1 | SUBROUTINE lpm_advec |
---|
2 | |
---|
3 | !--------------------------------------------------------------------------------! |
---|
4 | ! This file is part of PALM. |
---|
5 | ! |
---|
6 | ! PALM is free software: you can redistribute it and/or modify it under the terms |
---|
7 | ! of the GNU General Public License as published by the Free Software Foundation, |
---|
8 | ! either version 3 of the License, or (at your option) any later version. |
---|
9 | ! |
---|
10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
13 | ! |
---|
14 | ! You should have received a copy of the GNU General Public License along with |
---|
15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
16 | ! |
---|
17 | ! Copyright 1997-2014 Leibniz Universitaet Hannover |
---|
18 | !--------------------------------------------------------------------------------! |
---|
19 | ! |
---|
20 | ! Current revisions: |
---|
21 | ! ------------------ |
---|
22 | ! |
---|
23 | ! |
---|
24 | ! Former revisions: |
---|
25 | ! ----------------- |
---|
26 | ! $Id: lpm_advec.f90 1315 2014-03-14 18:31:11Z heinze $ |
---|
27 | ! |
---|
28 | ! 1314 2014-03-14 18:25:17Z suehring |
---|
29 | ! Vertical logarithmic interpolation of horizontal particle speed for particles |
---|
30 | ! between roughness height and first vertical grid level. |
---|
31 | ! |
---|
32 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
33 | ! code put under GPL (PALM 3.9) |
---|
34 | ! |
---|
35 | ! 849 2012-03-15 10:35:09Z raasch |
---|
36 | ! initial revision (former part of advec_particles) |
---|
37 | ! |
---|
38 | ! |
---|
39 | ! Description: |
---|
40 | ! ------------ |
---|
41 | ! Calculation of new particle positions due to advection using a simple Euler |
---|
42 | ! scheme. Particles may feel inertia effects. SGS transport can be included |
---|
43 | ! using the stochastic model of Weil et al. (2004, JAS, 61, 2877-2887). |
---|
44 | !------------------------------------------------------------------------------! |
---|
45 | |
---|
46 | USE arrays_3d |
---|
47 | USE control_parameters |
---|
48 | USE grid_variables |
---|
49 | USE indices |
---|
50 | USE particle_attributes |
---|
51 | USE statistics |
---|
52 | |
---|
53 | IMPLICIT NONE |
---|
54 | |
---|
55 | INTEGER :: i, j, k, n |
---|
56 | |
---|
57 | REAL :: aa, bb, cc, dd, dens_ratio, exp_arg, exp_term, gg, u_int, & |
---|
58 | u_int_l, u_int_u, v_int, v_int_l, v_int_u, w_int, w_int_l, & |
---|
59 | w_int_u, x, y |
---|
60 | |
---|
61 | |
---|
62 | INTEGER :: agp, kw, num_gp |
---|
63 | INTEGER :: gp_outside_of_building(1:8) |
---|
64 | |
---|
65 | REAL :: d_sum, de_dx_int, de_dx_int_l, de_dx_int_u, de_dy_int, & |
---|
66 | de_dy_int_l, de_dy_int_u, de_dt, de_dt_min, de_dz_int, & |
---|
67 | de_dz_int_l, de_dz_int_u, diss_int, diss_int_l, diss_int_u, & |
---|
68 | dt_gap, dt_particle, dt_particle_m, e_int, e_int_l, e_int_u, & |
---|
69 | e_mean_int, fs_int, lagr_timescale, random_gauss, vv_int |
---|
70 | |
---|
71 | REAL :: height_int, height_p, log_z_z0_int, us_int, z_p, d_z_p_z0 |
---|
72 | |
---|
73 | REAL :: location(1:30,1:3) |
---|
74 | REAL, DIMENSION(1:30) :: de_dxi, de_dyi, de_dzi, dissi, d_gp_pl, ei |
---|
75 | |
---|
76 | ! |
---|
77 | !-- Determine height of Prandtl layer and distance between Prandtl-layer |
---|
78 | !-- height and horizontal mean roughness height, which are required for |
---|
79 | !-- vertical logarithmic interpolation of horizontal particle speeds |
---|
80 | !-- (for particles below first vertical grid level). |
---|
81 | z_p = zu(nzb+1) - zw(nzb) |
---|
82 | d_z_p_z0 = 1.0 / ( z_p - z0_av_global ) |
---|
83 | |
---|
84 | DO n = 1, number_of_particles |
---|
85 | |
---|
86 | ! |
---|
87 | !-- Move particle only if the LES timestep has not (approximately) been |
---|
88 | !-- reached |
---|
89 | IF ( ( dt_3d - particles(n)%dt_sum ) < 1E-8 ) CYCLE |
---|
90 | ! |
---|
91 | !-- Determine bottom index |
---|
92 | k = ( particles(n)%z + 0.5 * dz * atmos_ocean_sign ) / dz & |
---|
93 | + offset_ocean_nzt ! only exact if equidistant |
---|
94 | ! |
---|
95 | !-- Interpolation of the u velocity component onto particle position. |
---|
96 | !-- Particles are interpolation bi-linearly in the horizontal and a |
---|
97 | !-- linearly in the vertical. An exception is made for particles below |
---|
98 | !-- the first vertical grid level in case of a prandtl layer. In this |
---|
99 | !-- case the horizontal particle velocity components are determined using |
---|
100 | !-- Monin-Obukhov relations (if branch). |
---|
101 | !-- First, check if particle is located below first vertical grid level |
---|
102 | !-- (Prandtl-layer height) |
---|
103 | IF ( prandtl_layer .AND. particles(n)%z < z_p ) THEN |
---|
104 | ! |
---|
105 | !-- Resolved-scale horizontal particle velocity is zero below z0. |
---|
106 | IF ( particles(n)%z < z0_av_global ) THEN |
---|
107 | |
---|
108 | u_int = 0.0 |
---|
109 | |
---|
110 | ELSE |
---|
111 | ! |
---|
112 | !-- Determine the sublayer. Further used as index. |
---|
113 | height_p = ( particles(n)%z - z0_av_global ) & |
---|
114 | * REAL( number_of_sublayers ) & |
---|
115 | * d_z_p_z0 |
---|
116 | ! |
---|
117 | !-- Calculate LOG(z/z0) for exact particle height. Therefore, |
---|
118 | !-- interpolate linearly between precalculated logarithm. |
---|
119 | log_z_z0_int = log_z_z0(INT(height_p)) & |
---|
120 | + ( height_p - INT(height_p) ) & |
---|
121 | * ( log_z_z0(INT(height_p)+1) & |
---|
122 | - log_z_z0(INT(height_p)) & |
---|
123 | ) |
---|
124 | ! |
---|
125 | !-- Neutral solution is applied for all situations, e.g. also for |
---|
126 | !-- unstable and stable situations. Even though this is not exact |
---|
127 | !-- this saves a lot of CPU time since several calls of intrinsic |
---|
128 | !-- FORTRAN procedures (LOG, ATAN) are avoided, This is justified |
---|
129 | !-- as sensitivity studies revealed no significant effect of |
---|
130 | !-- using the neutral solution also for un/stable situations. |
---|
131 | !-- Calculated left and bottom index on u grid. |
---|
132 | i = ( particles(n)%x + 0.5 * dx ) * ddx |
---|
133 | j = particles(n)%y * ddy |
---|
134 | |
---|
135 | us_int = 0.5 * ( us(j,i) + us(j,i-1) ) |
---|
136 | |
---|
137 | u_int = -usws(j,i) / ( us_int * kappa + 1E-10 ) & |
---|
138 | * log_z_z0_int |
---|
139 | |
---|
140 | ENDIF |
---|
141 | ! |
---|
