmann |
---|
40 | ! Random velocity fluctuations for particles added. Terminal fall velocity |
---|
41 | ! for droplets is calculated from a parameterization (which is better than |
---|
42 | ! the previous, physically correct calculation, which demands a very short |
---|
43 | ! time step that is not used in the model). |
---|
44 | ! |
---|
45 | ! Unused variables deleted. |
---|
46 | ! |
---|
47 | ! 1691 2015-10-26 16:17:44Z maronga |
---|
48 | ! Renamed prandtl_layer to constant_flux_layer. |
---|
49 | ! |
---|
50 | ! 1685 2015-10-08 07:32:13Z raasch |
---|
51 | ! TKE check for negative values (so far, only zero value was checked) |
---|
52 | ! offset_ocean_nzt_m1 removed |
---|
53 | ! |
---|
54 | ! 1682 2015-10-07 23:56:08Z knoop |
---|
55 | ! Code annotations made doxygen readable |
---|
56 | ! |
---|
57 | ! 1583 2015-04-15 12:16:27Z suehring |
---|
58 | ! Bugfix: particle advection within Prandtl-layer in case of Galilei |
---|
59 | ! transformation. |
---|
60 | ! |
---|
61 | ! 1369 2014-04-24 05:57:38Z raasch |
---|
62 | ! usage of module interfaces removed |
---|
63 | ! |
---|
64 | ! 1359 2014-04-11 17:15:14Z hoffmann |
---|
65 | ! New particle structure integrated. |
---|
66 | ! Kind definition added to all floating point numbers. |
---|
67 | ! |
---|
68 | ! 1322 2014-03-20 16:38:49Z raasch |
---|
69 | ! REAL constants defined as wp_kind |
---|
70 | ! |
---|
71 | ! 1320 2014-03-20 08:40:49Z raasch |
---|
72 | ! ONLY-attribute added to USE-statements, |
---|
73 | ! kind-parameters added to all INTEGER and REAL declaration statements, |
---|
74 | ! kinds are defined in new module kinds, |
---|
75 | ! revision history before 2012 removed, |
---|
76 | ! comment fields (!:) to be used for variable explanations added to |
---|
77 | ! all variable declaration statements |
---|
78 | ! |
---|
79 | ! 1314 2014-03-14 18:25:17Z suehring |
---|
80 | ! Vertical logarithmic interpolation of horizontal particle speed for particles |
---|
81 | ! between roughness height and first vertical grid level. |
---|
82 | ! |
---|
83 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
84 | ! code put under GPL (PALM 3.9) |
---|
85 | ! |
---|
86 | ! 849 2012-03-15 10:35:09Z raasch |
---|
87 | ! initial revision (former part of advec_particles) |
---|
88 | ! |
---|
89 | ! |
---|
90 | ! Description: |
---|
91 | ! ------------ |
---|
92 | !> Calculation of new particle positions due to advection using a simple Euler |
---|
93 | !> scheme. Particles may feel inertia effects. SGS transport can be included |
---|
94 | !> using the stochastic model of Weil et al. (2004, JAS, 61, 2877-2887). |
---|
95 | !------------------------------------------------------------------------------! |
---|
96 | SUBROUTINE lpm_advec (ip,jp,kp) |
---|
97 | |
---|
98 | |
---|
99 | USE arrays_3d, & |
---|
100 | ONLY: de_dx, de_dy, de_dz, diss, e, km, u, us, usws, v, vsws, w, zu, zw |
---|
101 | |
---|
102 | USE cpulog |
---|
103 | |
---|
104 | USE pegrid |
---|
105 | |
---|
106 | USE control_parameters, & |
---|
107 | ONLY: atmos_ocean_sign, cloud_droplets, constant_flux_layer, dt_3d, & |
---|
108 | dt_3d_reached_l, dz, g, kappa, topography, u_gtrans, v_gtrans |
---|
109 | |
---|
110 | USE grid_variables, & |
---|
111 | ONLY: ddx, dx, ddy, dy |
---|
112 | |
---|
113 | USE indices, & |
---|
114 | ONLY: nzb, nzb_s_inner, nzt |
---|
115 | |
---|
116 | USE kinds |
---|
117 | |
---|
118 | USE particle_attributes, & |
---|
119 | ONLY: block_offset, c_0, dt_min_part, grid_particles, & |
---|
120 | iran_part, log_z_z0, number_of_particles, number_of_sublayers, & |
---|
121 | particles, particle_groups, offset_ocean_nzt, sgs_wf_part, & |
---|
122 | use_sgs_for_particles, vertical_particle_advection, z0_av_global |
---|
123 | |
---|
124 | USE statistics, & |
---|
125 | ONLY: hom |
---|
126 | |
---|
127 | IMPLICIT NONE |
---|
128 | |
---|
129 | INTEGER(iwp) :: agp !< loop variable |
---|
130 | INTEGER(iwp) :: gp_outside_of_building(1:8) !< number of grid points used for particle interpolation in case of topography |
---|
131 | INTEGER(iwp) :: i !< index variable along x |
---|
132 | INTEGER(iwp) :: ip !< index variable along x |
---|
133 | INTEGER(iwp) :: ilog !< index variable along x |
---|
134 | INTEGER(iwp) :: j !< index variable along y |
---|
135 | INTEGER(iwp) :: jp !< index variable along y |
---|
136 | INTEGER(iwp) :: jlog !< index variable along y |
---|
137 | INTEGER(iwp) :: k !< index variable along z |
---|
138 | INTEGER(iwp) :: kp !< index variable along z |
---|
139 | INTEGER(iwp) :: kw !< index variable along z |
---|
140 | INTEGER(iwp) :: n !< loop variable over all particles in a grid box |
---|
141 | INTEGER(iwp) :: nb !< block number particles are sorted in |
---|
142 | INTEGER(iwp) :: num_gp !< number of adjacent grid points inside topography |
---|
143 | |
---|
144 | INTEGER(iwp), DIMENSION(0:7) :: start_index !< start particle index for current block |
---|
145 | INTEGER(iwp), DIMENSION(0:7) :: end_index !< start particle index for current block |
---|
146 | |
---|
147 | REAL(wp) :: aa !< dummy argument for horizontal particle interpolation |
---|
148 | REAL(wp) :: bb !< dummy argument for horizontal particle interpolation |
---|
149 | REAL(wp) :: cc !< dummy argument for horizontal particle interpolation |
---|
150 | REAL(wp) :: d_sum !< dummy argument for horizontal particle interpolation in case of topography |
---|
151 | REAL(wp) :: d_z_p_z0 !< inverse of interpolation length for logarithmic interpolation |
---|
152 | REAL(wp) :: dd !< dummy argument for horizontal particle interpolation |
---|
153 | REAL(wp) :: de_dx_int_l !< x/y-interpolated TKE gradient (x) at particle position at lower vertical level |
---|
154 | REAL(wp) :: de_dx_int_u !< x/y-interpolated TKE gradient (x) at particle position at upper vertical level |
---|
155 | REAL(wp) :: de_dy_int_l !< x/y-interpolated TKE gradient (y) at particle position at lower vertical level |
---|
156 | REAL(wp) :: de_dy_int_u !< x/y-interpolated TKE gradient (y) at particle position at upper vertical level |
---|
157 | REAL(wp) :: de_dt !< temporal derivative of TKE experienced by the particle |
---|
158 | REAL(wp) :: de_dt_min !< lower level for temporal TKE derivative |
---|
159 | REAL(wp) :: de_dz_int_l !< x/y-interpolated TKE gradient (z) at particle position at lower vertical level |
---|
160 | REAL(wp) :: de_dz_int_u !< x/y-interpolated TKE gradient (z) at particle position at upper vertical level |
---|
161 | REAL(wp) :: diameter !< diamter of droplet |
---|
162 | REAL(wp) :: diss_int_l !< x/y-interpolated dissipation at particle position at lower vertical level |
---|
163 | REAL(wp) :: diss_int_u !< x/y-interpolated dissipation at particle position at upper vertical level |
---|
164 | REAL(wp) :: dt_gap !< remaining time until particle time integration reaches LES time |
---|
165 | REAL(wp) :: dt_particle_m !< previous particle time step |
---|
166 | REAL(wp) :: e_int_l !< x/y-interpolated TKE at particle position at lower vertical level |
---|
167 | REAL(wp) :: e_int_u !< x/y-interpolated TKE at particle position at upper vertical level |
---|
168 | REAL(wp) :: e_mean_int !< horizontal mean TKE at particle height |
---|
169 | REAL(wp) :: exp_arg !< |
---|
170 | REAL(wp) :: exp_term !< |
---|
171 | REAL(wp) :: gg !< dummy argument for horizontal particle interpolation |
---|
172 | REAL(wp) :: height_p !< dummy argument for logarithmic interpolation |
---|
173 | REAL(wp) :: lagr_timescale !< Lagrangian timescale |
---|
174 | REAL(wp) :: location(1:30,1:3) !< wall locations |
---|
175 | REAL(wp) :: log_z_z0_int !< logarithmus used for surface_layer interpolation |
---|
176 | REAL(wp) :: random_gauss !< |
---|
177 | REAL(wp) :: RL !< Lagrangian autocorrelation coefficient |
---|
178 | REAL(wp) :: rg1 !< Gaussian distributed random number |
---|
179 | REAL(wp) :: rg2 !< Gaussian distributed random number |
---|
180 | REAL(wp) :: rg3 !< Gaussian distributed random number |
---|
181 | REAL(wp) :: sigma !< velocity standard deviation |
---|
182 | REAL(wp) :: u_int_l !< x/y-interpolated u-component at particle position at lower vertical level |
---|
183 | REAL(wp) :: u_int_u !< x/y-interpolated u-component at particle position at upper vertical level |
---|
184 | REAL(wp) :: us_int !< friction velocity at particle grid box |
---|
185 | REAL(wp) :: v_int_l !< x/y-interpolated v-component at particle position at lower vertical level |
---|
186 | REAL(wp) :: v_int_u !< x/y-interpolated v-component at particle position at upper vertical level |
---|
187 | REAL(wp) :: vv_int !< |
---|
188 | REAL(wp) :: w_int_l !< x/y-interpolated w-component at particle position at lower vertical level |
---|
189 | REAL(wp) :: w_int_u !< x/y-interpolated w-component at particle position at upper vertical level |
---|
190 | REAL(wp) :: w_s !< terminal velocity of droplets |
---|
