1 | SUBROUTINE lpm_advec |
---|
2 | |
---|
3 | !------------------------------------------------------------------------------! |
---|
4 | ! Current revisions: |
---|
5 | ! ------------------ |
---|
6 | ! |
---|
7 | ! |
---|
8 | ! Former revisions: |
---|
9 | ! ----------------- |
---|
10 | ! $Id: lpm_advec.f90 850 2012-03-15 12:09:25Z suehring $ |
---|
11 | ! |
---|
12 | ! 849 2012-03-15 10:35:09Z raasch |
---|
13 | ! initial revision (former part of advec_particles) |
---|
14 | ! |
---|
15 | ! |
---|
16 | ! Description: |
---|
17 | ! ------------ |
---|
18 | ! Calculation of new particle positions due to advection using a simple Euler |
---|
19 | ! scheme. Particles may feel inertia effects. SGS transport can be included |
---|
20 | ! using the stochastic model of Weil et al. (2004, JAS, 61, 2877-2887). |
---|
21 | !------------------------------------------------------------------------------! |
---|
22 | |
---|
23 | USE arrays_3d |
---|
24 | USE control_parameters |
---|
25 | USE grid_variables |
---|
26 | USE indices |
---|
27 | USE particle_attributes |
---|
28 | USE statistics |
---|
29 | |
---|
30 | IMPLICIT NONE |
---|
31 | |
---|
32 | INTEGER :: i, j, k, n |
---|
33 | |
---|
34 | REAL :: aa, bb, cc, dd, dens_ratio, exp_arg, exp_term, gg, u_int, & |
---|
35 | u_int_l, u_int_u, v_int, v_int_l, v_int_u, w_int, w_int_l, & |
---|
36 | w_int_u, x, y |
---|
37 | |
---|
38 | |
---|
39 | INTEGER :: agp, kw, num_gp |
---|
40 | INTEGER :: gp_outside_of_building(1:8) |
---|
41 | |
---|
42 | REAL :: d_sum, de_dx_int, de_dx_int_l, de_dx_int_u, de_dy_int, & |
---|
43 | de_dy_int_l, de_dy_int_u, de_dt, de_dt_min, de_dz_int, & |
---|
44 | de_dz_int_l, de_dz_int_u, diss_int, diss_int_l, diss_int_u, & |
---|
45 | dt_gap, dt_particle, dt_particle_m, e_int, e_int_l, e_int_u, & |
---|
46 | e_mean_int, fs_int, lagr_timescale, random_gauss, vv_int |
---|
47 | |
---|
48 | REAL :: location(1:30,1:3) |
---|
49 | REAL, DIMENSION(1:30) :: de_dxi, de_dyi, de_dzi, dissi, d_gp_pl, ei |
---|
50 | |
---|
51 | |
---|
52 | DO n = 1, number_of_particles |
---|
53 | |
---|
54 | ! |
---|
55 | !-- Move particle only if the LES timestep has not (approximately) been |
---|
56 | !-- reached |
---|
57 | IF ( ( dt_3d - particles(n)%dt_sum ) < 1E-8 ) CYCLE |
---|
58 | |
---|
59 | ! |
---|
60 | !-- Interpolate u velocity-component, determine left, front, bottom |
---|
61 | !-- index of u-array |
---|
62 | i = ( particles(n)%x + 0.5 * dx ) * ddx |
---|
63 | j = particles(n)%y * ddy |
---|
64 | k = ( particles(n)%z + 0.5 * dz * atmos_ocean_sign ) / dz & |
---|
65 | + offset_ocean_nzt ! only exact if equidistant |
---|
66 | |
---|
67 | ! |
---|
68 | !-- Interpolation of the velocity components in the xy-plane |
---|
69 | x = particles(n)%x + ( 0.5 - i ) * dx |
---|
70 | y = particles(n)%y - j * dy |
---|
71 | aa = x**2 + y**2 |
---|
72 | bb = ( dx - x )**2 + y**2 |
---|
73 | cc = x**2 + ( dy - y )**2 |
---|
74 | dd = ( dx - x )**2 + ( dy - y )**2 |
---|
75 | gg = aa + bb + cc + dd |
---|
76 | |
---|
77 | u_int_l = ( ( gg - aa ) * u(k,j,i) + ( gg - bb ) * u(k,j,i+1) & |
---|
78 | + ( gg - cc ) * u(k,j+1,i) + ( gg - dd ) * u(k,j+1,i+1) & |
---|
79 | ) / ( 3.0 * gg ) - u_gtrans |
---|
80 | IF ( k+1 == nzt+1 ) THEN |
---|
81 | u_int = u_int_l |
---|
82 | ELSE |
---|
83 | u_int_u = ( ( gg-aa ) * u(k+1,j,i) + ( gg-bb ) * u(k+1,j,i+1) & |
---|
84 | + ( gg-cc ) * u(k+1,j+1,i) + ( gg-dd ) * u(k+1,j+1,i+1) & |
---|
85 | ) / ( 3.0 * gg ) - u_gtrans |
---|
86 | u_int = u_int_l + ( particles(n)%z - zu(k) ) / dz * & |
---|
87 | ( u_int_u - u_int_l ) |
---|
88 | ENDIF |
---|
89 | |
---|
90 | ! |
---|
91 | !-- Same procedure for interpolation of the v velocity-component (adopt |
---|
92 | !-- index k from u velocity-component) |
---|
93 | i = particles(n)%x * ddx |
---|
94 | j = ( particles(n)%y + 0.5 * dy ) * ddy |
---|
95 | |
---|
96 | x = particles(n)%x - i * dx |
---|
97 | y = particles(n)%y + ( 0.5 - j ) * dy |
---|
98 | aa = x**2 + y**2 |
---|
99 | bb = ( dx - x )**2 + y**2 |
---|
100 | cc = x**2 + ( dy - y )**2 |
---|
101 | dd = ( dx - x )**2 + ( dy - y )**2 |
---|
102 | gg = aa + bb + cc + dd |
---|
103 | |
---|
104 | v_int_l = ( ( gg - aa ) * v(k,j,i) + ( gg - bb ) * v(k,j,i+1) & |
---|
105 | + ( gg - cc ) * v(k,j+1,i) + ( gg - dd ) * v(k,j+1,i+1) & |
---|
106 | ) / ( 3.0 * gg ) - v_gtrans |
---|
107 | IF ( k+1 == nzt+1 ) THEN |
---|
108 | v_int = v_int_l |
---|
109 | ELSE |
---|
110 | v_int_u = ( ( gg-aa ) * v(k+1,j,i) + ( gg-bb ) * v(k+1,j,i+1) & |
---|
111 | + ( gg-cc ) * v(k+1,j+1,i) + ( gg-dd ) * v(k+1,j+1,i+1) & |
---|
112 | ) / ( 3.0 * gg ) - v_gtrans |
---|
113 | v_int = v_int_l + ( particles(n)%z - zu(k) ) / dz * & |
---|
114 | ( v_int_u - v_int_l ) |
---|
115 | ENDIF |
---|
116 | |
---|
117 | ! |
---|
118 | !-- Same procedure for interpolation of the w velocity-component (adopt |
---|
119 | !-- index i from v velocity-component) |
---|
120 | IF ( vertical_particle_advection(particles(n)%group) ) THEN |
---|
121 | j = particles(n)%y * ddy |
---|
122 | k = particles(n)%z / dz + offset_ocean_nzt_m1 |
---|
123 | |
---|
124 | x = particles(n)%x - i * dx |
---|
125 | y = particles(n)%y - j * dy |
---|
126 | aa = x**2 + y**2 |
---|
127 | bb = ( dx - x )**2 + y**2 |
---|
128 | cc = x**2 + ( dy - y )**2 |
---|
129 | dd = ( dx - x )**2 + ( dy - y )**2 |
---|
130 | gg = aa + bb + cc + dd |
---|
131 | |
---|
132 | w_int_l = ( ( gg - aa ) * w(k,j,i) + ( gg - bb ) * w(k,j,i+1) & |
---|
133 | + ( gg - cc ) * w(k,j+1,i) + ( gg - dd ) * w(k,j+1,i+1) & |
---|
134 | ) / ( 3.0 * gg ) |
---|
135 | IF ( k+1 == nzt+1 ) THEN |
---|
136 | w_int = w_int_l |
---|
137 | ELSE |
---|
138 | w_int_u = ( ( gg-aa ) * w(k+1,j,i) + & |
