1 | SUBROUTINE lpm_advec |
---|
2 | |
---|
3 | !--------------------------------------------------------------------------------! |
---|
4 | ! This file is part of PALM. |
---|
5 | ! |
---|
6 | ! PALM is free software: you can redistribute it and/or modify it under the terms |
---|
7 | ! of the GNU General Public License as published by the Free Software Foundation, |
---|
8 | ! either version 3 of the License, or (at your option) any later version. |
---|
9 | ! |
---|
10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
13 | ! |
---|
14 | ! You should have received a copy of the GNU General Public License along with |
---|
15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
16 | ! |
---|
17 | ! Copyright 1997-2012 Leibniz University Hannover |
---|
18 | !--------------------------------------------------------------------------------! |
---|
19 | ! |
---|
20 | ! Current revisions: |
---|
21 | ! ------------------ |
---|
22 | ! |
---|
23 | ! |
---|
24 | ! Former revisions: |
---|
25 | ! ----------------- |
---|
26 | ! $Id: lpm_advec.f90 1037 2012-10-22 14:10:22Z raasch $ |
---|
27 | ! |
---|
28 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
29 | ! code put under GPL (PALM 3.9) |
---|
30 | ! |
---|
31 | ! 849 2012-03-15 10:35:09Z raasch |
---|
32 | ! initial revision (former part of advec_particles) |
---|
33 | ! |
---|
34 | ! |
---|
35 | ! Description: |
---|
36 | ! ------------ |
---|
37 | ! Calculation of new particle positions due to advection using a simple Euler |
---|
38 | ! scheme. Particles may feel inertia effects. SGS transport can be included |
---|
39 | ! using the stochastic model of Weil et al. (2004, JAS, 61, 2877-2887). |
---|
40 | !------------------------------------------------------------------------------! |
---|
41 | |
---|
42 | USE arrays_3d |
---|
43 | USE control_parameters |
---|
44 | USE grid_variables |
---|
45 | USE indices |
---|
46 | USE particle_attributes |
---|
47 | USE statistics |
---|
48 | |
---|
49 | IMPLICIT NONE |
---|
50 | |
---|
51 | INTEGER :: i, j, k, n |
---|
52 | |
---|
53 | REAL :: aa, bb, cc, dd, dens_ratio, exp_arg, exp_term, gg, u_int, & |
---|
54 | u_int_l, u_int_u, v_int, v_int_l, v_int_u, w_int, w_int_l, & |
---|
55 | w_int_u, x, y |
---|
56 | |
---|
57 | |
---|
58 | INTEGER :: agp, kw, num_gp |
---|
59 | INTEGER :: gp_outside_of_building(1:8) |
---|
60 | |
---|
61 | REAL :: d_sum, de_dx_int, de_dx_int_l, de_dx_int_u, de_dy_int, & |
---|
62 | de_dy_int_l, de_dy_int_u, de_dt, de_dt_min, de_dz_int, & |
---|
63 | de_dz_int_l, de_dz_int_u, diss_int, diss_int_l, diss_int_u, & |
---|
64 | dt_gap, dt_particle, dt_particle_m, e_int, e_int_l, e_int_u, & |
---|
65 | e_mean_int, fs_int, lagr_timescale, random_gauss, vv_int |
---|
66 | |
---|
67 | REAL :: location(1:30,1:3) |
---|
68 | REAL, DIMENSION(1:30) :: de_dxi, de_dyi, de_dzi, dissi, d_gp_pl, ei |
---|
69 | |
---|
70 | |
---|
71 | DO n = 1, number_of_particles |
---|
72 | |
---|
73 | ! |
---|
74 | !-- Move particle only if the LES timestep has not (approximately) been |
---|
75 | !-- reached |
---|