191 | REAL(wp) :: x !< dummy argument for horizontal particle interpolation |
---|
192 | REAL(wp) :: y !< dummy argument for horizontal particle interpolation |
---|
193 | REAL(wp) :: z_p !< surface layer height (0.5 dz) |
---|
194 | |
---|
195 | REAL(wp), PARAMETER :: a_rog = 9.65_wp !< parameter for fall velocity |
---|
196 | REAL(wp), PARAMETER :: b_rog = 10.43_wp !< parameter for fall velocity |
---|
197 | REAL(wp), PARAMETER :: c_rog = 0.6_wp !< parameter for fall velocity |
---|
198 | REAL(wp), PARAMETER :: k_cap_rog = 4.0_wp !< parameter for fall velocity |
---|
199 | REAL(wp), PARAMETER :: k_low_rog = 12.0_wp !< parameter for fall velocity |
---|
200 | REAL(wp), PARAMETER :: d0_rog = 0.745_wp !< separation diameter |
---|
201 | |
---|
202 | REAL(wp), DIMENSION(1:30) :: d_gp_pl !< dummy argument for particle interpolation scheme in case of topography |
---|
203 | REAL(wp), DIMENSION(1:30) :: de_dxi !< horizontal TKE gradient along x at adjacent wall |
---|
204 | REAL(wp), DIMENSION(1:30) :: de_dyi !< horizontal TKE gradient along y at adjacent wall |
---|
205 | REAL(wp), DIMENSION(1:30) :: de_dzi !< horizontal TKE gradient along z at adjacent wall |
---|
206 | REAL(wp), DIMENSION(1:30) :: dissi !< dissipation at adjacent wall |
---|
207 | REAL(wp), DIMENSION(1:30) :: ei !< TKE at adjacent wall |
---|
208 | |
---|
209 | REAL(wp), DIMENSION(number_of_particles) :: term_1_2 !< flag to communicate whether a particle is near topography or not |
---|
210 | REAL(wp), DIMENSION(number_of_particles) :: dens_ratio !< |
---|
211 | REAL(wp), DIMENSION(number_of_particles) :: de_dx_int !< horizontal TKE gradient along x at particle position |
---|
212 | REAL(wp), DIMENSION(number_of_particles) :: de_dy_int !< horizontal TKE gradient along y at particle position |
---|
213 | REAL(wp), DIMENSION(number_of_particles) :: de_dz_int !< horizontal TKE gradient along z at particle position |
---|
214 | REAL(wp), DIMENSION(number_of_particles) :: diss_int !< dissipation at particle position |
---|
215 | REAL(wp), DIMENSION(number_of_particles) :: dt_particle !< particle time step |
---|
216 | REAL(wp), DIMENSION(number_of_particles) :: e_int !< TKE at particle position |
---|
217 | REAL(wp), DIMENSION(number_of_particles) :: fs_int !< weighting factor for subgrid-scale particle speed |
---|
218 | REAL(wp), DIMENSION(number_of_particles) :: u_int !< u-component of particle speed |
---|
219 | REAL(wp), DIMENSION(number_of_particles) :: v_int !< v-component of particle speed |
---|
220 | REAL(wp), DIMENSION(number_of_particles) :: w_int !< w-component of particle speed |
---|
221 | REAL(wp), DIMENSION(number_of_particles) :: xv !< x-position |
---|
222 | REAL(wp), DIMENSION(number_of_particles) :: yv !< y-position |
---|
223 | REAL(wp), DIMENSION(number_of_particles) :: zv !< z-position |
---|
224 | |
---|
225 | REAL(wp), DIMENSION(number_of_particles, 3) :: rg !< vector of Gaussian distributed random numbers |
---|
226 | |
---|
227 | CALL cpu_log( log_point_s(44), 'lpm_advec', 'continue' ) |
---|
228 | |
---|
229 | ! |
---|
230 | !-- Determine height of Prandtl layer and distance between Prandtl-layer |
---|
231 | !-- height and horizontal mean roughness height, which are required for |
---|
232 | !-- vertical logarithmic interpolation of horizontal particle speeds |
---|
233 | !-- (for particles below first vertical grid level). |
---|
234 | z_p = zu(nzb+1) - zw(nzb) |
---|
235 | d_z_p_z0 = 1.0_wp / ( z_p - z0_av_global ) |
---|
236 | |
---|
237 | start_index = grid_particles(kp,jp,ip)%start_index |
---|
238 | end_index = grid_particles(kp,jp,ip)%end_index |
---|
239 | |
---|
240 | xv = particles(1:number_of_particles)%x |
---|
241 | yv = particles(1:number_of_particles)%y |
---|
242 | zv = particles(1:number_of_particles)%z |
---|
243 | |
---|
244 | DO nb = 0, 7 |
---|
245 | |
---|
246 | i = ip |
---|
247 | j = jp + block_offset(nb)%j_off |
---|
248 | k = kp + block_offset(nb)%k_off |
---|
249 | |
---|
250 | |
---|
251 | ! |
---|
252 | !-- Interpolate u velocity-component |
---|
253 | DO n = start_index(nb), end_index(nb) |
---|
254 | ! |
---|
255 | !-- Interpolation of the u velocity component onto particle position. |
---|
256 | !-- Particles are interpolation bi-linearly in the horizontal and a |
---|
257 | !-- linearly in the vertical. An exception is made for particles below |
---|
258 | !-- the first vertical grid level in case of a prandtl layer. In this |
---|
259 | !-- case the horizontal particle velocity components are determined using |
---|
260 | !-- Monin-Obukhov relations (if branch). |
---|
261 | !-- First, check if particle is located below first vertical grid level |
---|
262 | !-- (Prandtl-layer height) |
---|
263 | ilog = ( particles(n)%x + 0.5_wp * dx ) * ddx |
---|
264 | jlog = ( particles(n)%y + 0.5_wp * dy ) * ddy |
---|
265 | |
---|
266 | IF ( constant_flux_layer .AND. & |
---|
267 | zv(n) - zw(nzb_s_inner(jlog,ilog)) < z_p ) THEN |
---|
268 | ! |
---|
269 | !-- Resolved-scale horizontal particle velocity is zero below z0. |
---|
270 | IF ( zv(n) - zw(nzb_s_inner(jlog,ilog)) < z0_av_global ) THEN |
---|
271 | u_int(n) = 0.0_wp |
---|
272 | ELSE |
---|
273 | ! |
---|
274 | !-- Determine the sublayer. Further used as index. |
---|
275 | height_p = ( zv(n) - zw(nzb_s_inner(jlog,ilog)) - z0_av_global ) & |
---|
276 | * REAL( number_of_sublayers, KIND=wp ) & |
---|
277 | * d_z_p_z0 |
---|
278 | ! |
---|
279 | !-- Calculate LOG(z/z0) for exact particle height. Therefore, |
---|
280 | !-- interpolate linearly between precalculated logarithm. |
---|
281 | log_z_z0_int = log_z_z0(INT(height_p)) & |
---|
282 | + ( height_p - INT(height_p) ) & |
---|
283 | * ( log_z_z0(INT(height_p)+1) & |
---|
284 | - log_z_z0(INT(height_p)) & |
---|
285 | ) |
---|
286 | ! |
---|
287 | !-- Limit friction velocity. In narrow canyons or holes the |
---|
288 | !-- friction velocity can become very small, resulting in a too |
---|
289 | !-- large particle speed. |
---|
290 | us_int = MAX( 0.5_wp * ( us(jlog,ilog) + us(jlog,ilog-1) ), & |
---|
291 | 0.01_wp ) |
---|
292 | ! |
---|
293 | !-- Neutral solution is applied for all situations, e.g. also for |
---|
294 | !-- unstable and stable situations. Even though this is not exact |
---|
295 | !-- this saves a lot of CPU time since several calls of intrinsic |
---|
296 | !-- FORTRAN procedures (LOG, ATAN) are avoided, This is justified |
---|
297 | !-- as sensitivity studies revealed no significant effect of |
---|
298 | !-- using the neutral solution also for un/stable situations. |
---|
299 | u_int(n) = -usws(jlog,ilog) / ( us_int * kappa + 1E-10_wp ) & |
---|
300 | * log_z_z0_int - u_gtrans |
---|
301 | |
---|
302 | ENDIF |
---|
303 | ! |
---|
304 | !-- Particle above the first grid level. Bi-linear interpolation in the |
---|
305 | !-- horizontal and linear interpolation in the vertical direction. |
---|
306 | ELSE |
---|
307 | |
---|
308 | x = xv(n) + ( 0.5_wp - i ) * dx |
---|
309 | y = yv(n) - j * dy |
---|
310 | aa = x**2 + y**2 |
---|
311 | bb = ( dx - x )**2 + y**2 |
---|
312 | cc = x**2 + ( dy - y )**2 |
---|
313 | dd = ( dx - x )**2 + ( dy - y )**2 |
---|
314 | gg = aa + bb + cc + dd |
---|
315 | |
---|
316 | u_int_l = ( ( gg - aa ) * u(k,j,i) + ( gg - bb ) * u(k,j,i+1) & |
---|
317 | + ( gg - cc ) * u(k,j+1,i) + ( gg - dd ) * & |
---|
318 | u(k,j+1,i+1) ) / ( 3.0_wp * gg ) - u_gtrans |
---|
319 | |
---|
320 | IF ( k == nzt ) THEN |
---|
321 | u_int(n) = u_int_l |
---|
322 | ELSE |
---|
323 | u_int_u = ( ( gg-aa ) * u(k+1,j,i) + ( gg-bb ) * u(k+1,j,i+1) & |
---|
324 | + ( gg-cc ) * u(k+1,j+1,i) + ( gg-dd ) * & |
---|
325 | u(k+1,j+1,i+1) ) / ( 3.0_wp * gg ) - u_gtrans |
---|
326 | u_int(n) = u_int_l + ( zv(n) - zu(k) ) / dz * & |
---|
327 | ( u_int_u - u_int_l ) |
---|
328 | ENDIF |
---|
329 | |
---|
330 | ENDIF |
---|
331 | |
---|
332 | ENDDO |
---|
333 | |
---|
334 | i = ip + block_offset(nb)%i_off |
---|
335 | j = jp |
---|
336 | k = kp + block_offset(nb)%k_off |
---|
337 | ! |
---|
338 | !-- Same procedure for interpolation of the v velocity-component |
---|
339 | DO n = start_index(nb), end_index(nb) |
---|
340 | |
---|
341 | ilog = ( particles(n)%x + 0.5_wp * dx ) * ddx |
---|
342 | jlog = ( particles(n)%y + 0.5_wp * dy ) * ddy |
---|
343 | IF ( constant_flux_layer .AND. & |
---|
344 | zv(n) - zw(nzb_s_inner(jlog,ilog)) < z_p ) THEN |
---|
345 | |
---|
346 | IF ( zv(n) - zw(nzb_s_inner(jlog,ilog)) < z0_av_global ) THEN |
---|
347 | ! |
---|
348 | !-- Resolved-scale horizontal particle velocity is zero below z0. |
---|
349 | v_int(n) = 0.0_wp |
---|
350 | ELSE |
---|
351 | ! |
---|
352 | !-- Determine the sublayer. Further used as index. Please note, |
---|
353 | !-- logarithmus can not be reused from above, as in in case of |
---|
354 | !-- topography particle on u-grid can be above surface-layer height, |
---|
355 | !-- whereas it can be below on v-grid. |
---|