---|
139 | ( gg-bb ) * w(k+1,j,i+1) + & |
---|
140 | ( gg-cc ) * w(k+1,j+1,i) + & |
---|
141 | ( gg-dd ) * w(k+1,j+1,i+1) & |
---|
142 | ) / ( 3.0 * gg ) |
---|
143 | w_int = w_int_l + ( particles(n)%z - zw(k) ) / dz * & |
---|
144 | ( w_int_u - w_int_l ) |
---|
145 | ENDIF |
---|
146 | ELSE |
---|
147 | w_int = 0.0 |
---|
148 | ENDIF |
---|
149 | |
---|
150 | ! |
---|
151 | !-- Interpolate and calculate quantities needed for calculating the SGS |
---|
152 | !-- velocities |
---|
153 | IF ( use_sgs_for_particles ) THEN |
---|
154 | ! |
---|
155 | !-- Interpolate TKE |
---|
156 | i = particles(n)%x * ddx |
---|
157 | j = particles(n)%y * ddy |
---|
158 | k = ( particles(n)%z + 0.5 * dz * atmos_ocean_sign ) / dz & |
---|
159 | + offset_ocean_nzt ! only exact if eq.dist |
---|
160 | |
---|
161 | IF ( topography == 'flat' ) THEN |
---|
162 | |
---|
163 | x = particles(n)%x - i * dx |
---|
164 | y = particles(n)%y - j * dy |
---|
165 | aa = x**2 + y**2 |
---|
166 | bb = ( dx - x )**2 + y**2 |
---|
167 | cc = x**2 + ( dy - y )**2 |
---|
168 | dd = ( dx - x )**2 + ( dy - y )**2 |
---|
169 | gg = aa + bb + cc + dd |
---|
170 | |
---|
171 | e_int_l = ( ( gg-aa ) * e(k,j,i) + ( gg-bb ) * e(k,j,i+1) & |
---|
172 | + ( gg-cc ) * e(k,j+1,i) + ( gg-dd ) * e(k,j+1,i+1) & |
---|
173 | ) / ( 3.0 * gg ) |
---|
174 | |
---|
175 | IF ( k+1 == nzt+1 ) THEN |
---|
176 | e_int = e_int_l |
---|
177 | ELSE |
---|
178 | e_int_u = ( ( gg - aa ) * e(k+1,j,i) + & |
---|
179 | ( gg - bb ) * e(k+1,j,i+1) + & |
---|
180 | ( gg - cc ) * e(k+1,j+1,i) + & |
---|
181 | ( gg - dd ) * e(k+1,j+1,i+1) & |
---|
182 | ) / ( 3.0 * gg ) |
---|
183 | e_int = e_int_l + ( particles(n)%z - zu(k) ) / dz * & |
---|
184 | ( e_int_u - e_int_l ) |
---|
185 | ENDIF |
---|
186 | |
---|
187 | ! |
---|
188 | !-- Interpolate the TKE gradient along x (adopt incides i,j,k and |
---|
189 | !-- all position variables from above (TKE)) |
---|
190 | de_dx_int_l = ( ( gg - aa ) * de_dx(k,j,i) + & |
---|
191 | ( gg - bb ) * de_dx(k,j,i+1) + & |
---|
192 | ( gg - cc ) * de_dx(k,j+1,i) + & |
---|
193 | ( gg - dd ) * de_dx(k,j+1,i+1) & |
---|
194 | ) / ( 3.0 * gg ) |
---|
195 | |
---|
196 | IF ( ( k+1 == nzt+1 ) .OR. ( k == nzb ) ) THEN |
---|
197 | de_dx_int = de_dx_int_l |
---|
198 | ELSE |
---|
199 | de_dx_int_u = ( ( gg - aa ) * de_dx(k+1,j,i) + & |
---|
200 | ( gg - bb ) * de_dx(k+1,j,i+1) + & |
---|
201 | ( gg - cc ) * de_dx(k+1,j+1,i) + & |
---|
202 | ( gg - dd ) * de_dx(k+1,j+1,i+1) & |
---|
203 | ) / ( 3.0 * gg ) |
---|
204 | de_dx_int = de_dx_int_l + ( particles(n)%z - zu(k) ) / dz * & |
---|
205 | ( de_dx_int_u - de_dx_int_l ) |
---|
206 | ENDIF |
---|
207 | |
---|
208 | ! |
---|
209 | !-- Interpolate the TKE gradient along y |
---|
210 | de_dy_int_l = ( ( gg - aa ) * de_dy(k,j,i) + & |
---|
211 | ( gg - bb ) * de_dy(k,j,i+1) + & |
---|
212 | ( gg - cc ) * de_dy(k,j+1,i) + & |
---|
213 | ( gg - dd ) * de_dy(k,j+1,i+1) & |
---|
214 | ) / ( 3.0 * gg ) |
---|
215 | IF ( ( k+1 == nzt+1 ) .OR. ( k == nzb ) ) THEN |
---|
216 | de_dy_int = de_dy_int_l |
---|
217 | ELSE |
---|
218 | de_dy_int_u = ( ( gg - aa ) * de_dy(k+1,j,i) + & |
---|
219 | ( gg - bb ) * de_dy(k+1,j,i+1) + & |
---|
220 | ( gg - cc ) * de_dy(k+1,j+1,i) + & |
---|
221 | ( gg - dd ) * de_dy(k+1,j+1,i+1) & |
---|
222 | ) / ( 3.0 * gg ) |
---|
223 | de_dy_int = de_dy_int_l + ( particles(n)%z - zu(k) ) / dz * & |
---|
224 | ( de_dy_int_u - de_dy_int_l ) |
---|
225 | ENDIF |
---|
226 | |
---|
227 | ! |
---|
228 | !-- Interpolate the TKE gradient along z |
---|
229 | IF ( particles(n)%z < 0.5 * dz ) THEN |
---|
230 | de_dz_int = 0.0 |
---|
231 | ELSE |
---|
232 | de_dz_int_l = ( ( gg - aa ) * de_dz(k,j,i) + & |
---|
233 | ( gg - bb ) * de_dz(k,j,i+1) + & |
---|
234 | ( gg - cc ) * de_dz(k,j+1,i) + & |
---|
235 | ( gg - dd ) * de_dz(k,j+1,i+1) & |
---|
236 | ) / ( 3.0 * gg ) |
---|
237 | |
---|
238 | IF ( ( k+1 == nzt+1 ) .OR. ( k == nzb ) ) THEN |
---|
239 | de_dz_int = de_dz_int_l |
---|
240 | ELSE |
---|
241 | de_dz_int_u = ( ( gg - aa ) * de_dz(k+1,j,i) + & |
---|
242 | ( gg - bb ) * de_dz(k+1,j,i+1) + & |
---|
243 | ( gg - cc ) * de_dz(k+1,j+1,i) + & |
---|
244 | ( gg - dd ) * de_dz(k+1,j+1,i+1) & |
---|
245 | ) / ( 3.0 * gg ) |
---|
246 | de_dz_int = de_dz_int_l + ( particles(n)%z - zu(k) ) / dz * & |
---|
247 | ( de_dz_int_u - de_dz_int_l ) |
---|
248 | ENDIF |
---|
249 | ENDIF |
---|
250 | |
---|
251 | ! |
---|
252 | !-- Interpolate the dissipation of TKE |
---|
253 | diss_int_l = ( ( gg - aa ) * diss(k,j,i) + & |
---|
254 | ( gg - bb ) * diss(k,j,i+1) + & |
---|
255 | ( gg - cc ) * diss(k,j+1,i) + & |
---|
256 | ( gg - dd ) * diss(k,j+1,i+1) & |
---|
257 | ) / ( 3.0 * gg ) |
---|
258 | |
---|
259 | IF ( k+1 == nzt+1 ) THEN |
---|
260 | diss_int = diss_int_l |
---|
261 | ELSE |
---|
262 | diss_int_u = ( ( gg - aa ) * diss(k+1,j,i) + & |
---|
263 | ( gg - bb ) * diss(k+1,j,i+1) + & |
---|
264 | ( gg - cc ) * diss(k+1,j+1,i) + & |
---|
265 | ( gg - dd ) * diss(k+1,j+1,i+1) & |
---|
266 | ) / ( 3.0 * gg ) |
---|
267 | diss_int = diss_int_l + ( particles(n)%z - zu(k) ) / dz * & |
---|
268 | ( diss_int_u - diss_int_l ) |
---|
269 | ENDIF |
---|
270 | |
---|
271 | ELSE |
---|
272 | |
---|
273 | ! |
---|
274 | !-- In case that there are buildings it has to be determined |
---|
275 | !-- how many of the gridpoints defining the particle box are |
---|
276 | !-- situated within a building |
---|
277 | !-- gp_outside_of_building(1): i,j,k |
---|
278 | !-- gp_outside_of_building(2): i,j+1,k |
---|
279 | !-- gp_outside_of_building(3): i,j,k+1 |
---|
280 | !-- gp_outside_of_building(4): i,j+1,k+1 |
---|
281 | !-- gp_outside_of_building(5): i+1,j,k |
