1 | SUBROUTINE lpm_advec |
---|
2 | |
---|
3 | !--------------------------------------------------------------------------------! |
---|
4 | ! This file is part of PALM. |
---|
5 | ! |
---|
6 | ! PALM is free software: you can redistribute it and/or modify it under the terms |
---|
7 | ! of the GNU General Public License as published by the Free Software Foundation, |
---|
8 | ! either version 3 of the License, or (at your option) any later version. |
---|
9 | ! |
---|
10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
13 | ! |
---|
14 | ! You should have received a copy of the GNU General Public License along with |
---|
15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
16 | ! |
---|
17 | ! Copyright 1997-2014 Leibniz Universitaet Hannover |
---|
18 | !--------------------------------------------------------------------------------! |
---|
19 | ! |
---|
20 | ! Current revisions: |
---|
21 | ! ------------------ |
---|
22 | ! |
---|
23 | ! |
---|
24 | ! Former revisions: |
---|
25 | ! ----------------- |
---|
26 | ! $Id: lpm_advec.f90 1323 2014-03-20 17:09:54Z maronga $ |
---|
27 | ! |
---|
28 | ! 1322 2014-03-20 16:38:49Z raasch |
---|
29 | ! REAL constants defined as wp_kind |
---|
30 | ! |
---|
31 | ! 1320 2014-03-20 08:40:49Z raasch |
---|
32 | ! ONLY-attribute added to USE-statements, |
---|
33 | ! kind-parameters added to all INTEGER and REAL declaration statements, |
---|
34 | ! kinds are defined in new module kinds, |
---|
35 | ! revision history before 2012 removed, |
---|
36 | ! comment fields (!:) to be used for variable explanations added to |
---|
37 | ! all variable declaration statements |
---|
38 | ! |
---|
39 | ! 1314 2014-03-14 18:25:17Z suehring |
---|
40 | ! Vertical logarithmic interpolation of horizontal particle speed for particles |
---|
41 | ! between roughness height and first vertical grid level. |
---|
42 | ! |
---|
43 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
44 | ! code put under GPL (PALM 3.9) |
---|
45 | ! |
---|
46 | ! 849 2012-03-15 10:35:09Z raasch |
---|
47 | ! initial revision (former part of advec_particles) |
---|
48 | ! |
---|
49 | ! |
---|
50 | ! Description: |
---|
51 | ! ------------ |
---|
52 | ! Calculation of new particle positions due to advection using a simple Euler |
---|
53 | ! scheme. Particles may feel inertia effects. SGS transport can be included |
---|
54 | ! using the stochastic model of Weil et al. (2004, JAS, 61, 2877-2887). |
---|
55 | !------------------------------------------------------------------------------! |
---|
56 | |
---|
57 | USE arrays_3d, & |
---|
58 | ONLY: de_dx, de_dy, de_dz, diss, e, u, us, usws, v, vsws, w, z0, zu, zw |
---|
59 | |
---|
60 | USE control_parameters, & |
---|
61 | ONLY: atmos_ocean_sign, cloud_droplets, dt_3d, dt_3d_reached_l, dz, & |
---|
62 | g, kappa, molecular_viscosity, prandtl_layer, topography, & |
---|
63 | u_gtrans, v_gtrans |
---|
64 | |
---|
65 | USE grid_variables, & |
---|
66 | ONLY: ddx, dx, ddy, dy |
---|
67 | |
---|
68 | USE indices, & |
---|
69 | ONLY: nzb, nzb_s_inner, nzt |
---|
70 | |
---|
71 | USE kinds |
---|
72 | |
---|
73 | USE particle_attributes, & |
---|
74 | ONLY: c_0, density_ratio, dt_min_part, iran_part, log_z_z0, & |
---|
75 | number_of_particles, number_of_sublayers, particles, & |
---|
76 | particle_groups, offset_ocean_nzt, offset_ocean_nzt_m1, & |
---|
77 | sgs_wfu_part, sgs_wfv_part, sgs_wfw_part, use_sgs_for_particles,& |
---|
78 | vertical_particle_advection, z0_av_global |
---|
79 | |
---|
80 | USE statistics, & |
---|
81 | ONLY: hom |
---|
82 | |
---|
83 | |
---|
84 | IMPLICIT NONE |
---|
85 | |
---|
86 | INTEGER(iwp) :: agp !: |
---|
87 | INTEGER(iwp) :: gp_outside_of_building(1:8) !: |
---|
88 | INTEGER(iwp) :: i !: |
---|
89 | INTEGER(iwp) :: j !: |
---|
90 | INTEGER(iwp) :: k !: |
---|
91 | INTEGER(iwp) :: kw !: |
---|
92 | INTEGER(iwp) :: n !: |
---|
93 | INTEGER(iwp) :: num_gp !: |
---|
94 | |
---|
95 | REAL(wp) :: aa !: |
---|
96 | REAL(wp) :: bb !: |
---|
97 | REAL(wp) :: cc !: |
---|
98 | REAL(wp) :: d_sum !: |
---|
99 | REAL(wp) :: d_z_p_z0 !: |
---|
100 | REAL(wp) :: dd !: |
---|
101 | REAL(wp) :: de_dx_int !: |
---|
102 | REAL(wp) :: de_dx_int_l !: |
---|
103 | REAL(wp) :: de_dx_int_u !: |
---|
104 | REAL(wp) :: de_dy_int !: |
---|
105 | REAL(wp) :: de_dy_int_l !: |
---|
106 | REAL(wp) :: de_dy_int_u !: |
---|
107 | REAL(wp) :: de_dt !: |
---|
108 | REAL(wp) :: de_dt_min !: |
---|
109 | REAL(wp) :: de_dz_int !: |
---|
110 | REAL(wp) :: de_dz_int_l !: |
---|
111 | REAL(wp) :: de_dz_int_u !: |
---|
112 | REAL(wp) :: dens_ratio !: |
---|
113 | REAL(wp) :: diss_int !: |
---|
114 | REAL(wp) :: diss_int_l !: |
---|
115 | REAL(wp) :: diss_int_u !: |
---|
116 | REAL(wp) :: dt_gap !: |
---|
117 | REAL(wp) :: dt_particle !: |
---|
118 | REAL(wp) :: dt_particle_m !: |
---|
119 | REAL(wp) :: e_int !: |
---|
120 | REAL(wp) :: e_int_l !: |
---|
121 | REAL(wp) :: e_int_u !: |
---|
122 | REAL(wp) :: e_mean_int !: |
---|
123 | REAL(wp) :: exp_arg !: |
---|
124 | REAL(wp) :: exp_term !: |
---|
125 | REAL(wp) :: fs_int !: |
---|
126 | REAL(wp) :: gg !: |
---|
127 | REAL(wp) :: height_int !: |
---|
128 | REAL(wp) :: height_p !: |
---|
129 | REAL(wp) :: lagr_timescale !: |
---|
130 | REAL(wp) :: location(1:30,1:3) !: |
---|
131 | REAL(wp) :: log_z_z0_int !: |
---|
132 | REAL(wp) :: random_gauss !: |
---|
133 | REAL(wp) :: u_int !: |
---|
134 | REAL(wp) :: u_int_l !: |
---|
135 | REAL(wp) :: u_int_u !: |
---|
136 | REAL(wp) :: us_int !: |
---|
137 | REAL(wp) :: v_int !: |
---|
138 | REAL(wp) :: v_int_l !: |
---|
139 | REAL(wp) :: v_int_u !: |
---|
140 | REAL(wp) :: vv_int !: |
---|
141 | REAL(wp) :: w_int !: |
---|
142 | REAL(wp) :: w_int_l !: |
---|
143 | REAL(wp) :: w_int_u !: |
---|
144 | REAL(wp) :: x !: |
---|
145 | REAL(wp) :: y !: |
---|
146 | REAL(wp) :: z_p !: |
---|
147 | |
---|
148 | REAL(wp), DIMENSION(1:30) :: d_gp_pl !: |
---|
149 | REAL(wp), DIMENSION(1:30) :: de_dxi !: |
---|
150 | REAL(wp), DIMENSION(1:30) :: de_dyi !: |
---|
151 | REAL(wp), DIMENSION(1:30) :: de_dzi !: |
---|
152 | REAL(wp), DIMENSION(1:30) :: dissi !: |
---|
153 | REAL(wp), DIMENSION(1:30) :: ei !: |
---|
154 | |
---|
155 | ! |
---|
156 | !-- Determine height of Prandtl layer and distance between Prandtl-layer |
---|
157 | !-- height and horizontal mean roughness height, which are required for |
---|
158 | !-- vertical logarithmic interpolation of horizontal particle speeds |
---|
159 | !-- (for particles below first vertical grid level). |
---|
160 | z_p = zu(nzb+1) - zw(nzb) |
---|
161 | d_z_p_z0 = 1.0 / ( z_p - z0_av_global ) |
---|
162 | |
---|
163 | DO n = 1, number_of_particles |
---|
164 | |
---|
165 | ! |
---|
166 | !-- Move particle only if the LES timestep has not (approximately) been |