76 | IF ( ( dt_3d - particles(n)%dt_sum ) < 1E-8 ) CYCLE |
---|
77 | |
---|
78 | ! |
---|
79 | !-- Interpolate u velocity-component, determine left, front, bottom |
---|
80 | !-- index of u-array |
---|
81 | i = ( particles(n)%x + 0.5 * dx ) * ddx |
---|
82 | j = particles(n)%y * ddy |
---|
83 | k = ( particles(n)%z + 0.5 * dz * atmos_ocean_sign ) / dz & |
---|
84 | + offset_ocean_nzt ! only exact if equidistant |
---|
85 | |
---|
86 | ! |
---|
87 | !-- Interpolation of the velocity components in the xy-plane |
---|
88 | x = particles(n)%x + ( 0.5 - i ) * dx |
---|
89 | y = particles(n)%y - j * dy |
---|
90 | aa = x**2 + y**2 |
---|
91 | bb = ( dx - x )**2 + y**2 |
---|
92 | cc = x**2 + ( dy - y )**2 |
---|
93 | dd = ( dx - x )**2 + ( dy - y )**2 |
---|
94 | gg = aa + bb + cc + dd |
---|
95 | |
---|
96 | u_int_l = ( ( gg - aa ) * u(k,j,i) + ( gg - bb ) * u(k,j,i+1) & |
---|
97 | + ( gg - cc ) * u(k,j+1,i) + ( gg - dd ) * u(k,j+1,i+1) & |
---|
98 | ) / ( 3.0 * gg ) - u_gtrans |
---|
99 | IF ( k+1 == nzt+1 ) THEN |
---|
100 | u_int = u_int_l |
---|
101 | ELSE |
---|
102 | u_int_u = ( ( gg-aa ) * u(k+1,j,i) + ( gg-bb ) * u(k+1,j,i+1) & |
---|
103 | + ( gg-cc ) * u(k+1,j+1,i) + ( gg-dd ) * u(k+1,j+1,i+1) & |
---|
104 | ) / ( 3.0 * gg ) - u_gtrans |
---|
105 | u_int = u_int_l + ( particles(n)%z - zu(k) ) / dz * & |
---|
106 | ( u_int_u - u_int_l ) |
---|
107 | ENDIF |
---|
108 | |
---|
109 | ! |
---|
110 | !-- Same procedure for interpolation of the v velocity-component (adopt |
---|
111 | !-- index k from u velocity-component) |
---|
112 | i = particles(n)%x * ddx |
---|
113 | j = ( particles(n)%y + 0.5 * dy ) * ddy |
---|
114 | |
---|
115 | x = particles(n)%x - i * dx |
---|
116 | y = particles(n)%y + ( 0.5 - j ) * dy |
---|
117 | aa = x**2 + y**2 |
---|
118 | bb = ( dx - x )**2 + y**2 |
---|
119 | cc = x**2 + ( dy - y )**2 |
---|
120 | dd = ( dx - x )**2 + ( dy - y )**2 |
---|
121 | gg = aa + bb + cc + dd |
---|
122 | |
---|
123 | v_int_l = ( ( gg - aa ) * v(k,j,i) + ( gg - bb ) * v(k,j,i+1) & |
---|
124 | + ( gg - cc ) * v(k,j+1,i) + ( gg - dd ) * v(k,j+1,i+1) & |
---|
125 | ) / ( 3.0 * gg ) - v_gtrans |
---|
126 | IF ( k+1 == nzt+1 ) THEN |
---|
127 | v_int = v_int_l |
---|
128 | ELSE |
---|
129 | v_int_u = ( ( gg-aa ) * v(k+1,j,i) + ( gg-bb ) * v(k+1,j,i+1) & |
---|
130 | + ( gg-cc ) * v(k+1,j+1,i) + ( gg-dd ) * v(k+1,j+1,i+1) & |
---|
131 | ) / ( 3.0 * gg ) - v_gtrans |
---|
132 | v_int = v_int_l + ( particles(n)%z - zu(k) ) / dz * & |
---|
133 | ( v_int_u - v_int_l ) |
---|
134 | ENDIF |
---|
135 | |
---|
136 | ! |
---|
137 | !-- Same procedure for interpolation of the w velocity-component (adopt |
---|
138 | !-- index i from v velocity-component) |
---|
139 | IF ( vertical_particle_advection(particles(n)%group) ) THEN |
---|
140 | j = particles(n)%y * ddy |
---|
141 | k = particles(n)%z / dz + offset_ocean_nzt_m1 |
---|
142 | |
---|
143 | x = particles(n)%x - i * dx |
---|
144 | y = particles(n)%y - j * dy |
---|
145 | aa = x**2 + y**2 |
---|
146 | bb = ( dx - x )**2 + y**2 |
---|
147 | cc = x**2 + ( dy - y )**2 |
---|