142 | !-- Particle above the first grid level. Bi-linear interpolation in the |
---|
143 | !-- horizontal and linear interpolation in the vertical direction. |
---|
144 | ELSE |
---|
145 | ! |
---|
146 | !-- Interpolate u velocity-component, determine left, front, bottom |
---|
147 | !-- index of u-array. Adopt k index from above |
---|
148 | i = ( particles(n)%x + 0.5 * dx ) * ddx |
---|
149 | j = particles(n)%y * ddy |
---|
150 | ! |
---|
151 | !-- Interpolation of the velocity components in the xy-plane |
---|
152 | x = particles(n)%x + ( 0.5 - i ) * dx |
---|
153 | y = particles(n)%y - j * dy |
---|
154 | aa = x**2 + y**2 |
---|
155 | bb = ( dx - x )**2 + y**2 |
---|
156 | cc = x**2 + ( dy - y )**2 |
---|
157 | dd = ( dx - x )**2 + ( dy - y )**2 |
---|
158 | gg = aa + bb + cc + dd |
---|
159 | |
---|
160 | u_int_l = ( ( gg - aa ) * u(k,j,i) + ( gg - bb ) * u(k,j,i+1) & |
---|
161 | + ( gg - cc ) * u(k,j+1,i) + ( gg - dd ) * u(k,j+1,i+1)& |
---|
162 | ) / ( 3.0 * gg ) - u_gtrans |
---|
163 | |
---|
164 | IF ( k+1 == nzt+1 ) THEN |
---|
165 | |
---|
166 | u_int = u_int_l |
---|
167 | |
---|
168 | ELSE |
---|
169 | |
---|
170 | u_int_u = ( ( gg-aa ) * u(k+1,j,i) + ( gg-bb ) * u(k+1,j,i+1) & |
---|
171 | + ( gg-cc ) * u(k+1,j+1,i) + ( gg-dd ) * u(k+1,j+1,i+1) & |
---|
172 | ) / ( 3.0 * gg ) - u_gtrans |
---|
173 | |
---|
174 | u_int = u_int_l + ( particles(n)%z - zu(k) ) / dz * & |
---|
175 | ( u_int_u - u_int_l ) |
---|
176 | |
---|
177 | ENDIF |
---|
178 | |
---|
179 | ENDIF |
---|
180 | |
---|
181 | ! |
---|
182 | !-- Same procedure for interpolation of the v velocity-component. |
---|
183 | IF ( prandtl_layer .AND. particles(n)%z < z_p ) THEN |
---|
184 | ! |
---|
185 | !-- Resolved-scale horizontal particle velocity is zero below z0. |
---|
186 | IF ( particles(n)%z < z0_av_global ) THEN |
---|
187 | |
---|
188 | v_int = 0.0 |
---|
189 | |
---|
190 | ELSE |
---|
191 | ! |
---|
192 | !-- Neutral solution is applied for all situations, e.g. also for |
---|
193 | !-- unstable and stable situations. Even though this is not exact |
---|
194 | !-- this saves a lot of CPU time since several calls of intrinsic |
---|
195 | !-- FORTRAN procedures (LOG, ATAN) are avoided, This is justified |
---|
196 | !-- as sensitivity studies revealed no significant effect of |
---|
197 | !-- using the neutral solution also for un/stable situations. |
---|
198 | !-- Calculated left and bottom index on v grid. |
---|
199 | i = particles(n)%x * ddx |
---|
200 | j = ( particles(n)%y + 0.5 * dy ) * ddy |
---|
201 | |
---|
202 | us_int = 0.5 * ( us(j,i) + us(j-1,i) ) |
---|
203 | |
---|
204 | v_int = -vsws(j,i) / ( us_int * kappa + 1E-10 ) & |
---|
205 | * log_z_z0_int |
---|
206 | |
---|
207 | ENDIF |
---|
208 | ! |
---|
209 | !-- Particle above the first grid level. Bi-linear interpolation in the |
---|
210 | !-- horizontal and linear interpolation in the vertical direction. |
---|
211 | ELSE |
---|
212 | i = particles(n)%x * ddx |
---|
213 | j = ( particles(n)%y + 0.5 * dy ) * ddy |
---|
214 | x = particles(n)%x - i * dx |
---|
215 | y = particles(n)%y + ( 0.5 - j ) * dy |
---|
216 | aa = x**2 + y**2 |
---|
217 | bb = ( dx - x )**2 + y**2 |
---|
218 | cc = x**2 + ( dy - y )**2 |
---|
219 | dd = ( dx - x )**2 + ( dy - y )**2 |
---|
220 | gg = aa + bb + cc + dd |
---|
221 | |
---|
222 | v_int_l = ( ( gg - aa ) * v(k,j,i) + ( gg - bb ) * v(k,j,i+1) & |
---|
223 | + ( gg - cc ) * v(k,j+1,i) + ( gg - dd ) * v(k,j+1,i+1)& |
---|
224 | ) / ( 3.0 * gg ) - v_gtrans |
---|
225 | IF ( k+1 == nzt+1 ) THEN |
---|
226 | v_int = v_int_l |
---|
227 | ELSE |
---|
228 | v_int_u = ( ( gg-aa ) * v(k+1,j,i) + ( gg-bb ) * v(k+1,j,i+1) & |
---|
229 | + ( gg-cc ) * v(k+1,j+1,i) + ( gg-dd ) * v(k+1,j+1,i+1) & |
---|
230 | ) / ( 3.0 * gg ) - v_gtrans |
---|
231 | v_int = v_int_l + ( particles(n)%z - zu(k) ) / dz * & |
---|
232 | ( v_int_u - v_int_l ) |
---|
233 | ENDIF |
---|
234 | |
---|
235 | ENDIF |
---|
236 | |
---|
237 | ! |
---|
238 | !-- Same procedure for interpolation of the w velocity-component |
---|
239 | IF ( vertical_particle_advection(particles(n)%group) ) THEN |
---|
240 | i = particles(n)%x * ddx |
---|
241 | j = particles(n)%y * ddy |
---|
242 | k = particles(n)%z / dz + offset_ocean_nzt_m1 |
---|
243 | |
---|
244 | x = particles(n)%x - i * dx |
---|
245 | y = particles(n)%y - j * dy |
---|
246 | aa = x**2 + y**2 |
---|
247 | bb = ( dx - x )**2 + y**2 |
---|
248 | cc = x**2 + ( dy - y )**2 |
---|
249 | dd = ( dx - x )**2 + ( dy - y )**2 |
---|
250 | gg = aa + bb + cc + dd |
---|
251 | |
---|
252 | w_int_l = ( ( gg - aa ) * w(k,j,i) + ( gg - bb ) * w(k,j,i+1) & |
---|
253 | + ( gg - cc ) * w(k,j+1,i) + ( gg - dd ) * w(k,j+1,i+1) & |
---|
254 | ) / ( 3.0 * gg ) |
---|
255 | IF ( k+1 == nzt+1 ) THEN |
---|
256 | w_int = w_int_l |
---|
257 | ELSE |
---|
258 | w_int_u = ( ( gg-aa ) * w(k+1,j,i) + & |
---|
259 | ( gg-bb ) * w(k+1,j,i+1) + & |
---|
260 | ( gg-cc ) * w(k+1,j+1,i) + & |
---|
261 | ( gg-dd ) * w(k+1,j+1,i+1) & |
---|
262 | ) / ( 3.0 * gg ) |
---|
263 | w_int = w_int_l + ( particles(n)%z - zw(k) ) / dz * & |
---|
264 | ( w_int_u - w_int_l ) |
---|
265 | ENDIF |
---|
266 | ELSE |
---|
267 | w_int = 0.0 |
---|
268 | ENDIF |
---|
269 | |
---|
270 | ! |
---|
271 | !-- Interpolate and calculate quantities needed for calculating the SGS |
---|
272 | !-- velocities |
---|
273 | IF ( use_sgs_for_particles ) THEN |
---|
274 | ! |
---|
275 | !-- Interpolate TKE |
---|
276 | i = particles(n)%x * ddx |
---|
277 | j = particles(n)%y * ddy |
---|
278 | k = ( particles(n)%z + 0.5 * dz * atmos_ocean_sign ) / dz & |
---|
279 | + offset_ocean_nzt ! only exact if eq.dist |
---|
280 | |
---|
281 | IF ( topography == 'flat' ) THEN |
---|
282 | |
---|
283 | x = particles(n)%x - i * dx |
---|
284 | y = particles(n)%y - j * dy |
---|
285 | aa = x**2 + y**2 |
---|
286 | bb = ( dx - x )**2 + y**2 |
---|
287 | cc = x**2 + ( dy - y )**2 |
---|
288 | dd = ( dx - x )**2 + ( dy - y )**2 |
---|
289 | gg = aa + bb + cc + dd |
---|
290 | |
---|
291 | e_int_l = ( ( gg-aa ) * e(k,j,i) + ( gg-bb ) * e(k,j,i+1) & |
---|
292 | + ( gg-cc ) * e(k,j+1,i) + ( gg-dd ) * e(k,j+1,i+1) & |
---|
293 | ) / ( 3.0 * gg ) |
---|
294 | |
---|
295 | IF ( k+1 == nzt+1 ) THEN |
---|
296 | e_int = e_int_l |
---|
297 | ELSE |
---|
298 | e_int_u = ( ( gg - aa ) * e(k+1,j,i) + & |
---|
299 | ( gg - bb ) * e(k+1,j,i+1) + & |
---|