---|
167 | !-- reached |
---|
168 | IF ( ( dt_3d - particles(n)%dt_sum ) < 1E-8 ) CYCLE |
---|
169 | ! |
---|
170 | !-- Determine bottom index |
---|
171 | k = ( particles(n)%z + 0.5 * dz * atmos_ocean_sign ) / dz & |
---|
172 | + offset_ocean_nzt ! only exact if equidistant |
---|
173 | ! |
---|
174 | !-- Interpolation of the u velocity component onto particle position. |
---|
175 | !-- Particles are interpolation bi-linearly in the horizontal and a |
---|
176 | !-- linearly in the vertical. An exception is made for particles below |
---|
177 | !-- the first vertical grid level in case of a prandtl layer. In this |
---|
178 | !-- case the horizontal particle velocity components are determined using |
---|
179 | !-- Monin-Obukhov relations (if branch). |
---|
180 | !-- First, check if particle is located below first vertical grid level |
---|
181 | !-- (Prandtl-layer height) |
---|
182 | IF ( prandtl_layer .AND. particles(n)%z < z_p ) THEN |
---|
183 | ! |
---|
184 | !-- Resolved-scale horizontal particle velocity is zero below z0. |
---|
185 | IF ( particles(n)%z < z0_av_global ) THEN |
---|
186 | |
---|
187 | u_int = 0.0 |
---|
188 | |
---|
189 | ELSE |
---|
190 | ! |
---|
191 | !-- Determine the sublayer. Further used as index. |
---|
192 | height_p = ( particles(n)%z - z0_av_global ) & |
---|
193 | * REAL( number_of_sublayers, KIND=wp ) & |
---|
194 | * d_z_p_z0 |
---|
195 | ! |
---|
196 | !-- Calculate LOG(z/z0) for exact particle height. Therefore, |
---|
197 | !-- interpolate linearly between precalculated logarithm. |
---|
198 | log_z_z0_int = log_z_z0(INT(height_p)) & |
---|
199 | + ( height_p - INT(height_p) ) & |
---|
200 | * ( log_z_z0(INT(height_p)+1) & |
---|
201 | - log_z_z0(INT(height_p)) & |
---|
202 | ) |
---|
203 | ! |
---|
204 | !-- Neutral solution is applied for all situations, e.g. also for |
---|
205 | !-- unstable and stable situations. Even though this is not exact |
---|
206 | !-- this saves a lot of CPU time since several calls of intrinsic |
---|
207 | !-- FORTRAN procedures (LOG, ATAN) are avoided, This is justified |
---|
208 | !-- as sensitivity studies revealed no significant effect of |
---|
209 | !-- using the neutral solution also for un/stable situations. |
---|
210 | !-- Calculated left and bottom index on u grid. |
---|
211 | i = ( particles(n)%x + 0.5 * dx ) * ddx |
---|
212 | j = particles(n)%y * ddy |
---|
213 | |
---|
214 | us_int = 0.5 * ( us(j,i) + us(j,i-1) ) |
---|
215 | |
---|
216 | u_int = -usws(j,i) / ( us_int * kappa + 1E-10_wp ) & |
---|
217 | * log_z_z0_int |
---|
218 | |
---|
219 | ENDIF |
---|
220 | ! |
---|
221 | !-- Particle above the first grid level. Bi-linear interpolation in the |
---|
222 | !-- horizontal and linear interpolation in the vertical direction. |
---|
223 | ELSE |
---|
224 | ! |
---|
225 | !-- Interpolate u velocity-component, determine left, front, bottom |
---|
226 | !-- index of u-array. Adopt k index from above |
---|
227 | i = ( particles(n)%x + 0.5 * dx ) * ddx |
---|
228 | j = particles(n)%y * ddy |
---|
229 | ! |
---|
230 | !-- Interpolation of the velocity components in the xy-plane |
---|
231 | x = particles(n)%x + ( 0.5 - i ) * dx |
---|
232 | y = particles(n)%y - j * dy |
---|
233 | aa = x**2 + y**2 |
---|
234 | bb = ( dx - x )**2 + y**2 |
---|
235 | cc = x**2 + ( dy - y )**2 |
---|
236 | dd = ( dx - x )**2 + ( dy - y )**2 |
---|
237 | gg = aa + bb + cc + dd |
---|
238 | |
---|
239 | u_int_l = ( ( gg - aa ) * u(k,j,i) + ( gg - bb ) * u(k,j,i+1) & |
---|
240 | + ( gg - cc ) * u(k,j+1,i) + ( gg - dd ) * u(k,j+1,i+1)& |
---|
241 | ) / ( 3.0 * gg ) - u_gtrans |
---|
242 | |
---|
243 | IF ( k+1 == nzt+1 ) THEN |
---|
244 | |
---|
245 | u_int = u_int_l |
---|
246 | |
---|
247 | ELSE |
---|
248 | |
---|
249 | u_int_u = ( ( gg-aa ) * u(k+1,j,i) + ( gg-bb ) * u(k+1,j,i+1) & |
---|
250 | + ( gg-cc ) * u(k+1,j+1,i) + ( gg-dd ) * u(k+1,j+1,i+1) & |
---|
251 | ) / ( 3.0 * gg ) - u_gtrans |
---|
252 | |
---|
253 | u_int = u_int_l + ( particles(n)%z - zu(k) ) / dz * & |
---|
254 | ( u_int_u - u_int_l ) |
---|
255 | |
---|
256 | ENDIF |
---|
257 | |
---|
258 | ENDIF |
---|
259 | |
---|
260 | ! |
---|
261 | !-- Same procedure for interpolation of the v velocity-component. |
---|
262 | IF ( prandtl_layer .AND. particles(n)%z < z_p ) THEN |
---|
263 | ! |
---|
264 | !-- Resolved-scale horizontal particle velocity is zero below z0. |
---|
265 | IF ( particles(n)%z < z0_av_global ) THEN |
---|
266 | |
---|
267 | v_int = 0.0 |
---|
268 | |
---|
269 | ELSE |
---|
270 | ! |
---|
271 | !-- Neutral solution is applied for all situations, e.g. also for |
---|
272 | !-- unstable and stable situations. Even though this is not exact |
---|
273 | !-- this saves a lot of CPU time since several calls of intrinsic |
---|
274 | !-- FORTRAN procedures (LOG, ATAN) are avoided, This is justified |
---|
275 | !-- as sensitivity studies revealed no significant effect of |
---|
276 | !-- using the neutral solution also for un/stable situations. |
---|
277 | !-- Calculated left and bottom index on v grid. |
---|
278 | i = particles(n)%x * ddx |
---|
279 | j = ( particles(n)%y + 0.5 * dy ) * ddy |
---|
280 | |
---|
281 | us_int = 0.5 * ( us(j,i) + us(j-1,i) ) |
---|
282 | |
---|
283 | v_int = -vsws(j,i) / ( us_int * kappa + 1E-10_wp ) & |
---|
284 | * log_z_z0_int |
---|
285 | |
---|
286 | ENDIF |
---|
287 | ! |
---|
288 | !-- Particle above the first grid level. Bi-linear interpolation in the |
---|
289 | !-- horizontal and linear interpolation in the vertical direction. |
---|
290 | ELSE |
---|
291 | i = particles(n)%x * ddx |
---|
292 | j = ( particles(n)%y + 0.5 * dy ) * ddy |
---|
293 | x = particles(n)%x - i * dx |
---|
294 | y = particles(n)%y + ( 0.5 - j ) * dy |
---|
295 | aa = x**2 + y**2 |
---|
296 | bb = ( dx - x )**2 + y**2 |
---|
297 | cc = x**2 + ( dy - y )**2 |
---|
298 | dd = ( dx - x )**2 + ( dy - y )**2 |
---|
299 | gg = aa + bb + cc + dd |
---|
300 | |
---|
301 | v_int_l = ( ( gg - aa ) * v(k,j,i) + ( gg - bb ) * v(k,j,i+1) & |
---|
302 | + ( gg - cc ) * v(k,j+1,i) + ( gg - dd ) * v(k,j+1,i+1)& |
---|
303 | ) / ( 3.0 * gg ) - v_gtrans |
---|
304 | IF ( k+1 == nzt+1 ) THEN |
---|
305 | v_int = v_int_l |
---|
306 | ELSE |
---|
307 | v_int_u = ( ( gg-aa ) * v(k+1,j,i) + ( gg-bb ) * v(k+1,j,i+1) & |
---|
308 | + ( gg-cc ) * v(k+1,j+1,i) + ( gg-dd ) * v(k+1,j+1,i+1) & |
---|
309 | ) / ( 3.0 * gg ) - v_gtrans |
---|
310 | v_int = v_int_l + ( particles(n)%z - zu(k) ) / dz * & |
---|
311 | ( v_int_u - v_int_l ) |
---|
312 | ENDIF |
---|
313 | |
---|
314 | ENDIF |
---|
315 | |
---|
316 | ! |
---|
317 | !-- Same procedure for interpolation of the w velocity-component |
---|
318 | IF ( vertical_particle_advection(particles(n)%group) ) THEN |
---|
319 | i = particles(n)%x * ddx |