148 | dd = ( dx - x )**2 + ( dy - y )**2 |
---|
149 | gg = aa + bb + cc + dd |
---|
150 | |
---|
151 | w_int_l = ( ( gg - aa ) * w(k,j,i) + ( gg - bb ) * w(k,j,i+1) & |
---|
152 | + ( gg - cc ) * w(k,j+1,i) + ( gg - dd ) * w(k,j+1,i+1) & |
---|
153 | ) / ( 3.0 * gg ) |
---|
154 | IF ( k+1 == nzt+1 ) THEN |
---|
155 | w_int = w_int_l |
---|
156 | ELSE |
---|
157 | w_int_u = ( ( gg-aa ) * w(k+1,j,i) + & |
---|
158 | ( gg-bb ) * w(k+1,j,i+1) + & |
---|
159 | ( gg-cc ) * w(k+1,j+1,i) + & |
---|
160 | ( gg-dd ) * w(k+1,j+1,i+1) & |
---|
161 | ) / ( 3.0 * gg ) |
---|
162 | w_int = w_int_l + ( particles(n)%z - zw(k) ) / dz * & |
---|
163 | ( w_int_u - w_int_l ) |
---|
164 | ENDIF |
---|
165 | ELSE |
---|
166 | w_int = 0.0 |
---|
167 | ENDIF |
---|
168 | |
---|
169 | ! |
---|
170 | !-- Interpolate and calculate quantities needed for calculating the SGS |
---|
171 | !-- velocities |
---|
172 | IF ( use_sgs_for_particles ) THEN |
---|
173 | ! |
---|
174 | !-- Interpolate TKE |
---|
175 | i = particles(n)%x * ddx |
---|
176 | j = particles(n)%y * ddy |
---|
177 | k = ( particles(n)%z + 0.5 * dz * atmos_ocean_sign ) / dz & |
---|
178 | + offset_ocean_nzt ! only exact if eq.dist |
---|
179 | |
---|
180 | IF ( topography == 'flat' ) THEN |
---|
181 | |
---|
182 | x = particles(n)%x - i * dx |
---|
183 | y = particles(n)%y - j * dy |
---|
184 | aa = x**2 + y**2 |
---|
185 | bb = ( dx - x )**2 + y**2 |
---|
186 | cc = x**2 + ( dy - y )**2 |
---|
187 | dd = ( dx - x )**2 + ( dy - y )**2 |
---|
188 | gg = aa + bb + cc + dd |
---|
189 | |
---|
190 | e_int_l = ( ( gg-aa ) * e(k,j,i) + ( gg-bb ) * e(k,j,i+1) & |
---|
191 | + ( gg-cc ) * e(k,j+1,i) + ( gg-dd ) * e(k,j+1,i+1) & |
---|
192 | ) / ( 3.0 * gg ) |
---|
193 | |
---|
194 | IF ( k+1 == nzt+1 ) THEN |
---|
195 | e_int = e_int_l |
---|
196 | ELSE |
---|
197 | e_int_u = ( ( gg - aa ) * e(k+1,j,i) + & |
---|
198 | ( gg - bb ) * e(k+1,j,i+1) + & |
---|
199 | ( gg - cc ) * e(k+1,j+1,i) + & |
---|
200 | ( gg - dd ) * e(k+1,j+1,i+1) & |
---|
201 | ) / ( 3.0 * gg ) |
---|
202 | e_int = e_int_l + ( particles(n)%z - zu(k) ) / dz * & |
---|
203 | ( e_int_u - e_int_l ) |
---|
204 | ENDIF |
---|
205 | |
---|
206 | ! |
---|
207 | !-- Interpolate the TKE gradient along x (adopt incides i,j,k and |
---|
208 | !-- all position variables from above (TKE)) |
---|
209 | de_dx_int_l = ( ( gg - aa ) * de_dx(k,j,i) + & |
---|
210 | ( gg - bb ) * de_dx(k,j,i+1) + & |
---|
211 | ( gg - cc ) * de_dx(k,j+1,i) + & |
---|
212 | ( gg - dd ) * de_dx(k,j+1,i+1) & |
---|
213 | ) / ( 3.0 * gg ) |
---|
214 | |
---|
215 | IF ( ( k+1 == nzt+1 ) .OR. ( k == nzb ) ) THEN |
---|
216 | de_dx_int = de_dx_int_l |
---|
217 | ELSE |
---|
218 | de_dx_int_u = ( ( gg - aa ) * de_dx(k+1,j,i) + & |
---|
219 | ( gg - bb ) * de_dx(k+1,j,i+1) + & |
---|
220 | ( gg - cc ) * de_dx(k+1,j+1,i) + & |
---|
221 | ( gg - dd ) * de_dx(k+1,j+1,i+1) & |
---|
222 | ) / ( 3.0 * gg ) |
---|
223 | de_dx_int = de_dx_int_l + ( particles(n)%z - zu(k) ) / dz * & |
---|
224 | ( de_dx_int_u - de_dx_int_l ) |
---|
225 | ENDIF |
---|
226 | |
---|
227 | ! |
---|