300 | ( gg - cc ) * e(k+1,j+1,i) + & |
---|
301 | ( gg - dd ) * e(k+1,j+1,i+1) & |
---|
302 | ) / ( 3.0 * gg ) |
---|
303 | e_int = e_int_l + ( particles(n)%z - zu(k) ) / dz * & |
---|
304 | ( e_int_u - e_int_l ) |
---|
305 | ENDIF |
---|
306 | |
---|
307 | ! |
---|
308 | !-- Interpolate the TKE gradient along x (adopt incides i,j,k and |
---|
309 | !-- all position variables from above (TKE)) |
---|
310 | de_dx_int_l = ( ( gg - aa ) * de_dx(k,j,i) + & |
---|
311 | ( gg - bb ) * de_dx(k,j,i+1) + & |
---|
312 | ( gg - cc ) * de_dx(k,j+1,i) + & |
---|
313 | ( gg - dd ) * de_dx(k,j+1,i+1) & |
---|
314 | ) / ( 3.0 * gg ) |
---|
315 | |
---|
316 | IF ( ( k+1 == nzt+1 ) .OR. ( k == nzb ) ) THEN |
---|
317 | de_dx_int = de_dx_int_l |
---|
318 | ELSE |
---|
319 | de_dx_int_u = ( ( gg - aa ) * de_dx(k+1,j,i) + & |
---|
320 | ( gg - bb ) * de_dx(k+1,j,i+1) + & |
---|
321 | ( gg - cc ) * de_dx(k+1,j+1,i) + & |
---|
322 | ( gg - dd ) * de_dx(k+1,j+1,i+1) & |
---|
323 | ) / ( 3.0 * gg ) |
---|
324 | de_dx_int = de_dx_int_l + ( particles(n)%z - zu(k) ) / dz * & |
---|
325 | ( de_dx_int_u - de_dx_int_l ) |
---|
326 | ENDIF |
---|
327 | |
---|
328 | ! |
---|
329 | !-- Interpolate the TKE gradient along y |
---|
330 | de_dy_int_l = ( ( gg - aa ) * de_dy(k,j,i) + & |
---|
331 | ( gg - bb ) * de_dy(k,j,i+1) + & |
---|
332 | ( gg - cc ) * de_dy(k,j+1,i) + & |
---|
333 | ( gg - dd ) * de_dy(k,j+1,i+1) & |
---|
334 | ) / ( 3.0 * gg ) |
---|
335 | IF ( ( k+1 == nzt+1 ) .OR. ( k == nzb ) ) THEN |
---|
336 | de_dy_int = de_dy_int_l |
---|
337 | ELSE |
---|
338 | de_dy_int_u = ( ( gg - aa ) * de_dy(k+1,j,i) + & |
---|
339 | ( gg - bb ) * de_dy(k+1,j,i+1) + & |
---|
340 | ( gg - cc ) * de_dy(k+1,j+1,i) + & |
---|
341 | ( gg - dd ) * de_dy(k+1,j+1,i+1) & |
---|
342 | ) / ( 3.0 * gg ) |
---|
343 | de_dy_int = de_dy_int_l + ( particles(n)%z - zu(k) ) / dz * & |
---|
344 | ( de_dy_int_u - de_dy_int_l ) |
---|
345 | ENDIF |
---|
346 | |
---|
347 | ! |
---|
348 | !-- Interpolate the TKE gradient along z |
---|
349 | IF ( particles(n)%z < 0.5 * dz ) THEN |
---|
350 | de_dz_int = 0.0 |
---|
351 | ELSE |
---|
352 | de_dz_int_l = ( ( gg - aa ) * de_dz(k,j,i) + & |
---|
353 | ( gg - bb ) * de_dz(k,j,i+1) + & |
---|
354 | ( gg - cc ) * de_dz(k,j+1,i) + & |
---|
355 | ( gg - dd ) * de_dz(k,j+1,i+1) & |
---|
356 | ) / ( 3.0 * gg ) |
---|
357 | |
---|
358 | IF ( ( k+1 == nzt+1 ) .OR. ( k == nzb ) ) THEN |
---|
359 | de_dz_int = de_dz_int_l |
---|
360 | ELSE |
---|
361 | de_dz_int_u = ( ( gg - aa ) * de_dz(k+1,j,i) + & |
---|
362 | ( gg - bb ) * de_dz(k+1,j,i+1) + & |
---|
363 | ( gg - cc ) * de_dz(k+1,j+1,i) + & |
---|
364 | ( gg - dd ) * de_dz(k+1,j+1,i+1) & |
---|
365 | ) / ( 3.0 * gg ) |
---|
366 | de_dz_int = de_dz_int_l + ( particles(n)%z - zu(k) ) / dz * & |
---|
367 | ( de_dz_int_u - de_dz_int_l ) |
---|
368 | ENDIF |
---|
369 | ENDIF |
---|
370 | |
---|
371 | ! |
---|
372 | !-- Interpolate the dissipation of TKE |
---|
373 | diss_int_l = ( ( gg - aa ) * diss(k,j,i) + & |
---|
374 | ( gg - bb ) * diss(k,j,i+1) + & |
---|
375 | ( gg - cc ) * diss(k,j+1,i) + & |
---|
376 | ( gg - dd ) * diss(k,j+1,i+1) & |
---|
377 | ) / ( 3.0 * gg ) |
---|
378 | |
---|
379 | IF ( k+1 == nzt+1 ) THEN |
---|
380 | diss_int = diss_int_l |
---|
381 | ELSE |
---|
382 | diss_int_u = ( ( gg - aa ) * diss(k+1,j,i) + & |
---|
383 | ( gg - bb ) * diss(k+1,j,i+1) + & |
---|
384 | ( gg - cc ) * diss(k+1,j+1,i) + & |
---|
385 | ( gg - dd ) * diss(k+1,j+1,i+1) & |
---|
386 | ) / ( 3.0 * gg ) |
---|
387 | diss_int = diss_int_l + ( particles(n)%z - zu(k) ) / dz * & |
---|
388 | ( diss_int_u - diss_int_l ) |
---|
389 | ENDIF |
---|
390 | |
---|
391 | ELSE |
---|
392 | |
---|
393 | ! |
---|
394 | !-- In case that there are buildings it has to be determined |
---|
395 | !-- how many of the gridpoints defining the particle box are |
---|
396 | !-- situated within a building |
---|
397 | !-- gp_outside_of_building(1): i,j,k |
---|
398 | !-- gp_outside_of_building(2): i,j+1,k |
---|
399 | !-- gp_outside_of_building(3): i,j,k+1 |
---|
400 | !-- gp_outside_of_building(4): i,j+1,k+1 |
---|
401 | !-- gp_outside_of_building(5): i+1,j,k |
---|
402 | !-- gp_outside_of_building(6): i+1,j+1,k |
---|
403 | !-- gp_outside_of_building(7): i+1,j,k+1 |
---|
404 | !-- gp_outside_of_building(8): i+1,j+1,k+1 |
---|
405 | |
---|
406 | gp_outside_of_building = 0 |
---|
407 | location = 0.0 |
---|
408 | num_gp = 0 |
---|
409 | |
---|
410 | IF ( k > nzb_s_inner(j,i) .OR. nzb_s_inner(j,i) == 0 ) THEN |
---|
411 | num_gp = num_gp + 1 |
---|
412 | gp_outside_of_building(1) = 1 |
---|
413 | location(num_gp,1) = i * dx |
---|
414 | location(num_gp,2) = j * dy |
---|
415 | location(num_gp,3) = k * dz - 0.5 * dz |
---|
416 | ei(num_gp) = e(k,j,i) |
---|
417 | dissi(num_gp) = diss(k,j,i) |
---|
418 | de_dxi(num_gp) = de_dx(k,j,i) |
---|
419 | de_dyi(num_gp) = de_dy(k,j,i) |
---|
420 | de_dzi(num_gp) = de_dz(k,j,i) |
---|
421 | ENDIF |
---|
422 | |
---|
423 | IF ( k > nzb_s_inner(j+1,i) .OR. nzb_s_inner(j+1,i) == 0 ) & |
---|
424 | THEN |
---|
425 | num_gp = num_gp + 1 |
---|
426 | gp_outside_of_building(2) = 1 |
---|
427 | location(num_gp,1) = i * dx |
---|
428 | location(num_gp,2) = (j+1) * dy |
---|
429 | location(num_gp,3) = k * dz - 0.5 * dz |
---|
430 | ei(num_gp) = e(k,j+1,i) |
---|
431 | dissi(num_gp) = diss(k,j+1,i) |
---|
432 | de_dxi(num_gp) = de_dx(k,j+1,i) |
---|
433 | de_dyi(num_gp) = de_dy(k,j+1,i) |
---|
434 | de_dzi(num_gp) = de_dz(k,j+1,i) |
---|
435 | ENDIF |
---|
436 | |
---|
437 | IF ( k+1 > nzb_s_inner(j,i) .OR. nzb_s_inner(j,i) == 0 ) THEN |
---|
438 | num_gp = num_gp + 1 |
---|
439 | gp_outside_of_building(3) = 1 |
---|
440 | location(num_gp,1) = i * dx |
---|
441 | location(num_gp,2) = j * dy |
---|
442 | location(num_gp,3) = (k+1) * dz - 0.5 * dz |
---|
443 | ei(num_gp) = e(k+1,j,i) |
---|
444 | dissi(num_gp) = diss(k+1,j,i) |
---|
445 | de_dxi(num_gp) = de_dx(k+1,j,i) |
---|
446 | de_dyi(num_gp) = de_dy(k+1,j,i) |
---|
447 | de_dzi(num_gp) = de_dz(k+1,j,i) |
---|
448 | ENDIF |
---|
449 | |
---|
450 | IF ( k+1 > nzb_s_inner(j+1,i) .OR. nzb_s_inner(j+1,i) == 0 ) & |
---|
451 | THEN |
---|
452 | num_gp = num_gp + 1 |
---|
453 | gp_outside_of_building(4) = 1 |
---|
454 | location(num_gp,1) = i * dx |
---|
455 | location(num_gp,2) = (j+1) * dy |
---|
456 | location(num_gp,3) = (k+1) * dz - 0.5 * dz |
---|