---|
282 | !-- gp_outside_of_building(6): i+1,j+1,k |
---|
283 | !-- gp_outside_of_building(7): i+1,j,k+1 |
---|
284 | !-- gp_outside_of_building(8): i+1,j+1,k+1 |
---|
285 | |
---|
286 | gp_outside_of_building = 0 |
---|
287 | location = 0.0 |
---|
288 | num_gp = 0 |
---|
289 | |
---|
290 | IF ( k > nzb_s_inner(j,i) .OR. nzb_s_inner(j,i) == 0 ) THEN |
---|
291 | num_gp = num_gp + 1 |
---|
292 | gp_outside_of_building(1) = 1 |
---|
293 | location(num_gp,1) = i * dx |
---|
294 | location(num_gp,2) = j * dy |
---|
295 | location(num_gp,3) = k * dz - 0.5 * dz |
---|
296 | ei(num_gp) = e(k,j,i) |
---|
297 | dissi(num_gp) = diss(k,j,i) |
---|
298 | de_dxi(num_gp) = de_dx(k,j,i) |
---|
299 | de_dyi(num_gp) = de_dy(k,j,i) |
---|
300 | de_dzi(num_gp) = de_dz(k,j,i) |
---|
301 | ENDIF |
---|
302 | |
---|
303 | IF ( k > nzb_s_inner(j+1,i) .OR. nzb_s_inner(j+1,i) == 0 ) & |
---|
304 | THEN |
---|
305 | num_gp = num_gp + 1 |
---|
306 | gp_outside_of_building(2) = 1 |
---|
307 | location(num_gp,1) = i * dx |
---|
308 | location(num_gp,2) = (j+1) * dy |
---|
309 | location(num_gp,3) = k * dz - 0.5 * dz |
---|
310 | ei(num_gp) = e(k,j+1,i) |
---|
311 | dissi(num_gp) = diss(k,j+1,i) |
---|
312 | de_dxi(num_gp) = de_dx(k,j+1,i) |
---|
313 | de_dyi(num_gp) = de_dy(k,j+1,i) |
---|
314 | de_dzi(num_gp) = de_dz(k,j+1,i) |
---|
315 | ENDIF |
---|
316 | |
---|
317 | IF ( k+1 > nzb_s_inner(j,i) .OR. nzb_s_inner(j,i) == 0 ) THEN |
---|
318 | num_gp = num_gp + 1 |
---|
319 | gp_outside_of_building(3) = 1 |
---|
320 | location(num_gp,1) = i * dx |
---|
321 | location(num_gp,2) = j * dy |
---|
322 | location(num_gp,3) = (k+1) * dz - 0.5 * dz |
---|
323 | ei(num_gp) = e(k+1,j,i) |
---|
324 | dissi(num_gp) = diss(k+1,j,i) |
---|
325 | de_dxi(num_gp) = de_dx(k+1,j,i) |
---|
326 | de_dyi(num_gp) = de_dy(k+1,j,i) |
---|
327 | de_dzi(num_gp) = de_dz(k+1,j,i) |
---|
328 | ENDIF |
---|
329 | |
---|
330 | IF ( k+1 > nzb_s_inner(j+1,i) .OR. nzb_s_inner(j+1,i) == 0 ) & |
---|
331 | THEN |
---|
332 | num_gp = num_gp + 1 |
---|
333 | gp_outside_of_building(4) = 1 |
---|
334 | location(num_gp,1) = i * dx |
---|
335 | location(num_gp,2) = (j+1) * dy |
---|
336 | location(num_gp,3) = (k+1) * dz - 0.5 * dz |
---|
337 | ei(num_gp) = e(k+1,j+1,i) |
---|
338 | dissi(num_gp) = diss(k+1,j+1,i) |
---|
339 | de_dxi(num_gp) = de_dx(k+1,j+1,i) |
---|
340 | de_dyi(num_gp) = de_dy(k+1,j+1,i) |
---|
341 | de_dzi(num_gp) = de_dz(k+1,j+1,i) |
---|
342 | ENDIF |
---|
343 | |
---|
344 | IF ( k > nzb_s_inner(j,i+1) .OR. nzb_s_inner(j,i+1) == 0 ) & |
---|
345 | THEN |
---|
346 | num_gp = num_gp + 1 |
---|
347 | gp_outside_of_building(5) = 1 |
---|
348 | location(num_gp,1) = (i+1) * dx |
---|
349 | location(num_gp,2) = j * dy |
---|
350 | location(num_gp,3) = k * dz - 0.5 * dz |
---|
351 | ei(num_gp) = e(k,j,i+1) |
---|
352 | dissi(num_gp) = diss(k,j,i+1) |
---|
353 | de_dxi(num_gp) = de_dx(k,j,i+1) |
---|
354 | de_dyi(num_gp) = de_dy(k,j,i+1) |
---|
355 | de_dzi(num_gp) = de_dz(k,j,i+1) |
---|
356 | ENDIF |
---|
357 | |
---|
358 | IF ( k > nzb_s_inner(j+1,i+1) .OR. nzb_s_inner(j+1,i+1) == 0 ) & |
---|
359 | THEN |
---|
360 | num_gp = num_gp + 1 |
---|
361 | gp_outside_of_building(6) = 1 |
---|
362 | location(num_gp,1) = (i+1) * dx |
---|
363 | location(num_gp,2) = (j+1) * dy |
---|
364 | location(num_gp,3) = k * dz - 0.5 * dz |
---|
365 | ei(num_gp) = e(k,j+1,i+1) |
---|
366 | dissi(num_gp) = diss(k,j+1,i+1) |
---|
367 | de_dxi(num_gp) = de_dx(k,j+1,i+1) |
---|
368 | de_dyi(num_gp) = de_dy(k,j+1,i+1) |
---|
369 | de_dzi(num_gp) = de_dz(k,j+1,i+1) |
---|
370 | ENDIF |
---|
371 | |
---|
372 | IF ( k+1 > nzb_s_inner(j,i+1) .OR. nzb_s_inner(j,i+1) == 0 ) & |
---|
373 | THEN |
---|
374 | num_gp = num_gp + 1 |
---|
375 | gp_outside_of_building(7) = 1 |
---|
376 | location(num_gp,1) = (i+1) * dx |
---|
377 | location(num_gp,2) = j * dy |
---|
378 | location(num_gp,3) = (k+1) * dz - 0.5 * dz |
---|
379 | ei(num_gp) = e(k+1,j,i+1) |
---|
380 | dissi(num_gp) = diss(k+1,j,i+1) |
---|
381 | de_dxi(num_gp) = de_dx(k+1,j,i+1) |
---|
382 | de_dyi(num_gp) = de_dy(k+1,j,i+1) |
---|
383 | de_dzi(num_gp) = de_dz(k+1,j,i+1) |
---|
384 | ENDIF |
---|
385 | |
---|
386 | IF ( k+1 > nzb_s_inner(j+1,i+1) .OR. nzb_s_inner(j+1,i+1) == 0)& |
---|
387 | THEN |
---|
388 | num_gp = num_gp + 1 |
---|
389 | gp_outside_of_building(8) = 1 |
---|
390 | location(num_gp,1) = (i+1) * dx |
---|
391 | location(num_gp,2) = (j+1) * dy |
---|
392 | location(num_gp,3) = (k+1) * dz - 0.5 * dz |
---|
393 | ei(num_gp) = e(k+1,j+1,i+1) |
---|
394 | dissi(num_gp) = diss(k+1,j+1,i+1) |
---|
395 | de_dxi(num_gp) = de_dx(k+1,j+1,i+1) |
---|
396 | de_dyi(num_gp) = de_dy(k+1,j+1,i+1) |
---|
397 | de_dzi(num_gp) = de_dz(k+1,j+1,i+1) |
---|
398 | ENDIF |
---|
399 | |
---|
400 | ! |
---|
401 | !-- If all gridpoints are situated outside of a building, then the |
---|
402 | !-- ordinary interpolation scheme can be used. |
---|
403 | IF ( num_gp == 8 ) THEN |
---|
404 | |
---|
405 | x = particles(n)%x - i * dx |
---|
406 | y = particles(n)%y - j * dy |
---|
407 | aa = x**2 + y**2 |
---|
408 | bb = ( dx - x )**2 + y**2 |
---|
409 | cc = x**2 + ( dy - y )**2 |
---|
410 | dd = ( dx - x )**2 + ( dy - y )**2 |
---|
411 | gg = aa + bb + cc + dd |
---|
412 | |
---|
413 | e_int_l = (( gg-aa ) * e(k,j,i) + ( gg-bb ) * e(k,j,i+1) & |
---|
414 | + ( gg-cc ) * e(k,j+1,i) + ( gg-dd ) * e(k,j+1,i+1)& |
---|
415 | ) / ( 3.0 * gg ) |
---|
416 | |
---|
417 | IF ( k+1 == nzt+1 ) THEN |
---|
418 | e_int = e_int_l |
---|
419 | ELSE |
---|
420 | e_int_u = ( ( gg - aa ) * e(k+1,j,i) + & |
---|
421 | ( gg - bb ) * e(k+1,j,i+1) + & |
---|
422 | ( gg - cc ) * e(k+1,j+1,i) + & |
---|