228 | !-- Interpolate the TKE gradient along y |
---|
229 | de_dy_int_l = ( ( gg - aa ) * de_dy(k,j,i) + & |
---|
230 | ( gg - bb ) * de_dy(k,j,i+1) + & |
---|
231 | ( gg - cc ) * de_dy(k,j+1,i) + & |
---|
232 | ( gg - dd ) * de_dy(k,j+1,i+1) & |
---|
233 | ) / ( 3.0 * gg ) |
---|
234 | IF ( ( k+1 == nzt+1 ) .OR. ( k == nzb ) ) THEN |
---|
235 | de_dy_int = de_dy_int_l |
---|
236 | ELSE |
---|
237 | de_dy_int_u = ( ( gg - aa ) * de_dy(k+1,j,i) + & |
---|
238 | ( gg - bb ) * de_dy(k+1,j,i+1) + & |
---|
239 | ( gg - cc ) * de_dy(k+1,j+1,i) + & |
---|
240 | ( gg - dd ) * de_dy(k+1,j+1,i+1) & |
---|
241 | ) / ( 3.0 * gg ) |
---|
242 | de_dy_int = de_dy_int_l + ( particles(n)%z - zu(k) ) / dz * & |
---|
243 | ( de_dy_int_u - de_dy_int_l ) |
---|
244 | ENDIF |
---|
245 | |
---|
246 | ! |
---|
247 | !-- Interpolate the TKE gradient along z |
---|
248 | IF ( particles(n)%z < 0.5 * dz ) THEN |
---|
249 | de_dz_int = 0.0 |
---|
250 | ELSE |
---|
251 | de_dz_int_l = ( ( gg - aa ) * de_dz(k,j,i) + & |
---|
252 | ( gg - bb ) * de_dz(k,j,i+1) + & |
---|
253 | ( gg - cc ) * de_dz(k,j+1,i) + & |
---|
254 | ( gg - dd ) * de_dz(k,j+1,i+1) & |
---|
255 | ) / ( 3.0 * gg ) |
---|
256 | |
---|
257 | IF ( ( k+1 == nzt+1 ) .OR. ( k == nzb ) ) THEN |
---|
258 | de_dz_int = de_dz_int_l |
---|
259 | ELSE |
---|
260 | de_dz_int_u = ( ( gg - aa ) * de_dz(k+1,j,i) + & |
---|
261 | ( gg - bb ) * de_dz(k+1,j,i+1) + & |
---|
262 | ( gg - cc ) * de_dz(k+1,j+1,i) + & |
---|
263 | ( gg - dd ) * de_dz(k+1,j+1,i+1) & |
---|
264 | ) / ( 3.0 * gg ) |
---|
265 | de_dz_int = de_dz_int_l + ( particles(n)%z - zu(k) ) / dz * & |
---|
266 | ( de_dz_int_u - de_dz_int_l ) |
---|
267 | ENDIF |
---|
268 | ENDIF |
---|
269 | |
---|
270 | ! |
---|
271 | !-- Interpolate the dissipation of TKE |
---|
272 | diss_int_l = ( ( gg - aa ) * diss(k,j,i) + & |
---|
273 | ( gg - bb ) * diss(k,j,i+1) + & |
---|
274 | ( gg - cc ) * diss(k,j+1,i) + & |
---|
275 | ( gg - dd ) * diss(k,j+1,i+1) & |
---|
276 | ) / ( 3.0 * gg ) |
---|
277 | |
---|
278 | IF ( k+1 == nzt+1 ) THEN |
---|
279 | diss_int = diss_int_l |
---|
280 | ELSE |
---|
281 | diss_int_u = ( ( gg - aa ) * diss(k+1,j,i) + & |
---|
282 | ( gg - bb ) * diss(k+1,j,i+1) + & |
---|
283 | ( gg - cc ) * diss(k+1,j+1,i) + & |
---|
284 | ( gg - dd ) * diss(k+1,j+1,i+1) & |
---|
285 | ) / ( 3.0 * gg ) |
---|
286 | diss_int = diss_int_l + ( particles(n)%z - zu(k) ) / dz * & |
---|
287 | ( diss_int_u - diss_int_l ) |
---|
288 | ENDIF |
---|
289 | |
---|
290 | ELSE |
---|
291 | |
---|
292 | ! |
---|
293 | !-- In case that there are buildings it has to be determined |
---|
294 | !-- how many of the gridpoints defining the particle box are |
---|
295 | !-- situated within a building |
---|
296 | !-- gp_outside_of_building(1): i,j,k |
---|
297 | !-- gp_outside_of_building(2): i,j+1,k |
---|
298 | !-- gp_outside_of_building(3): i,j,k+1 |
---|
299 | !-- gp_outside_of_building(4): i,j+1,k+1 |
---|
300 | !-- gp_outside_of_building(5): i+1,j,k |
---|
301 | !-- gp_outside_of_building(6): i+1,j+1,k |
---|
302 | !-- gp_outside_of_building(7): i+1,j,k+1 |