457 | ei(num_gp) = e(k+1,j+1,i) |
---|
458 | dissi(num_gp) = diss(k+1,j+1,i) |
---|
459 | de_dxi(num_gp) = de_dx(k+1,j+1,i) |
---|
460 | de_dyi(num_gp) = de_dy(k+1,j+1,i) |
---|
461 | de_dzi(num_gp) = de_dz(k+1,j+1,i) |
---|
462 | ENDIF |
---|
463 | |
---|
464 | IF ( k > nzb_s_inner(j,i+1) .OR. nzb_s_inner(j,i+1) == 0 ) & |
---|
465 | THEN |
---|
466 | num_gp = num_gp + 1 |
---|
467 | gp_outside_of_building(5) = 1 |
---|
468 | location(num_gp,1) = (i+1) * dx |
---|
469 | location(num_gp,2) = j * dy |
---|
470 | location(num_gp,3) = k * dz - 0.5 * dz |
---|
471 | ei(num_gp) = e(k,j,i+1) |
---|
472 | dissi(num_gp) = diss(k,j,i+1) |
---|
473 | de_dxi(num_gp) = de_dx(k,j,i+1) |
---|
474 | de_dyi(num_gp) = de_dy(k,j,i+1) |
---|
475 | de_dzi(num_gp) = de_dz(k,j,i+1) |
---|
476 | ENDIF |
---|
477 | |
---|
478 | IF ( k > nzb_s_inner(j+1,i+1) .OR. nzb_s_inner(j+1,i+1) == 0 ) & |
---|
479 | THEN |
---|
480 | num_gp = num_gp + 1 |
---|
481 | gp_outside_of_building(6) = 1 |
---|
482 | location(num_gp,1) = (i+1) * dx |
---|
483 | location(num_gp,2) = (j+1) * dy |
---|
484 | location(num_gp,3) = k * dz - 0.5 * dz |
---|
485 | ei(num_gp) = e(k,j+1,i+1) |
---|
486 | dissi(num_gp) = diss(k,j+1,i+1) |
---|
487 | de_dxi(num_gp) = de_dx(k,j+1,i+1) |
---|
488 | de_dyi(num_gp) = de_dy(k,j+1,i+1) |
---|
489 | de_dzi(num_gp) = de_dz(k,j+1,i+1) |
---|
490 | ENDIF |
---|
491 | |
---|
492 | IF ( k+1 > nzb_s_inner(j,i+1) .OR. nzb_s_inner(j,i+1) == 0 ) & |
---|
493 | THEN |
---|
494 | num_gp = num_gp + 1 |
---|
495 | gp_outside_of_building(7) = 1 |
---|
496 | location(num_gp,1) = (i+1) * dx |
---|
497 | location(num_gp,2) = j * dy |
---|
498 | location(num_gp,3) = (k+1) * dz - 0.5 * dz |
---|
499 | ei(num_gp) = e(k+1,j,i+1) |
---|
500 | dissi(num_gp) = diss(k+1,j,i+1) |
---|
501 | de_dxi(num_gp) = de_dx(k+1,j,i+1) |
---|
502 | de_dyi(num_gp) = de_dy(k+1,j,i+1) |
---|
503 | de_dzi(num_gp) = de_dz(k+1,j,i+1) |
---|
504 | ENDIF |
---|
505 | |
---|
506 | IF ( k+1 > nzb_s_inner(j+1,i+1) .OR. nzb_s_inner(j+1,i+1) == 0)& |
---|
507 | THEN |
---|
508 | num_gp = num_gp + 1 |
---|
509 | gp_outside_of_building(8) = 1 |
---|
510 | location(num_gp,1) = (i+1) * dx |
---|
511 | location(num_gp,2) = (j+1) * dy |
---|
512 | location(num_gp,3) = (k+1) * dz - 0.5 * dz |
---|
513 | ei(num_gp) = e(k+1,j+1,i+1) |
---|
514 | dissi(num_gp) = diss(k+1,j+1,i+1) |
---|
515 | de_dxi(num_gp) = de_dx(k+1,j+1,i+1) |
---|
516 | de_dyi(num_gp) = de_dy(k+1,j+1,i+1) |
---|
517 | de_dzi(num_gp) = de_dz(k+1,j+1,i+1) |
---|
518 | ENDIF |
---|
519 | |
---|
520 | ! |
---|
521 | !-- If all gridpoints are situated outside of a building, then the |
---|
522 | !-- ordinary interpolation scheme can be used. |
---|
523 | IF ( num_gp == 8 ) THEN |
---|
524 | |
---|
525 | x = particles(n)%x - i * dx |
---|
526 | y = particles(n)%y - j * dy |
---|
527 | aa = x**2 + y**2 |
---|
528 | bb = ( dx - x )**2 + y**2 |
---|
529 | cc = x**2 + ( dy - y )**2 |
---|
530 | dd = ( dx - x )**2 + ( dy - y )**2 |
---|
531 | gg = aa + bb + cc + dd |
---|
532 | |
---|
533 | e_int_l = (( gg-aa ) * e(k,j,i) + ( gg-bb ) * e(k,j,i+1) & |
---|
534 | + ( gg-cc ) * e(k,j+1,i) + ( gg-dd ) * e(k,j+1,i+1)& |
---|
535 | ) / ( 3.0 * gg ) |
---|
536 | |
---|
537 | IF ( k+1 == nzt+1 ) THEN |
---|
538 | e_int = e_int_l |
---|
539 | ELSE |
---|
540 | e_int_u = ( ( gg - aa ) * e(k+1,j,i) + & |
---|
541 | ( gg - bb ) * e(k+1,j,i+1) + & |
---|
542 | ( gg - cc ) * e(k+1,j+1,i) + & |
---|
543 | ( gg - dd ) * e(k+1,j+1,i+1) & |
---|
544 | ) / ( 3.0 * gg ) |
---|
545 | e_int = e_int_l + ( particles(n)%z - zu(k) ) / dz * & |
---|
546 | ( e_int_u - e_int_l ) |
---|
547 | ENDIF |
---|
548 | |
---|
549 | ! |
---|
550 | !-- Interpolate the TKE gradient along x (adopt incides i,j,k |
---|
551 | !-- and all position variables from above (TKE)) |
---|
552 | de_dx_int_l = ( ( gg - aa ) * de_dx(k,j,i) + & |
---|
553 | ( gg - bb ) * de_dx(k,j,i+1) + & |
---|
554 | ( gg - cc ) * de_dx(k,j+1,i) + & |
---|
555 | ( gg - dd ) * de_dx(k,j+1,i+1) & |
---|
556 | ) / ( 3.0 * gg ) |
---|
557 | |
---|
558 | IF ( ( k+1 == nzt+1 ) .OR. ( k == nzb ) ) THEN |
---|
559 | de_dx_int = de_dx_int_l |
---|
560 | ELSE |
---|
561 | de_dx_int_u = ( ( gg - aa ) * de_dx(k+1,j,i) + & |
---|
562 | ( gg - bb ) * de_dx(k+1,j,i+1) + & |
---|
563 | ( gg - cc ) * de_dx(k+1,j+1,i) + & |
---|
564 | ( gg - dd ) * de_dx(k+1,j+1,i+1) & |
---|
565 | ) / ( 3.0 * gg ) |
---|
566 | de_dx_int = de_dx_int_l + ( particles(n)%z - zu(k) ) / & |
---|
567 | dz * ( de_dx_int_u - de_dx_int_l ) |
---|
568 | ENDIF |
---|
569 | |
---|
570 | ! |
---|
571 | !-- Interpolate the TKE gradient along y |
---|
572 | de_dy_int_l = ( ( gg - aa ) * de_dy(k,j,i) + & |
---|
573 | ( gg - bb ) * de_dy(k,j,i+1) + & |
---|
574 | ( gg - cc ) * de_dy(k,j+1,i) + & |
---|
575 | ( gg - dd ) * de_dy(k,j+1,i+1) & |
---|
576 | ) / ( 3.0 * gg ) |
---|
577 | IF ( ( k+1 == nzt+1 ) .OR. ( k == nzb ) ) THEN |
---|
578 | de_dy_int = de_dy_int_l |
---|
579 | ELSE |
---|
580 | de_dy_int_u = ( ( gg - aa ) * de_dy(k+1,j,i) + & |
---|
581 | ( gg - bb ) * de_dy(k+1,j,i+1) + & |
---|
582 | ( gg - cc ) * de_dy(k+1,j+1,i) + & |
---|
583 | ( gg - dd ) * de_dy(k+1,j+1,i+1) & |
---|
584 | ) / ( 3.0 * gg ) |
---|
585 | de_dy_int = de_dy_int_l + ( particles(n)%z - zu(k) ) / & |
---|
586 | dz * ( de_dy_int_u - de_dy_int_l ) |
---|
587 | ENDIF |
---|
588 | |
---|
589 | ! |
---|
590 | !-- Interpolate the TKE gradient along z |
---|
591 | IF ( particles(n)%z < 0.5 * dz ) THEN |
---|
592 | de_dz_int = 0.0 |
---|
593 | ELSE |
---|
594 | de_dz_int_l = ( ( gg - aa ) * de_dz(k,j,i) + & |
---|
595 | ( gg - bb ) * de_dz(k,j,i+1) + & |
---|
596 | ( gg - cc ) * de_dz(k,j+1,i) + & |
---|
597 | ( gg - dd ) * de_dz(k,j+1,i+1) & |
---|
598 | ) / ( 3.0 * gg ) |
---|
599 | |
---|
600 | IF ( ( k+1 == nzt+1 ) .OR. ( k == nzb ) ) THEN |
---|
601 | de_dz_int = de_dz_int_l |
---|
602 | ELSE |
---|
603 | de_dz_int_u = ( ( gg - aa ) * de_dz(k+1,j,i) + & |
---|
604 | ( gg - bb ) * de_dz(k+1,j,i+1) + & |
---|
605 | ( gg - cc ) * de_dz(k+1,j+1,i) + & |
---|
606 | ( gg - dd ) * de_dz(k+1,j+1,i+1) & |
---|
607 | ) / ( 3.0 * gg ) |
---|
608 | de_dz_int = de_dz_int_l + ( particles(n)%z - zu(k) ) /& |
---|
609 | dz * ( de_dz_int_u - de_dz_int_l ) |
---|
610 | ENDIF |
---|
611 | ENDIF |
---|
612 | |
---|
613 | ! |
---|
614 | !-- Interpolate the dissipation of TKE |
---|
615 | diss_int_l = ( ( gg - aa ) * diss(k,j,i) + & |