356 | height_p = ( zv(n) - zw(nzb_s_inner(jlog,ilog)) - z0_av_global ) & |
---|
357 | * REAL( number_of_sublayers, KIND=wp ) & |
---|
358 | * d_z_p_z0 |
---|
359 | ! |
---|
360 | !-- Calculate LOG(z/z0) for exact particle height. Therefore, |
---|
361 | !-- interpolate linearly between precalculated logarithm. |
---|
362 | log_z_z0_int = log_z_z0(INT(height_p)) & |
---|
363 | + ( height_p - INT(height_p) ) & |
---|
364 | * ( log_z_z0(INT(height_p)+1) & |
---|
365 | - log_z_z0(INT(height_p)) & |
---|
366 | ) |
---|
367 | ! |
---|
368 | !-- Limit friction velocity. In narrow canyons or holes the |
---|
369 | !-- friction velocity can become very small, resulting in a too |
---|
370 | !-- large particle speed. |
---|
371 | us_int = MAX( 0.5_wp * ( us(jlog,ilog) + us(jlog-1,ilog) ), & |
---|
372 | 0.01_wp ) |
---|
373 | ! |
---|
374 | !-- Neutral solution is applied for all situations, e.g. also for |
---|
375 | !-- unstable and stable situations. Even though this is not exact |
---|
376 | !-- this saves a lot of CPU time since several calls of intrinsic |
---|
377 | !-- FORTRAN procedures (LOG, ATAN) are avoided, This is justified |
---|
378 | !-- as sensitivity studies revealed no significant effect of |
---|
379 | !-- using the neutral solution also for un/stable situations. |
---|
380 | v_int(n) = -vsws(jlog,ilog) / ( us_int * kappa + 1E-10_wp ) & |
---|
381 | * log_z_z0_int - v_gtrans |
---|
382 | |
---|
383 | ENDIF |
---|
384 | |
---|
385 | ELSE |
---|
386 | x = xv(n) - i * dx |
---|
387 | y = yv(n) + ( 0.5_wp - j ) * dy |
---|
388 | aa = x**2 + y**2 |
---|
389 | bb = ( dx - x )**2 + y**2 |
---|
390 | cc = x**2 + ( dy - y )**2 |
---|
391 | dd = ( dx - x )**2 + ( dy - y )**2 |
---|
392 | gg = aa + bb + cc + dd |
---|
393 | |
---|
394 | v_int_l = ( ( gg - aa ) * v(k,j,i) + ( gg - bb ) * v(k,j,i+1) & |
---|
395 | + ( gg - cc ) * v(k,j+1,i) + ( gg - dd ) * v(k,j+1,i+1) & |
---|
396 | ) / ( 3.0_wp * gg ) - v_gtrans |
---|
397 | |
---|
398 | IF ( k == nzt ) THEN |
---|
399 | v_int(n) = v_int_l |
---|
400 | ELSE |
---|
401 | v_int_u = ( ( gg-aa ) * v(k+1,j,i) + ( gg-bb ) * v(k+1,j,i+1) & |
---|
402 | + ( gg-cc ) * v(k+1,j+1,i) + ( gg-dd ) * v(k+1,j+1,i+1) & |
---|
403 | ) / ( 3.0_wp * gg ) - v_gtrans |
---|
404 | v_int(n) = v_int_l + ( zv(n) - zu(k) ) / dz * & |
---|
405 | ( v_int_u - v_int_l ) |
---|
406 | ENDIF |
---|
407 | |
---|
408 | ENDIF |
---|
409 | |
---|
410 | ENDDO |
---|
411 | |
---|
412 | i = ip + block_offset(nb)%i_off |
---|
413 | j = jp + block_offset(nb)%j_off |
---|
414 | k = kp - 1 |
---|
415 | ! |
---|
416 | !-- Same procedure for interpolation of the w velocity-component |
---|
417 | DO n = start_index(nb), end_index(nb) |
---|
418 | |
---|
419 | IF ( vertical_particle_advection(particles(n)%group) ) THEN |
---|
420 | |
---|
421 | x = xv(n) - i * dx |
---|
422 | y = yv(n) - j * dy |
---|
423 | aa = x**2 + y**2 |
---|
424 | bb = ( dx - x )**2 + y**2 |
---|
425 | cc = x**2 + ( dy - y )**2 |
---|
426 | dd = ( dx - x )**2 + ( dy - y )**2 |
---|
427 | gg = aa + bb + cc + dd |
---|
428 | |
---|
429 | w_int_l = ( ( gg - aa ) * w(k,j,i) + ( gg - bb ) * w(k,j,i+1) & |
---|
430 | + ( gg - cc ) * w(k,j+1,i) + ( gg - dd ) * w(k,j+1,i+1) & |
---|
431 | ) / ( 3.0_wp * gg ) |
---|
432 | |
---|
433 | IF ( k == nzt ) THEN |
---|
434 | w_int(n) = w_int_l |
---|
435 | ELSE |
---|
436 | w_int_u = ( ( gg-aa ) * w(k+1,j,i) + & |
---|
437 | ( gg-bb ) * w(k+1,j,i+1) + & |
---|
438 | ( gg-cc ) * w(k+1,j+1,i) + & |
---|
439 | ( gg-dd ) * w(k+1,j+1,i+1) & |
---|
440 | ) / ( 3.0_wp * gg ) |
---|
441 | w_int(n) = w_int_l + ( zv(n) - zw(k) ) / dz * & |
---|
442 | ( w_int_u - w_int_l ) |
---|
443 | ENDIF |
---|
444 | |
---|
445 | ELSE |
---|
446 | |
---|
447 | w_int(n) = 0.0_wp |
---|
448 | |
---|
449 | ENDIF |
---|
450 | |
---|
451 | ENDDO |
---|
452 | |
---|
453 | ENDDO |
---|
454 | |
---|
455 | !-- Interpolate and calculate quantities needed for calculating the SGS |
---|
456 | !-- velocities |
---|
457 | IF ( use_sgs_for_particles .AND. .NOT. cloud_droplets ) THEN |
---|
458 | |
---|
459 | IF ( topography == 'flat' ) THEN |
---|
460 | |
---|
461 | DO nb = 0,7 |
---|
462 | |
---|
463 | i = ip + block_offset(nb)%i_off |
---|
464 | j = jp + block_offset(nb)%j_off |
---|
465 | k = kp + block_offset(nb)%k_off |
---|
466 | |
---|
467 | DO n = start_index(nb), end_index(nb) |
---|
468 | ! |
---|
469 | !-- Interpolate TKE |
---|
470 | x = xv(n) - i * dx |
---|
471 | y = yv(n) - j * dy |
---|
472 | aa = x**2 + y**2 |
---|
473 | bb = ( dx - x )**2 + y**2 |
---|
474 | cc = x**2 + ( dy - y )**2 |
---|
475 | dd = ( dx - x )**2 + ( dy - y )**2 |
---|
476 | gg = aa + bb + cc + dd |
---|
477 | |
---|
478 | e_int_l = ( ( gg-aa ) * e(k,j,i) + ( gg-bb ) * e(k,j,i+1) & |
---|
479 | + ( gg-cc ) * e(k,j+1,i) + ( gg-dd ) * e(k,j+1,i+1) & |
---|
480 | ) / ( 3.0_wp * gg ) |
---|
481 | |
---|
482 | IF ( k+1 == nzt+1 ) THEN |
---|
483 | e_int(n) = e_int_l |
---|
484 | ELSE |
---|
485 | e_int_u = ( ( gg - aa ) * e(k+1,j,i) + & |
---|
486 | ( gg - bb ) * e(k+1,j,i+1) + & |
---|
487 | ( gg - cc ) * e(k+1,j+1,i) + & |
---|
488 | ( gg - dd ) * e(k+1,j+1,i+1) & |
---|
489 | ) / ( 3.0_wp * gg ) |
---|
490 | e_int(n) = e_int_l + ( zv(n) - zu(k) ) / dz * & |
---|
491 | ( e_int_u - e_int_l ) |
---|
492 | ENDIF |
---|
493 | ! |
---|
494 | !-- Needed to avoid NaN particle velocities (this might not be |
---|
495 | !-- required any more) |
---|
496 | IF ( e_int(n) <= 0.0_wp ) THEN |
---|
497 | e_int(n) = 1.0E-20_wp |
---|
498 | ENDIF |
---|
499 | ! |
---|
500 | !-- Interpolate the TKE gradient along x (adopt incides i,j,k and |
---|
501 | !-- all position variables from above (TKE)) |
---|
502 | de_dx_int_l = ( ( gg - aa ) * de_dx(k,j,i) + & |
---|
503 | ( gg - bb ) * de_dx(k,j,i+1) + & |
---|
504 | ( gg - cc ) * de_dx(k,j+1,i) + & |
---|
505 | ( gg - dd ) * de_dx(k,j+1,i+1) & |
---|
506 | ) / ( 3.0_wp * gg ) |
---|
507 | |
---|
508 | IF ( ( k+1 == nzt+1 ) .OR. ( k == nzb ) ) THEN |
---|
509 | de_dx_int(n) = de_dx_int_l |
---|
510 | ELSE |
---|
511 | de_dx_int_u = ( ( gg - aa ) * de_dx(k+1,j,i) + & |
---|
512 | ( gg - bb ) * de_dx(k+1,j,i+1) + & |
---|
513 | ( gg - cc ) * de_dx(k+1,j+1,i) + & |
---|
514 | ( gg - dd ) * de_dx(k+1,j+1,i+1) & |
---|
515 | ) / ( 3.0_wp * gg ) |
---|
516 | de_dx_int(n) = de_dx_int_l + ( zv(n) - zu(k) ) / dz * & |
---|
517 | ( de_dx_int_u - de_dx_int_l ) |
---|
518 | ENDIF |
---|
519 | ! |
---|
520 | !-- Interpolate the TKE gradient along y |
---|
521 | de_dy_int_l = ( ( gg - aa ) * de_dy(k,j,i) + & |
---|
522 | ( gg - bb ) * de_dy(k,j,i+1) + & |
---|
523 | ( gg - cc ) * de_dy(k,j+1,i) + & |
---|
524 | ( gg - dd ) * de_dy(k,j+1,i+1) & |
---|
525 | ) / ( 3.0_wp * gg ) |
---|
526 | IF ( ( k+1 == nzt+1 ) .OR. ( k == nzb ) ) THEN |
---|
527 | de_dy_int(n) = de_dy_int_l |
---|
528 | ELSE |
---|
529 | de_dy_int_u = ( ( gg - aa ) * de_dy(k+1,j,i) + & |
---|
530 | ( gg - bb ) * de_dy(k+1,j,i+1) + & |
---|
531 | ( gg - cc ) * de_dy(k+1,j+1,i) + & |
---|
532 | ( gg - dd ) * de_dy(k+1,j+1,i+1) & |
---|
533 | ) / ( 3.0_wp * gg ) |
---|
534 | de_dy_int(n) = de_dy_int_l + ( zv(n) - zu(k) ) / dz * & |
---|
535 | ( de_dy_int_u - de_dy_int_l ) |
---|
536 | ENDIF |
---|
537 | |
---|
538 | ! |
---|
539 | !-- Interpolate the TKE gradient along z |
---|
540 | IF ( zv(n) < 0.5_wp * dz ) THEN |
---|
541 | de_dz_int(n) = 0.0_wp |
---|
542 | ELSE |
---|
543 | de_dz_int_l = ( ( gg - aa ) * de_dz(k,j,i) + & |
---|
544 | ( gg - bb ) * de_dz(k,j,i+1) + & |
---|
545 | ( gg - cc ) * de_dz(k,j+1,i) + & |
---|
546 | ( gg - dd ) * de_dz(k,j+1,i+1) & |
---|
547 | ) / ( 3.0_wp * gg ) |
---|
548 | |
---|
549 | IF ( ( k+1 == nzt+1 ) .OR. ( k == nzb ) ) THEN |
---|
550 | de_dz_int(n) = de_dz_int_l |
---|
551 | ELSE |
---|
552 | de_dz_int_u = ( ( gg - aa ) * de_dz(k+1,j,i) + & |
---|
553 | ( gg - bb ) * de_dz(k+1,j,i+1) + & |
---|
554 | ( gg - cc ) * de_dz(k+1,j+1,i) + & |
---|
555 | ( gg - dd ) * de_dz(k+1,j+1,i+1) & |
---|
556 | ) / ( 3.0_wp * gg ) |
---|
557 | de_dz_int(n) = de_dz_int_l + ( zv(n) - zu(k) ) / dz * & |
---|
558 | ( de_dz_int_u - de_dz_int_l ) |
---|
559 | ENDIF |
---|
560 | ENDIF |
---|
561 | |
---|
562 | ! |
---|
563 | !-- Interpolate the dissipation of TKE |
---|
564 | diss_int_l = ( ( gg - aa ) * diss(k,j,i) + & |
---|
565 | ( gg - bb ) * diss(k,j,i+1) + & |
---|
566 | ( gg - cc ) * diss(k,j+1,i) + & |
---|
567 | ( gg - dd ) * diss(k,j+1,i+1) & |
---|
568 | ) / ( 3.0_wp * gg ) |
---|
569 | |
---|
570 | IF ( k == nzt ) THEN |
---|
571 | diss_int(n) = diss_int_l |
---|
572 | ELSE |
---|
573 | diss_int_u = ( ( gg - aa ) * diss(k+1,j,i) + & |
---|
574 | ( gg - bb ) * diss(k+1,j,i+1) + & |
---|
575 | ( gg - cc ) * diss(k+1,j+1,i) + & |
---|
576 | ( gg - dd ) * diss(k+1,j+1,i+1) & |
---|
577 | ) / ( 3.0_wp * gg ) |
---|
578 | diss_int(n) = diss_int_l + ( zv(n) - zu(k) ) / dz * & |
---|
579 | ( diss_int_u - diss_int_l ) |
---|
580 | ENDIF |
---|
581 | |
---|
582 | ! |
---|