---|
303 | !-- gp_outside_of_building(8): i+1,j+1,k+1 |
---|
304 | |
---|
305 | gp_outside_of_building = 0 |
---|
306 | location = 0.0 |
---|
307 | num_gp = 0 |
---|
308 | |
---|
309 | IF ( k > nzb_s_inner(j,i) .OR. nzb_s_inner(j,i) == 0 ) THEN |
---|
310 | num_gp = num_gp + 1 |
---|
311 | gp_outside_of_building(1) = 1 |
---|
312 | location(num_gp,1) = i * dx |
---|
313 | location(num_gp,2) = j * dy |
---|
314 | location(num_gp,3) = k * dz - 0.5 * dz |
---|
315 | ei(num_gp) = e(k,j,i) |
---|
316 | dissi(num_gp) = diss(k,j,i) |
---|
317 | de_dxi(num_gp) = de_dx(k,j,i) |
---|
318 | de_dyi(num_gp) = de_dy(k,j,i) |
---|
319 | de_dzi(num_gp) = de_dz(k,j,i) |
---|
320 | ENDIF |
---|
321 | |
---|
322 | IF ( k > nzb_s_inner(j+1,i) .OR. nzb_s_inner(j+1,i) == 0 ) & |
---|
323 | THEN |
---|
324 | num_gp = num_gp + 1 |
---|
325 | gp_outside_of_building(2) = 1 |
---|
326 | location(num_gp,1) = i * dx |
---|
327 | location(num_gp,2) = (j+1) * dy |
---|
328 | location(num_gp,3) = k * dz - 0.5 * dz |
---|
329 | ei(num_gp) = e(k,j+1,i) |
---|
330 | dissi(num_gp) = diss(k,j+1,i) |
---|
331 | de_dxi(num_gp) = de_dx(k,j+1,i) |
---|
332 | de_dyi(num_gp) = de_dy(k,j+1,i) |
---|
333 | de_dzi(num_gp) = de_dz(k,j+1,i) |
---|
334 | ENDIF |
---|
335 | |
---|
336 | IF ( k+1 > nzb_s_inner(j,i) .OR. nzb_s_inner(j,i) == 0 ) THEN |
---|
337 | num_gp = num_gp + 1 |
---|
338 | gp_outside_of_building(3) = 1 |
---|
339 | location(num_gp,1) = i * dx |
---|
340 | location(num_gp,2) = j * dy |
---|
341 | location(num_gp,3) = (k+1) * dz - 0.5 * dz |
---|
342 | ei(num_gp) = e(k+1,j,i) |
---|
343 | dissi(num_gp) = diss(k+1,j,i) |
---|
344 | de_dxi(num_gp) = de_dx(k+1,j,i) |
---|
345 | de_dyi(num_gp) = de_dy(k+1,j,i) |
---|
346 | de_dzi(num_gp) = de_dz(k+1,j,i) |
---|
347 | ENDIF |
---|
348 | |
---|
349 | IF ( k+1 > nzb_s_inner(j+1,i) .OR. nzb_s_inner(j+1,i) == 0 ) & |
---|
350 | THEN |
---|
351 | num_gp = num_gp + 1 |
---|
352 | gp_outside_of_building(4) = 1 |
---|
353 | location(num_gp,1) = i * dx |
---|
354 | location(num_gp,2) = (j+1) * dy |
---|
355 | location(num_gp,3) = (k+1) * dz - 0.5 * dz |
---|
356 | ei(num_gp) = e(k+1,j+1,i) |
---|
357 | dissi(num_gp) = diss(k+1,j+1,i) |
---|
358 | de_dxi(num_gp) = de_dx(k+1,j+1,i) |
---|
359 | de_dyi(num_gp) = de_dy(k+1,j+1,i) |
---|
360 | de_dzi(num_gp) = de_dz(k+1,j+1,i) |
---|
361 | ENDIF |
---|
362 | |
---|
363 | IF ( k > nzb_s_inner(j,i+1) .OR. nzb_s_inner(j,i+1) == 0 ) & |
---|
364 | THEN |
---|
365 | num_gp = num_gp + 1 |
---|
366 | gp_outside_of_building(5) = 1 |
---|
367 | location(num_gp,1) = (i+1) * dx |
---|
368 | location(num_gp,2) = j * dy |
---|
369 | location(num_gp,3) = k * dz - 0.5 * dz |
---|
370 | ei(num_gp) = e(k,j,i+1) |
---|
371 | dissi(num_gp) = diss(k,j,i+1) |
---|
372 | de_dxi(num_gp) = de_dx(k,j,i+1) |
---|
373 | de_dyi(num_gp) = de_dy(k,j,i+1) |
---|
374 | de_dzi(num_gp) = de_dz(k,j,i+1) |
---|
375 | ENDIF |
---|
376 | |
---|
377 | IF ( k > nzb_s_inner(j+1,i+1) .OR. nzb_s_inner(j+1,i+1) == 0 ) & |
---|
378 | THEN |
---|
379 | num_gp = num_gp + 1 |
---|
380 | gp_outside_of_building(6) = 1 |