---|
320 | j = particles(n)%y * ddy |
---|
321 | k = particles(n)%z / dz + offset_ocean_nzt_m1 |
---|
322 | |
---|
323 | x = particles(n)%x - i * dx |
---|
324 | y = particles(n)%y - j * dy |
---|
325 | aa = x**2 + y**2 |
---|
326 | bb = ( dx - x )**2 + y**2 |
---|
327 | cc = x**2 + ( dy - y )**2 |
---|
328 | dd = ( dx - x )**2 + ( dy - y )**2 |
---|
329 | gg = aa + bb + cc + dd |
---|
330 | |
---|
331 | w_int_l = ( ( gg - aa ) * w(k,j,i) + ( gg - bb ) * w(k,j,i+1) & |
---|
332 | + ( gg - cc ) * w(k,j+1,i) + ( gg - dd ) * w(k,j+1,i+1) & |
---|
333 | ) / ( 3.0 * gg ) |
---|
334 | IF ( k+1 == nzt+1 ) THEN |
---|
335 | w_int = w_int_l |
---|
336 | ELSE |
---|
337 | w_int_u = ( ( gg-aa ) * w(k+1,j,i) + & |
---|
338 | ( gg-bb ) * w(k+1,j,i+1) + & |
---|
339 | ( gg-cc ) * w(k+1,j+1,i) + & |
---|
340 | ( gg-dd ) * w(k+1,j+1,i+1) & |
---|
341 | ) / ( 3.0 * gg ) |
---|
342 | w_int = w_int_l + ( particles(n)%z - zw(k) ) / dz * & |
---|
343 | ( w_int_u - w_int_l ) |
---|
344 | ENDIF |
---|
345 | ELSE |
---|
346 | w_int = 0.0 |
---|
347 | ENDIF |
---|
348 | |
---|
349 | ! |
---|
350 | !-- Interpolate and calculate quantities needed for calculating the SGS |
---|
351 | !-- velocities |
---|
352 | IF ( use_sgs_for_particles ) THEN |
---|
353 | ! |
---|
354 | !-- Interpolate TKE |
---|
355 | i = particles(n)%x * ddx |
---|
356 | j = particles(n)%y * ddy |
---|
357 | k = ( particles(n)%z + 0.5 * dz * atmos_ocean_sign ) / dz & |
---|
358 | + offset_ocean_nzt ! only exact if eq.dist |
---|
359 | |
---|
360 | IF ( topography == 'flat' ) THEN |
---|
361 | |
---|
362 | x = particles(n)%x - i * dx |
---|
363 | y = particles(n)%y - j * dy |
---|
364 | aa = x**2 + y**2 |
---|
365 | bb = ( dx - x )**2 + y**2 |
---|
366 | cc = x**2 + ( dy - y )**2 |
---|
367 | dd = ( dx - x )**2 + ( dy - y )**2 |
---|
368 | gg = aa + bb + cc + dd |
---|
369 | |
---|
370 | e_int_l = ( ( gg-aa ) * e(k,j,i) + ( gg-bb ) * e(k,j,i+1) & |
---|
371 | + ( gg-cc ) * e(k,j+1,i) + ( gg-dd ) * e(k,j+1,i+1) & |
---|
372 | ) / ( 3.0 * gg ) |
---|
373 | |
---|
374 | IF ( k+1 == nzt+1 ) THEN |
---|
375 | e_int = e_int_l |
---|
376 | ELSE |
---|
377 | e_int_u = ( ( gg - aa ) * e(k+1,j,i) + & |
---|
378 | ( gg - bb ) * e(k+1,j,i+1) + & |
---|
379 | ( gg - cc ) * e(k+1,j+1,i) + & |
---|
380 | ( gg - dd ) * e(k+1,j+1,i+1) & |
---|
381 | ) / ( 3.0 * gg ) |
---|
382 | e_int = e_int_l + ( particles(n)%z - zu(k) ) / dz * & |
---|
383 | ( e_int_u - e_int_l ) |
---|
384 | ENDIF |
---|
385 | |
---|
386 | ! |
---|
387 | !-- Interpolate the TKE gradient along x (adopt incides i,j,k and |
---|
388 | !-- all position variables from above (TKE)) |
---|
389 | de_dx_int_l = ( ( gg - aa ) * de_dx(k,j,i) + & |
---|
390 | ( gg - bb ) * de_dx(k,j,i+1) + & |
---|
391 | ( gg - cc ) * de_dx(k,j+1,i) + & |
---|
392 | ( gg - dd ) * de_dx(k,j+1,i+1) & |
---|
393 | ) / ( 3.0 * gg ) |
---|
394 | |
---|
395 | IF ( ( k+1 == nzt+1 ) .OR. ( k == nzb ) ) THEN |
---|
396 | de_dx_int = de_dx_int_l |
---|
397 | ELSE |
---|
398 | de_dx_int_u = ( ( gg - aa ) * de_dx(k+1,j,i) + & |
---|
399 | ( gg - bb ) * de_dx(k+1,j,i+1) + & |
---|
400 | ( gg - cc ) * de_dx(k+1,j+1,i) + & |
---|
401 | ( gg - dd ) * de_dx(k+1,j+1,i+1) & |
---|
402 | ) / ( 3.0 * gg ) |
---|
403 | de_dx_int = de_dx_int_l + ( particles(n)%z - zu(k) ) / dz * & |
---|
404 | ( de_dx_int_u - de_dx_int_l ) |
---|
405 | ENDIF |
---|
406 | |
---|
407 | ! |
---|
408 | !-- Interpolate the TKE gradient along y |
---|
409 | de_dy_int_l = ( ( gg - aa ) * de_dy(k,j,i) + & |
---|
410 | ( gg - bb ) * de_dy(k,j,i+1) + & |
---|
411 | ( gg - cc ) * de_dy(k,j+1,i) + & |
---|
412 | ( gg - dd ) * de_dy(k,j+1,i+1) & |
---|
413 | ) / ( 3.0 * gg ) |
---|
414 | IF ( ( k+1 == nzt+1 ) .OR. ( k == nzb ) ) THEN |
---|
415 | de_dy_int = de_dy_int_l |
---|
416 | ELSE |
---|
417 | de_dy_int_u = ( ( gg - aa ) * de_dy(k+1,j,i) + & |
---|
418 | ( gg - bb ) * de_dy(k+1,j,i+1) + & |
---|
419 | ( gg - cc ) * de_dy(k+1,j+1,i) + & |
---|
420 | ( gg - dd ) * de_dy(k+1,j+1,i+1) & |
---|
421 | ) / ( 3.0 * gg ) |
---|
422 | de_dy_int = de_dy_int_l + ( particles(n)%z - zu(k) ) / dz * & |
---|
423 | ( de_dy_int_u - de_dy_int_l ) |
---|
424 | ENDIF |
---|
425 | |
---|
426 | ! |
---|
427 | !-- Interpolate the TKE gradient along z |
---|
428 | IF ( particles(n)%z < 0.5 * dz ) THEN |
---|
429 | de_dz_int = 0.0 |
---|
430 | ELSE |
---|
431 | de_dz_int_l = ( ( gg - aa ) * de_dz(k,j,i) + & |
---|
432 | ( gg - bb ) * de_dz(k,j,i+1) + & |
---|
433 | ( gg - cc ) * de_dz(k,j+1,i) + & |
---|
434 | ( gg - dd ) * de_dz(k,j+1,i+1) & |
---|
435 | ) / ( 3.0 * gg ) |
---|
436 | |
---|
437 | IF ( ( k+1 == nzt+1 ) .OR. ( k == nzb ) ) THEN |
---|
438 | de_dz_int = de_dz_int_l |
---|
439 | ELSE |
---|
440 | de_dz_int_u = ( ( gg - aa ) * de_dz(k+1,j,i) + & |
---|
441 | ( gg - bb ) * de_dz(k+1,j,i+1) + & |
---|
442 | ( gg - cc ) * de_dz(k+1,j+1,i) + & |
---|
443 | ( gg - dd ) * de_dz(k+1,j+1,i+1) & |
---|
444 | ) / ( 3.0 * gg ) |
---|
445 | de_dz_int = de_dz_int_l + ( particles(n)%z - zu(k) ) / dz * & |
---|
446 | ( de_dz_int_u - de_dz_int_l ) |
---|
447 | ENDIF |
---|
448 | ENDIF |
---|
449 | |
---|
450 | ! |
---|
451 | !-- Interpolate the dissipation of TKE |
---|
452 | diss_int_l = ( ( gg - aa ) * diss(k,j,i) + & |
---|
453 | ( gg - bb ) * diss(k,j,i+1) + & |
---|
454 | ( gg - cc ) * diss(k,j+1,i) + & |
---|
455 | ( gg - dd ) * diss(k,j+1,i+1) & |
---|
456 | ) / ( 3.0 * gg ) |
---|
457 | |
---|
458 | IF ( k+1 == nzt+1 ) THEN |
---|
459 | diss_int = diss_int_l |
---|
460 | ELSE |
---|
461 | diss_int_u = ( ( gg - aa ) * diss(k+1,j,i) + & |
---|
462 | ( gg - bb ) * diss(k+1,j,i+1) + & |
---|
463 | ( gg - cc ) * diss(k+1,j+1,i) + & |
---|
464 | ( gg - dd ) * diss(k+1,j+1,i+1) & |
---|
465 | ) / ( 3.0 * gg ) |
---|
466 | diss_int = diss_int_l + ( particles(n)%z - zu(k) ) / dz * & |
---|
467 | ( diss_int_u - diss_int_l ) |
---|
468 | ENDIF |
---|
469 | |
---|
470 | ELSE |
---|
471 | |
---|
472 | ! |
---|
473 | !-- In case that there are buildings it has to be determined |
---|
474 | !-- how many of the gridpoints defining the particle box are |
---|
475 | !-- situated within a building |
---|
476 | !-- gp_outside_of_building(1): i,j,k |
---|
477 | !-- gp_outside_of_building(2): i,j+1,k |
---|
478 | !-- gp_outside_of_building(3): i,j,k+1 |
---|
479 | !-- gp_outside_of_building(4): i,j+1,k+1 |
---|
480 | !-- gp_outside_of_building(5): i+1,j,k |
---|
481 | !-- gp_outside_of_building(6): i+1,j+1,k |
---|
482 | !-- gp_outside_of_building(7): i+1,j,k+1 |
---|
483 | !-- gp_outside_of_building(8): i+1,j+1,k+1 |
---|
484 | |
---|
485 | gp_outside_of_building = 0 |
---|
486 | location = 0.0 |
---|
487 | num_gp = 0 |
---|
488 | |
---|
489 | IF ( k > nzb_s_inner(j,i) .OR. nzb_s_inner(j,i) == 0 ) THEN |
---|
490 | num_gp = num_gp + 1 |
---|