---|
616 | ( gg - bb ) * diss(k,j,i+1) + & |
---|
617 | ( gg - cc ) * diss(k,j+1,i) + & |
---|
618 | ( gg - dd ) * diss(k,j+1,i+1) & |
---|
619 | ) / ( 3.0 * gg ) |
---|
620 | |
---|
621 | IF ( k+1 == nzt+1 ) THEN |
---|
622 | diss_int = diss_int_l |
---|
623 | ELSE |
---|
624 | diss_int_u = ( ( gg - aa ) * diss(k+1,j,i) + & |
---|
625 | ( gg - bb ) * diss(k+1,j,i+1) + & |
---|
626 | ( gg - cc ) * diss(k+1,j+1,i) + & |
---|
627 | ( gg - dd ) * diss(k+1,j+1,i+1) & |
---|
628 | ) / ( 3.0 * gg ) |
---|
629 | diss_int = diss_int_l + ( particles(n)%z - zu(k) ) / dz *& |
---|
630 | ( diss_int_u - diss_int_l ) |
---|
631 | ENDIF |
---|
632 | |
---|
633 | ELSE |
---|
634 | |
---|
635 | ! |
---|
636 | !-- If wall between gridpoint 1 and gridpoint 5, then |
---|
637 | !-- Neumann boundary condition has to be applied |
---|
638 | IF ( gp_outside_of_building(1) == 1 .AND. & |
---|
639 | gp_outside_of_building(5) == 0 ) THEN |
---|
640 | num_gp = num_gp + 1 |
---|
641 | location(num_gp,1) = i * dx + 0.5 * dx |
---|
642 | location(num_gp,2) = j * dy |
---|
643 | location(num_gp,3) = k * dz - 0.5 * dz |
---|
644 | ei(num_gp) = e(k,j,i) |
---|
645 | dissi(num_gp) = diss(k,j,i) |
---|
646 | de_dxi(num_gp) = 0.0 |
---|
647 | de_dyi(num_gp) = de_dy(k,j,i) |
---|
648 | de_dzi(num_gp) = de_dz(k,j,i) |
---|
649 | ENDIF |
---|
650 | |
---|
651 | IF ( gp_outside_of_building(5) == 1 .AND. & |
---|
652 | gp_outside_of_building(1) == 0 ) THEN |
---|
653 | num_gp = num_gp + 1 |
---|
654 | location(num_gp,1) = i * dx + 0.5 * dx |
---|
655 | location(num_gp,2) = j * dy |
---|
656 | location(num_gp,3) = k * dz - 0.5 * dz |
---|
657 | ei(num_gp) = e(k,j,i+1) |
---|
658 | dissi(num_gp) = diss(k,j,i+1) |
---|
659 | de_dxi(num_gp) = 0.0 |
---|
660 | de_dyi(num_gp) = de_dy(k,j,i+1) |
---|
661 | de_dzi(num_gp) = de_dz(k,j,i+1) |
---|
662 | ENDIF |
---|
663 | |
---|
664 | ! |
---|
665 | !-- If wall between gridpoint 5 and gridpoint 6, then |
---|
666 | !-- then Neumann boundary condition has to be applied |
---|
667 | IF ( gp_outside_of_building(5) == 1 .AND. & |
---|
668 | gp_outside_of_building(6) == 0 ) THEN |
---|
669 | num_gp = num_gp + 1 |
---|
670 | location(num_gp,1) = (i+1) * dx |
---|
671 | location(num_gp,2) = j * dy + 0.5 * dy |
---|
672 | location(num_gp,3) = k * dz - 0.5 * dz |
---|
673 | ei(num_gp) = e(k,j,i+1) |
---|
674 | dissi(num_gp) = diss(k,j,i+1) |
---|
675 | de_dxi(num_gp) = de_dx(k,j,i+1) |
---|
676 | de_dyi(num_gp) = 0.0 |
---|
677 | de_dzi(num_gp) = de_dz(k,j,i+1) |
---|
678 | ENDIF |
---|
679 | |
---|
680 | IF ( gp_outside_of_building(6) == 1 .AND. & |
---|
681 | gp_outside_of_building(5) == 0 ) THEN |
---|
682 | num_gp = num_gp + 1 |
---|
683 | location(num_gp,1) = (i+1) * dx |
---|
684 | location(num_gp,2) = j * dy + 0.5 * dy |
---|
685 | location(num_gp,3) = k * dz - 0.5 * dz |
---|
686 | ei(num_gp) = e(k,j+1,i+1) |
---|
687 | dissi(num_gp) = diss(k,j+1,i+1) |
---|
688 | de_dxi(num_gp) = de_dx(k,j+1,i+1) |
---|
689 | de_dyi(num_gp) = 0.0 |
---|
690 | de_dzi(num_gp) = de_dz(k,j+1,i+1) |
---|
691 | ENDIF |
---|
692 | |
---|
693 | ! |
---|
694 | !-- If wall between gridpoint 2 and gridpoint 6, then |
---|
695 | !-- Neumann boundary condition has to be applied |
---|
696 | IF ( gp_outside_of_building(2) == 1 .AND. & |
---|
697 | gp_outside_of_building(6) == 0 ) THEN |
---|
698 | num_gp = num_gp + 1 |
---|
699 | location(num_gp,1) = i * dx + 0.5 * dx |
---|
700 | location(num_gp,2) = (j+1) * dy |
---|
701 | location(num_gp,3) = k * dz - 0.5 * dz |
---|
702 | ei(num_gp) = e(k,j+1,i) |
---|
703 | dissi(num_gp) = diss(k,j+1,i) |
---|
704 | de_dxi(num_gp) = 0.0 |
---|
705 | de_dyi(num_gp) = de_dy(k,j+1,i) |
---|
706 | de_dzi(num_gp) = de_dz(k,j+1,i) |
---|
707 | ENDIF |
---|
708 | |
---|
709 | IF ( gp_outside_of_building(6) == 1 .AND. & |
---|
710 | gp_outside_of_building(2) == 0 ) THEN |
---|
711 | num_gp = num_gp + 1 |
---|
712 | location(num_gp,1) = i * dx + 0.5 * dx |
---|
713 | location(num_gp,2) = (j+1) * dy |
---|
714 | location(num_gp,3) = k * dz - 0.5 * dz |
---|
715 | ei(num_gp) = e(k,j+1,i+1) |
---|
716 | dissi(num_gp) = diss(k,j+1,i+1) |
---|
717 | de_dxi(num_gp) = 0.0 |
---|
718 | de_dyi(num_gp) = de_dy(k,j+1,i+1) |
---|
719 | de_dzi(num_gp) = de_dz(k,j+1,i+1) |
---|
720 | ENDIF |
---|
721 | |
---|
722 | ! |
---|
723 | !-- If wall between gridpoint 1 and gridpoint 2, then |
---|
724 | !-- Neumann boundary condition has to be applied |
---|
725 | IF ( gp_outside_of_building(1) == 1 .AND. & |
---|
726 | gp_outside_of_building(2) == 0 ) THEN |
---|
727 | num_gp = num_gp + 1 |
---|
728 | location(num_gp,1) = i * dx |
---|
729 | location(num_gp,2) = j * dy + 0.5 * dy |
---|
730 | location(num_gp,3) = k * dz - 0.5 * dz |
---|
731 | ei(num_gp) = e(k,j,i) |
---|
732 | dissi(num_gp) = diss(k,j,i) |
---|
733 | de_dxi(num_gp) = de_dx(k,j,i) |
---|
734 | de_dyi(num_gp) = 0.0 |
---|
735 | de_dzi(num_gp) = de_dz(k,j,i) |
---|
736 | ENDIF |
---|
737 | |
---|
738 | IF ( gp_outside_of_building(2) == 1 .AND. & |
---|
739 | gp_outside_of_building(1) == 0 ) THEN |
---|
740 | num_gp = num_gp + 1 |
---|
741 | location(num_gp,1) = i * dx |
---|
742 | location(num_gp,2) = j * dy + 0.5 * dy |
---|
743 | location(num_gp,3) = k * dz - 0.5 * dz |
---|
744 | ei(num_gp) = e(k,j+1,i) |
---|
745 | dissi(num_gp) = diss(k,j+1,i) |
---|
746 | de_dxi(num_gp) = de_dx(k,j+1,i) |
---|
747 | de_dyi(num_gp) = 0.0 |
---|
748 | de_dzi(num_gp) = de_dz(k,j+1,i) |
---|
749 | ENDIF |
---|
750 | |
---|
751 | ! |
---|
752 | !-- If wall between gridpoint 3 and gridpoint 7, then |
---|
753 | !-- Neumann boundary condition has to be applied |
---|
754 | IF ( gp_outside_of_building(3) == 1 .AND. & |
---|
755 | gp_outside_of_building(7) == 0 ) THEN |
---|
756 | num_gp = num_gp + 1 |
---|
757 | location(num_gp,1) = i * dx + 0.5 * dx |
---|
758 | location(num_gp,2) = j * dy |
---|
759 | location(num_gp,3) = k * dz + 0.5 * dz |
---|
760 | ei(num_gp) = e(k+1,j,i) |
---|
761 | dissi(num_gp) = diss(k+1,j,i) |
---|
762 | de_dxi(num_gp) = 0.0 |
---|
763 | de_dyi(num_gp) = de_dy(k+1,j,i) |
---|
764 | de_dzi(num_gp) = de_dz(k+1,j,i) |
---|
765 | ENDIF |
---|
766 | |
---|
767 | IF ( gp_outside_of_building(7) == 1 .AND. & |
---|
768 | gp_outside_of_building(3) == 0 ) THEN |
---|
769 | num_gp = num_gp + 1 |
---|
770 | location(num_gp,1) = i * dx + 0.5 * dx |
---|
771 | location(num_gp,2) = j * dy |
---|