423 | ( gg - dd ) * e(k+1,j+1,i+1) & |
---|
424 | ) / ( 3.0 * gg ) |
---|
425 | e_int = e_int_l + ( particles(n)%z - zu(k) ) / dz * & |
---|
426 | ( e_int_u - e_int_l ) |
---|
427 | ENDIF |
---|
428 | |
---|
429 | ! |
---|
430 | !-- Interpolate the TKE gradient along x (adopt incides i,j,k |
---|
431 | !-- and all position variables from above (TKE)) |
---|
432 | de_dx_int_l = ( ( gg - aa ) * de_dx(k,j,i) + & |
---|
433 | ( gg - bb ) * de_dx(k,j,i+1) + & |
---|
434 | ( gg - cc ) * de_dx(k,j+1,i) + & |
---|
435 | ( gg - dd ) * de_dx(k,j+1,i+1) & |
---|
436 | ) / ( 3.0 * gg ) |
---|
437 | |
---|
438 | IF ( ( k+1 == nzt+1 ) .OR. ( k == nzb ) ) THEN |
---|
439 | de_dx_int = de_dx_int_l |
---|
440 | ELSE |
---|
441 | de_dx_int_u = ( ( gg - aa ) * de_dx(k+1,j,i) + & |
---|
442 | ( gg - bb ) * de_dx(k+1,j,i+1) + & |
---|
443 | ( gg - cc ) * de_dx(k+1,j+1,i) + & |
---|
444 | ( gg - dd ) * de_dx(k+1,j+1,i+1) & |
---|
445 | ) / ( 3.0 * gg ) |
---|
446 | de_dx_int = de_dx_int_l + ( particles(n)%z - zu(k) ) / & |
---|
447 | dz * ( de_dx_int_u - de_dx_int_l ) |
---|
448 | ENDIF |
---|
449 | |
---|
450 | ! |
---|
451 | !-- Interpolate the TKE gradient along y |
---|
452 | de_dy_int_l = ( ( gg - aa ) * de_dy(k,j,i) + & |
---|
453 | ( gg - bb ) * de_dy(k,j,i+1) + & |
---|
454 | ( gg - cc ) * de_dy(k,j+1,i) + & |
---|
455 | ( gg - dd ) * de_dy(k,j+1,i+1) & |
---|
456 | ) / ( 3.0 * gg ) |
---|
457 | IF ( ( k+1 == nzt+1 ) .OR. ( k == nzb ) ) THEN |
---|
458 | de_dy_int = de_dy_int_l |
---|
459 | ELSE |
---|
460 | de_dy_int_u = ( ( gg - aa ) * de_dy(k+1,j,i) + & |
---|
461 | ( gg - bb ) * de_dy(k+1,j,i+1) + & |
---|
462 | ( gg - cc ) * de_dy(k+1,j+1,i) + & |
---|
463 | ( gg - dd ) * de_dy(k+1,j+1,i+1) & |
---|
464 | ) / ( 3.0 * gg ) |
---|
465 | de_dy_int = de_dy_int_l + ( particles(n)%z - zu(k) ) / & |
---|
466 | dz * ( de_dy_int_u - de_dy_int_l ) |
---|
467 | ENDIF |
---|
468 | |
---|
469 | ! |
---|
470 | !-- Interpolate the TKE gradient along z |
---|
471 | IF ( particles(n)%z < 0.5 * dz ) THEN |
---|
472 | de_dz_int = 0.0 |
---|
473 | ELSE |
---|
474 | de_dz_int_l = ( ( gg - aa ) * de_dz(k,j,i) + & |
---|
475 | ( gg - bb ) * de_dz(k,j,i+1) + & |
---|
476 | ( gg - cc ) * de_dz(k,j+1,i) + & |
---|
477 | ( gg - dd ) * de_dz(k,j+1,i+1) & |
---|
478 | ) / ( 3.0 * gg ) |
---|
479 | |
---|
480 | IF ( ( k+1 == nzt+1 ) .OR. ( k == nzb ) ) THEN |
---|
481 | de_dz_int = de_dz_int_l |
---|
482 | ELSE |
---|
483 | de_dz_int_u = ( ( gg - aa ) * de_dz(k+1,j,i) + & |
---|
484 | ( gg - bb ) * de_dz(k+1,j,i+1) + & |
---|
485 | ( gg - cc ) * de_dz(k+1,j+1,i) + & |
---|
486 | ( gg - dd ) * de_dz(k+1,j+1,i+1) & |
---|
487 | ) / ( 3.0 * gg ) |
---|
488 | de_dz_int = de_dz_int_l + ( particles(n)%z - zu(k) ) /& |
---|
489 | dz * ( de_dz_int_u - de_dz_int_l ) |
---|
490 | ENDIF |
---|
491 | ENDIF |
---|
492 | |
---|
493 | ! |
---|
494 | !-- Interpolate the dissipation of TKE |
---|
495 | diss_int_l = ( ( gg - aa ) * diss(k,j,i) + & |
---|
496 | ( gg - bb ) * diss(k,j,i+1) + & |
---|
497 | ( gg - cc ) * diss(k,j+1,i) + & |
---|
498 | ( gg - dd ) * diss(k,j+1,i+1) & |
---|
499 | ) / ( 3.0 * gg ) |
---|
500 | |
---|
501 | IF ( k+1 == nzt+1 ) THEN |
---|
502 | diss_int = diss_int_l |
---|
503 | ELSE |
---|
504 | diss_int_u = ( ( gg - aa ) * diss(k+1,j,i) + & |
---|
505 | ( gg - bb ) * diss(k+1,j,i+1) + & |
---|
506 | ( gg - cc ) * diss(k+1,j+1,i) + & |
---|
507 | ( gg - dd ) * diss(k+1,j+1,i+1) & |
---|
508 | ) / ( 3.0 * gg ) |
---|
509 | diss_int = diss_int_l + ( particles(n)%z - zu(k) ) / dz *& |
---|
510 | ( diss_int_u - diss_int_l ) |
---|
511 | ENDIF |
---|
512 | |
---|
513 | ELSE |
---|
514 | |
---|
515 | ! |
---|
516 | !-- If wall between gridpoint 1 and gridpoint 5, then |
---|
517 | !-- Neumann boundary condition has to be applied |
---|
518 | IF ( gp_outside_of_building(1) == 1 .AND. & |
---|
519 | gp_outside_of_building(5) == 0 ) THEN |
---|
520 | num_gp = num_gp + 1 |
---|
521 | location(num_gp,1) = i * dx + 0.5 * dx |
---|
522 | location(num_gp,2) = j * dy |
---|
523 | location(num_gp,3) = k * dz - 0.5 * dz |
---|
524 | ei(num_gp) = e(k,j,i) |
---|
525 | dissi(num_gp) = diss(k,j,i) |
---|
526 | de_dxi(num_gp) = 0.0 |
---|
527 | de_dyi(num_gp) = de_dy(k,j,i) |
---|
528 | de_dzi(num_gp) = de_dz(k,j,i) |
---|
529 | ENDIF |
---|
530 | |
---|
531 | IF ( gp_outside_of_building(5) == 1 .AND. & |
---|
532 | gp_outside_of_building(1) == 0 ) THEN |
---|
533 | num_gp = num_gp + 1 |
---|
534 | location(num_gp,1) = i * dx + 0.5 * dx |
---|
535 | location(num_gp,2) = j * dy |
---|
536 | location(num_gp,3) = k * dz - 0.5 * dz |
---|
537 | ei(num_gp) = e(k,j,i+1) |
---|
538 | dissi(num_gp) = diss(k,j,i+1) |
---|
539 | de_dxi(num_gp) = 0.0 |
---|
540 | de_dyi(num_gp) = de_dy(k,j,i+1) |
---|
541 | de_dzi(num_gp) = de_dz(k,j,i+1) |
---|
542 | ENDIF |
---|
543 | |
---|
544 | ! |
---|
545 | !-- If wall between gridpoint 5 and gridpoint 6, then |
---|
546 | !-- then Neumann boundary condition has to be applied |
---|
547 | IF ( gp_outside_of_building(5) == 1 .AND. & |
---|
548 | gp_outside_of_building(6) == 0 ) THEN |
---|
549 | num_gp = num_gp + 1 |
---|
550 | location(num_gp,1) = (i+1) * dx |
---|
551 | location(num_gp,2) = j * dy + 0.5 * dy |
---|
552 | location(num_gp,3) = k * dz - 0.5 * dz |
---|
553 | ei(num_gp) = e(k,j,i+1) |
---|
554 | dissi(num_gp) = diss(k,j,i+1) |
---|
555 | de_dxi(num_gp) = de_dx(k,j,i+1) |
---|
556 | de_dyi(num_gp) = 0.0 |
---|
557 | de_dzi(num_gp) = de_dz(k,j,i+1) |
---|
558 | ENDIF |
---|
559 | |
---|
560 | IF ( gp_outside_of_building(6) == 1 .AND. & |
---|
561 | gp_outside_of_building(5) == 0 ) THEN |
---|
562 | num_gp = num_gp + 1 |
---|
563 | location(num_gp,1) = (i+1) * dx |