491 | gp_outside_of_building(1) = 1 |
---|
492 | location(num_gp,1) = i * dx |
---|
493 | location(num_gp,2) = j * dy |
---|
494 | location(num_gp,3) = k * dz - 0.5 * dz |
---|
495 | ei(num_gp) = e(k,j,i) |
---|
496 | dissi(num_gp) = diss(k,j,i) |
---|
497 | de_dxi(num_gp) = de_dx(k,j,i) |
---|
498 | de_dyi(num_gp) = de_dy(k,j,i) |
---|
499 | de_dzi(num_gp) = de_dz(k,j,i) |
---|
500 | ENDIF |
---|
501 | |
---|
502 | IF ( k > nzb_s_inner(j+1,i) .OR. nzb_s_inner(j+1,i) == 0 ) & |
---|
503 | THEN |
---|
504 | num_gp = num_gp + 1 |
---|
505 | gp_outside_of_building(2) = 1 |
---|
506 | location(num_gp,1) = i * dx |
---|
507 | location(num_gp,2) = (j+1) * dy |
---|
508 | location(num_gp,3) = k * dz - 0.5 * dz |
---|
509 | ei(num_gp) = e(k,j+1,i) |
---|
510 | dissi(num_gp) = diss(k,j+1,i) |
---|
511 | de_dxi(num_gp) = de_dx(k,j+1,i) |
---|
512 | de_dyi(num_gp) = de_dy(k,j+1,i) |
---|
513 | de_dzi(num_gp) = de_dz(k,j+1,i) |
---|
514 | ENDIF |
---|
515 | |
---|
516 | IF ( k+1 > nzb_s_inner(j,i) .OR. nzb_s_inner(j,i) == 0 ) THEN |
---|
517 | num_gp = num_gp + 1 |
---|
518 | gp_outside_of_building(3) = 1 |
---|
519 | location(num_gp,1) = i * dx |
---|
520 | location(num_gp,2) = j * dy |
---|
521 | location(num_gp,3) = (k+1) * dz - 0.5 * dz |
---|
522 | ei(num_gp) = e(k+1,j,i) |
---|
523 | dissi(num_gp) = diss(k+1,j,i) |
---|
524 | de_dxi(num_gp) = de_dx(k+1,j,i) |
---|
525 | de_dyi(num_gp) = de_dy(k+1,j,i) |
---|
526 | de_dzi(num_gp) = de_dz(k+1,j,i) |
---|
527 | ENDIF |
---|
528 | |
---|
529 | IF ( k+1 > nzb_s_inner(j+1,i) .OR. nzb_s_inner(j+1,i) == 0 ) & |
---|
530 | THEN |
---|
531 | num_gp = num_gp + 1 |
---|
532 | gp_outside_of_building(4) = 1 |
---|
533 | location(num_gp,1) = i * dx |
---|
534 | location(num_gp,2) = (j+1) * dy |
---|
535 | location(num_gp,3) = (k+1) * dz - 0.5 * dz |
---|
536 | ei(num_gp) = e(k+1,j+1,i) |
---|
537 | dissi(num_gp) = diss(k+1,j+1,i) |
---|
538 | de_dxi(num_gp) = de_dx(k+1,j+1,i) |
---|
539 | de_dyi(num_gp) = de_dy(k+1,j+1,i) |
---|
540 | de_dzi(num_gp) = de_dz(k+1,j+1,i) |
---|
541 | ENDIF |
---|
542 | |
---|
543 | IF ( k > nzb_s_inner(j,i+1) .OR. nzb_s_inner(j,i+1) == 0 ) & |
---|
544 | THEN |
---|
545 | num_gp = num_gp + 1 |
---|
546 | gp_outside_of_building(5) = 1 |
---|
547 | location(num_gp,1) = (i+1) * dx |
---|
548 | location(num_gp,2) = j * dy |
---|
549 | location(num_gp,3) = k * dz - 0.5 * dz |
---|
550 | ei(num_gp) = e(k,j,i+1) |
---|
551 | dissi(num_gp) = diss(k,j,i+1) |
---|
552 | de_dxi(num_gp) = de_dx(k,j,i+1) |
---|
553 | de_dyi(num_gp) = de_dy(k,j,i+1) |
---|
554 | de_dzi(num_gp) = de_dz(k,j,i+1) |
---|
555 | ENDIF |
---|
556 | |
---|
557 | IF ( k > nzb_s_inner(j+1,i+1) .OR. nzb_s_inner(j+1,i+1) == 0 ) & |
---|
558 | THEN |
---|
559 | num_gp = num_gp + 1 |
---|
560 | gp_outside_of_building(6) = 1 |
---|
561 | location(num_gp,1) = (i+1) * dx |
---|
562 | location(num_gp,2) = (j+1) * dy |
---|
563 | location(num_gp,3) = k * dz - 0.5 * dz |
---|
564 | ei(num_gp) = e(k,j+1,i+1) |
---|
565 | dissi(num_gp) = diss(k,j+1,i+1) |
---|
566 | de_dxi(num_gp) = de_dx(k,j+1,i+1) |
---|
567 | de_dyi(num_gp) = de_dy(k,j+1,i+1) |
---|
568 | de_dzi(num_gp) = de_dz(k,j+1,i+1) |
---|
569 | ENDIF |
---|
570 | |
---|
571 | IF ( k+1 > nzb_s_inner(j,i+1) .OR. nzb_s_inner(j,i+1) == 0 ) & |
---|
572 | THEN |
---|
573 | num_gp = num_gp + 1 |
---|
574 | gp_outside_of_building(7) = 1 |
---|
575 | location(num_gp,1) = (i+1) * dx |
---|
576 | location(num_gp,2) = j * dy |
---|
577 | location(num_gp,3) = (k+1) * dz - 0.5 * dz |
---|
578 | ei(num_gp) = e(k+1,j,i+1) |
---|
579 | dissi(num_gp) = diss(k+1,j,i+1) |
---|
580 | de_dxi(num_gp) = de_dx(k+1,j,i+1) |
---|
581 | de_dyi(num_gp) = de_dy(k+1,j,i+1) |
---|
582 | de_dzi(num_gp) = de_dz(k+1,j,i+1) |
---|
583 | ENDIF |
---|
584 | |
---|
585 | IF ( k+1 > nzb_s_inner(j+1,i+1) .OR. nzb_s_inner(j+1,i+1) == 0)& |
---|
586 | THEN |
---|
587 | num_gp = num_gp + 1 |
---|
588 | gp_outside_of_building(8) = 1 |
---|
589 | location(num_gp,1) = (i+1) * dx |
---|
590 | location(num_gp,2) = (j+1) * dy |
---|
591 | location(num_gp,3) = (k+1) * dz - 0.5 * dz |
---|
592 | ei(num_gp) = e(k+1,j+1,i+1) |
---|
593 | dissi(num_gp) = diss(k+1,j+1,i+1) |
---|
594 | de_dxi(num_gp) = de_dx(k+1,j+1,i+1) |
---|
595 | de_dyi(num_gp) = de_dy(k+1,j+1,i+1) |
---|
596 | de_dzi(num_gp) = de_dz(k+1,j+1,i+1) |
---|
597 | ENDIF |
---|
598 | |
---|
599 | ! |
---|
600 | !-- If all gridpoints are situated outside of a building, then the |
---|
601 | !-- ordinary interpolation scheme can be used. |
---|
602 | IF ( num_gp == 8 ) THEN |
---|
603 | |
---|
604 | x = particles(n)%x - i * dx |
---|
605 | y = particles(n)%y - j * dy |
---|
606 | aa = x**2 + y**2 |
---|
607 | bb = ( dx - x )**2 + y**2 |
---|
608 | cc = x**2 + ( dy - y )**2 |
---|
609 | dd = ( dx - x )**2 + ( dy - y )**2 |
---|
610 | gg = aa + bb + cc + dd |
---|
611 | |
---|
612 | e_int_l = (( gg-aa ) * e(k,j,i) + ( gg-bb ) * e(k,j,i+1) & |
---|
613 | + ( gg-cc ) * e(k,j+1,i) + ( gg-dd ) * e(k,j+1,i+1)& |
---|
614 | ) / ( 3.0 * gg ) |
---|
615 | |
---|
616 | IF ( k+1 == nzt+1 ) THEN |
---|
617 | e_int = e_int_l |
---|
618 | ELSE |
---|
619 | e_int_u = ( ( gg - aa ) * e(k+1,j,i) + & |
---|
620 | ( gg - bb ) * e(k+1,j,i+1) + & |
---|
621 | ( gg - cc ) * e(k+1,j+1,i) + & |
---|
622 | ( gg - dd ) * e(k+1,j+1,i+1) & |
---|
623 | ) / ( 3.0 * gg ) |
---|
624 | e_int = e_int_l + ( particles(n)%z - zu(k) ) / dz * & |
---|
625 | ( e_int_u - e_int_l ) |
---|
626 | ENDIF |
---|
627 | |
---|
628 | ! |
---|
629 | !-- Interpolate the TKE gradient along x (adopt incides i,j,k |
---|
630 | !-- and all position variables from above (TKE)) |
---|
631 | de_dx_int_l = ( ( gg - aa ) * de_dx(k,j,i) + & |
---|
632 | ( gg - bb ) * de_dx(k,j,i+1) + & |
---|
633 | ( gg - cc ) * de_dx(k,j+1,i) + & |
---|
634 | ( gg - dd ) * de_dx(k,j+1,i+1) & |
---|
635 | ) / ( 3.0 * gg ) |
---|
636 | |
---|
637 | IF ( ( k+1 == nzt+1 ) .OR. ( k == nzb ) ) THEN |
---|
638 | de_dx_int = de_dx_int_l |
---|
639 | ELSE |
---|
640 | de_dx_int_u = ( ( gg - aa ) * de_dx(k+1,j,i) + & |
---|
641 | ( gg - bb ) * de_dx(k+1,j,i+1) + & |
---|
642 | ( gg - cc ) * de_dx(k+1,j+1,i) + & |
---|
643 | ( gg - dd ) * de_dx(k+1,j+1,i+1) & |
---|
644 | ) / ( 3.0 * gg ) |
---|
645 | de_dx_int = de_dx_int_l + ( particles(n)%z - zu(k) ) / & |
---|
646 | dz * ( de_dx_int_u - de_dx_int_l ) |
---|
647 | ENDIF |
---|
648 | |
---|
649 | ! |
---|
650 | !-- Interpolate the TKE gradient along y |
---|
651 | de_dy_int_l = ( ( gg - aa ) * de_dy(k,j,i) + & |
---|
652 | ( gg - bb ) * de_dy(k,j,i+1) + & |
---|
653 | ( gg - cc ) * de_dy(k,j+1,i) + & |
---|
654 | ( gg - dd ) * de_dy(k,j+1,i+1) & |
---|
655 | ) / ( 3.0 * gg ) |
---|
656 | IF ( ( k+1 == nzt+1 ) .OR. ( k == nzb ) ) THEN |
---|
657 | de_dy_int = de_dy_int_l |
---|
658 | ELSE |