---|
381 | location(num_gp,1) = (i+1) * dx |
---|
382 | location(num_gp,2) = (j+1) * dy |
---|
383 | location(num_gp,3) = k * dz - 0.5 * dz |
---|
384 | ei(num_gp) = e(k,j+1,i+1) |
---|
385 | dissi(num_gp) = diss(k,j+1,i+1) |
---|
386 | de_dxi(num_gp) = de_dx(k,j+1,i+1) |
---|
387 | de_dyi(num_gp) = de_dy(k,j+1,i+1) |
---|
388 | de_dzi(num_gp) = de_dz(k,j+1,i+1) |
---|
389 | ENDIF |
---|
390 | |
---|
391 | IF ( k+1 > nzb_s_inner(j,i+1) .OR. nzb_s_inner(j,i+1) == 0 ) & |
---|
392 | THEN |
---|
393 | num_gp = num_gp + 1 |
---|
394 | gp_outside_of_building(7) = 1 |
---|
395 | location(num_gp,1) = (i+1) * dx |
---|
396 | location(num_gp,2) = j * dy |
---|
397 | location(num_gp,3) = (k+1) * dz - 0.5 * dz |
---|
398 | ei(num_gp) = e(k+1,j,i+1) |
---|
399 | dissi(num_gp) = diss(k+1,j,i+1) |
---|
400 | de_dxi(num_gp) = de_dx(k+1,j,i+1) |
---|
401 | de_dyi(num_gp) = de_dy(k+1,j,i+1) |
---|
402 | de_dzi(num_gp) = de_dz(k+1,j,i+1) |
---|
403 | ENDIF |
---|
404 | |
---|
405 | IF ( k+1 > nzb_s_inner(j+1,i+1) .OR. nzb_s_inner(j+1,i+1) == 0)& |
---|
406 | THEN |
---|
407 | num_gp = num_gp + 1 |
---|
408 | gp_outside_of_building(8) = 1 |
---|
409 | location(num_gp,1) = (i+1) * dx |
---|
410 | location(num_gp,2) = (j+1) * dy |
---|
411 | location(num_gp,3) = (k+1) * dz - 0.5 * dz |
---|
412 | ei(num_gp) = e(k+1,j+1,i+1) |
---|
413 | dissi(num_gp) = diss(k+1,j+1,i+1) |
---|
414 | de_dxi(num_gp) = de_dx(k+1,j+1,i+1) |
---|
415 | de_dyi(num_gp) = de_dy(k+1,j+1,i+1) |
---|
416 | de_dzi(num_gp) = de_dz(k+1,j+1,i+1) |
---|
417 | ENDIF |
---|
418 | |
---|
419 | ! |
---|
420 | !-- If all gridpoints are situated outside of a building, then the |
---|
421 | !-- ordinary interpolation scheme can be used. |
---|
422 | IF ( num_gp == 8 ) THEN |
---|
423 | |
---|
424 | x = particles(n)%x - i * dx |
---|
425 | y = particles(n)%y - j * dy |
---|
426 | aa = x**2 + y**2 |
---|
427 | bb = ( dx - x )**2 + y**2 |
---|
428 | cc = x**2 + ( dy - y )**2 |
---|
429 | dd = ( dx - x )**2 + ( dy - y )**2 |
---|
430 | gg = aa + bb + cc + dd |
---|
431 | |
---|
432 | e_int_l = (( gg-aa ) * e(k,j,i) + ( gg-bb ) * e(k,j,i+1) & |
---|
433 | + ( gg-cc ) * e(k,j+1,i) + ( gg-dd ) * e(k,j+1,i+1)& |
---|
434 | ) / ( 3.0 * gg ) |
---|
435 | |
---|
436 | IF ( k+1 == nzt+1 ) THEN |
---|
437 | e_int = e_int_l |
---|
438 | ELSE |
---|
439 | e_int_u = ( ( gg - aa ) * e(k+1,j,i) + & |
---|
440 | ( gg - bb ) * e(k+1,j,i+1) + & |
---|
441 | ( gg - cc ) * e(k+1,j+1,i) + & |
---|
442 | ( gg - dd ) * e(k+1,j+1,i+1) & |
---|
443 | ) / ( 3.0 * gg ) |
---|
444 | e_int = e_int_l + ( particles(n)%z - zu(k) ) / dz * & |
---|
445 | ( e_int_u - e_int_l ) |
---|
446 | ENDIF |
---|
447 | |
---|
448 | ! |
---|
449 | !-- Interpolate the TKE gradient along x (adopt incides i,j,k |
---|
450 | !-- and all position variables from above (TKE)) |
---|
451 | de_dx_int_l = ( ( gg - aa ) * de_dx(k,j,i) + & |
---|
452 | ( gg - bb ) * de_dx(k,j,i+1) + & |
---|
453 | ( gg - cc ) * de_dx(k,j+1,i) + & |
---|
454 | ( gg - dd ) * de_dx(k,j+1,i+1) & |
---|
455 | ) / ( 3.0 * gg ) |
---|
456 | |
---|