583 | !-- Set flag for stochastic equation. |
---|
584 | term_1_2(n) = 1.0_wp |
---|
585 | |
---|
586 | ENDDO |
---|
587 | ENDDO |
---|
588 | |
---|
589 | ELSE ! non-flat topography, e.g., buildings |
---|
590 | |
---|
591 | DO n = 1, number_of_particles |
---|
592 | i = particles(n)%x * ddx |
---|
593 | j = particles(n)%y * ddy |
---|
594 | k = ( zv(n) + 0.5_wp * dz * atmos_ocean_sign ) / dz & |
---|
595 | + offset_ocean_nzt ! only exact if eq.dist |
---|
596 | ! |
---|
597 | !-- In case that there are buildings it has to be determined |
---|
598 | !-- how many of the gridpoints defining the particle box are |
---|
599 | !-- situated within a building |
---|
600 | !-- gp_outside_of_building(1): i,j,k |
---|
601 | !-- gp_outside_of_building(2): i,j+1,k |
---|
602 | !-- gp_outside_of_building(3): i,j,k+1 |
---|
603 | !-- gp_outside_of_building(4): i,j+1,k+1 |
---|
604 | !-- gp_outside_of_building(5): i+1,j,k |
---|
605 | !-- gp_outside_of_building(6): i+1,j+1,k |
---|
606 | !-- gp_outside_of_building(7): i+1,j,k+1 |
---|
607 | !-- gp_outside_of_building(8): i+1,j+1,k+1 |
---|
608 | |
---|
609 | gp_outside_of_building = 0 |
---|
610 | location = 0.0_wp |
---|
611 | num_gp = 0 |
---|
612 | |
---|
613 | IF ( k > nzb_s_inner(j,i) .OR. nzb_s_inner(j,i) == 0 ) THEN |
---|
614 | num_gp = num_gp + 1 |
---|
615 | gp_outside_of_building(1) = 1 |
---|
616 | location(num_gp,1) = i * dx |
---|
617 | location(num_gp,2) = j * dy |
---|
618 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
619 | ei(num_gp) = e(k,j,i) |
---|
620 | dissi(num_gp) = diss(k,j,i) |
---|
621 | de_dxi(num_gp) = de_dx(k,j,i) |
---|
622 | de_dyi(num_gp) = de_dy(k,j,i) |
---|
623 | de_dzi(num_gp) = de_dz(k,j,i) |
---|
624 | ENDIF |
---|
625 | IF ( k > nzb_s_inner(j+1,i) .OR. nzb_s_inner(j+1,i) == 0 ) THEN |
---|
626 | num_gp = num_gp + 1 |
---|
627 | gp_outside_of_building(2) = 1 |
---|
628 | location(num_gp,1) = i * dx |
---|
629 | location(num_gp,2) = (j+1) * dy |
---|
630 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
631 | ei(num_gp) = e(k,j+1,i) |
---|
632 | dissi(num_gp) = diss(k,j+1,i) |
---|
633 | de_dxi(num_gp) = de_dx(k,j+1,i) |
---|
634 | de_dyi(num_gp) = de_dy(k,j+1,i) |
---|
635 | de_dzi(num_gp) = de_dz(k,j+1,i) |
---|
636 | ENDIF |
---|
637 | |
---|
638 | IF ( k+1 > nzb_s_inner(j,i) .OR. nzb_s_inner(j,i) == 0 ) THEN |
---|
639 | num_gp = num_gp + 1 |
---|
640 | gp_outside_of_building(3) = 1 |
---|
641 | location(num_gp,1) = i * dx |
---|
642 | location(num_gp,2) = j * dy |
---|
643 | location(num_gp,3) = (k+1) * dz - 0.5_wp * dz |
---|
644 | ei(num_gp) = e(k+1,j,i) |
---|
645 | dissi(num_gp) = diss(k+1,j,i) |
---|
646 | de_dxi(num_gp) = de_dx(k+1,j,i) |
---|
647 | de_dyi(num_gp) = de_dy(k+1,j,i) |
---|
648 | de_dzi(num_gp) = de_dz(k+1,j,i) |
---|
649 | ENDIF |
---|
650 | |
---|
651 | IF ( k+1 > nzb_s_inner(j+1,i) .OR. nzb_s_inner(j+1,i) == 0 ) THEN |
---|
652 | num_gp = num_gp + 1 |
---|
653 | gp_outside_of_building(4) = 1 |
---|
654 | location(num_gp,1) = i * dx |
---|
655 | location(num_gp,2) = (j+1) * dy |
---|
656 | location(num_gp,3) = (k+1) * dz - 0.5_wp * dz |
---|
657 | ei(num_gp) = e(k+1,j+1,i) |
---|
658 | dissi(num_gp) = diss(k+1,j+1,i) |
---|
659 | de_dxi(num_gp) = de_dx(k+1,j+1,i) |
---|
660 | de_dyi(num_gp) = de_dy(k+1,j+1,i) |
---|
661 | de_dzi(num_gp) = de_dz(k+1,j+1,i) |
---|
662 | ENDIF |
---|
663 | |
---|
664 | IF ( k > nzb_s_inner(j,i+1) .OR. nzb_s_inner(j,i+1) == 0 ) THEN |
---|
665 | num_gp = num_gp + 1 |
---|
666 | gp_outside_of_building(5) = 1 |
---|
667 | location(num_gp,1) = (i+1) * dx |
---|
668 | location(num_gp,2) = j * dy |
---|
669 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
670 | ei(num_gp) = e(k,j,i+1) |
---|
671 | dissi(num_gp) = diss(k,j,i+1) |
---|
672 | de_dxi(num_gp) = de_dx(k,j,i+1) |
---|
673 | de_dyi(num_gp) = de_dy(k,j,i+1) |
---|
674 | de_dzi(num_gp) = de_dz(k,j,i+1) |
---|
675 | ENDIF |
---|
676 | |
---|
677 | IF ( k > nzb_s_inner(j+1,i+1) .OR. nzb_s_inner(j+1,i+1) == 0 ) THEN |
---|
678 | num_gp = num_gp + 1 |
---|
679 | gp_outside_of_building(6) = 1 |
---|
680 | location(num_gp,1) = (i+1) * dx |
---|
681 | location(num_gp,2) = (j+1) * dy |
---|
682 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
683 | ei(num_gp) = e(k,j+1,i+1) |
---|
684 | dissi(num_gp) = diss(k,j+1,i+1) |
---|
685 | de_dxi(num_gp) = de_dx(k,j+1,i+1) |
---|
686 | de_dyi(num_gp) = de_dy(k,j+1,i+1) |
---|
687 | de_dzi(num_gp) = de_dz(k,j+1,i+1) |
---|
688 | ENDIF |
---|
689 | |
---|
690 | IF ( k+1 > nzb_s_inner(j,i+1) .OR. nzb_s_inner(j,i+1) == 0 ) THEN |
---|
691 | num_gp = num_gp + 1 |
---|
692 | gp_outside_of_building(7) = 1 |
---|
693 | location(num_gp,1) = (i+1) * dx |
---|
694 | location(num_gp,2) = j * dy |
---|
695 | location(num_gp,3) = (k+1) * dz - 0.5_wp * dz |
---|
696 | ei(num_gp) = e(k+1,j,i+1) |
---|
697 | dissi(num_gp) = diss(k+1,j,i+1) |
---|
698 | de_dxi(num_gp) = de_dx(k+1,j,i+1) |
---|
699 | de_dyi(num_gp) = de_dy(k+1,j,i+1) |
---|
700 | de_dzi(num_gp) = de_dz(k+1,j,i+1) |
---|
701 | ENDIF |
---|
702 | |
---|
703 | IF ( k+1 > nzb_s_inner(j+1,i+1) .OR. nzb_s_inner(j+1,i+1) == 0) THEN |
---|
704 | num_gp = num_gp + 1 |
---|
705 | gp_outside_of_building(8) = 1 |
---|
706 | location(num_gp,1) = (i+1) * dx |
---|
707 | location(num_gp,2) = (j+1) * dy |
---|
708 | location(num_gp,3) = (k+1) * dz - 0.5_wp * dz |
---|
709 | ei(num_gp) = e(k+1,j+1,i+1) |
---|
710 | dissi(num_gp) = diss(k+1,j+1,i+1) |
---|
711 | de_dxi(num_gp) = de_dx(k+1,j+1,i+1) |
---|
712 | de_dyi(num_gp) = de_dy(k+1,j+1,i+1) |
---|
713 | de_dzi(num_gp) = de_dz(k+1,j+1,i+1) |
---|
714 | ENDIF |
---|
715 | ! |
---|
716 | !-- If all gridpoints are situated outside of a building, then the |
---|
717 | !-- ordinary interpolation scheme can be used. |
---|
718 | IF ( num_gp == 8 ) THEN |
---|
719 | |
---|
720 | x = particles(n)%x - i * dx |
---|
721 | y = particles(n)%y - j * dy |
---|
722 | aa = x**2 + y**2 |
---|
723 | bb = ( dx - x )**2 + y**2 |
---|
724 | cc = x**2 + ( dy - y )**2 |
---|
725 | dd = ( dx - x )**2 + ( dy - y )**2 |
---|
726 | gg = aa + bb + cc + dd |
---|
727 | |
---|
728 | e_int_l = ( ( gg - aa ) * e(k,j,i) + ( gg - bb ) * e(k,j,i+1) & |
---|
729 | + ( gg - cc ) * e(k,j+1,i) + ( gg - dd ) * e(k,j+1,i+1) & |
---|
730 | ) / ( 3.0_wp * gg ) |
---|
731 | |
---|
732 | IF ( k == nzt ) THEN |
---|
733 | e_int(n) = e_int_l |
---|
734 | ELSE |
---|
735 | e_int_u = ( ( gg - aa ) * e(k+1,j,i) + & |
---|
736 | ( gg - bb ) * e(k+1,j,i+1) + & |
---|
737 | ( gg - cc ) * e(k+1,j+1,i) + & |
---|
738 | ( gg - dd ) * e(k+1,j+1,i+1) & |
---|
739 | ) / ( 3.0_wp * gg ) |
---|
740 | e_int(n) = e_int_l + ( zv(n) - zu(k) ) / dz * & |
---|
741 | ( e_int_u - e_int_l ) |
---|
742 | ENDIF |
---|
743 | ! |
---|
744 | !-- Needed to avoid NaN particle velocities (this might not be |
---|
745 | !-- required any more) |
---|
746 | IF ( e_int(n) <= 0.0_wp ) THEN |
---|
747 | e_int(n) = 1.0E-20_wp |
---|
748 | ENDIF |
---|
749 | ! |
---|
750 | !-- Interpolate the TKE gradient along x (adopt incides i,j,k |
---|
751 | !-- and all position variables from above (TKE)) |
---|
752 | de_dx_int_l = ( ( gg - aa ) * de_dx(k,j,i) + & |
---|
753 | ( gg - bb ) * de_dx(k,j,i+1) + & |
---|
754 | ( gg - cc ) * de_dx(k,j+1,i) + & |
---|
755 | ( gg - dd ) * de_dx(k,j+1,i+1) & |
---|
756 | ) / ( 3.0_wp * gg ) |
---|
757 | |
---|
758 | IF ( ( k == nzt ) .OR. ( k == nzb ) ) THEN |
---|
759 | de_dx_int(n) = de_dx_int_l |
---|
760 | ELSE |
---|
761 | de_dx_int_u = ( ( gg - aa ) * de_dx(k+1,j,i) + & |
---|
762 | ( gg - bb ) * de_dx(k+1,j,i+1) + & |
---|
763 | ( gg - cc ) * de_dx(k+1,j+1,i) + & |
---|
764 | ( gg - dd ) * de_dx(k+1,j+1,i+1) & |
---|
765 | ) / ( 3.0_wp * gg ) |
---|
766 | de_dx_int(n) = de_dx_int_l + ( zv(n) - zu(k) ) / & |
---|
767 | dz * ( de_dx_int_u - de_dx_int_l ) |
---|
768 | ENDIF |
---|
769 | |
---|
770 | ! |
---|
771 | !-- Interpolate the TKE gradient along y |
---|
772 | de_dy_int_l = ( ( gg - aa ) * de_dy(k,j,i) + & |
---|
773 | ( gg - bb ) * de_dy(k,j,i+1) + & |
---|
774 | ( gg - cc ) * de_dy(k,j+1,i) + & |
---|
775 | ( gg - dd ) * de_dy(k,j+1,i+1) & |
---|
776 | ) / ( 3.0_wp * gg ) |
---|
777 | IF ( ( k+1 == nzt+1 ) .OR. ( k == nzb ) ) THEN |
---|
778 | de_dy_int(n) = de_dy_int_l |
---|
779 | ELSE |
---|
780 | de_dy_int_u = ( ( gg - aa ) * de_dy(k+1,j,i) + & |
---|
781 | ( gg - bb ) * de_dy(k+1,j,i+1) + & |
---|
782 | ( gg - cc ) * de_dy(k+1,j+1,i) + & |
---|
783 | ( gg - dd ) * de_dy(k+1,j+1,i+1) & |
---|
784 | ) / ( 3.0_wp * gg ) |
---|
785 | de_dy_int(n) = de_dy_int_l + ( zv(n) - zu(k) ) / & |
---|
786 | dz * ( de_dy_int_u - de_dy_int_l ) |
---|
787 | ENDIF |
---|
788 | |
---|
789 | ! |
---|
790 | !-- Interpolate the TKE gradient along z |
---|
791 | IF ( zv(n) < 0.5_wp * dz ) THEN |
---|
792 | de_dz_int(n) = 0.0_wp |
---|
793 | ELSE |
---|
794 | de_dz_int_l = ( ( gg - aa ) * de_dz(k,j,i) + & |
---|
795 | ( gg - bb ) * de_dz(k,j,i+1) + & |