---|
659 | de_dy_int_u = ( ( gg - aa ) * de_dy(k+1,j,i) + & |
---|
660 | ( gg - bb ) * de_dy(k+1,j,i+1) + & |
---|
661 | ( gg - cc ) * de_dy(k+1,j+1,i) + & |
---|
662 | ( gg - dd ) * de_dy(k+1,j+1,i+1) & |
---|
663 | ) / ( 3.0 * gg ) |
---|
664 | de_dy_int = de_dy_int_l + ( particles(n)%z - zu(k) ) / & |
---|
665 | dz * ( de_dy_int_u - de_dy_int_l ) |
---|
666 | ENDIF |
---|
667 | |
---|
668 | ! |
---|
669 | !-- Interpolate the TKE gradient along z |
---|
670 | IF ( particles(n)%z < 0.5 * dz ) THEN |
---|
671 | de_dz_int = 0.0 |
---|
672 | ELSE |
---|
673 | de_dz_int_l = ( ( gg - aa ) * de_dz(k,j,i) + & |
---|
674 | ( gg - bb ) * de_dz(k,j,i+1) + & |
---|
675 | ( gg - cc ) * de_dz(k,j+1,i) + & |
---|
676 | ( gg - dd ) * de_dz(k,j+1,i+1) & |
---|
677 | ) / ( 3.0 * gg ) |
---|
678 | |
---|
679 | IF ( ( k+1 == nzt+1 ) .OR. ( k == nzb ) ) THEN |
---|
680 | de_dz_int = de_dz_int_l |
---|
681 | ELSE |
---|
682 | de_dz_int_u = ( ( gg - aa ) * de_dz(k+1,j,i) + & |
---|
683 | ( gg - bb ) * de_dz(k+1,j,i+1) + & |
---|
684 | ( gg - cc ) * de_dz(k+1,j+1,i) + & |
---|
685 | ( gg - dd ) * de_dz(k+1,j+1,i+1) & |
---|
686 | ) / ( 3.0 * gg ) |
---|
687 | de_dz_int = de_dz_int_l + ( particles(n)%z - zu(k) ) /& |
---|
688 | dz * ( de_dz_int_u - de_dz_int_l ) |
---|
689 | ENDIF |
---|
690 | ENDIF |
---|
691 | |
---|
692 | ! |
---|
693 | !-- Interpolate the dissipation of TKE |
---|
694 | diss_int_l = ( ( gg - aa ) * diss(k,j,i) + & |
---|
695 | ( gg - bb ) * diss(k,j,i+1) + & |
---|
696 | ( gg - cc ) * diss(k,j+1,i) + & |
---|
697 | ( gg - dd ) * diss(k,j+1,i+1) & |
---|
698 | ) / ( 3.0 * gg ) |
---|
699 | |
---|
700 | IF ( k+1 == nzt+1 ) THEN |
---|
701 | diss_int = diss_int_l |
---|
702 | ELSE |
---|
703 | diss_int_u = ( ( gg - aa ) * diss(k+1,j,i) + & |
---|
704 | ( gg - bb ) * diss(k+1,j,i+1) + & |
---|
705 | ( gg - cc ) * diss(k+1,j+1,i) + & |
---|
706 | ( gg - dd ) * diss(k+1,j+1,i+1) & |
---|
707 | ) / ( 3.0 * gg ) |
---|
708 | diss_int = diss_int_l + ( particles(n)%z - zu(k) ) / dz *& |
---|
709 | ( diss_int_u - diss_int_l ) |
---|
710 | ENDIF |
---|
711 | |
---|
712 | ELSE |
---|
713 | |
---|
714 | ! |
---|
715 | !-- If wall between gridpoint 1 and gridpoint 5, then |
---|
716 | !-- Neumann boundary condition has to be applied |
---|
717 | IF ( gp_outside_of_building(1) == 1 .AND. & |
---|
718 | gp_outside_of_building(5) == 0 ) THEN |
---|
719 | num_gp = num_gp + 1 |
---|
720 | location(num_gp,1) = i * dx + 0.5 * dx |
---|
721 | location(num_gp,2) = j * dy |
---|
722 | location(num_gp,3) = k * dz - 0.5 * dz |
---|
723 | ei(num_gp) = e(k,j,i) |
---|
724 | dissi(num_gp) = diss(k,j,i) |
---|
725 | de_dxi(num_gp) = 0.0 |
---|
726 | de_dyi(num_gp) = de_dy(k,j,i) |
---|
727 | de_dzi(num_gp) = de_dz(k,j,i) |
---|
728 | ENDIF |
---|
729 | |
---|
730 | IF ( gp_outside_of_building(5) == 1 .AND. & |
---|
731 | gp_outside_of_building(1) == 0 ) THEN |
---|
732 | num_gp = num_gp + 1 |
---|
733 | location(num_gp,1) = i * dx + 0.5 * dx |
---|
734 | location(num_gp,2) = j * dy |
---|
735 | location(num_gp,3) = k * dz - 0.5 * dz |
---|
736 | ei(num_gp) = e(k,j,i+1) |
---|
737 | dissi(num_gp) = diss(k,j,i+1) |
---|
738 | de_dxi(num_gp) = 0.0 |
---|
739 | de_dyi(num_gp) = de_dy(k,j,i+1) |
---|
740 | de_dzi(num_gp) = de_dz(k,j,i+1) |
---|
741 | ENDIF |
---|
742 | |
---|
743 | ! |
---|
744 | !-- If wall between gridpoint 5 and gridpoint 6, then |
---|
745 | !-- then Neumann boundary condition has to be applied |
---|
746 | IF ( gp_outside_of_building(5) == 1 .AND. & |
---|
747 | gp_outside_of_building(6) == 0 ) THEN |
---|
748 | num_gp = num_gp + 1 |
---|
749 | location(num_gp,1) = (i+1) * dx |
---|
750 | location(num_gp,2) = j * dy + 0.5 * dy |
---|
751 | location(num_gp,3) = k * dz - 0.5 * dz |
---|
752 | ei(num_gp) = e(k,j,i+1) |
---|
753 | dissi(num_gp) = diss(k,j,i+1) |
---|
754 | de_dxi(num_gp) = de_dx(k,j,i+1) |
---|
755 | de_dyi(num_gp) = 0.0 |
---|
756 | de_dzi(num_gp) = de_dz(k,j,i+1) |
---|
757 | ENDIF |
---|
758 | |
---|
759 | IF ( gp_outside_of_building(6) == 1 .AND. & |
---|
760 | gp_outside_of_building(5) == 0 ) THEN |
---|
761 | num_gp = num_gp + 1 |
---|
762 | location(num_gp,1) = (i+1) * dx |
---|
763 | location(num_gp,2) = j * dy + 0.5 * dy |
---|
764 | location(num_gp,3) = k * dz - 0.5 * dz |
---|
765 | ei(num_gp) = e(k,j+1,i+1) |
---|
766 | dissi(num_gp) = diss(k,j+1,i+1) |
---|
767 | de_dxi(num_gp) = de_dx(k,j+1,i+1) |
---|
768 | de_dyi(num_gp) = 0.0 |
---|
769 | de_dzi(num_gp) = de_dz(k,j+1,i+1) |
---|
770 | ENDIF |
---|
771 | |
---|
772 | ! |
---|
773 | !-- If wall between gridpoint 2 and gridpoint 6, then |
---|
774 | !-- Neumann boundary condition has to be applied |
---|
775 | IF ( gp_outside_of_building(2) == 1 .AND. & |
---|
776 | gp_outside_of_building(6) == 0 ) THEN |
---|
777 | num_gp = num_gp + 1 |
---|
778 | location(num_gp,1) = i * dx + 0.5 * dx |
---|
779 | location(num_gp,2) = (j+1) * dy |
---|
780 | location(num_gp,3) = k * dz - 0.5 * dz |
---|
781 | ei(num_gp) = e(k,j+1,i) |
---|
782 | dissi(num_gp) = diss(k,j+1,i) |
---|
783 | de_dxi(num_gp) = 0.0 |
---|
784 | de_dyi(num_gp) = de_dy(k,j+1,i) |
---|
785 | de_dzi(num_gp) = de_dz(k,j+1,i) |
---|
786 | ENDIF |
---|
787 | |
---|
788 | IF ( gp_outside_of_building(6) == 1 .AND. & |
---|
789 | gp_outside_of_building(2) == 0 ) THEN |
---|
790 | num_gp = num_gp + 1 |
---|
791 | location(num_gp,1) = i * dx + 0.5 * dx |
---|
792 | location(num_gp,2) = (j+1) * dy |
---|
793 | location(num_gp,3) = k * dz - 0.5 * dz |
---|
794 | ei(num_gp) = e(k,j+1,i+1) |
---|
795 | dissi(num_gp) = diss(k,j+1,i+1) |
---|
796 | de_dxi(num_gp) = 0.0 |
---|
797 | de_dyi(num_gp) = de_dy(k,j+1,i+1) |
---|
798 | de_dzi(num_gp) = de_dz(k,j+1,i+1) |
---|
799 | ENDIF |
---|
800 | |
---|
801 | ! |
---|
802 | !-- If wall between gridpoint 1 and gridpoint 2, then |
---|
803 | !-- Neumann boundary condition has to be applied |
---|
804 | IF ( gp_outside_of_building(1) == 1 .AND. & |
---|
805 | gp_outside_of_building(2) == 0 ) THEN |
---|
806 | num_gp = num_gp + 1 |
---|
807 | location(num_gp,1) = i * dx |
---|
808 | location(num_gp,2) = j * dy + 0.5 * dy |
---|
809 | location(num_gp,3) = k * dz - 0.5 * dz |
---|
810 | ei(num_gp) = e(k,j,i) |
---|
811 | dissi(num_gp) = diss(k,j,i) |
---|
812 | de_dxi(num_gp) = de_dx(k,j,i) |
---|
813 | de_dyi(num_gp) = 0.0 |
---|
814 | de_dzi(num_gp) = de_dz(k,j,i) |
---|
815 | ENDIF |
---|
816 | |
---|
817 | IF ( gp_outside_of_building(2) == 1 .AND. & |
---|
818 | gp_outside_of_building(1) == 0 ) THEN |
---|
819 | num_gp = num_gp + 1 |
---|
820 | location(num_gp,1) = i * dx |
---|
821 | location(num_gp,2) = j * dy + 0.5 * dy |
---|
822 | location(num_gp,3) = k * dz - 0.5 * dz |
---|
823 | ei(num_gp) = e(k,j+1,i) |
---|
824 | dissi(num_gp) = diss(k,j+1,i) |
---|
825 | de_dxi(num_gp) = de_dx(k,j+1,i) |