---|
564 | location(num_gp,2) = j * dy + 0.5 * dy |
---|
565 | location(num_gp,3) = k * dz - 0.5 * dz |
---|
566 | ei(num_gp) = e(k,j+1,i+1) |
---|
567 | dissi(num_gp) = diss(k,j+1,i+1) |
---|
568 | de_dxi(num_gp) = de_dx(k,j+1,i+1) |
---|
569 | de_dyi(num_gp) = 0.0 |
---|
570 | de_dzi(num_gp) = de_dz(k,j+1,i+1) |
---|
571 | ENDIF |
---|
572 | |
---|
573 | ! |
---|
574 | !-- If wall between gridpoint 2 and gridpoint 6, then |
---|
575 | !-- Neumann boundary condition has to be applied |
---|
576 | IF ( gp_outside_of_building(2) == 1 .AND. & |
---|
577 | gp_outside_of_building(6) == 0 ) THEN |
---|
578 | num_gp = num_gp + 1 |
---|
579 | location(num_gp,1) = i * dx + 0.5 * dx |
---|
580 | location(num_gp,2) = (j+1) * dy |
---|
581 | location(num_gp,3) = k * dz - 0.5 * dz |
---|
582 | ei(num_gp) = e(k,j+1,i) |
---|
583 | dissi(num_gp) = diss(k,j+1,i) |
---|
584 | de_dxi(num_gp) = 0.0 |
---|
585 | de_dyi(num_gp) = de_dy(k,j+1,i) |
---|
586 | de_dzi(num_gp) = de_dz(k,j+1,i) |
---|
587 | ENDIF |
---|
588 | |
---|
589 | IF ( gp_outside_of_building(6) == 1 .AND. & |
---|
590 | gp_outside_of_building(2) == 0 ) THEN |
---|
591 | num_gp = num_gp + 1 |
---|
592 | location(num_gp,1) = i * dx + 0.5 * dx |
---|
593 | location(num_gp,2) = (j+1) * dy |
---|
594 | location(num_gp,3) = k * dz - 0.5 * dz |
---|
595 | ei(num_gp) = e(k,j+1,i+1) |
---|
596 | dissi(num_gp) = diss(k,j+1,i+1) |
---|
597 | de_dxi(num_gp) = 0.0 |
---|
598 | de_dyi(num_gp) = de_dy(k,j+1,i+1) |
---|
599 | de_dzi(num_gp) = de_dz(k,j+1,i+1) |
---|
600 | ENDIF |
---|
601 | |
---|
602 | ! |
---|
603 | !-- If wall between gridpoint 1 and gridpoint 2, then |
---|
604 | !-- Neumann boundary condition has to be applied |
---|
605 | IF ( gp_outside_of_building(1) == 1 .AND. & |
---|
606 | gp_outside_of_building(2) == 0 ) THEN |
---|
607 | num_gp = num_gp + 1 |
---|
608 | location(num_gp,1) = i * dx |
---|
609 | location(num_gp,2) = j * dy + 0.5 * dy |
---|
610 | location(num_gp,3) = k * dz - 0.5 * dz |
---|
611 | ei(num_gp) = e(k,j,i) |
---|
612 | dissi(num_gp) = diss(k,j,i) |
---|
613 | de_dxi(num_gp) = de_dx(k,j,i) |
---|
614 | de_dyi(num_gp) = 0.0 |
---|
615 | de_dzi(num_gp) = de_dz(k,j,i) |
---|
616 | ENDIF |
---|
617 | |
---|
618 | IF ( gp_outside_of_building(2) == 1 .AND. & |
---|
619 | gp_outside_of_building(1) == 0 ) THEN |
---|
620 | num_gp = num_gp + 1 |
---|
621 | location(num_gp,1) = i * dx |
---|
622 | location(num_gp,2) = j * dy + 0.5 * dy |
---|
623 | location(num_gp,3) = k * dz - 0.5 * dz |
---|
624 | ei(num_gp) = e(k,j+1,i) |
---|
625 | dissi(num_gp) = diss(k,j+1,i) |
---|
626 | de_dxi(num_gp) = de_dx(k,j+1,i) |
---|
627 | de_dyi(num_gp) = 0.0 |
---|
628 | de_dzi(num_gp) = de_dz(k,j+1,i) |
---|
629 | ENDIF |
---|
630 | |
---|
631 | ! |
---|
632 | !-- If wall between gridpoint 3 and gridpoint 7, then |
---|
633 | !-- Neumann boundary condition has to be applied |
---|
634 | IF ( gp_outside_of_building(3) == 1 .AND. & |
---|
635 | gp_outside_of_building(7) == 0 ) THEN |
---|
636 | num_gp = num_gp + 1 |
---|
637 | location(num_gp,1) = i * dx + 0.5 * dx |
---|
638 | location(num_gp,2) = j * dy |
---|
639 | location(num_gp,3) = k * dz + 0.5 * dz |
---|
640 | ei(num_gp) = e(k+1,j,i) |
---|
641 | dissi(num_gp) = diss(k+1,j,i) |
---|
642 | de_dxi(num_gp) = 0.0 |
---|
643 | de_dyi(num_gp) = de_dy(k+1,j,i) |
---|
644 | de_dzi(num_gp) = de_dz(k+1,j,i) |
---|
645 | ENDIF |
---|
646 | |
---|
647 | IF ( gp_outside_of_building(7) == 1 .AND. & |
---|
648 | gp_outside_of_building(3) == 0 ) THEN |
---|
649 | num_gp = num_gp + 1 |
---|
650 | location(num_gp,1) = i * dx + 0.5 * dx |
---|
651 | location(num_gp,2) = j * dy |
---|
652 | location(num_gp,3) = k * dz + 0.5 * dz |
---|
653 | ei(num_gp) = e(k+1,j,i+1) |
---|
654 | dissi(num_gp) = diss(k+1,j,i+1) |
---|
655 | de_dxi(num_gp) = 0.0 |
---|
656 | de_dyi(num_gp) = de_dy(k+1,j,i+1) |
---|
657 | de_dzi(num_gp) = de_dz(k+1,j,i+1) |
---|
658 | ENDIF |
---|
659 | |
---|
660 | ! |
---|
661 | !-- If wall between gridpoint 7 and gridpoint 8, then |
---|
662 | !-- Neumann boundary condition has to be applied |
---|
663 | IF ( gp_outside_of_building(7) == 1 .AND. & |
---|
664 | gp_outside_of_building(8) == 0 ) THEN |
---|
665 | num_gp = num_gp + 1 |
---|
666 | location(num_gp,1) = (i+1) * dx |
---|
667 | location(num_gp,2) = j * dy + 0.5 * dy |
---|
668 | location(num_gp,3) = k * dz + 0.5 * dz |
---|
669 | ei(num_gp) = e(k+1,j,i+1) |
---|
670 | dissi(num_gp) = diss(k+1,j,i+1) |
---|
671 | de_dxi(num_gp) = de_dx(k+1,j,i+1) |
---|
672 | de_dyi(num_gp) = 0.0 |
---|
673 | de_dzi(num_gp) = de_dz(k+1,j,i+1) |
---|
674 | ENDIF |
---|
675 | |
---|
676 | IF ( gp_outside_of_building(8) == 1 .AND. & |
---|
677 | gp_outside_of_building(7) == 0 ) THEN |
---|
678 | num_gp = num_gp + 1 |
---|
679 | location(num_gp,1) = (i+1) * dx |
---|
680 | location(num_gp,2) = j * dy + 0.5 * dy |
---|
681 | location(num_gp,3) = k * dz + 0.5 * dz |
---|
682 | ei(num_gp) = e(k+1,j+1,i+1) |
---|
683 | dissi(num_gp) = diss(k+1,j+1,i+1) |
---|
684 | de_dxi(num_gp) = de_dx(k+1,j+1,i+1) |
---|
685 | de_dyi(num_gp) = 0.0 |
---|
686 | de_dzi(num_gp) = de_dz(k+1,j+1,i+1) |
---|
687 | ENDIF |
---|
688 | |
---|
689 | ! |
---|
690 | !-- If wall between gridpoint 4 and gridpoint 8, then |
---|
691 | !-- Neumann boundary condition has to be applied |
---|
692 | IF ( gp_outside_of_building(4) == 1 .AND. & |
---|
693 | gp_outside_of_building(8) == 0 ) THEN |
---|
694 | num_gp = num_gp + 1 |
---|
695 | location(num_gp,1) = i * dx + 0.5 * dx |
---|
696 | location(num_gp,2) = (j+1) * dy |
---|
697 | location(num_gp,3) = k * dz + 0.5 * dz |
---|
698 | ei(num_gp) = e(k+1,j+1,i) |
---|