---|
796 | ( gg - cc ) * de_dz(k,j+1,i) + & |
---|
797 | ( gg - dd ) * de_dz(k,j+1,i+1) & |
---|
798 | ) / ( 3.0_wp * gg ) |
---|
799 | |
---|
800 | IF ( ( k+1 == nzt+1 ) .OR. ( k == nzb ) ) THEN |
---|
801 | de_dz_int(n) = de_dz_int_l |
---|
802 | ELSE |
---|
803 | de_dz_int_u = ( ( gg - aa ) * de_dz(k+1,j,i) + & |
---|
804 | ( gg - bb ) * de_dz(k+1,j,i+1) + & |
---|
805 | ( gg - cc ) * de_dz(k+1,j+1,i) + & |
---|
806 | ( gg - dd ) * de_dz(k+1,j+1,i+1) & |
---|
807 | ) / ( 3.0_wp * gg ) |
---|
808 | de_dz_int(n) = de_dz_int_l + ( zv(n) - zu(k) ) /& |
---|
809 | dz * ( de_dz_int_u - de_dz_int_l ) |
---|
810 | ENDIF |
---|
811 | ENDIF |
---|
812 | |
---|
813 | ! |
---|
814 | !-- Interpolate the dissipation of TKE |
---|
815 | diss_int_l = ( ( gg - aa ) * diss(k,j,i) + & |
---|
816 | ( gg - bb ) * diss(k,j,i+1) + & |
---|
817 | ( gg - cc ) * diss(k,j+1,i) + & |
---|
818 | ( gg - dd ) * diss(k,j+1,i+1) & |
---|
819 | ) / ( 3.0_wp * gg ) |
---|
820 | |
---|
821 | IF ( k == nzt ) THEN |
---|
822 | diss_int(n) = diss_int_l |
---|
823 | ELSE |
---|
824 | diss_int_u = ( ( gg - aa ) * diss(k+1,j,i) + & |
---|
825 | ( gg - bb ) * diss(k+1,j,i+1) + & |
---|
826 | ( gg - cc ) * diss(k+1,j+1,i) + & |
---|
827 | ( gg - dd ) * diss(k+1,j+1,i+1) & |
---|
828 | ) / ( 3.0_wp * gg ) |
---|
829 | diss_int(n) = diss_int_l + ( zv(n) - zu(k) ) / dz *& |
---|
830 | ( diss_int_u - diss_int_l ) |
---|
831 | ENDIF |
---|
832 | ! |
---|
833 | !-- Set flag for stochastic equation. |
---|
834 | term_1_2(n) = 1.0_wp |
---|
835 | |
---|
836 | ELSE |
---|
837 | |
---|
838 | ! |
---|
839 | !-- If wall between gridpoint 1 and gridpoint 5, then |
---|
840 | !-- Neumann boundary condition has to be applied |
---|
841 | IF ( gp_outside_of_building(1) == 1 .AND. & |
---|
842 | gp_outside_of_building(5) == 0 ) THEN |
---|
843 | num_gp = num_gp + 1 |
---|
844 | location(num_gp,1) = i * dx + 0.5_wp * dx |
---|
845 | location(num_gp,2) = j * dy |
---|
846 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
847 | ei(num_gp) = e(k,j,i) |
---|
848 | dissi(num_gp) = diss(k,j,i) |
---|
849 | de_dxi(num_gp) = 0.0_wp |
---|
850 | de_dyi(num_gp) = de_dy(k,j,i) |
---|
851 | de_dzi(num_gp) = de_dz(k,j,i) |
---|
852 | ENDIF |
---|
853 | |
---|
854 | IF ( gp_outside_of_building(5) == 1 .AND. & |
---|
855 | gp_outside_of_building(1) == 0 ) THEN |
---|
856 | num_gp = num_gp + 1 |
---|
857 | location(num_gp,1) = i * dx + 0.5_wp * dx |
---|
858 | location(num_gp,2) = j * dy |
---|
859 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
860 | ei(num_gp) = e(k,j,i+1) |
---|
861 | dissi(num_gp) = diss(k,j,i+1) |
---|
862 | de_dxi(num_gp) = 0.0_wp |
---|
863 | de_dyi(num_gp) = de_dy(k,j,i+1) |
---|
864 | de_dzi(num_gp) = de_dz(k,j,i+1) |
---|
865 | ENDIF |
---|
866 | |
---|
867 | ! |
---|
868 | !-- If wall between gridpoint 5 and gridpoint 6, then |
---|
869 | !-- then Neumann boundary condition has to be applied |
---|
870 | IF ( gp_outside_of_building(5) == 1 .AND. & |
---|
871 | gp_outside_of_building(6) == 0 ) THEN |
---|
872 | num_gp = num_gp + 1 |
---|
873 | location(num_gp,1) = (i+1) * dx |
---|
874 | location(num_gp,2) = j * dy + 0.5_wp * dy |
---|
875 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
876 | ei(num_gp) = e(k,j,i+1) |
---|
877 | dissi(num_gp) = diss(k,j,i+1) |
---|
878 | de_dxi(num_gp) = de_dx(k,j,i+1) |
---|
879 | de_dyi(num_gp) = 0.0_wp |
---|
880 | de_dzi(num_gp) = de_dz(k,j,i+1) |
---|
881 | ENDIF |
---|
882 | |
---|
883 | IF ( gp_outside_of_building(6) == 1 .AND. & |
---|
884 | gp_outside_of_building(5) == 0 ) THEN |
---|
885 | num_gp = num_gp + 1 |
---|
886 | location(num_gp,1) = (i+1) * dx |
---|
887 | location(num_gp,2) = j * dy + 0.5_wp * dy |
---|
888 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
889 | ei(num_gp) = e(k,j+1,i+1) |
---|
890 | dissi(num_gp) = diss(k,j+1,i+1) |
---|
891 | de_dxi(num_gp) = de_dx(k,j+1,i+1) |
---|
892 | de_dyi(num_gp) = 0.0_wp |
---|
893 | de_dzi(num_gp) = de_dz(k,j+1,i+1) |
---|
894 | ENDIF |
---|
895 | |
---|
896 | ! |
---|
897 | !-- If wall between gridpoint 2 and gridpoint 6, then |
---|
898 | !-- Neumann boundary condition has to be applied |
---|
899 | IF ( gp_outside_of_building(2) == 1 .AND. & |
---|
900 | gp_outside_of_building(6) == 0 ) THEN |
---|
901 | num_gp = num_gp + 1 |
---|
902 | location(num_gp,1) = i * dx + 0.5_wp * dx |
---|
903 | location(num_gp,2) = (j+1) * dy |
---|
904 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
905 | ei(num_gp) = e(k,j+1,i) |
---|
906 | dissi(num_gp) = diss(k,j+1,i) |
---|
907 | de_dxi(num_gp) = 0.0_wp |
---|
908 | de_dyi(num_gp) = de_dy(k,j+1,i) |
---|
909 | de_dzi(num_gp) = de_dz(k,j+1,i) |
---|
910 | ENDIF |
---|
911 | |
---|
912 | IF ( gp_outside_of_building(6) == 1 .AND. & |
---|
913 | gp_outside_of_building(2) == 0 ) THEN |
---|
914 | num_gp = num_gp + 1 |
---|
915 | location(num_gp,1) = i * dx + 0.5_wp * dx |
---|
916 | location(num_gp,2) = (j+1) * dy |
---|
917 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
918 | ei(num_gp) = e(k,j+1,i+1) |
---|
919 | dissi(num_gp) = diss(k,j+1,i+1) |
---|
920 | de_dxi(num_gp) = 0.0_wp |
---|
921 | de_dyi(num_gp) = de_dy(k,j+1,i+1) |
---|
922 | de_dzi(num_gp) = de_dz(k,j+1,i+1) |
---|
923 | ENDIF |
---|
924 | |
---|
925 | ! |
---|
926 | !-- If wall between gridpoint 1 and gridpoint 2, then |
---|
927 | !-- Neumann boundary condition has to be applied |
---|
928 | IF ( gp_outside_of_building(1) == 1 .AND. & |
---|
929 | gp_outside_of_building(2) == 0 ) THEN |
---|
930 | num_gp = num_gp + 1 |
---|
931 | location(num_gp,1) = i * dx |
---|
932 | location(num_gp,2) = j * dy + 0.5_wp * dy |
---|
933 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
934 | ei(num_gp) = e(k,j,i) |
---|
935 | dissi(num_gp) = diss(k,j,i) |
---|
936 | de_dxi(num_gp) = de_dx(k,j,i) |
---|
937 | de_dyi(num_gp) = 0.0_wp |
---|
938 | de_dzi(num_gp) = de_dz(k,j,i) |
---|
939 | ENDIF |
---|
940 | |
---|
941 | IF ( gp_outside_of_building(2) == 1 .AND. & |
---|
942 | gp_outside_of_building(1) == 0 ) THEN |
---|
943 | num_gp = num_gp + 1 |
---|
944 | location(num_gp,1) = i * dx |
---|
945 | location(num_gp,2) = j * dy + 0.5_wp * dy |
---|
946 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
947 | ei(num_gp) = e(k,j+1,i) |
---|
948 | dissi(num_gp) = diss(k,j+1,i) |
---|
949 | de_dxi(num_gp) = de_dx(k,j+1,i) |
---|
950 | de_dyi(num_gp) = 0.0_wp |
---|
951 | de_dzi(num_gp) = de_dz(k,j+1,i) |
---|
952 | ENDIF |
---|
953 | |
---|
954 | ! |
---|
955 | !-- If wall between gridpoint 3 and gridpoint 7, then |
---|
956 | !-- Neumann boundary condition has to be applied |
---|
957 | IF ( gp_outside_of_building(3) == 1 .AND. & |
---|
958 | gp_outside_of_building(7) == 0 ) THEN |
---|
959 | num_gp = num_gp + 1 |
---|
960 | location(num_gp,1) = i * dx + 0.5_wp * dx |
---|
961 | location(num_gp,2) = j * dy |
---|
962 | location(num_gp,3) = k * dz + 0.5_wp * dz |
---|
963 | ei(num_gp) = e(k+1,j,i) |
---|
964 | dissi(num_gp) = diss(k+1,j,i) |
---|
965 | de_dxi(num_gp) = 0.0_wp |
---|
966 | de_dyi(num_gp) = de_dy(k+1,j,i) |
---|
967 | de_dzi(num_gp) = de_dz(k+1,j,i) |
---|
968 | ENDIF |
---|
969 | |
---|
970 | IF ( gp_outside_of_building(7) == 1 .AND. & |
---|
971 | gp_outside_of_building(3) == 0 ) THEN |
---|
972 | num_gp = num_gp + 1 |
---|
973 | location(num_gp,1) = i * dx + 0.5_wp * dx |
---|
974 | location(num_gp,2) = j * dy |
---|
975 | location(num_gp,3) = k * dz + 0.5_wp * dz |
---|
976 | ei(num_gp) = e(k+1,j,i+1) |
---|
977 | dissi(num_gp) = diss(k+1,j,i+1) |
---|
978 | de_dxi(num_gp) = 0.0_wp |
---|
979 | de_dyi(num_gp) = de_dy(k+1,j,i+1) |
---|
980 | de_dzi(num_gp) = de_dz(k+1,j,i+1) |
---|
981 | ENDIF |
---|
982 | |
---|
983 | ! |
---|
984 | !-- If wall between gridpoint 7 and gridpoint 8, then |
---|
985 | !-- Neumann boundary condition has to be applied |
---|
986 | IF ( gp_outside_of_building(7) == 1 .AND. & |
---|
987 | gp_outside_of_building(8) == 0 ) THEN |
---|
988 | num_gp = num_gp + 1 |
---|
989 | location(num_gp,1) = (i+1) * dx |
---|
990 | location(num_gp,2) = j * dy + 0.5_wp * dy |
---|
991 | location(num_gp,3) = k * dz + 0.5_wp * dz |
---|
992 | ei(num_gp) = e(k+1,j,i+1) |
---|
993 | dissi(num_gp) = diss(k+1,j,i+1) |
---|
994 | de_dxi(num_gp) = de_dx(k+1,j,i+1) |
---|
995 | de_dyi(num_gp) = 0.0_wp |
---|
996 | de_dzi(num_gp) = de_dz(k+1,j,i+1) |
---|
997 | ENDIF |
---|
998 | |
---|
999 | IF ( gp_outside_of_building(8) == 1 .AND. & |
---|
1000 | gp_outside_of_building(7) == 0 ) THEN |
---|
1001 | num_gp = num_gp + 1 |
---|
1002 | location(num_gp,1) = (i+1) * dx |
---|
1003 | location(num_gp,2) = j * dy + 0.5_wp * dy |
---|
1004 | location(num_gp,3) = k * dz + 0.5_wp * dz |
---|
1005 | ei(num_gp) = e(k+1,j+1,i+1) |
---|
1006 | dissi(num_gp) = diss(k+1,j+1,i+1) |
---|
1007 | de_dxi(num_gp) = de_dx(k+1,j+1,i+1) |
---|
1008 | de_dyi(num_gp) = 0.0_wp |
---|
1009 | de_dzi(num_gp) = de_dz(k+1,j+1,i+1) |
---|