---|
826 | de_dyi(num_gp) = 0.0 |
---|
827 | de_dzi(num_gp) = de_dz(k,j+1,i) |
---|
828 | ENDIF |
---|
829 | |
---|
830 | ! |
---|
831 | !-- If wall between gridpoint 3 and gridpoint 7, then |
---|
832 | !-- Neumann boundary condition has to be applied |
---|
833 | IF ( gp_outside_of_building(3) == 1 .AND. & |
---|
834 | gp_outside_of_building(7) == 0 ) THEN |
---|
835 | num_gp = num_gp + 1 |
---|
836 | location(num_gp,1) = i * dx + 0.5 * dx |
---|
837 | location(num_gp,2) = j * dy |
---|
838 | location(num_gp,3) = k * dz + 0.5 * dz |
---|
839 | ei(num_gp) = e(k+1,j,i) |
---|
840 | dissi(num_gp) = diss(k+1,j,i) |
---|
841 | de_dxi(num_gp) = 0.0 |
---|
842 | de_dyi(num_gp) = de_dy(k+1,j,i) |
---|
843 | de_dzi(num_gp) = de_dz(k+1,j,i) |
---|
844 | ENDIF |
---|
845 | |
---|
846 | IF ( gp_outside_of_building(7) == 1 .AND. & |
---|
847 | gp_outside_of_building(3) == 0 ) THEN |
---|
848 | num_gp = num_gp + 1 |
---|
849 | location(num_gp,1) = i * dx + 0.5 * dx |
---|
850 | location(num_gp,2) = j * dy |
---|
851 | location(num_gp,3) = k * dz + 0.5 * dz |
---|
852 | ei(num_gp) = e(k+1,j,i+1) |
---|
853 | dissi(num_gp) = diss(k+1,j,i+1) |
---|
854 | de_dxi(num_gp) = 0.0 |
---|
855 | de_dyi(num_gp) = de_dy(k+1,j,i+1) |
---|
856 | de_dzi(num_gp) = de_dz(k+1,j,i+1) |
---|
857 | ENDIF |
---|
858 | |
---|
859 | ! |
---|
860 | !-- If wall between gridpoint 7 and gridpoint 8, then |
---|
861 | !-- Neumann boundary condition has to be applied |
---|
862 | IF ( gp_outside_of_building(7) == 1 .AND. & |
---|
863 | gp_outside_of_building(8) == 0 ) THEN |
---|
864 | num_gp = num_gp + 1 |
---|
865 | location(num_gp,1) = (i+1) * dx |
---|
866 | location(num_gp,2) = j * dy + 0.5 * dy |
---|
867 | location(num_gp,3) = k * dz + 0.5 * dz |
---|
868 | ei(num_gp) = e(k+1,j,i+1) |
---|
869 | dissi(num_gp) = diss(k+1,j,i+1) |
---|
870 | de_dxi(num_gp) = de_dx(k+1,j,i+1) |
---|
871 | de_dyi(num_gp) = 0.0 |
---|
872 | de_dzi(num_gp) = de_dz(k+1,j,i+1) |
---|
873 | ENDIF |
---|
874 | |
---|
875 | IF ( gp_outside_of_building(8) == 1 .AND. & |
---|
876 | gp_outside_of_building(7) == 0 ) THEN |
---|
877 | num_gp = num_gp + 1 |
---|
878 | location(num_gp,1) = (i+1) * dx |
---|
879 | location(num_gp,2) = j * dy + 0.5 * dy |
---|
880 | location(num_gp,3) = k * dz + 0.5 * dz |
---|
881 | ei(num_gp) = e(k+1,j+1,i+1) |
---|
882 | dissi(num_gp) = diss(k+1,j+1,i+1) |
---|
883 | de_dxi(num_gp) = de_dx(k+1,j+1,i+1) |
---|
884 | de_dyi(num_gp) = 0.0 |
---|
885 | de_dzi(num_gp) = de_dz(k+1,j+1,i+1) |
---|
886 | ENDIF |
---|
887 | |
---|
888 | ! |
---|
889 | !-- If wall between gridpoint 4 and gridpoint 8, then |
---|
890 | !-- Neumann boundary condition has to be applied |
---|
891 | IF ( gp_outside_of_building(4) == 1 .AND. & |
---|
892 | gp_outside_of_building(8) == 0 ) THEN |
---|
893 | num_gp = num_gp + 1 |
---|
894 | location(num_gp,1) = i * dx + 0.5 * dx |
---|
895 | location(num_gp,2) = (j+1) * dy |
---|
896 | location(num_gp,3) = k * dz + 0.5 * dz |
---|
897 | ei(num_gp) = e(k+1,j+1,i) |
---|
898 | dissi(num_gp) = diss(k+1,j+1,i) |
---|
899 | de_dxi(num_gp) = 0.0 |
---|
900 | de_dyi(num_gp) = de_dy(k+1,j+1,i) |
---|
901 | de_dzi(num_gp) = de_dz(k+1,j+1,i) |
---|
902 | ENDIF |
---|
903 | |
---|
904 | IF ( gp_outside_of_building(8) == 1 .AND. & |
---|
905 | gp_outside_of_building(4) == 0 ) THEN |
---|
906 | num_gp = num_gp + 1 |
---|
907 | location(num_gp,1) = i * dx + 0.5 * dx |
---|
908 | location(num_gp,2) = (j+1) * dy |
---|
909 | location(num_gp,3) = k * dz + 0.5 * dz |
---|
910 | ei(num_gp) = e(k+1,j+1,i+1) |
---|
911 | dissi(num_gp) = diss(k+1,j+1,i+1) |
---|
912 | de_dxi(num_gp) = 0.0 |
---|
913 | de_dyi(num_gp) = de_dy(k+1,j+1,i+1) |
---|
914 | de_dzi(num_gp) = de_dz(k+1,j+1,i+1) |
---|
915 | ENDIF |
---|
916 | |
---|
917 | ! |
---|
918 | !-- If wall between gridpoint 3 and gridpoint 4, then |
---|
919 | !-- Neumann boundary condition has to be applied |
---|
920 | IF ( gp_outside_of_building(3) == 1 .AND. & |
---|
921 | gp_outside_of_building(4) == 0 ) THEN |
---|
922 | num_gp = num_gp + 1 |
---|
923 | location(num_gp,1) = i * dx |
---|
924 | location(num_gp,2) = j * dy + 0.5 * dy |
---|
925 | location(num_gp,3) = k * dz + 0.5 * dz |
---|
926 | ei(num_gp) = e(k+1,j,i) |
---|
927 | dissi(num_gp) = diss(k+1,j,i) |
---|
928 | de_dxi(num_gp) = de_dx(k+1,j,i) |
---|
929 | de_dyi(num_gp) = 0.0 |
---|
930 | de_dzi(num_gp) = de_dz(k+1,j,i) |
---|
931 | ENDIF |
---|
932 | |
---|
933 | IF ( gp_outside_of_building(4) == 1 .AND. & |
---|
934 | gp_outside_of_building(3) == 0 ) THEN |
---|
935 | num_gp = num_gp + 1 |
---|
936 | location(num_gp,1) = i * dx |
---|
937 | location(num_gp,2) = j * dy + 0.5 * dy |
---|
938 | location(num_gp,3) = k * dz + 0.5 * dz |
---|
939 | ei(num_gp) = e(k+1,j+1,i) |
---|
940 | dissi(num_gp) = diss(k+1,j+1,i) |
---|
941 | de_dxi(num_gp) = de_dx(k+1,j+1,i) |
---|
942 | de_dyi(num_gp) = 0.0 |
---|
943 | de_dzi(num_gp) = de_dz(k+1,j+1,i) |
---|
944 | ENDIF |
---|
945 | |
---|
946 | ! |
---|
947 | !-- If wall between gridpoint 1 and gridpoint 3, then |
---|
948 | !-- Neumann boundary condition has to be applied |
---|
949 | !-- (only one case as only building beneath is possible) |
---|
950 | IF ( gp_outside_of_building(1) == 0 .AND. & |
---|
951 | gp_outside_of_building(3) == 1 ) THEN |
---|
952 | num_gp = num_gp + 1 |
---|
953 | location(num_gp,1) = i * dx |
---|
954 | location(num_gp,2) = j * dy |
---|
955 | location(num_gp,3) = k * dz |
---|
956 | ei(num_gp) = e(k+1,j,i) |
---|
957 | dissi(num_gp) = diss(k+1,j,i) |
---|
958 | de_dxi(num_gp) = de_dx(k+1,j,i) |
---|
959 | de_dyi(num_gp) = de_dy(k+1,j,i) |
---|
960 | de_dzi(num_gp) = 0.0 |
---|
961 | ENDIF |
---|
962 | |
---|
963 | ! |
---|
964 | !-- If wall between gridpoint 5 and gridpoint 7, then |
---|
965 | !-- Neumann boundary condition has to be applied |
---|
966 | !-- (only one case as only building beneath is possible) |
---|
967 | IF ( gp_outside_of_building(5) == 0 .AND. & |
---|
968 | gp_outside_of_building(7) == 1 ) THEN |
---|
969 | num_gp = num_gp + 1 |
---|
970 | location(num_gp,1) = (i+1) * dx |
---|
971 | location(num_gp,2) = j * dy |
---|
972 | location(num_gp,3) = k * dz |
---|
973 | ei(num_gp) = e(k+1,j,i+1) |
---|
974 | dissi(num_gp) = diss(k+1,j,i+1) |
---|
975 | de_dxi(num_gp) = de_dx(k+1,j,i+1) |
---|
976 | de_dyi(num_gp) = de_dy(k+1,j,i+1) |
---|
977 | de_dzi(num_gp) = 0.0 |
---|
978 | ENDIF |
---|
979 | |
---|
980 | ! |
---|
981 | !-- If wall between gridpoint 2 and gridpoint 4, then |
---|
982 | !-- Neumann boundary condition has to be applied |
---|
983 | !-- (only one case as only building beneath is possible) |
---|
984 | IF ( gp_outside_of_building(2) == 0 .AND. & |
---|
985 | gp_outside_of_building(4) == 1 ) THEN |
---|
986 | num_gp = num_gp + 1 |