699 | dissi(num_gp) = diss(k+1,j+1,i) |
---|
700 | de_dxi(num_gp) = 0.0 |
---|
701 | de_dyi(num_gp) = de_dy(k+1,j+1,i) |
---|
702 | de_dzi(num_gp) = de_dz(k+1,j+1,i) |
---|
703 | ENDIF |
---|
704 | |
---|
705 | IF ( gp_outside_of_building(8) == 1 .AND. & |
---|
706 | gp_outside_of_building(4) == 0 ) THEN |
---|
707 | num_gp = num_gp + 1 |
---|
708 | location(num_gp,1) = i * dx + 0.5 * dx |
---|
709 | location(num_gp,2) = (j+1) * dy |
---|
710 | location(num_gp,3) = k * dz + 0.5 * dz |
---|
711 | ei(num_gp) = e(k+1,j+1,i+1) |
---|
712 | dissi(num_gp) = diss(k+1,j+1,i+1) |
---|
713 | de_dxi(num_gp) = 0.0 |
---|
714 | de_dyi(num_gp) = de_dy(k+1,j+1,i+1) |
---|
715 | de_dzi(num_gp) = de_dz(k+1,j+1,i+1) |
---|
716 | ENDIF |
---|
717 | |
---|
718 | ! |
---|
719 | !-- If wall between gridpoint 3 and gridpoint 4, then |
---|
720 | !-- Neumann boundary condition has to be applied |
---|
721 | IF ( gp_outside_of_building(3) == 1 .AND. & |
---|
722 | gp_outside_of_building(4) == 0 ) THEN |
---|
723 | num_gp = num_gp + 1 |
---|
724 | location(num_gp,1) = i * dx |
---|
725 | location(num_gp,2) = j * dy + 0.5 * dy |
---|
726 | location(num_gp,3) = k * dz + 0.5 * dz |
---|
727 | ei(num_gp) = e(k+1,j,i) |
---|
728 | dissi(num_gp) = diss(k+1,j,i) |
---|
729 | de_dxi(num_gp) = de_dx(k+1,j,i) |
---|
730 | de_dyi(num_gp) = 0.0 |
---|
731 | de_dzi(num_gp) = de_dz(k+1,j,i) |
---|
732 | ENDIF |
---|
733 | |
---|
734 | IF ( gp_outside_of_building(4) == 1 .AND. & |
---|
735 | gp_outside_of_building(3) == 0 ) THEN |
---|
736 | num_gp = num_gp + 1 |
---|
737 | location(num_gp,1) = i * dx |
---|
738 | location(num_gp,2) = j * dy + 0.5 * dy |
---|
739 | location(num_gp,3) = k * dz + 0.5 * dz |
---|
740 | ei(num_gp) = e(k+1,j+1,i) |
---|
741 | dissi(num_gp) = diss(k+1,j+1,i) |
---|
742 | de_dxi(num_gp) = de_dx(k+1,j+1,i) |
---|
743 | de_dyi(num_gp) = 0.0 |
---|
744 | de_dzi(num_gp) = de_dz(k+1,j+1,i) |
---|
745 | ENDIF |
---|
746 | |
---|
747 | ! |
---|
748 | !-- If wall between gridpoint 1 and gridpoint 3, then |
---|
749 | !-- Neumann boundary condition has to be applied |
---|
750 | !-- (only one case as only building beneath is possible) |
---|
751 | IF ( gp_outside_of_building(1) == 0 .AND. & |
---|
752 | gp_outside_of_building(3) == 1 ) THEN |
---|
753 | num_gp = num_gp + 1 |
---|
754 | location(num_gp,1) = i * dx |
---|
755 | location(num_gp,2) = j * dy |
---|
756 | location(num_gp,3) = k * dz |
---|
757 | ei(num_gp) = e(k+1,j,i) |
---|
758 | dissi(num_gp) = diss(k+1,j,i) |
---|
759 | de_dxi(num_gp) = de_dx(k+1,j,i) |
---|
760 | de_dyi(num_gp) = de_dy(k+1,j,i) |
---|
761 | de_dzi(num_gp) = 0.0 |
---|
762 | ENDIF |
---|
763 | |
---|
764 | ! |
---|
765 | !-- If wall between gridpoint 5 and gridpoint 7, then |
---|
766 | !-- Neumann boundary condition has to be applied |
---|
767 | !-- (only one case as only building beneath is possible) |
---|
768 | IF ( gp_outside_of_building(5) == 0 .AND. & |
---|
769 | gp_outside_of_building(7) == 1 ) THEN |
---|
770 | num_gp = num_gp + 1 |
---|
771 | location(num_gp,1) = (i+1) * dx |
---|
772 | location(num_gp,2) = j * dy |
---|
773 | location(num_gp,3) = k * dz |
---|
774 | ei(num_gp) = e(k+1,j,i+1) |
---|
775 | dissi(num_gp) = diss(k+1,j,i+1) |
---|
776 | de_dxi(num_gp) = de_dx(k+1,j,i+1) |
---|
777 | de_dyi(num_gp) = de_dy(k+1,j,i+1) |
---|
778 | de_dzi(num_gp) = 0.0 |
---|
779 | ENDIF |
---|
780 | |
---|
781 | ! |
---|
782 | !-- If wall between gridpoint 2 and gridpoint 4, then |
---|
783 | !-- Neumann boundary condition has to be applied |
---|
784 | !-- (only one case as only building beneath is possible) |
---|
785 | IF ( gp_outside_of_building(2) == 0 .AND. & |
---|
786 | gp_outside_of_building(4) == 1 ) THEN |
---|
787 | num_gp = num_gp + 1 |
---|
788 | location(num_gp,1) = i * dx |
---|
789 | location(num_gp,2) = (j+1) * dy |
---|
790 | location(num_gp,3) = k * dz |
---|
791 | ei(num_gp) = e(k+1,j+1,i) |
---|
792 | dissi(num_gp) = diss(k+1,j+1,i) |
---|
793 | de_dxi(num_gp) = de_dx(k+1,j+1,i) |
---|
794 | de_dyi(num_gp) = de_dy(k+1,j+1,i) |
---|
795 | de_dzi(num_gp) = 0.0 |
---|
796 | ENDIF |
---|
797 | |
---|
798 | ! |
---|
799 | !-- If wall between gridpoint 6 and gridpoint 8, then |
---|
800 | !-- Neumann boundary condition has to be applied |
---|
801 | !-- (only one case as only building beneath is possible) |
---|
802 | IF ( gp_outside_of_building(6) == 0 .AND. & |
---|
803 | gp_outside_of_building(8) == 1 ) THEN |
---|
804 | num_gp = num_gp + 1 |
---|
805 | location(num_gp,1) = (i+1) * dx |
---|
806 | location(num_gp,2) = (j+1) * dy |
---|
807 | location(num_gp,3) = k * dz |
---|
808 | ei(num_gp) = e(k+1,j+1,i+1) |
---|
809 | dissi(num_gp) = diss(k+1,j+1,i+1) |
---|
810 | de_dxi(num_gp) = de_dx(k+1,j+1,i+1) |
---|
811 | de_dyi(num_gp) = de_dy(k+1,j+1,i+1) |
---|
812 | de_dzi(num_gp) = 0.0 |
---|
813 | ENDIF |
---|
814 | |
---|
815 | ! |
---|
816 | !-- Carry out the interpolation |
---|
817 | IF ( num_gp == 1 ) THEN |
---|
818 | ! |
---|
819 | !-- If only one of the gridpoints is situated outside of the |
---|
820 | !-- building, it follows that the values at the particle |
---|
821 | !-- location are the same as the gridpoint values |
---|
822 | e_int = ei(num_gp) |
---|
823 | diss_int = dissi(num_gp) |
---|
824 | de_dx_int = de_dxi(num_gp) |
---|
825 | de_dy_int = de_dyi(num_gp) |
---|
826 | de_dz_int = de_dzi(num_gp) |
---|
827 | ELSE IF ( num_gp > 1 ) THEN |
---|
828 | |
---|
829 | d_sum = 0.0 |
---|
830 | ! |
---|
831 | !-- Evaluation of the distances between the gridpoints |
---|
832 | !-- contributing to the interpolated values, and the particle |
---|
833 | !-- location |
---|
834 | DO agp = 1, num_gp |
---|