772 | location(num_gp,3) = k * dz + 0.5 * dz |
---|
773 | ei(num_gp) = e(k+1,j,i+1) |
---|
774 | dissi(num_gp) = diss(k+1,j,i+1) |
---|
775 | de_dxi(num_gp) = 0.0 |
---|
776 | de_dyi(num_gp) = de_dy(k+1,j,i+1) |
---|
777 | de_dzi(num_gp) = de_dz(k+1,j,i+1) |
---|
778 | ENDIF |
---|
779 | |
---|
780 | ! |
---|
781 | !-- If wall between gridpoint 7 and gridpoint 8, then |
---|
782 | !-- Neumann boundary condition has to be applied |
---|
783 | IF ( gp_outside_of_building(7) == 1 .AND. & |
---|
784 | gp_outside_of_building(8) == 0 ) THEN |
---|
785 | num_gp = num_gp + 1 |
---|
786 | location(num_gp,1) = (i+1) * dx |
---|
787 | location(num_gp,2) = j * dy + 0.5 * dy |
---|
788 | location(num_gp,3) = k * dz + 0.5 * dz |
---|
789 | ei(num_gp) = e(k+1,j,i+1) |
---|
790 | dissi(num_gp) = diss(k+1,j,i+1) |
---|
791 | de_dxi(num_gp) = de_dx(k+1,j,i+1) |
---|
792 | de_dyi(num_gp) = 0.0 |
---|
793 | de_dzi(num_gp) = de_dz(k+1,j,i+1) |
---|
794 | ENDIF |
---|
795 | |
---|
796 | IF ( gp_outside_of_building(8) == 1 .AND. & |
---|
797 | gp_outside_of_building(7) == 0 ) THEN |
---|
798 | num_gp = num_gp + 1 |
---|
799 | location(num_gp,1) = (i+1) * dx |
---|
800 | location(num_gp,2) = j * dy + 0.5 * dy |
---|
801 | location(num_gp,3) = k * dz + 0.5 * dz |
---|
802 | ei(num_gp) = e(k+1,j+1,i+1) |
---|
803 | dissi(num_gp) = diss(k+1,j+1,i+1) |
---|
804 | de_dxi(num_gp) = de_dx(k+1,j+1,i+1) |
---|
805 | de_dyi(num_gp) = 0.0 |
---|
806 | de_dzi(num_gp) = de_dz(k+1,j+1,i+1) |
---|
807 | ENDIF |
---|
808 | |
---|
809 | ! |
---|
810 | !-- If wall between gridpoint 4 and gridpoint 8, then |
---|
811 | !-- Neumann boundary condition has to be applied |
---|
812 | IF ( gp_outside_of_building(4) == 1 .AND. & |
---|
813 | gp_outside_of_building(8) == 0 ) THEN |
---|
814 | num_gp = num_gp + 1 |
---|
815 | location(num_gp,1) = i * dx + 0.5 * dx |
---|
816 | location(num_gp,2) = (j+1) * dy |
---|
817 | location(num_gp,3) = k * dz + 0.5 * dz |
---|
818 | ei(num_gp) = e(k+1,j+1,i) |
---|
819 | dissi(num_gp) = diss(k+1,j+1,i) |
---|
820 | de_dxi(num_gp) = 0.0 |
---|
821 | de_dyi(num_gp) = de_dy(k+1,j+1,i) |
---|
822 | de_dzi(num_gp) = de_dz(k+1,j+1,i) |
---|
823 | ENDIF |
---|
824 | |
---|
825 | IF ( gp_outside_of_building(8) == 1 .AND. & |
---|
826 | gp_outside_of_building(4) == 0 ) THEN |
---|
827 | num_gp = num_gp + 1 |
---|
828 | location(num_gp,1) = i * dx + 0.5 * dx |
---|
829 | location(num_gp,2) = (j+1) * dy |
---|
830 | location(num_gp,3) = k * dz + 0.5 * dz |
---|
831 | ei(num_gp) = e(k+1,j+1,i+1) |
---|
832 | dissi(num_gp) = diss(k+1,j+1,i+1) |
---|
833 | de_dxi(num_gp) = 0.0 |
---|
834 | de_dyi(num_gp) = de_dy(k+1,j+1,i+1) |
---|
835 | de_dzi(num_gp) = de_dz(k+1,j+1,i+1) |
---|
836 | ENDIF |
---|
837 | |
---|
838 | ! |
---|
839 | !-- If wall between gridpoint 3 and gridpoint 4, then |
---|
840 | !-- Neumann boundary condition has to be applied |
---|
841 | IF ( gp_outside_of_building(3) == 1 .AND. & |
---|
842 | gp_outside_of_building(4) == 0 ) THEN |
---|
843 | num_gp = num_gp + 1 |
---|
844 | location(num_gp,1) = i * dx |
---|
845 | location(num_gp,2) = j * dy + 0.5 * dy |
---|
846 | location(num_gp,3) = k * dz + 0.5 * dz |
---|
847 | ei(num_gp) = e(k+1,j,i) |
---|
848 | dissi(num_gp) = diss(k+1,j,i) |
---|
849 | de_dxi(num_gp) = de_dx(k+1,j,i) |
---|
850 | de_dyi(num_gp) = 0.0 |
---|
851 | de_dzi(num_gp) = de_dz(k+1,j,i) |
---|
852 | ENDIF |
---|
853 | |
---|
854 | IF ( gp_outside_of_building(4) == 1 .AND. & |
---|
855 | gp_outside_of_building(3) == 0 ) THEN |
---|
856 | num_gp = num_gp + 1 |
---|
857 | location(num_gp,1) = i * dx |
---|
858 | location(num_gp,2) = j * dy + 0.5 * dy |
---|
859 | location(num_gp,3) = k * dz + 0.5 * dz |
---|
860 | ei(num_gp) = e(k+1,j+1,i) |
---|
861 | dissi(num_gp) = diss(k+1,j+1,i) |
---|
862 | de_dxi(num_gp) = de_dx(k+1,j+1,i) |
---|
863 | de_dyi(num_gp) = 0.0 |
---|
864 | de_dzi(num_gp) = de_dz(k+1,j+1,i) |
---|
865 | ENDIF |
---|
866 | |
---|
867 | ! |
---|
868 | !-- If wall between gridpoint 1 and gridpoint 3, then |
---|
869 | !-- Neumann boundary condition has to be applied |
---|
870 | !-- (only one case as only building beneath is possible) |
---|
871 | IF ( gp_outside_of_building(1) == 0 .AND. & |
---|
872 | gp_outside_of_building(3) == 1 ) THEN |
---|
873 | num_gp = num_gp + 1 |
---|
874 | location(num_gp,1) = i * dx |
---|
875 | location(num_gp,2) = j * dy |
---|
876 | location(num_gp,3) = k * dz |
---|
877 | ei(num_gp) = e(k+1,j,i) |
---|
878 | dissi(num_gp) = diss(k+1,j,i) |
---|
879 | de_dxi(num_gp) = de_dx(k+1,j,i) |
---|
880 | de_dyi(num_gp) = de_dy(k+1,j,i) |
---|
881 | de_dzi(num_gp) = 0.0 |
---|
882 | ENDIF |
---|
883 | |
---|
884 | ! |
---|
885 | !-- If wall between gridpoint 5 and gridpoint 7, then |
---|
886 | !-- Neumann boundary condition has to be applied |
---|
887 | !-- (only one case as only building beneath is possible) |
---|
888 | IF ( gp_outside_of_building(5) == 0 .AND. & |
---|
889 | gp_outside_of_building(7) == 1 ) THEN |
---|
890 | num_gp = num_gp + 1 |
---|
891 | location(num_gp,1) = (i+1) * dx |
---|
892 | location(num_gp,2) = j * dy |
---|
893 | location(num_gp,3) = k * dz |
---|
894 | ei(num_gp) = e(k+1,j,i+1) |
---|
895 | dissi(num_gp) = diss(k+1,j,i+1) |
---|
896 | de_dxi(num_gp) = de_dx(k+1,j,i+1) |
---|
897 | de_dyi(num_gp) = de_dy(k+1,j,i+1) |
---|
898 | de_dzi(num_gp) = 0.0 |
---|
899 | ENDIF |
---|
900 | |
---|
901 | ! |
---|
902 | !-- If wall between gridpoint 2 and gridpoint 4, then |
---|
903 | !-- Neumann boundary condition has to be applied |
---|
904 | !-- (only one case as only building beneath is possible) |
---|
905 | IF ( gp_outside_of_building(2) == 0 .AND. & |
---|
906 | gp_outside_of_building(4) == 1 ) THEN |
---|
907 | num_gp = num_gp + 1 |
---|
908 | location(num_gp,1) = i * dx |
---|
909 | location(num_gp,2) = (j+1) * dy |
---|
910 | location(num_gp,3) = k * dz |
---|
911 | ei(num_gp) = e(k+1,j+1,i) |
---|
912 | dissi(num_gp) = diss(k+1,j+1,i) |
---|
913 | de_dxi(num_gp) = de_dx(k+1,j+1,i) |
---|
914 | de_dyi(num_gp) = de_dy(k+1,j+1,i) |
---|
915 | de_dzi(num_gp) = 0.0 |
---|
916 | ENDIF |
---|
917 | |
---|
918 | ! |
---|
919 | !-- If wall between gridpoint 6 and gridpoint 8, then |
---|
920 | !-- Neumann boundary condition has to be applied |
---|
921 | !-- (only one case as only building beneath is possible) |
---|
922 | IF ( gp_outside_of_building(6) == 0 .AND. & |
---|