1010 | ENDIF |
---|
1011 | |
---|
1012 | ! |
---|
1013 | !-- If wall between gridpoint 4 and gridpoint 8, then |
---|
1014 | !-- Neumann boundary condition has to be applied |
---|
1015 | IF ( gp_outside_of_building(4) == 1 .AND. & |
---|
1016 | gp_outside_of_building(8) == 0 ) THEN |
---|
1017 | num_gp = num_gp + 1 |
---|
1018 | location(num_gp,1) = i * dx + 0.5_wp * dx |
---|
1019 | location(num_gp,2) = (j+1) * dy |
---|
1020 | location(num_gp,3) = k * dz + 0.5_wp * dz |
---|
1021 | ei(num_gp) = e(k+1,j+1,i) |
---|
1022 | dissi(num_gp) = diss(k+1,j+1,i) |
---|
1023 | de_dxi(num_gp) = 0.0_wp |
---|
1024 | de_dyi(num_gp) = de_dy(k+1,j+1,i) |
---|
1025 | de_dzi(num_gp) = de_dz(k+1,j+1,i) |
---|
1026 | ENDIF |
---|
1027 | |
---|
1028 | IF ( gp_outside_of_building(8) == 1 .AND. & |
---|
1029 | gp_outside_of_building(4) == 0 ) THEN |
---|
1030 | num_gp = num_gp + 1 |
---|
1031 | location(num_gp,1) = i * dx + 0.5_wp * dx |
---|
1032 | location(num_gp,2) = (j+1) * dy |
---|
1033 | location(num_gp,3) = k * dz + 0.5_wp * dz |
---|
1034 | ei(num_gp) = e(k+1,j+1,i+1) |
---|
1035 | dissi(num_gp) = diss(k+1,j+1,i+1) |
---|
1036 | de_dxi(num_gp) = 0.0_wp |
---|
1037 | de_dyi(num_gp) = de_dy(k+1,j+1,i+1) |
---|
1038 | de_dzi(num_gp) = de_dz(k+1,j+1,i+1) |
---|
1039 | ENDIF |
---|
1040 | |
---|
1041 | ! |
---|
1042 | !-- If wall between gridpoint 3 and gridpoint 4, then |
---|
1043 | !-- Neumann boundary condition has to be applied |
---|
1044 | IF ( gp_outside_of_building(3) == 1 .AND. & |
---|
1045 | gp_outside_of_building(4) == 0 ) THEN |
---|
1046 | num_gp = num_gp + 1 |
---|
1047 | location(num_gp,1) = i * dx |
---|
1048 | location(num_gp,2) = j * dy + 0.5_wp * dy |
---|
1049 | location(num_gp,3) = k * dz + 0.5_wp * dz |
---|
1050 | ei(num_gp) = e(k+1,j,i) |
---|
1051 | dissi(num_gp) = diss(k+1,j,i) |
---|
1052 | de_dxi(num_gp) = de_dx(k+1,j,i) |
---|
1053 | de_dyi(num_gp) = 0.0_wp |
---|
1054 | de_dzi(num_gp) = de_dz(k+1,j,i) |
---|
1055 | ENDIF |
---|
1056 | |
---|
1057 | IF ( gp_outside_of_building(4) == 1 .AND. & |
---|
1058 | gp_outside_of_building(3) == 0 ) THEN |
---|
1059 | num_gp = num_gp + 1 |
---|
1060 | location(num_gp,1) = i * dx |
---|
1061 | location(num_gp,2) = j * dy + 0.5_wp * dy |
---|
1062 | location(num_gp,3) = k * dz + 0.5_wp * dz |
---|
1063 | ei(num_gp) = e(k+1,j+1,i) |
---|
1064 | dissi(num_gp) = diss(k+1,j+1,i) |
---|
1065 | de_dxi(num_gp) = de_dx(k+1,j+1,i) |
---|
1066 | de_dyi(num_gp) = 0.0_wp |
---|
1067 | de_dzi(num_gp) = de_dz(k+1,j+1,i) |
---|
1068 | ENDIF |
---|
1069 | |
---|
1070 | ! |
---|
1071 | !-- If wall between gridpoint 1 and gridpoint 3, then |
---|
1072 | !-- Neumann boundary condition has to be applied |
---|
1073 | !-- (only one case as only building beneath is possible) |
---|
1074 | IF ( gp_outside_of_building(1) == 0 .AND. & |
---|
1075 | gp_outside_of_building(3) == 1 ) THEN |
---|
1076 | num_gp = num_gp + 1 |
---|
1077 | location(num_gp,1) = i * dx |
---|
1078 | location(num_gp,2) = j * dy |
---|
1079 | location(num_gp,3) = k * dz |
---|
1080 | ei(num_gp) = e(k+1,j,i) |
---|
1081 | dissi(num_gp) = diss(k+1,j,i) |
---|
1082 | de_dxi(num_gp) = de_dx(k+1,j,i) |
---|
1083 | de_dyi(num_gp) = de_dy(k+1,j,i) |
---|
1084 | de_dzi(num_gp) = 0.0_wp |
---|
1085 | ENDIF |
---|
1086 | |
---|
1087 | ! |
---|
1088 | !-- If wall between gridpoint 5 and gridpoint 7, then |
---|
1089 | !-- Neumann boundary condition has to be applied |
---|
1090 | !-- (only one case as only building beneath is possible) |
---|
1091 | IF ( gp_outside_of_building(5) == 0 .AND. & |
---|
1092 | gp_outside_of_building(7) == 1 ) THEN |
---|
1093 | num_gp = num_gp + 1 |
---|
1094 | location(num_gp,1) = (i+1) * dx |
---|
1095 | location(num_gp,2) = j * dy |
---|
1096 | location(num_gp,3) = k * dz |
---|
1097 | ei(num_gp) = e(k+1,j,i+1) |
---|
1098 | dissi(num_gp) = diss(k+1,j,i+1) |
---|
1099 | de_dxi(num_gp) = de_dx(k+1,j,i+1) |
---|
1100 | de_dyi(num_gp) = de_dy(k+1,j,i+1) |
---|
1101 | de_dzi(num_gp) = 0.0_wp |
---|
1102 | ENDIF |
---|
1103 | |
---|
1104 | ! |
---|
1105 | !-- If wall between gridpoint 2 and gridpoint 4, then |
---|
1106 | !-- Neumann boundary condition has to be applied |
---|
1107 | !-- (only one case as only building beneath is possible) |
---|
1108 | IF ( gp_outside_of_building(2) == 0 .AND. & |
---|
1109 | gp_outside_of_building(4) == 1 ) THEN |
---|
1110 | num_gp = num_gp + 1 |
---|
1111 | location(num_gp,1) = i * dx |
---|
1112 | location(num_gp,2) = (j+1) * dy |
---|
1113 | location(num_gp,3) = k * dz |
---|
1114 | ei(num_gp) = e(k+1,j+1,i) |
---|
1115 | dissi(num_gp) = diss(k+1,j+1,i) |
---|
1116 | de_dxi(num_gp) = de_dx(k+1,j+1,i) |
---|
1117 | de_dyi(num_gp) = de_dy(k+1,j+1,i) |
---|
1118 | de_dzi(num_gp) = 0.0_wp |
---|
1119 | ENDIF |
---|
1120 | |
---|
1121 | ! |
---|
1122 | !-- If wall between gridpoint 6 and gridpoint 8, then |
---|
1123 | !-- Neumann boundary condition has to be applied |
---|
1124 | !-- (only one case as only building beneath is possible) |
---|
1125 | IF ( gp_outside_of_building(6) == 0 .AND. & |
---|
1126 | gp_outside_of_building(8) == 1 ) THEN |
---|
1127 | num_gp = num_gp + 1 |
---|
1128 | location(num_gp,1) = (i+1) * dx |
---|
1129 | location(num_gp,2) = (j+1) * dy |
---|
1130 | location(num_gp,3) = k * dz |
---|
1131 | ei(num_gp) = e(k+1,j+1,i+1) |
---|
1132 | dissi(num_gp) = diss(k+1,j+1,i+1) |
---|
1133 | de_dxi(num_gp) = de_dx(k+1,j+1,i+1) |
---|
1134 | de_dyi(num_gp) = de_dy(k+1,j+1,i+1) |
---|
1135 | de_dzi(num_gp) = 0.0_wp |
---|
1136 | ENDIF |
---|
1137 | |
---|
1138 | ! |
---|
1139 | !-- Carry out the interpolation |
---|
1140 | IF ( num_gp == 1 ) THEN |
---|
1141 | ! |
---|
1142 | !-- If only one of the gridpoints is situated outside of the |
---|
1143 | !-- building, it follows that the values at the particle |
---|
1144 | !-- location are the same as the gridpoint values |
---|
1145 | e_int(n) = ei(num_gp) |
---|
1146 | diss_int(n) = dissi(num_gp) |
---|
1147 | de_dx_int(n) = de_dxi(num_gp) |
---|
1148 | de_dy_int(n) = de_dyi(num_gp) |
---|
1149 | de_dz_int(n) = de_dzi(num_gp) |
---|
1150 | ! |
---|
1151 | !-- Set flag for stochastic equation which disables calculation |
---|
1152 | !-- of drift and memory term near topography. |
---|
1153 | term_1_2(n) = 0.0_wp |
---|
1154 | ELSE IF ( num_gp > 1 ) THEN |
---|
1155 | |
---|
1156 | d_sum = 0.0_wp |
---|
1157 | ! |
---|
1158 | !-- Evaluation of the distances between the gridpoints |
---|
1159 | !-- contributing to the interpolated values, and the particle |
---|
1160 | !-- location |
---|
1161 | DO agp = 1, num_gp |
---|
1162 | d_gp_pl(agp) = ( particles(n)%x-location(agp,1) )**2 & |
---|
1163 | + ( particles(n)%y-location(agp,2) )**2 & |
---|
1164 | + ( zv(n)-location(agp,3) )**2 |
---|
1165 | d_sum = d_sum + d_gp_pl(agp) |
---|
1166 | ENDDO |
---|
1167 | |
---|
1168 | ! |
---|
1169 | !-- Finally the interpolation can be carried out |
---|
1170 | e_int(n) = 0.0_wp |
---|
1171 | diss_int(n) = 0.0_wp |
---|
1172 | de_dx_int(n) = 0.0_wp |
---|
1173 | de_dy_int(n) = 0.0_wp |
---|
1174 | de_dz_int(n) = 0.0_wp |
---|
1175 | DO agp = 1, num_gp |
---|
1176 | e_int(n) = e_int(n) + ( d_sum - d_gp_pl(agp) ) * & |
---|
1177 | ei(agp) / ( (num_gp-1) * d_sum ) |
---|
1178 | diss_int(n) = diss_int(n) + ( d_sum - d_gp_pl(agp) ) * & |
---|
1179 | dissi(agp) / ( (num_gp-1) * d_sum ) |
---|
1180 | de_dx_int(n) = de_dx_int(n) + ( d_sum - d_gp_pl(agp) ) * & |
---|
1181 | de_dxi(agp) / ( (num_gp-1) * d_sum ) |
---|
1182 | de_dy_int(n) = de_dy_int(n) + ( d_sum - d_gp_pl(agp) ) * & |
---|
1183 | de_dyi(agp) / ( (num_gp-1) * d_sum ) |
---|
1184 | de_dz_int(n) = de_dz_int(n) + ( d_sum - d_gp_pl(agp) ) * & |
---|
1185 | de_dzi(agp) / ( (num_gp-1) * d_sum ) |
---|
1186 | ENDDO |
---|
1187 | |
---|
1188 | ENDIF |
---|
1189 | e_int(n) = MAX( 1E-20_wp, e_int(n) ) |
---|
1190 | diss_int(n) = MAX( 1E-20_wp, diss_int(n) ) |
---|
1191 | de_dx_int(n) = MAX( 1E-20_wp, de_dx_int(n) ) |
---|
1192 | de_dy_int(n) = MAX( 1E-20_wp, de_dy_int(n) ) |
---|
1193 | de_dz_int(n) = MAX( 1E-20_wp, de_dz_int(n) ) |
---|
1194 | ! |
---|
1195 | !-- Set flag for stochastic equation which disables calculation |
---|
1196 | !-- of drift and memory term near topography. |
---|
1197 | term_1_2(n) = 0.0_wp |
---|
1198 | ENDIF |
---|
1199 | ENDDO |
---|
1200 | ENDIF |
---|
1201 | |
---|
1202 | DO nb = 0,7 |
---|
1203 | i = ip + block_offset(nb)%i_off |
---|
1204 | j = jp + block_offset(nb)%j_off |
---|
1205 | k = kp + block_offset(nb)%k_off |
---|
1206 | |
---|
1207 | DO n = start_index(nb), end_index(nb) |
---|
1208 | ! |
---|
1209 | !-- Vertical interpolation of the horizontally averaged SGS TKE and |
---|
1210 | !-- resolved-scale velocity variances and use the interpolated values |
---|
1211 | !-- to calculate the coefficient fs, which is a measure of the ratio |
---|
1212 | !-- of the subgrid-scale turbulent kinetic energy to the total amount |