---|
987 | location(num_gp,1) = i * dx |
---|
988 | location(num_gp,2) = (j+1) * dy |
---|
989 | location(num_gp,3) = k * dz |
---|
990 | ei(num_gp) = e(k+1,j+1,i) |
---|
991 | dissi(num_gp) = diss(k+1,j+1,i) |
---|
992 | de_dxi(num_gp) = de_dx(k+1,j+1,i) |
---|
993 | de_dyi(num_gp) = de_dy(k+1,j+1,i) |
---|
994 | de_dzi(num_gp) = 0.0 |
---|
995 | ENDIF |
---|
996 | |
---|
997 | ! |
---|
998 | !-- If wall between gridpoint 6 and gridpoint 8, then |
---|
999 | !-- Neumann boundary condition has to be applied |
---|
1000 | !-- (only one case as only building beneath is possible) |
---|
1001 | IF ( gp_outside_of_building(6) == 0 .AND. & |
---|
1002 | gp_outside_of_building(8) == 1 ) THEN |
---|
1003 | num_gp = num_gp + 1 |
---|
1004 | location(num_gp,1) = (i+1) * dx |
---|
1005 | location(num_gp,2) = (j+1) * dy |
---|
1006 | location(num_gp,3) = k * dz |
---|
1007 | ei(num_gp) = e(k+1,j+1,i+1) |
---|
1008 | dissi(num_gp) = diss(k+1,j+1,i+1) |
---|
1009 | de_dxi(num_gp) = de_dx(k+1,j+1,i+1) |
---|
1010 | de_dyi(num_gp) = de_dy(k+1,j+1,i+1) |
---|
1011 | de_dzi(num_gp) = 0.0 |
---|
1012 | ENDIF |
---|
1013 | |
---|
1014 | ! |
---|
1015 | !-- Carry out the interpolation |
---|
1016 | IF ( num_gp == 1 ) THEN |
---|
1017 | ! |
---|
1018 | !-- If only one of the gridpoints is situated outside of the |
---|
1019 | !-- building, it follows that the values at the particle |
---|
1020 | !-- location are the same as the gridpoint values |
---|
1021 | e_int = ei(num_gp) |
---|
1022 | diss_int = dissi(num_gp) |
---|
1023 | de_dx_int = de_dxi(num_gp) |
---|
1024 | de_dy_int = de_dyi(num_gp) |
---|
1025 | de_dz_int = de_dzi(num_gp) |
---|
1026 | ELSE IF ( num_gp > 1 ) THEN |
---|
1027 | |
---|
1028 | d_sum = 0.0 |
---|
1029 | ! |
---|
1030 | !-- Evaluation of the distances between the gridpoints |
---|
1031 | !-- contributing to the interpolated values, and the particle |
---|
1032 | !-- location |
---|
1033 | DO agp = 1, num_gp |
---|
1034 | d_gp_pl(agp) = ( particles(n)%x-location(agp,1) )**2 & |
---|
1035 | + ( particles(n)%y-location(agp,2) )**2 & |
---|
1036 | + ( particles(n)%z-location(agp,3) )**2 |
---|
1037 | d_sum = d_sum + d_gp_pl(agp) |
---|
1038 | ENDDO |
---|
1039 | |
---|
1040 | ! |
---|
1041 | !-- Finally the interpolation can be carried out |
---|
1042 | e_int = 0.0 |
---|
1043 | diss_int = 0.0 |
---|
1044 | de_dx_int = 0.0 |
---|
1045 | de_dy_int = 0.0 |
---|
1046 | de_dz_int = 0.0 |
---|
1047 | DO agp = 1, num_gp |
---|
1048 | e_int = e_int + ( d_sum - d_gp_pl(agp) ) * & |
---|
1049 | ei(agp) / ( (num_gp-1) * d_sum ) |
---|
1050 | diss_int = diss_int + ( d_sum - d_gp_pl(agp) ) * & |
---|
1051 | dissi(agp) / ( (num_gp-1) * d_sum ) |
---|
1052 | de_dx_int = de_dx_int + ( d_sum - d_gp_pl(agp) ) * & |
---|
1053 | de_dxi(agp) / ( (num_gp-1) * d_sum ) |
---|
1054 | de_dy_int = de_dy_int + ( d_sum - d_gp_pl(agp) ) * & |
---|
1055 | de_dyi(agp) / ( (num_gp-1) * d_sum ) |
---|
1056 | de_dz_int = de_dz_int + ( d_sum - d_gp_pl(agp) ) * & |
---|
1057 | de_dzi(agp) / ( (num_gp-1) * d_sum ) |
---|
1058 | ENDDO |
---|
1059 | |
---|
1060 | ENDIF |
---|
1061 | |
---|
1062 | ENDIF |
---|
1063 | |
---|
1064 | ENDIF |
---|
1065 | |
---|
1066 | ! |
---|
1067 | !-- Vertically interpolate the horizontally averaged SGS TKE and |
---|
1068 | !-- resolved-scale velocity variances and use the interpolated values |
---|
1069 | !-- to calculate the coefficient fs, which is a measure of the ratio |
---|
1070 | !-- of the subgrid-scale turbulent kinetic energy to the total amount |
---|
1071 | !-- of turbulent kinetic energy. |
---|
1072 | IF ( k == 0 ) THEN |
---|
1073 | e_mean_int = hom(0,1,8,0) |
---|
1074 | ELSE |
---|
1075 | e_mean_int = hom(k,1,8,0) + & |
---|
1076 | ( hom(k+1,1,8,0) - hom(k,1,8,0) ) / & |
---|
1077 | ( zu(k+1) - zu(k) ) * & |
---|
1078 | ( particles(n)%z - zu(k) ) |
---|
1079 | ENDIF |
---|
1080 | |
---|
1081 | kw = particles(n)%z / dz |
---|
1082 | |
---|
1083 | IF ( k == 0 ) THEN |
---|
1084 | aa = hom(k+1,1,30,0) * ( particles(n)%z / & |
---|
1085 | ( 0.5 * ( zu(k+1) - zu(k) ) ) ) |
---|
1086 | bb = hom(k+1,1,31,0) * ( particles(n)%z / & |
---|
1087 | ( 0.5 * ( zu(k+1) - zu(k) ) ) ) |
---|
1088 | cc = hom(kw+1,1,32,0) * ( particles(n)%z / & |
---|
1089 | ( 1.0 * ( zw(kw+1) - zw(kw) ) ) ) |
---|
1090 | ELSE |
---|
1091 | aa = hom(k,1,30,0) + ( hom(k+1,1,30,0) - hom(k,1,30,0) ) * & |
---|
1092 | ( ( particles(n)%z - zu(k) ) / ( zu(k+1) - zu(k) ) ) |
---|
1093 | bb = hom(k,1,31,0) + ( hom(k+1,1,31,0) - hom(k,1,31,0) ) * & |
---|
1094 | ( ( particles(n)%z - zu(k) ) / ( zu(k+1) - zu(k) ) ) |
---|
1095 | cc = hom(kw,1,32,0) + ( hom(kw+1,1,32,0)-hom(kw,1,32,0) ) *& |
---|
1096 | ( ( particles(n)%z - zw(kw) ) / ( zw(kw+1)-zw(kw) ) ) |
---|
1097 | ENDIF |
---|
1098 | |
---|
1099 | vv_int = ( 1.0_wp / 3.0_wp ) * ( aa + bb + cc ) |
---|
1100 | |
---|
1101 | fs_int = ( 2.0_wp / 3.0_wp ) * e_mean_int / & |
---|
1102 | ( vv_int + ( 2.0_wp / 3.0_wp ) * e_mean_int ) |
---|
1103 | |
---|
1104 | ! |
---|
1105 | !-- Calculate the Lagrangian timescale according to Weil et al. (2004). |
---|
1106 | lagr_timescale = ( 4.0 * e_int ) / & |
---|
1107 | ( 3.0 * fs_int * c_0 * diss_int ) |
---|
1108 | |
---|
1109 | ! |
---|
1110 | !-- Calculate the next particle timestep. dt_gap is the time needed to |
---|
1111 | !-- complete the current LES timestep. |
---|
1112 | dt_gap = dt_3d - particles(n)%dt_sum |
---|
1113 | dt_particle = MIN( dt_3d, 0.025 * lagr_timescale, dt_gap ) |
---|
1114 | |
---|
1115 | ! |
---|
1116 | !-- The particle timestep should not be too small in order to prevent |
---|
1117 | !-- the number of particle timesteps of getting too large |
---|
1118 | IF ( dt_particle < dt_min_part .AND. dt_min_part < dt_gap ) & |
---|
1119 | THEN |
---|
1120 | dt_particle = dt_min_part |
---|
1121 | ENDIF |
---|
1122 | |
---|
1123 | ! |
---|
1124 | !-- Calculate the SGS velocity components |
---|
1125 | IF ( particles(n)%age == 0.0 ) THEN |
---|
1126 | ! |
---|
1127 | !-- For new particles the SGS components are derived from the SGS |
---|
1128 | !-- TKE. Limit the Gaussian random number to the interval |
---|
1129 | !-- [-5.0*sigma, 5.0*sigma] in order to prevent the SGS velocities |
---|
1130 | !-- from becoming unrealistically large. |
---|
1131 | particles(n)%rvar1 = SQRT( 2.0 * sgs_wfu_part * e_int ) * & |
---|
1132 | ( random_gauss( iran_part, 5.0_wp ) - 1.0_wp ) |
---|
1133 | particles(n)%rvar2 = SQRT( 2.0 * sgs_wfv_part * e_int ) * & |
---|
1134 | ( random_gauss( iran_part, 5.0_wp ) - 1.0_wp ) |
---|
1135 | particles(n)%rvar3 = SQRT( 2.0 * sgs_wfw_part * e_int ) * & |
---|
1136 | ( random_gauss( iran_part, 5.0_wp ) - 1.0_wp ) |
---|
1137 | |
---|
1138 | ELSE |
---|
1139 | |
---|
1140 | ! |
---|
1141 | !-- Restriction of the size of the new timestep: compared to the |