835 | d_gp_pl(agp) = ( particles(n)%x-location(agp,1) )**2 & |
---|
836 | + ( particles(n)%y-location(agp,2) )**2 & |
---|
837 | + ( particles(n)%z-location(agp,3) )**2 |
---|
838 | d_sum = d_sum + d_gp_pl(agp) |
---|
839 | ENDDO |
---|
840 | |
---|
841 | ! |
---|
842 | !-- Finally the interpolation can be carried out |
---|
843 | e_int = 0.0 |
---|
844 | diss_int = 0.0 |
---|
845 | de_dx_int = 0.0 |
---|
846 | de_dy_int = 0.0 |
---|
847 | de_dz_int = 0.0 |
---|
848 | DO agp = 1, num_gp |
---|
849 | e_int = e_int + ( d_sum - d_gp_pl(agp) ) * & |
---|
850 | ei(agp) / ( (num_gp-1) * d_sum ) |
---|
851 | diss_int = diss_int + ( d_sum - d_gp_pl(agp) ) * & |
---|
852 | dissi(agp) / ( (num_gp-1) * d_sum ) |
---|
853 | de_dx_int = de_dx_int + ( d_sum - d_gp_pl(agp) ) * & |
---|
854 | de_dxi(agp) / ( (num_gp-1) * d_sum ) |
---|
855 | de_dy_int = de_dy_int + ( d_sum - d_gp_pl(agp) ) * & |
---|
856 | de_dyi(agp) / ( (num_gp-1) * d_sum ) |
---|
857 | de_dz_int = de_dz_int + ( d_sum - d_gp_pl(agp) ) * & |
---|
858 | de_dzi(agp) / ( (num_gp-1) * d_sum ) |
---|
859 | ENDDO |
---|
860 | |
---|
861 | ENDIF |
---|
862 | |
---|
863 | ENDIF |
---|
864 | |
---|
865 | ENDIF |
---|
866 | |
---|
867 | ! |
---|
868 | !-- Vertically interpolate the horizontally averaged SGS TKE and |
---|
869 | !-- resolved-scale velocity variances and use the interpolated values |
---|
870 | !-- to calculate the coefficient fs, which is a measure of the ratio |
---|
871 | !-- of the subgrid-scale turbulent kinetic energy to the total amount |
---|
872 | !-- of turbulent kinetic energy. |
---|
873 | IF ( k == 0 ) THEN |
---|
874 | e_mean_int = hom(0,1,8,0) |
---|
875 | ELSE |
---|
876 | e_mean_int = hom(k,1,8,0) + & |
---|
877 | ( hom(k+1,1,8,0) - hom(k,1,8,0) ) / & |
---|
878 | ( zu(k+1) - zu(k) ) * & |
---|
879 | ( particles(n)%z - zu(k) ) |
---|
880 | ENDIF |
---|
881 | |
---|
882 | kw = particles(n)%z / dz |
---|
883 | |
---|
884 | IF ( k == 0 ) THEN |
---|
885 | aa = hom(k+1,1,30,0) * ( particles(n)%z / & |
---|
886 | ( 0.5 * ( zu(k+1) - zu(k) ) ) ) |
---|
887 | bb = hom(k+1,1,31,0) * ( particles(n)%z / & |
---|
888 | ( 0.5 * ( zu(k+1) - zu(k) ) ) ) |
---|
889 | cc = hom(kw+1,1,32,0) * ( particles(n)%z / & |
---|
890 | ( 1.0 * ( zw(kw+1) - zw(kw) ) ) ) |
---|
891 | ELSE |
---|
892 | aa = hom(k,1,30,0) + ( hom(k+1,1,30,0) - hom(k,1,30,0) ) * & |
---|
893 | ( ( particles(n)%z - zu(k) ) / ( zu(k+1) - zu(k) ) ) |
---|
894 | bb = hom(k,1,31,0) + ( hom(k+1,1,31,0) - hom(k,1,31,0) ) * & |
---|
895 | ( ( particles(n)%z - zu(k) ) / ( zu(k+1) - zu(k) ) ) |
---|
896 | cc = hom(kw,1,32,0) + ( hom(kw+1,1,32,0)-hom(kw,1,32,0) ) *& |
---|
897 | ( ( particles(n)%z - zw(kw) ) / ( zw(kw+1)-zw(kw) ) ) |
---|
898 | ENDIF |
---|
899 | |
---|
900 | vv_int = ( 1.0 / 3.0 ) * ( aa + bb + cc ) |
---|
901 | |
---|
902 | fs_int = ( 2.0 / 3.0 ) * e_mean_int / & |
---|
903 | ( vv_int + ( 2.0 / 3.0 ) * e_mean_int ) |
---|
904 | |
---|
905 | ! |
---|
906 | !-- Calculate the Lagrangian timescale according to Weil et al. (2004). |
---|
907 | lagr_timescale = ( 4.0 * e_int ) / & |
---|
908 | ( 3.0 * fs_int * c_0 * diss_int ) |
---|
909 | |
---|
910 | ! |
---|
911 | !-- Calculate the next particle timestep. dt_gap is the time needed to |
---|
912 | !-- complete the current LES timestep. |
---|
913 | dt_gap = dt_3d - particles(n)%dt_sum |
---|
914 | dt_particle = MIN( dt_3d, 0.025 * lagr_timescale, dt_gap ) |
---|
915 | |
---|
916 | ! |
---|
917 | !-- The particle timestep should not be too small in order to prevent |
---|
918 | !-- the number of particle timesteps of getting too large |
---|
919 | IF ( dt_particle < dt_min_part .AND. dt_min_part < dt_gap ) & |
---|
920 | THEN |
---|
921 | dt_particle = dt_min_part |
---|
922 | ENDIF |
---|
923 | |
---|
924 | ! |
---|
925 | !-- Calculate the SGS velocity components |
---|
926 | IF ( particles(n)%age == 0.0 ) THEN |
---|
927 | ! |
---|
928 | !-- For new particles the SGS components are derived from the SGS |
---|
929 | !-- TKE. Limit the Gaussian random number to the interval |
---|
930 | !-- [-5.0*sigma, 5.0*sigma] in order to prevent the SGS velocities |
---|
931 | !-- from becoming unrealistically large. |
---|
932 | particles(n)%rvar1 = SQRT( 2.0 * sgs_wfu_part * e_int ) * & |
---|
933 | ( random_gauss( iran_part, 5.0 ) - 1.0 ) |
---|
934 | particles(n)%rvar2 = SQRT( 2.0 * sgs_wfv_part * e_int ) * & |
---|
935 | ( random_gauss( iran_part, 5.0 ) - 1.0 ) |
---|
936 | particles(n)%rvar3 = SQRT( 2.0 * sgs_wfw_part * e_int ) * & |
---|
937 | ( random_gauss( iran_part, 5.0 ) - 1.0 ) |
---|
938 | |
---|
939 | ELSE |
---|
940 | |
---|
941 | ! |
---|
942 | !-- Restriction of the size of the new timestep: compared to the |
---|
943 | !-- previous timestep the increase must not exceed 200% |
---|
944 | |
---|
945 | dt_particle_m = particles(n)%age - particles(n)%age_m |
---|
946 | IF ( dt_particle > 2.0 * dt_particle_m ) THEN |
---|
947 | dt_particle = 2.0 * dt_particle_m |
---|
948 | ENDIF |
---|
949 | |
---|
950 | ! |
---|
951 | !-- For old particles the SGS components are correlated with the |
---|
952 | !-- values from the previous timestep. Random numbers have also to |
---|
953 | !-- be limited (see above). |
---|
954 | !-- As negative values for the subgrid TKE are not allowed, the |
---|
955 | !-- change of the subgrid TKE with time cannot be smaller than |
---|
956 | !-- -e_int/dt_particle. This value is used as a lower boundary |
---|
957 | !-- value for the change of TKE |
---|
958 | |
---|
959 | de_dt_min = - e_int / dt_particle |
---|
960 | |
---|
961 | de_dt = ( e_int - particles(n)%e_m ) / dt_particle_m |
---|
962 | |
---|
963 | IF ( de_dt < de_dt_min ) THEN |
---|
964 | de_dt = de_dt_min |