---|
1213 | !-- of turbulent kinetic energy. |
---|
1214 | IF ( k == 0 ) THEN |
---|
1215 | e_mean_int = hom(0,1,8,0) |
---|
1216 | ELSE |
---|
1217 | e_mean_int = hom(k,1,8,0) + & |
---|
1218 | ( hom(k+1,1,8,0) - hom(k,1,8,0) ) / & |
---|
1219 | ( zu(k+1) - zu(k) ) * & |
---|
1220 | ( zv(n) - zu(k) ) |
---|
1221 | ENDIF |
---|
1222 | |
---|
1223 | kw = kp - 1 |
---|
1224 | |
---|
1225 | IF ( k == 0 ) THEN |
---|
1226 | aa = hom(k+1,1,30,0) * ( zv(n) / & |
---|
1227 | ( 0.5_wp * ( zu(k+1) - zu(k) ) ) ) |
---|
1228 | bb = hom(k+1,1,31,0) * ( zv(n) / & |
---|
1229 | ( 0.5_wp * ( zu(k+1) - zu(k) ) ) ) |
---|
1230 | cc = hom(kw+1,1,32,0) * ( zv(n) / & |
---|
1231 | ( 1.0_wp * ( zw(kw+1) - zw(kw) ) ) ) |
---|
1232 | ELSE |
---|
1233 | aa = hom(k,1,30,0) + ( hom(k+1,1,30,0) - hom(k,1,30,0) ) * & |
---|
1234 | ( ( zv(n) - zu(k) ) / ( zu(k+1) - zu(k) ) ) |
---|
1235 | bb = hom(k,1,31,0) + ( hom(k+1,1,31,0) - hom(k,1,31,0) ) * & |
---|
1236 | ( ( zv(n) - zu(k) ) / ( zu(k+1) - zu(k) ) ) |
---|
1237 | cc = hom(kw,1,32,0) + ( hom(kw+1,1,32,0)-hom(kw,1,32,0) ) * & |
---|
1238 | ( ( zv(n) - zw(kw) ) / ( zw(kw+1)-zw(kw) ) ) |
---|
1239 | ENDIF |
---|
1240 | |
---|
1241 | vv_int = ( 1.0_wp / 3.0_wp ) * ( aa + bb + cc ) |
---|
1242 | ! |
---|
1243 | !-- Needed to avoid NaN particle velocities. The value of 1.0 is just |
---|
1244 | !-- an educated guess for the given case. |
---|
1245 | IF ( vv_int + ( 2.0_wp / 3.0_wp ) * e_mean_int == 0.0_wp ) THEN |
---|
1246 | fs_int(n) = 1.0_wp |
---|
1247 | ELSE |
---|
1248 | fs_int(n) = ( 2.0_wp / 3.0_wp ) * e_mean_int / & |
---|
1249 | ( vv_int + ( 2.0_wp / 3.0_wp ) * e_mean_int ) |
---|
1250 | ENDIF |
---|
1251 | |
---|
1252 | ENDDO |
---|
1253 | ENDDO |
---|
1254 | |
---|
1255 | DO n = 1, number_of_particles |
---|
1256 | |
---|
1257 | rg(n,1) = random_gauss( iran_part, 5.0_wp ) |
---|
1258 | rg(n,2) = random_gauss( iran_part, 5.0_wp ) |
---|
1259 | rg(n,3) = random_gauss( iran_part, 5.0_wp ) |
---|
1260 | |
---|
1261 | ENDDO |
---|
1262 | |
---|
1263 | DO n = 1, number_of_particles |
---|
1264 | ! |
---|
1265 | !-- Calculate the Lagrangian timescale according to Weil et al. (2004). |
---|
1266 | lagr_timescale = ( 4.0_wp * e_int(n) + 1E-20_wp ) / & |
---|
1267 | ( 3.0_wp * fs_int(n) * c_0 * diss_int(n) + 1E-20_wp ) |
---|
1268 | |
---|
1269 | ! |
---|
1270 | !-- Calculate the next particle timestep. dt_gap is the time needed to |
---|
1271 | !-- complete the current LES timestep. |
---|
1272 | dt_gap = dt_3d - particles(n)%dt_sum |
---|
1273 | dt_particle(n) = MIN( dt_3d, 0.025_wp * lagr_timescale, dt_gap ) |
---|
1274 | |
---|
1275 | ! |
---|
1276 | !-- The particle timestep should not be too small in order to prevent |
---|
1277 | !-- the number of particle timesteps of getting too large |
---|
1278 | IF ( dt_particle(n) < dt_min_part .AND. dt_min_part < dt_gap ) THEN |
---|
1279 | dt_particle(n) = dt_min_part |
---|
1280 | ENDIF |
---|
1281 | |
---|
1282 | ! |
---|
1283 | !-- Calculate the SGS velocity components |
---|
1284 | IF ( particles(n)%age == 0.0_wp ) THEN |
---|
1285 | ! |
---|
1286 | !-- For new particles the SGS components are derived from the SGS |
---|
1287 | !-- TKE. Limit the Gaussian random number to the interval |
---|
1288 | !-- [-5.0*sigma, 5.0*sigma] in order to prevent the SGS velocities |
---|
1289 | !-- from becoming unrealistically large. |
---|
1290 | particles(n)%rvar1 = SQRT( 2.0_wp * sgs_wf_part * e_int(n) + 1E-20_wp ) * & |
---|
1291 | ( rg(n,1) - 1.0_wp ) |
---|
1292 | particles(n)%rvar2 = SQRT( 2.0_wp * sgs_wf_part * e_int(n) + 1E-20_wp ) * & |
---|
1293 | ( rg(n,2) - 1.0_wp ) |
---|
1294 | particles(n)%rvar3 = SQRT( 2.0_wp * sgs_wf_part * e_int(n) + 1E-20_wp ) * & |
---|
1295 | ( rg(n,3) - 1.0_wp ) |
---|
1296 | |
---|
1297 | ELSE |
---|
1298 | ! |
---|
1299 | !-- Restriction of the size of the new timestep: compared to the |
---|
1300 | !-- previous timestep the increase must not exceed 200% |
---|
1301 | |
---|
1302 | dt_particle_m = particles(n)%age - particles(n)%age_m |
---|
1303 | IF ( dt_particle(n) > 2.0_wp * dt_particle_m ) THEN |
---|
1304 | dt_particle(n) = 2.0_wp * dt_particle_m |
---|
1305 | ENDIF |
---|
1306 | |
---|
1307 | ! |
---|
1308 | !-- For old particles the SGS components are correlated with the |
---|
1309 | !-- values from the previous timestep. Random numbers have also to |
---|
1310 | !-- be limited (see above). |
---|
1311 | !-- As negative values for the subgrid TKE are not allowed, the |
---|
1312 | !-- change of the subgrid TKE with time cannot be smaller than |
---|
1313 | !-- -e_int(n)/dt_particle. This value is used as a lower boundary |
---|
1314 | !-- value for the change of TKE |
---|
1315 | |
---|
1316 | de_dt_min = - e_int(n) / dt_particle(n) |
---|
1317 | |
---|
1318 | de_dt = ( e_int(n) - particles(n)%e_m ) / dt_particle_m |
---|
1319 | |
---|
1320 | IF ( de_dt < de_dt_min ) THEN |
---|
1321 | de_dt = de_dt_min |
---|
1322 | ENDIF |
---|
1323 | |
---|
1324 | CALL weil_stochastic_eq(particles(n)%rvar1, fs_int(n), e_int(n), & |
---|
1325 | de_dx_int(n), de_dt, diss_int(n), & |
---|
1326 | dt_particle(n), rg(n,1), term_1_2(n) ) |
---|
1327 | |
---|
1328 | CALL weil_stochastic_eq(particles(n)%rvar2, fs_int(n), e_int(n), & |
---|
1329 | de_dy_int(n), de_dt, diss_int(n), & |
---|
1330 | dt_particle(n), rg(n,2), term_1_2(n) ) |
---|
1331 | |
---|
1332 | CALL weil_stochastic_eq(particles(n)%rvar3, fs_int(n), e_int(n), & |
---|
1333 | de_dz_int(n), de_dt, diss_int(n), & |
---|
1334 | dt_particle(n), rg(n,3), term_1_2(n) ) |
---|
1335 | |
---|
1336 | ENDIF |
---|
1337 | |
---|
1338 | u_int(n) = u_int(n) + particles(n)%rvar1 |
---|
1339 | v_int(n) = v_int(n) + particles(n)%rvar2 |
---|
1340 | w_int(n) = w_int(n) + particles(n)%rvar3 |
---|
1341 | ! |
---|
1342 | !-- Store the SGS TKE of the current timelevel which is needed for |
---|
1343 | !-- for calculating the SGS particle velocities at the next timestep |
---|
1344 | particles(n)%e_m = e_int(n) |
---|
1345 | ENDDO |
---|
1346 | |
---|
1347 | ELSE |
---|
1348 | ! |
---|
1349 | !-- If no SGS velocities are used, only the particle timestep has to |
---|
1350 | !-- be set |
---|
1351 | dt_particle = dt_3d |
---|
1352 | |
---|
1353 | ENDIF |
---|
1354 | ! |
---|
1355 | !-- Store the old age of the particle ( needed to prevent that a |
---|
1356 | !-- particle crosses several PEs during one timestep, and for the |
---|
1357 | !-- evaluation of the subgrid particle velocity fluctuations ) |
---|
1358 | particles(1:number_of_particles)%age_m = particles(1:number_of_particles)%age |
---|
1359 | |
---|
1360 | dens_ratio = particle_groups(particles(1:number_of_particles)%group)%density_ratio |
---|
1361 | |
---|
1362 | IF ( ANY( dens_ratio == 0.0_wp ) ) THEN |
---|
1363 | DO n = 1, number_of_particles |
---|
1364 | |
---|
1365 | ! |
---|
1366 | !-- Particle advection |
---|
1367 | IF ( dens_ratio(n) == 0.0_wp ) THEN |
---|
1368 | ! |
---|
1369 | !-- Pure passive transport (without particle inertia) |
---|
1370 | particles(n)%x = xv(n) + u_int(n) * dt_particle(n) |
---|
1371 | particles(n)%y = yv(n) + v_int(n) * dt_particle(n) |
---|
1372 | particles(n)%z = zv(n) + w_int(n) * dt_particle(n) |
---|
1373 | |
---|
1374 | particles(n)%speed_x = u_int(n) |
---|
1375 | particles(n)%speed_y = v_int(n) |
---|
1376 | particles(n)%speed_z = w_int(n) |
---|
1377 | |
---|
1378 | ELSE |
---|
1379 | ! |
---|
1380 | !-- Transport of particles with inertia |
---|
1381 | particles(n)%x = particles(n)%x + particles(n)%speed_x * & |
---|
1382 | dt_particle(n) |
---|
1383 | particles(n)%y = particles(n)%y + particles(n)%speed_y * & |
---|
1384 | dt_particle(n) |
---|
1385 | particles(n)%z = particles(n)%z + particles(n)%speed_z * & |
---|
1386 | dt_particle(n) |
---|
1387 | |
---|
1388 | ! |
---|
1389 | !-- Update of the particle velocity |
---|
1390 | IF ( cloud_droplets ) THEN |
---|
1391 | ! |
---|
1392 | !-- Terminal velocity is computed for vertical direction (Rogers et |
---|
1393 | !-- al., 1993, J. Appl. Meteorol.) |
---|
1394 | diameter = particles(n)%radius * 2000.0_wp !diameter in mm |
---|
1395 | IF ( diameter <= d0_rog ) THEN |
---|
1396 | w_s = k_cap_rog * diameter * ( 1.0_wp - EXP( -k_low_rog * diameter ) ) |
---|
1397 | ELSE |
---|
1398 | w_s = a_rog - b_rog * EXP( -c_rog * diameter ) |
---|
1399 | ENDIF |
---|
1400 | |
---|
1401 | ! |
---|
1402 | !-- If selected, add random velocities following Soelch and Kaercher |
---|
1403 | !-- (2010, Q. J. R. Meteorol. Soc.) |
---|
1404 | IF ( use_sgs_for_particles ) THEN |
---|
1405 | lagr_timescale = km(kp,jp,ip) / MAX( e(kp,jp,ip), 1.0E-20_wp ) |
---|
1406 | RL = EXP( -1.0_wp * dt_3d / lagr_timescale ) |
---|
1407 | sigma = SQRT( e(kp,jp,ip) ) |
---|
1408 | |
---|
1409 | rg1 = random_gauss( iran_part, 5.0_wp ) - 1.0_wp |
---|
1410 | rg2 = random_gauss( iran_part, 5.0_wp ) - 1.0_wp |
---|
1411 | rg3 = random_gauss( iran_part, 5.0_wp ) - 1.0_wp |