457 | IF ( ( k+1 == nzt+1 ) .OR. ( k == nzb ) ) THEN |
---|
458 | de_dx_int = de_dx_int_l |
---|
459 | ELSE |
---|
460 | de_dx_int_u = ( ( gg - aa ) * de_dx(k+1,j,i) + & |
---|
461 | ( gg - bb ) * de_dx(k+1,j,i+1) + & |
---|
462 | ( gg - cc ) * de_dx(k+1,j+1,i) + & |
---|
463 | ( gg - dd ) * de_dx(k+1,j+1,i+1) & |
---|
464 | ) / ( 3.0 * gg ) |
---|
465 | de_dx_int = de_dx_int_l + ( particles(n)%z - zu(k) ) / & |
---|
466 | dz * ( de_dx_int_u - de_dx_int_l ) |
---|
467 | ENDIF |
---|
468 | |
---|
469 | ! |
---|
470 | !-- Interpolate the TKE gradient along y |
---|
471 | de_dy_int_l = ( ( gg - aa ) * de_dy(k,j,i) + & |
---|
472 | ( gg - bb ) * de_dy(k,j,i+1) + & |
---|
473 | ( gg - cc ) * de_dy(k,j+1,i) + & |
---|
474 | ( gg - dd ) * de_dy(k,j+1,i+1) & |
---|
475 | ) / ( 3.0 * gg ) |
---|
476 | IF ( ( k+1 == nzt+1 ) .OR. ( k == nzb ) ) THEN |
---|
477 | de_dy_int = de_dy_int_l |
---|
478 | ELSE |
---|
479 | de_dy_int_u = ( ( gg - aa ) * de_dy(k+1,j,i) + & |
---|
480 | ( gg - bb ) * de_dy(k+1,j,i+1) + & |
---|
481 | ( gg - cc ) * de_dy(k+1,j+1,i) + & |
---|
482 | ( gg - dd ) * de_dy(k+1,j+1,i+1) & |
---|
483 | ) / ( 3.0 * gg ) |
---|
484 | de_dy_int = de_dy_int_l + ( particles(n)%z - zu(k) ) / & |
---|
485 | dz * ( de_dy_int_u - de_dy_int_l ) |
---|
486 | ENDIF |
---|
487 | |
---|
488 | ! |
---|
489 | !-- Interpolate the TKE gradient along z |
---|
490 | IF ( particles(n)%z < 0.5 * dz ) THEN |
---|
491 | de_dz_int = 0.0 |
---|
492 | ELSE |
---|
493 | de_dz_int_l = ( ( gg - aa ) * de_dz(k,j,i) + & |
---|
494 | ( gg - bb ) * de_dz(k,j,i+1) + & |
---|
495 | ( gg - cc ) * de_dz(k,j+1,i) + & |
---|
496 | ( gg - dd ) * de_dz(k,j+1,i+1) & |
---|
497 | ) / ( 3.0 * gg ) |
---|
498 | |
---|
499 | IF ( ( k+1 == nzt+1 ) .OR. ( k == nzb ) ) THEN |
---|
500 | de_dz_int = de_dz_int_l |
---|
501 | ELSE |
---|
502 | de_dz_int_u = ( ( gg - aa ) * de_dz(k+1,j,i) + & |
---|
503 | ( gg - bb ) * de_dz(k+1,j,i+1) + & |
---|
504 | ( gg - cc ) * de_dz(k+1,j+1,i) + & |
---|
505 | ( gg - dd ) * de_dz(k+1,j+1,i+1) & |
---|
506 | ) / ( 3.0 * gg ) |
---|
507 | de_dz_int = de_dz_int_l + ( particles(n)%z - zu(k) ) /& |
---|
508 | dz * ( de_dz_int_u - de_dz_int_l ) |
---|
509 | ENDIF |
---|
510 | ENDIF |
---|
511 | |
---|
512 | ! |
---|
513 | !-- Interpolate the dissipation of TKE |
---|
514 | diss_int_l = ( ( gg - aa ) * diss(k,j,i) + & |
---|
515 | ( gg - bb ) * diss(k,j,i+1) + & |
---|
516 | ( gg - cc ) * diss(k,j+1,i) + & |
---|
517 | ( gg - dd ) * diss(k,j+1,i+1) & |
---|
518 | ) / ( 3.0 * gg ) |
---|
519 | |
---|
520 | IF ( k+1 == nzt+1 ) THEN |
---|
521 | diss_int = diss_int_l |
---|
522 | ELSE |
---|
523 | diss_int_u = ( ( gg - aa ) * diss(k+1,j,i) + & |
---|
524 | ( gg - bb ) * diss(k+1,j,i+1) + & |
---|
525 | ( gg - cc ) * diss(k+1,j+1,i) + & |
---|
526 | ( gg - dd ) * diss(k+1,j+1,i+1) & |
---|
527 | ) / ( 3.0 * gg ) |
---|
528 | diss_int = diss_int_l + ( particles(n)%z - zu(k) ) / dz *& |
---|
529 | ( diss_int_u - diss_int_l ) |
---|
530 | ENDIF |
---|
531 | |
---|
532 | ELSE |
---|
533 | |
---|
534 | ! |
---|
535 | !-- If wall between gridpoint 1 and gridpoint 5, then |