923 | gp_outside_of_building(8) == 1 ) THEN |
---|
924 | num_gp = num_gp + 1 |
---|
925 | location(num_gp,1) = (i+1) * dx |
---|
926 | location(num_gp,2) = (j+1) * dy |
---|
927 | location(num_gp,3) = k * dz |
---|
928 | ei(num_gp) = e(k+1,j+1,i+1) |
---|
929 | dissi(num_gp) = diss(k+1,j+1,i+1) |
---|
930 | de_dxi(num_gp) = de_dx(k+1,j+1,i+1) |
---|
931 | de_dyi(num_gp) = de_dy(k+1,j+1,i+1) |
---|
932 | de_dzi(num_gp) = 0.0 |
---|
933 | ENDIF |
---|
934 | |
---|
935 | ! |
---|
936 | !-- Carry out the interpolation |
---|
937 | IF ( num_gp == 1 ) THEN |
---|
938 | ! |
---|
939 | !-- If only one of the gridpoints is situated outside of the |
---|
940 | !-- building, it follows that the values at the particle |
---|
941 | !-- location are the same as the gridpoint values |
---|
942 | e_int = ei(num_gp) |
---|
943 | diss_int = dissi(num_gp) |
---|
944 | de_dx_int = de_dxi(num_gp) |
---|
945 | de_dy_int = de_dyi(num_gp) |
---|
946 | de_dz_int = de_dzi(num_gp) |
---|
947 | ELSE IF ( num_gp > 1 ) THEN |
---|
948 | |
---|
949 | d_sum = 0.0 |
---|
950 | ! |
---|
951 | !-- Evaluation of the distances between the gridpoints |
---|
952 | !-- contributing to the interpolated values, and the particle |
---|
953 | !-- location |
---|
954 | DO agp = 1, num_gp |
---|
955 | d_gp_pl(agp) = ( particles(n)%x-location(agp,1) )**2 & |
---|
956 | + ( particles(n)%y-location(agp,2) )**2 & |
---|
957 | + ( particles(n)%z-location(agp,3) )**2 |
---|
958 | d_sum = d_sum + d_gp_pl(agp) |
---|
959 | ENDDO |
---|
960 | |
---|
961 | ! |
---|
962 | !-- Finally the interpolation can be carried out |
---|
963 | e_int = 0.0 |
---|
964 | diss_int = 0.0 |
---|
965 | de_dx_int = 0.0 |
---|
966 | de_dy_int = 0.0 |
---|
967 | de_dz_int = 0.0 |
---|
968 | DO agp = 1, num_gp |
---|
969 | e_int = e_int + ( d_sum - d_gp_pl(agp) ) * & |
---|
970 | ei(agp) / ( (num_gp-1) * d_sum ) |
---|
971 | diss_int = diss_int + ( d_sum - d_gp_pl(agp) ) * & |
---|
972 | dissi(agp) / ( (num_gp-1) * d_sum ) |
---|
973 | de_dx_int = de_dx_int + ( d_sum - d_gp_pl(agp) ) * & |
---|
974 | de_dxi(agp) / ( (num_gp-1) * d_sum ) |
---|
975 | de_dy_int = de_dy_int + ( d_sum - d_gp_pl(agp) ) * & |
---|
976 | de_dyi(agp) / ( (num_gp-1) * d_sum ) |
---|
977 | de_dz_int = de_dz_int + ( d_sum - d_gp_pl(agp) ) * & |
---|
978 | de_dzi(agp) / ( (num_gp-1) * d_sum ) |
---|
979 | ENDDO |
---|
980 | |
---|
981 | ENDIF |
---|
982 | |
---|
983 | ENDIF |
---|
984 | |
---|
985 | ENDIF |
---|
986 | |
---|
987 | ! |
---|
988 | !-- Vertically interpolate the horizontally averaged SGS TKE and |
---|
989 | !-- resolved-scale velocity variances and use the interpolated values |
---|
990 | !-- to calculate the coefficient fs, which is a measure of the ratio |
---|
991 | !-- of the subgrid-scale turbulent kinetic energy to the total amount |
---|
992 | !-- of turbulent kinetic energy. |
---|
993 | IF ( k == 0 ) THEN |
---|
994 | e_mean_int = hom(0,1,8,0) |
---|
995 | ELSE |
---|
996 | e_mean_int = hom(k,1,8,0) + & |
---|
997 | ( hom(k+1,1,8,0) - hom(k,1,8,0) ) / & |
---|
998 | ( zu(k+1) - zu(k) ) * & |
---|
999 | ( particles(n)%z - zu(k) ) |
---|
1000 | ENDIF |
---|
1001 | |
---|
1002 | kw = particles(n)%z / dz |
---|
1003 | |
---|
1004 | IF ( k == 0 ) THEN |
---|
1005 | aa = hom(k+1,1,30,0) * ( particles(n)%z / & |
---|
1006 | ( 0.5 * ( zu(k+1) - zu(k) ) ) ) |
---|
1007 | bb = hom(k+1,1,31,0) * ( particles(n)%z / & |
---|
1008 | ( 0.5 * ( zu(k+1) - zu(k) ) ) ) |
---|
1009 | cc = hom(kw+1,1,32,0) * ( particles(n)%z / & |
---|
1010 | ( 1.0 * ( zw(kw+1) - zw(kw) ) ) ) |
---|
1011 | ELSE |
---|
1012 | aa = hom(k,1,30,0) + ( hom(k+1,1,30,0) - hom(k,1,30,0) ) * & |
---|
1013 | ( ( particles(n)%z - zu(k) ) / ( zu(k+1) - zu(k) ) ) |
---|
1014 | bb = hom(k,1,31,0) + ( hom(k+1,1,31,0) - hom(k,1,31,0) ) * & |
---|
1015 | ( ( particles(n)%z - zu(k) ) / ( zu(k+1) - zu(k) ) ) |
---|
1016 | cc = hom(kw,1,32,0) + ( hom(kw+1,1,32,0)-hom(kw,1,32,0) ) *& |
---|
1017 | ( ( particles(n)%z - zw(kw) ) / ( zw(kw+1)-zw(kw) ) ) |
---|
1018 | ENDIF |
---|
1019 | |
---|
1020 | vv_int = ( 1.0 / 3.0 ) * ( aa + bb + cc ) |
---|
1021 | |
---|
1022 | fs_int = ( 2.0 / 3.0 ) * e_mean_int / & |
---|
1023 | ( vv_int + ( 2.0 / 3.0 ) * e_mean_int ) |
---|
1024 | |
---|
1025 | ! |
---|
1026 | !-- Calculate the Lagrangian timescale according to Weil et al. (2004). |
---|
1027 | lagr_timescale = ( 4.0 * e_int ) / & |
---|
1028 | ( 3.0 * fs_int * c_0 * diss_int ) |
---|
1029 | |
---|
1030 | ! |
---|
1031 | !-- Calculate the next particle timestep. dt_gap is the time needed to |
---|
1032 | !-- complete the current LES timestep. |
---|
1033 | dt_gap = dt_3d - particles(n)%dt_sum |
---|
1034 | dt_particle = MIN( dt_3d, 0.025 * lagr_timescale, dt_gap ) |
---|
1035 | |
---|
1036 | ! |
---|
1037 | !-- The particle timestep should not be too small in order to prevent |
---|
1038 | !-- the number of particle timesteps of getting too large |
---|
1039 | IF ( dt_particle < dt_min_part .AND. dt_min_part < dt_gap ) & |
---|
1040 | THEN |
---|
1041 | dt_particle = dt_min_part |
---|
1042 | ENDIF |
---|
1043 | |
---|
1044 | ! |
---|
1045 | !-- Calculate the SGS velocity components |
---|
1046 | IF ( particles(n)%age == 0.0 ) THEN |
---|
1047 | ! |
---|
1048 | !-- For new particles the SGS components are derived from the SGS |
---|
1049 | !-- TKE. Limit the Gaussian random number to the interval |
---|
1050 | !-- [-5.0*sigma, 5.0*sigma] in order to prevent the SGS velocities |
---|
1051 | !-- from becoming unrealistically large. |
---|
1052 | particles(n)%rvar1 = SQRT( 2.0 * sgs_wfu_part * e_int ) * & |
---|
1053 | ( random_gauss( iran_part, 5.0 ) - 1.0 ) |
---|
1054 | particles(n)%rvar2 = SQRT( 2.0 * sgs_wfv_part * e_int ) * & |
---|
1055 | ( random_gauss( iran_part, 5.0 ) - 1.0 ) |
---|
1056 | particles(n)%rvar3 = SQRT( 2.0 * sgs_wfw_part * e_int ) * & |
---|
1057 | ( random_gauss( iran_part, 5.0 ) - 1.0 ) |
---|
1058 | |
---|
1059 | ELSE |
---|
1060 | |
---|
1061 | ! |
---|
1062 | !-- Restriction of the size of the new timestep: compared to the |
---|
1063 | !-- previous timestep the increase must not exceed 200% |
---|
1064 | |
---|
1065 | dt_particle_m = particles(n)%age - particles(n)%age_m |
---|
1066 | IF ( dt_particle > 2.0 * dt_particle_m ) THEN |
---|
1067 | dt_particle = 2.0 * dt_particle_m |
---|
1068 | ENDIF |
---|
1069 | |
---|
1070 | ! |
---|