---|
1412 | |
---|
1413 | particles(n)%rvar1 = RL * particles(n)%rvar1 + & |
---|
1414 | SQRT( 1.0_wp - RL**2 ) * sigma * rg1 |
---|
1415 | particles(n)%rvar2 = RL * particles(n)%rvar2 + & |
---|
1416 | SQRT( 1.0_wp - RL**2 ) * sigma * rg2 |
---|
1417 | particles(n)%rvar3 = RL * particles(n)%rvar3 + & |
---|
1418 | SQRT( 1.0_wp - RL**2 ) * sigma * rg3 |
---|
1419 | |
---|
1420 | particles(n)%speed_x = u_int(n) + particles(n)%rvar1 |
---|
1421 | particles(n)%speed_y = v_int(n) + particles(n)%rvar2 |
---|
1422 | particles(n)%speed_z = w_int(n) + particles(n)%rvar3 - w_s |
---|
1423 | ELSE |
---|
1424 | particles(n)%speed_x = u_int(n) |
---|
1425 | particles(n)%speed_y = v_int(n) |
---|
1426 | particles(n)%speed_z = w_int(n) - w_s |
---|
1427 | ENDIF |
---|
1428 | |
---|
1429 | ELSE |
---|
1430 | |
---|
1431 | IF ( use_sgs_for_particles ) THEN |
---|
1432 | exp_arg = particle_groups(particles(n)%group)%exp_arg |
---|
1433 | exp_term = EXP( -exp_arg * dt_particle(n) ) |
---|
1434 | ELSE |
---|
1435 | exp_arg = particle_groups(particles(n)%group)%exp_arg |
---|
1436 | exp_term = particle_groups(particles(n)%group)%exp_term |
---|
1437 | ENDIF |
---|
1438 | particles(n)%speed_x = particles(n)%speed_x * exp_term + & |
---|
1439 | u_int(n) * ( 1.0_wp - exp_term ) |
---|
1440 | particles(n)%speed_y = particles(n)%speed_y * exp_term + & |
---|
1441 | v_int(n) * ( 1.0_wp - exp_term ) |
---|
1442 | particles(n)%speed_z = particles(n)%speed_z * exp_term + & |
---|
1443 | ( w_int(n) - ( 1.0_wp - dens_ratio(n) ) * & |
---|
1444 | g / exp_arg ) * ( 1.0_wp - exp_term ) |
---|
1445 | ENDIF |
---|
1446 | |
---|
1447 | ENDIF |
---|
1448 | |
---|
1449 | ENDDO |
---|
1450 | |
---|
1451 | ELSE |
---|
1452 | |
---|
1453 | DO n = 1, number_of_particles |
---|
1454 | |
---|
1455 | !-- Transport of particles with inertia |
---|
1456 | particles(n)%x = xv(n) + particles(n)%speed_x * dt_particle(n) |
---|
1457 | particles(n)%y = yv(n) + particles(n)%speed_y * dt_particle(n) |
---|
1458 | particles(n)%z = zv(n) + particles(n)%speed_z * dt_particle(n) |
---|
1459 | ! |
---|
1460 | !-- Update of the particle velocity |
---|
1461 | IF ( cloud_droplets ) THEN |
---|
1462 | ! |
---|
1463 | !-- Terminal velocity is computed for vertical direction (Rogers et al., |
---|
1464 | !-- 1993, J. Appl. Meteorol.) |
---|
1465 | diameter = particles(n)%radius * 2000.0_wp !diameter in mm |
---|
1466 | IF ( diameter <= d0_rog ) THEN |
---|
1467 | w_s = k_cap_rog * diameter * ( 1.0_wp - EXP( -k_low_rog * diameter ) ) |
---|
1468 | ELSE |
---|
1469 | w_s = a_rog - b_rog * EXP( -c_rog * diameter ) |
---|
1470 | ENDIF |
---|
1471 | |
---|
1472 | ! |
---|
1473 | !-- If selected, add random velocities following Soelch and Kaercher |
---|
1474 | !-- (2010, Q. J. R. Meteorol. Soc.) |
---|
1475 | IF ( use_sgs_for_particles ) THEN |
---|
1476 | lagr_timescale = km(kp,jp,ip) / MAX( e(kp,jp,ip), 1.0E-20_wp ) |
---|
1477 | RL = EXP( -1.0_wp * dt_3d / lagr_timescale ) |
---|
1478 | sigma = SQRT( e(kp,jp,ip) ) |
---|
1479 | |
---|
1480 | rg1 = random_gauss( iran_part, 5.0_wp ) - 1.0_wp |
---|
1481 | rg2 = random_gauss( iran_part, 5.0_wp ) - 1.0_wp |
---|
1482 | rg3 = random_gauss( iran_part, 5.0_wp ) - 1.0_wp |
---|
1483 | |
---|
1484 | particles(n)%rvar1 = RL * particles(n)%rvar1 + & |
---|
1485 | SQRT( 1.0_wp - RL**2 ) * sigma * rg1 |
---|
1486 | particles(n)%rvar2 = RL * particles(n)%rvar2 + & |
---|
1487 | SQRT( 1.0_wp - RL**2 ) * sigma * rg2 |
---|
1488 | particles(n)%rvar3 = RL * particles(n)%rvar3 + & |
---|
1489 | SQRT( 1.0_wp - RL**2 ) * sigma * rg3 |
---|
1490 | |
---|
1491 | particles(n)%speed_x = u_int(n) + particles(n)%rvar1 |
---|
1492 | particles(n)%speed_y = v_int(n) + particles(n)%rvar2 |
---|
1493 | particles(n)%speed_z = w_int(n) + particles(n)%rvar3 - w_s |
---|
1494 | ELSE |
---|
1495 | particles(n)%speed_x = u_int(n) |
---|
1496 | particles(n)%speed_y = v_int(n) |
---|
1497 | particles(n)%speed_z = w_int(n) - w_s |
---|
1498 | ENDIF |
---|
1499 | |
---|
1500 | ELSE |
---|
1501 | |
---|
1502 | IF ( use_sgs_for_particles ) THEN |
---|
1503 | exp_arg = particle_groups(particles(n)%group)%exp_arg |
---|
1504 | exp_term = EXP( -exp_arg * dt_particle(n) ) |
---|
1505 | ELSE |
---|
1506 | exp_arg = particle_groups(particles(n)%group)%exp_arg |
---|
1507 | exp_term = particle_groups(particles(n)%group)%exp_term |
---|
1508 | ENDIF |
---|
1509 | particles(n)%speed_x = particles(n)%speed_x * exp_term + & |
---|
1510 | u_int(n) * ( 1.0_wp - exp_term ) |
---|
1511 | particles(n)%speed_y = particles(n)%speed_y * exp_term + & |
---|
1512 | v_int(n) * ( 1.0_wp - exp_term ) |
---|
1513 | particles(n)%speed_z = particles(n)%speed_z * exp_term + & |
---|
1514 | ( w_int(n) - ( 1.0_wp - dens_ratio(n) ) * g / & |
---|
1515 | exp_arg ) * ( 1.0_wp - exp_term ) |
---|
1516 | ENDIF |
---|
1517 | |
---|
1518 | ENDDO |
---|
1519 | |
---|
1520 | ENDIF |
---|
1521 | |
---|
1522 | DO n = 1, number_of_particles |
---|
1523 | ! |
---|
1524 | !-- Increment the particle age and the total time that the particle |
---|
1525 | !-- has advanced within the particle timestep procedure |
---|
1526 | particles(n)%age = particles(n)%age + dt_particle(n) |
---|
1527 | particles(n)%dt_sum = particles(n)%dt_sum + dt_particle(n) |
---|
1528 | |
---|
1529 | ! |
---|
1530 | !-- Check whether there is still a particle that has not yet completed |
---|
1531 | !-- the total LES timestep |
---|
1532 | IF ( ( dt_3d - particles(n)%dt_sum ) > 1E-8_wp ) THEN |
---|
1533 | dt_3d_reached_l = .FALSE. |
---|
1534 | ENDIF |
---|
1535 | |
---|
1536 | ENDDO |
---|
1537 | |
---|
1538 | CALL cpu_log( log_point_s(44), 'lpm_advec', 'pause' ) |
---|
1539 | |
---|
1540 | |
---|
1541 | END SUBROUTINE lpm_advec |
---|
1542 | |
---|
1543 | ! Description: |
---|
1544 | ! ------------ |
---|
1545 | !> Calculation of subgrid-scale particle speed using the stochastic model |
---|
1546 | !> of Weil et al. (2004, JAS, 61, 2877-2887). |
---|
1547 | !------------------------------------------------------------------------------! |
---|
1548 | SUBROUTINE weil_stochastic_eq( v_sgs, fs_n, e_n, dedxi_n, dedt_n, diss_n, & |
---|
1549 | dt_n, rg_n, fac ) |
---|
1550 | |
---|
1551 | USE kinds |
---|
1552 | |
---|
1553 | USE particle_attributes, & |
---|
1554 | ONLY: c_0, sgs_wf_part |
---|
1555 | |
---|
1556 | IMPLICIT NONE |
---|
1557 | |
---|
1558 | REAL(wp) :: a1 !< dummy argument |
---|
1559 | REAL(wp) :: dedt_n !< time derivative of TKE at particle position |
---|
1560 | REAL(wp) :: dedxi_n !< horizontal derivative of TKE at particle position |
---|
1561 | REAL(wp) :: diss_n !< dissipation at particle position |
---|
1562 | REAL(wp) :: dt_n !< particle timestep |
---|
1563 | REAL(wp) :: e_n !< TKE at particle position |
---|
1564 | REAL(wp) :: fac !< flag to identify adjacent topography |
---|
1565 | REAL(wp) :: fs_n !< weighting factor to prevent that subgrid-scale particle speed becomes too large |
---|
1566 | REAL(wp) :: sgs_w !< constant (1/3) |
---|
1567 | REAL(wp) :: rg_n !< random number |
---|
1568 | REAL(wp) :: term1 !< memory term |
---|
1569 | REAL(wp) :: term2 !< drift correction term |
---|
1570 | REAL(wp) :: term3 !< random term |
---|
1571 | REAL(wp) :: v_sgs !< subgrid-scale velocity component |
---|
1572 | |
---|
1573 | ! |
---|
1574 | !-- Please note, terms 1 and 2 (drift and memory term, respectively) are |
---|
1575 | !-- multiplied by a flag to switch of both terms near topography. |
---|
1576 | !-- This is necessary, as both terms may cause a subgrid-scale velocity build up |
---|
1577 | !-- if particles are trapped in regions with very small TKE, e.g. in narrow street |
---|
1578 | !-- canyons resolved by only a few grid points. Hence, term 1 and term 2 are |
---|
1579 | !-- disabled if one of the adjacent grid points belongs to topography. |
---|
1580 | !-- Moreover, in this case, the previous subgrid-scale component is also set |
---|
1581 | !-- to zero. |
---|
1582 | |
---|
1583 | a1 = fs_n * c_0 * diss_n |
---|
1584 | ! |
---|
1585 | !-- Memory term |
---|
1586 | term1 = - a1 * v_sgs * dt_n / ( 4.0_wp * sgs_wf_part * e_n + 1E-20_wp ) & |
---|
1587 | * fac |
---|
1588 | ! |
---|
1589 | !-- Drift correction term |
---|
1590 | term2 = ( ( dedt_n * v_sgs / e_n ) + dedxi_n ) * 0.5_wp * dt_n & |
---|
1591 | * fac |
---|
1592 | ! |
---|
1593 | !-- Random term |
---|
1594 | term3 = SQRT( MAX( a1, 1E-20 ) ) * ( rg_n - 1.0_wp ) * SQRT( dt_n ) |
---|
1595 | ! |
---|
1596 | !-- In cese one of the adjacent grid-boxes belongs to topograhy, the previous |
---|
1597 | !-- subgrid-scale velocity component is set to zero, in order to prevent a |
---|
1598 | !-- velocity build-up. |
---|
1599 | |
---|
1600 | !-- This case, set also previous subgrid-scale component to zero. |
---|
1601 | v_sgs = v_sgs * fac + term1 + term2 + term3 |
---|
1602 | |
---|
1603 | END SUBROUTINE weil_stochastic_eq |
---|