---|
1142 | !-- previous timestep the increase must not exceed 200% |
---|
1143 | |
---|
1144 | dt_particle_m = particles(n)%age - particles(n)%age_m |
---|
1145 | IF ( dt_particle > 2.0 * dt_particle_m ) THEN |
---|
1146 | dt_particle = 2.0 * dt_particle_m |
---|
1147 | ENDIF |
---|
1148 | |
---|
1149 | ! |
---|
1150 | !-- For old particles the SGS components are correlated with the |
---|
1151 | !-- values from the previous timestep. Random numbers have also to |
---|
1152 | !-- be limited (see above). |
---|
1153 | !-- As negative values for the subgrid TKE are not allowed, the |
---|
1154 | !-- change of the subgrid TKE with time cannot be smaller than |
---|
1155 | !-- -e_int/dt_particle. This value is used as a lower boundary |
---|
1156 | !-- value for the change of TKE |
---|
1157 | |
---|
1158 | de_dt_min = - e_int / dt_particle |
---|
1159 | |
---|
1160 | de_dt = ( e_int - particles(n)%e_m ) / dt_particle_m |
---|
1161 | |
---|
1162 | IF ( de_dt < de_dt_min ) THEN |
---|
1163 | de_dt = de_dt_min |
---|
1164 | ENDIF |
---|
1165 | |
---|
1166 | particles(n)%rvar1 = particles(n)%rvar1 - fs_int * c_0 * & |
---|
1167 | diss_int * particles(n)%rvar1 * dt_particle /& |
---|
1168 | ( 4.0 * sgs_wfu_part * e_int ) + & |
---|
1169 | ( 2.0 * sgs_wfu_part * de_dt * & |
---|
1170 | particles(n)%rvar1 / & |
---|
1171 | ( 2.0 * sgs_wfu_part * e_int ) + de_dx_int & |
---|
1172 | ) * dt_particle / 2.0 + & |
---|
1173 | SQRT( fs_int * c_0 * diss_int ) * & |
---|
1174 | ( random_gauss( iran_part, 5.0_wp ) - 1.0_wp ) * & |
---|
1175 | SQRT( dt_particle ) |
---|
1176 | |
---|
1177 | particles(n)%rvar2 = particles(n)%rvar2 - fs_int * c_0 * & |
---|
1178 | diss_int * particles(n)%rvar2 * dt_particle /& |
---|
1179 | ( 4.0 * sgs_wfv_part * e_int ) + & |
---|
1180 | ( 2.0 * sgs_wfv_part * de_dt * & |
---|
1181 | particles(n)%rvar2 / & |
---|
1182 | ( 2.0 * sgs_wfv_part * e_int ) + de_dy_int & |
---|
1183 | ) * dt_particle / 2.0_wp + & |
---|
1184 | SQRT( fs_int * c_0 * diss_int ) * & |
---|
1185 | ( random_gauss( iran_part, 5.0_wp ) - 1.0_wp ) * & |
---|
1186 | SQRT( dt_particle ) |
---|
1187 | |
---|
1188 | particles(n)%rvar3 = particles(n)%rvar3 - fs_int * c_0 * & |
---|
1189 | diss_int * particles(n)%rvar3 * dt_particle /& |
---|
1190 | ( 4.0 * sgs_wfw_part * e_int ) + & |
---|
1191 | ( 2.0 * sgs_wfw_part * de_dt * & |
---|
1192 | particles(n)%rvar3 / & |
---|
1193 | ( 2.0 * sgs_wfw_part * e_int ) + de_dz_int & |
---|
1194 | ) * dt_particle / 2.0_wp + & |
---|
1195 | SQRT( fs_int * c_0 * diss_int ) * & |
---|
1196 | ( random_gauss( iran_part, 5.0_wp ) - 1.0_wp ) * & |
---|
1197 | SQRT( dt_particle ) |
---|
1198 | |
---|
1199 | ENDIF |
---|
1200 | |
---|
1201 | u_int = u_int + particles(n)%rvar1 |
---|
1202 | v_int = v_int + particles(n)%rvar2 |
---|
1203 | w_int = w_int + particles(n)%rvar3 |
---|
1204 | |
---|
1205 | ! |
---|
1206 | !-- Store the SGS TKE of the current timelevel which is needed for |
---|
1207 | !-- for calculating the SGS particle velocities at the next timestep |
---|
1208 | particles(n)%e_m = e_int |
---|
1209 | |
---|
1210 | ELSE |
---|
1211 | ! |
---|
1212 | !-- If no SGS velocities are used, only the particle timestep has to |
---|
1213 | !-- be set |
---|
1214 | dt_particle = dt_3d |
---|
1215 | |
---|
1216 | ENDIF |
---|
1217 | |
---|
1218 | ! |
---|
1219 | !-- Store the old age of the particle ( needed to prevent that a |
---|
1220 | !-- particle crosses several PEs during one timestep, and for the |
---|
1221 | !-- evaluation of the subgrid particle velocity fluctuations ) |
---|
1222 | particles(n)%age_m = particles(n)%age |
---|
1223 | |
---|
1224 | |
---|
1225 | ! |
---|
1226 | !-- Particle advection |
---|
1227 | IF ( particle_groups(particles(n)%group)%density_ratio == 0.0 ) THEN |
---|
1228 | ! |
---|
1229 | !-- Pure passive transport (without particle inertia) |
---|
1230 | particles(n)%x = particles(n)%x + u_int * dt_particle |
---|
1231 | particles(n)%y = particles(n)%y + v_int * dt_particle |
---|
1232 | particles(n)%z = particles(n)%z + w_int * dt_particle |
---|
1233 | |
---|
1234 | particles(n)%speed_x = u_int |
---|
1235 | particles(n)%speed_y = v_int |
---|
1236 | particles(n)%speed_z = w_int |
---|
1237 | |
---|
1238 | ELSE |
---|
1239 | ! |
---|
1240 | !-- Transport of particles with inertia |
---|
1241 | particles(n)%x = particles(n)%x + particles(n)%speed_x * & |
---|
1242 | dt_particle |
---|
1243 | particles(n)%y = particles(n)%y + particles(n)%speed_y * & |
---|
1244 | dt_particle |
---|
1245 | particles(n)%z = particles(n)%z + particles(n)%speed_z * & |
---|
1246 | dt_particle |
---|
1247 | |
---|
1248 | ! |
---|
1249 | !-- Update of the particle velocity |
---|
1250 | dens_ratio = particle_groups(particles(n)%group)%density_ratio |
---|
1251 | IF ( cloud_droplets ) THEN |
---|
1252 | exp_arg = 4.5 * dens_ratio * molecular_viscosity / & |
---|
1253 | ( particles(n)%radius )**2 * & |
---|
1254 | ( 1.0 + 0.15 * ( 2.0 * particles(n)%radius * & |
---|
1255 | SQRT( ( u_int - particles(n)%speed_x )**2 + & |
---|
1256 | ( v_int - particles(n)%speed_y )**2 + & |
---|
1257 | ( w_int - particles(n)%speed_z )**2 ) / & |
---|
1258 | molecular_viscosity )**0.687_wp & |
---|
1259 | ) |
---|
1260 | exp_term = EXP( -exp_arg * dt_particle ) |
---|
1261 | ELSEIF ( use_sgs_for_particles ) THEN |
---|
1262 | exp_arg = particle_groups(particles(n)%group)%exp_arg |
---|
1263 | exp_term = EXP( -exp_arg * dt_particle ) |
---|
1264 | ELSE |
---|
1265 | exp_arg = particle_groups(particles(n)%group)%exp_arg |
---|
1266 | exp_term = particle_groups(particles(n)%group)%exp_term |
---|
1267 | ENDIF |
---|
1268 | particles(n)%speed_x = particles(n)%speed_x * exp_term + & |
---|
1269 | u_int * ( 1.0 - exp_term ) |
---|
1270 | particles(n)%speed_y = particles(n)%speed_y * exp_term + & |
---|
1271 | v_int * ( 1.0 - exp_term ) |
---|
1272 | particles(n)%speed_z = particles(n)%speed_z * exp_term + & |
---|
1273 | ( w_int - ( 1.0 - dens_ratio ) * g / exp_arg )& |
---|
1274 | * ( 1.0 - exp_term ) |
---|
1275 | ENDIF |
---|
1276 | |
---|
1277 | ! |
---|
1278 | !-- Increment the particle age and the total time that the particle |
---|
1279 | !-- has advanced within the particle timestep procedure |
---|
1280 | particles(n)%age = particles(n)%age + dt_particle |
---|
1281 | particles(n)%dt_sum = particles(n)%dt_sum + dt_particle |
---|
1282 | |
---|
1283 | ! |
---|
1284 | !-- Check whether there is still a particle that has not yet completed |
---|
1285 | !-- the total LES timestep |
---|
1286 | IF ( ( dt_3d - particles(n)%dt_sum ) > 1E-8 ) THEN |
---|
1287 | dt_3d_reached_l = .FALSE. |
---|
1288 | ENDIF |
---|
1289 | |
---|
1290 | ENDDO |
---|
1291 | |
---|
1292 | |
---|
1293 | END SUBROUTINE lpm_advec |
---|