---|
965 | ENDIF |
---|
966 | |
---|
967 | particles(n)%rvar1 = particles(n)%rvar1 - fs_int * c_0 * & |
---|
968 | diss_int * particles(n)%rvar1 * dt_particle /& |
---|
969 | ( 4.0 * sgs_wfu_part * e_int ) + & |
---|
970 | ( 2.0 * sgs_wfu_part * de_dt * & |
---|
971 | particles(n)%rvar1 / & |
---|
972 | ( 2.0 * sgs_wfu_part * e_int ) + de_dx_int & |
---|
973 | ) * dt_particle / 2.0 + & |
---|
974 | SQRT( fs_int * c_0 * diss_int ) * & |
---|
975 | ( random_gauss( iran_part, 5.0 ) - 1.0 ) * & |
---|
976 | SQRT( dt_particle ) |
---|
977 | |
---|
978 | particles(n)%rvar2 = particles(n)%rvar2 - fs_int * c_0 * & |
---|
979 | diss_int * particles(n)%rvar2 * dt_particle /& |
---|
980 | ( 4.0 * sgs_wfv_part * e_int ) + & |
---|
981 | ( 2.0 * sgs_wfv_part * de_dt * & |
---|
982 | particles(n)%rvar2 / & |
---|
983 | ( 2.0 * sgs_wfv_part * e_int ) + de_dy_int & |
---|
984 | ) * dt_particle / 2.0 + & |
---|
985 | SQRT( fs_int * c_0 * diss_int ) * & |
---|
986 | ( random_gauss( iran_part, 5.0 ) - 1.0 ) * & |
---|
987 | SQRT( dt_particle ) |
---|
988 | |
---|
989 | particles(n)%rvar3 = particles(n)%rvar3 - fs_int * c_0 * & |
---|
990 | diss_int * particles(n)%rvar3 * dt_particle /& |
---|
991 | ( 4.0 * sgs_wfw_part * e_int ) + & |
---|
992 | ( 2.0 * sgs_wfw_part * de_dt * & |
---|
993 | particles(n)%rvar3 / & |
---|
994 | ( 2.0 * sgs_wfw_part * e_int ) + de_dz_int & |
---|
995 | ) * dt_particle / 2.0 + & |
---|
996 | SQRT( fs_int * c_0 * diss_int ) * & |
---|
997 | ( random_gauss( iran_part, 5.0 ) - 1.0 ) * & |
---|
998 | SQRT( dt_particle ) |
---|
999 | |
---|
1000 | ENDIF |
---|
1001 | |
---|
1002 | u_int = u_int + particles(n)%rvar1 |
---|
1003 | v_int = v_int + particles(n)%rvar2 |
---|
1004 | w_int = w_int + particles(n)%rvar3 |
---|
1005 | |
---|
1006 | ! |
---|
1007 | !-- Store the SGS TKE of the current timelevel which is needed for |
---|
1008 | !-- for calculating the SGS particle velocities at the next timestep |
---|
1009 | particles(n)%e_m = e_int |
---|
1010 | |
---|
1011 | ELSE |
---|
1012 | ! |
---|
1013 | !-- If no SGS velocities are used, only the particle timestep has to |
---|
1014 | !-- be set |
---|
1015 | dt_particle = dt_3d |
---|
1016 | |
---|
1017 | ENDIF |
---|
1018 | |
---|
1019 | ! |
---|
1020 | !-- Store the old age of the particle ( needed to prevent that a |
---|
1021 | !-- particle crosses several PEs during one timestep, and for the |
---|
1022 | !-- evaluation of the subgrid particle velocity fluctuations ) |
---|
1023 | particles(n)%age_m = particles(n)%age |
---|
1024 | |
---|
1025 | |
---|
1026 | ! |
---|
1027 | !-- Particle advection |
---|
1028 | IF ( particle_groups(particles(n)%group)%density_ratio == 0.0 ) THEN |
---|
1029 | ! |
---|
1030 | !-- Pure passive transport (without particle inertia) |
---|
1031 | particles(n)%x = particles(n)%x + u_int * dt_particle |
---|
1032 | particles(n)%y = particles(n)%y + v_int * dt_particle |
---|
1033 | particles(n)%z = particles(n)%z + w_int * dt_particle |
---|
1034 | |
---|
1035 | particles(n)%speed_x = u_int |
---|
1036 | particles(n)%speed_y = v_int |
---|
1037 | particles(n)%speed_z = w_int |
---|
1038 | |
---|
1039 | ELSE |
---|
1040 | ! |
---|
1041 | !-- Transport of particles with inertia |
---|
1042 | particles(n)%x = particles(n)%x + particles(n)%speed_x * & |
---|
1043 | dt_particle |
---|
1044 | particles(n)%y = particles(n)%y + particles(n)%speed_y * & |
---|
1045 | dt_particle |
---|
1046 | particles(n)%z = particles(n)%z + particles(n)%speed_z * & |
---|
1047 | dt_particle |
---|
1048 | |
---|
1049 | ! |
---|
1050 | !-- Update of the particle velocity |
---|
1051 | dens_ratio = particle_groups(particles(n)%group)%density_ratio |
---|
1052 | IF ( cloud_droplets ) THEN |
---|
1053 | exp_arg = 4.5 * dens_ratio * molecular_viscosity / & |
---|
1054 | ( particles(n)%radius )**2 * & |
---|
1055 | ( 1.0 + 0.15 * ( 2.0 * particles(n)%radius * & |
---|
1056 | SQRT( ( u_int - particles(n)%speed_x )**2 + & |
---|
1057 | ( v_int - particles(n)%speed_y )**2 + & |
---|
1058 | ( w_int - particles(n)%speed_z )**2 ) / & |
---|
1059 | molecular_viscosity )**0.687 & |
---|
1060 | ) |
---|
1061 | exp_term = EXP( -exp_arg * dt_particle ) |
---|
1062 | ELSEIF ( use_sgs_for_particles ) THEN |
---|
1063 | exp_arg = particle_groups(particles(n)%group)%exp_arg |
---|
1064 | exp_term = EXP( -exp_arg * dt_particle ) |
---|
1065 | ELSE |
---|
1066 | exp_arg = particle_groups(particles(n)%group)%exp_arg |
---|
1067 | exp_term = particle_groups(particles(n)%group)%exp_term |
---|
1068 | ENDIF |
---|
1069 | particles(n)%speed_x = particles(n)%speed_x * exp_term + & |
---|
1070 | u_int * ( 1.0 - exp_term ) |
---|
1071 | particles(n)%speed_y = particles(n)%speed_y * exp_term + & |
---|
1072 | v_int * ( 1.0 - exp_term ) |
---|
1073 | particles(n)%speed_z = particles(n)%speed_z * exp_term + & |
---|
1074 | ( w_int - ( 1.0 - dens_ratio ) * g / exp_arg )& |
---|
1075 | * ( 1.0 - exp_term ) |
---|
1076 | ENDIF |
---|
1077 | |
---|
1078 | ! |
---|
1079 | !-- Increment the particle age and the total time that the particle |
---|
1080 | !-- has advanced within the particle timestep procedure |
---|
1081 | particles(n)%age = particles(n)%age + dt_particle |
---|
1082 | particles(n)%dt_sum = particles(n)%dt_sum + dt_particle |
---|
1083 | |
---|
1084 | ! |
---|
1085 | !-- Check whether there is still a particle that has not yet completed |
---|
1086 | !-- the total LES timestep |
---|
1087 | IF ( ( dt_3d - particles(n)%dt_sum ) > 1E-8 ) THEN |
---|
1088 | dt_3d_reached_l = .FALSE. |
---|
1089 | ENDIF |
---|
1090 | |
---|
1091 | ENDDO |
---|
1092 | |
---|
1093 | |
---|
1094 | END SUBROUTINE lpm_advec |
---|