1071 | !-- For old particles the SGS components are correlated with the |
---|
1072 | !-- values from the previous timestep. Random numbers have also to |
---|
1073 | !-- be limited (see above). |
---|
1074 | !-- As negative values for the subgrid TKE are not allowed, the |
---|
1075 | !-- change of the subgrid TKE with time cannot be smaller than |
---|
1076 | !-- -e_int/dt_particle. This value is used as a lower boundary |
---|
1077 | !-- value for the change of TKE |
---|
1078 | |
---|
1079 | de_dt_min = - e_int / dt_particle |
---|
1080 | |
---|
1081 | de_dt = ( e_int - particles(n)%e_m ) / dt_particle_m |
---|
1082 | |
---|
1083 | IF ( de_dt < de_dt_min ) THEN |
---|
1084 | de_dt = de_dt_min |
---|
1085 | ENDIF |
---|
1086 | |
---|
1087 | particles(n)%rvar1 = particles(n)%rvar1 - fs_int * c_0 * & |
---|
1088 | diss_int * particles(n)%rvar1 * dt_particle /& |
---|
1089 | ( 4.0 * sgs_wfu_part * e_int ) + & |
---|
1090 | ( 2.0 * sgs_wfu_part * de_dt * & |
---|
1091 | particles(n)%rvar1 / & |
---|
1092 | ( 2.0 * sgs_wfu_part * e_int ) + de_dx_int & |
---|
1093 | ) * dt_particle / 2.0 + & |
---|
1094 | SQRT( fs_int * c_0 * diss_int ) * & |
---|
1095 | ( random_gauss( iran_part, 5.0 ) - 1.0 ) * & |
---|
1096 | SQRT( dt_particle ) |
---|
1097 | |
---|
1098 | particles(n)%rvar2 = particles(n)%rvar2 - fs_int * c_0 * & |
---|
1099 | diss_int * particles(n)%rvar2 * dt_particle /& |
---|
1100 | ( 4.0 * sgs_wfv_part * e_int ) + & |
---|
1101 | ( 2.0 * sgs_wfv_part * de_dt * & |
---|
1102 | particles(n)%rvar2 / & |
---|
1103 | ( 2.0 * sgs_wfv_part * e_int ) + de_dy_int & |
---|
1104 | ) * dt_particle / 2.0 + & |
---|
1105 | SQRT( fs_int * c_0 * diss_int ) * & |
---|
1106 | ( random_gauss( iran_part, 5.0 ) - 1.0 ) * & |
---|
1107 | SQRT( dt_particle ) |
---|
1108 | |
---|
1109 | particles(n)%rvar3 = particles(n)%rvar3 - fs_int * c_0 * & |
---|
1110 | diss_int * particles(n)%rvar3 * dt_particle /& |
---|
1111 | ( 4.0 * sgs_wfw_part * e_int ) + & |
---|
1112 | ( 2.0 * sgs_wfw_part * de_dt * & |
---|
1113 | particles(n)%rvar3 / & |
---|
1114 | ( 2.0 * sgs_wfw_part * e_int ) + de_dz_int & |
---|
1115 | ) * dt_particle / 2.0 + & |
---|
1116 | SQRT( fs_int * c_0 * diss_int ) * & |
---|
1117 | ( random_gauss( iran_part, 5.0 ) - 1.0 ) * & |
---|
1118 | SQRT( dt_particle ) |
---|
1119 | |
---|
1120 | ENDIF |
---|
1121 | |
---|
1122 | u_int = u_int + particles(n)%rvar1 |
---|
1123 | v_int = v_int + particles(n)%rvar2 |
---|
1124 | w_int = w_int + particles(n)%rvar3 |
---|
1125 | |
---|
1126 | ! |
---|
1127 | !-- Store the SGS TKE of the current timelevel which is needed for |
---|
1128 | !-- for calculating the SGS particle velocities at the next timestep |
---|
1129 | particles(n)%e_m = e_int |
---|
1130 | |
---|
1131 | ELSE |
---|
1132 | ! |
---|
1133 | !-- If no SGS velocities are used, only the particle timestep has to |
---|
1134 | !-- be set |
---|
1135 | dt_particle = dt_3d |
---|
1136 | |
---|
1137 | ENDIF |
---|
1138 | |
---|
1139 | ! |
---|
1140 | !-- Store the old age of the particle ( needed to prevent that a |
---|
1141 | !-- particle crosses several PEs during one timestep, and for the |
---|
1142 | !-- evaluation of the subgrid particle velocity fluctuations ) |
---|
1143 | particles(n)%age_m = particles(n)%age |
---|
1144 | |
---|
1145 | |
---|
1146 | ! |
---|
1147 | !-- Particle advection |
---|
1148 | IF ( particle_groups(particles(n)%group)%density_ratio == 0.0 ) THEN |
---|
1149 | ! |
---|
1150 | !-- Pure passive transport (without particle inertia) |
---|
1151 | particles(n)%x = particles(n)%x + u_int * dt_particle |
---|
1152 | particles(n)%y = particles(n)%y + v_int * dt_particle |
---|
1153 | particles(n)%z = particles(n)%z + w_int * dt_particle |
---|
1154 | |
---|
1155 | particles(n)%speed_x = u_int |
---|
1156 | particles(n)%speed_y = v_int |
---|
1157 | particles(n)%speed_z = w_int |
---|
1158 | |
---|
1159 | ELSE |
---|
1160 | ! |
---|
1161 | !-- Transport of particles with inertia |
---|
1162 | particles(n)%x = particles(n)%x + particles(n)%speed_x * & |
---|
1163 | dt_particle |
---|
1164 | particles(n)%y = particles(n)%y + particles(n)%speed_y * & |
---|
1165 | dt_particle |
---|
1166 | particles(n)%z = particles(n)%z + particles(n)%speed_z * & |
---|
1167 | dt_particle |
---|
1168 | |
---|
1169 | ! |
---|
1170 | !-- Update of the particle velocity |
---|
1171 | dens_ratio = particle_groups(particles(n)%group)%density_ratio |
---|
1172 | IF ( cloud_droplets ) THEN |
---|
1173 | exp_arg = 4.5 * dens_ratio * molecular_viscosity / & |
---|
1174 | ( particles(n)%radius )**2 * & |
---|
1175 | ( 1.0 + 0.15 * ( 2.0 * particles(n)%radius * & |
---|
1176 | SQRT( ( u_int - particles(n)%speed_x )**2 + & |
---|
1177 | ( v_int - particles(n)%speed_y )**2 + & |
---|
1178 | ( w_int - particles(n)%speed_z )**2 ) / & |
---|
1179 | molecular_viscosity )**0.687 & |
---|
1180 | ) |
---|
1181 | exp_term = EXP( -exp_arg * dt_particle ) |
---|
1182 | ELSEIF ( use_sgs_for_particles ) THEN |
---|
1183 | exp_arg = particle_groups(particles(n)%group)%exp_arg |
---|
1184 | exp_term = EXP( -exp_arg * dt_particle ) |
---|
1185 | ELSE |
---|
1186 | exp_arg = particle_groups(particles(n)%group)%exp_arg |
---|
1187 | exp_term = particle_groups(particles(n)%group)%exp_term |
---|
1188 | ENDIF |
---|
1189 | particles(n)%speed_x = particles(n)%speed_x * exp_term + & |
---|
1190 | u_int * ( 1.0 - exp_term ) |
---|
1191 | particles(n)%speed_y = particles(n)%speed_y * exp_term + & |
---|
1192 | v_int * ( 1.0 - exp_term ) |
---|
1193 | particles(n)%speed_z = particles(n)%speed_z * exp_term + & |
---|
1194 | ( w_int - ( 1.0 - dens_ratio ) * g / exp_arg )& |
---|
1195 | * ( 1.0 - exp_term ) |
---|
1196 | ENDIF |
---|
1197 | |
---|
1198 | ! |
---|
1199 | !-- Increment the particle age and the total time that the particle |
---|
1200 | !-- has advanced within the particle timestep procedure |
---|
1201 | particles(n)%age = particles(n)%age + dt_particle |
---|
1202 | particles(n)%dt_sum = particles(n)%dt_sum + dt_particle |
---|
1203 | |
---|
1204 | ! |
---|
1205 | !-- Check whether there is still a particle that has not yet completed |
---|
1206 | !-- the total LES timestep |
---|
1207 | IF ( ( dt_3d - particles(n)%dt_sum ) > 1E-8 ) THEN |
---|
1208 | dt_3d_reached_l = .FALSE. |
---|
1209 | ENDIF |
---|
1210 | |
---|
1211 | ENDDO |
---|
1212 | |
---|
1213 | |
---|
1214 | END SUBROUTINE lpm_advec |
---|