---|
536 | !-- Neumann boundary condition has to be applied |
---|
537 | IF ( gp_outside_of_building(1) == 1 .AND. & |
---|
538 | gp_outside_of_building(5) == 0 ) THEN |
---|
539 | num_gp = num_gp + 1 |
---|
540 | location(num_gp,1) = i * dx + 0.5 * dx |
---|
541 | location(num_gp,2) = j * dy |
---|
542 | location(num_gp,3) = k * dz - 0.5 * dz |
---|
543 | ei(num_gp) = e(k,j,i) |
---|
544 | dissi(num_gp) = diss(k,j,i) |
---|
545 | de_dxi(num_gp) = 0.0 |
---|
546 | de_dyi(num_gp) = de_dy(k,j,i) |
---|
547 | de_dzi(num_gp) = de_dz(k,j,i) |
---|
548 | ENDIF |
---|
549 | |
---|
550 | IF ( gp_outside_of_building(5) == 1 .AND. & |
---|
551 | gp_outside_of_building(1) == 0 ) THEN |
---|
552 | num_gp = num_gp + 1 |
---|
553 | location(num_gp,1) = i * dx + 0.5 * dx |
---|
554 | location(num_gp,2) = j * dy |
---|
555 | location(num_gp,3) = k * dz - 0.5 * dz |
---|
556 | ei(num_gp) = e(k,j,i+1) |
---|
557 | dissi(num_gp) = diss(k,j,i+1) |
---|
558 | de_dxi(num_gp) = 0.0 |
---|
559 | de_dyi(num_gp) = de_dy(k,j,i+1) |
---|
560 | de_dzi(num_gp) = de_dz(k,j,i+1) |
---|
561 | ENDIF |
---|
562 | |
---|
563 | ! |
---|
564 | !-- If wall between gridpoint 5 and gridpoint 6, then |
---|
565 | !-- then Neumann boundary condition has to be applied |
---|
566 | IF ( gp_outside_of_building(5) == 1 .AND. & |
---|
567 | gp_outside_of_building(6) == 0 ) THEN |
---|
568 | num_gp = num_gp + 1 |
---|
569 | location(num_gp,1) = (i+1) * dx |
---|
570 | location(num_gp,2) = j * dy + 0.5 * dy |
---|
571 | location(num_gp,3) = k * dz - 0.5 * dz |
---|
572 | ei(num_gp) = e(k,j,i+1) |
---|
573 | dissi(num_gp) = diss(k,j,i+1) |
---|
574 | de_dxi(num_gp) = de_dx(k,j,i+1) |
---|
575 | de_dyi(num_gp) = 0.0 |
---|
576 | de_dzi(num_gp) = de_dz(k,j,i+1) |
---|
577 | ENDIF |
---|
578 | |
---|
579 | IF ( gp_outside_of_building(6) == 1 .AND. & |
---|
580 | gp_outside_of_building(5) == 0 ) THEN |
---|
581 | num_gp = num_gp + 1 |
---|
582 | location(num_gp,1) = (i+1) * dx |
---|
583 | location(num_gp,2) = j * dy + 0.5 * dy |
---|
584 | location(num_gp,3) = k * dz - 0.5 * dz |
---|
585 | ei(num_gp) = e(k,j+1,i+1) |
---|
586 | dissi(num_gp) = diss(k,j+1,i+1) |
---|
587 | de_dxi(num_gp) = de_dx(k,j+1,i+1) |
---|
588 | de_dyi(num_gp) = 0.0 |
---|
589 | de_dzi(num_gp) = de_dz(k,j+1,i+1) |
---|
590 | ENDIF |
---|
591 | |
---|
592 | ! |
---|
593 | !-- If wall between gridpoint 2 and gridpoint 6, then |
---|
594 | !-- Neumann boundary condition has to be applied |
---|
595 | IF ( gp_outside_of_building(2) == 1 .AND. & |
---|
596 | gp_outside_of_building(6) == 0 ) THEN |
---|
597 | num_gp = num_gp + 1 |
---|
598 | location(num_gp,1) = i * dx + 0.5 * dx |
---|
599 | location(num_gp,2) = (j+1) * dy |
---|
600 | location(num_gp,3) = k * dz - 0.5 * dz |
---|
601 | ei(num_gp) = e(k,j+1,i) |
---|
602 | dissi(num_gp) = diss(k,j+1,i) |
---|
603 | de_dxi(num_gp) = 0.0 |
---|
604 | de_dyi(num_gp) = de_dy(k,j+1,i) |
---|
605 | de_dzi(num_gp) = de_dz(k,j+1,i) |
---|
606 | ENDIF |
---|
607 | |
---|
608 | IF ( gp_outside_of_building(6) == 1 .AND. & |
---|
609 | gp_outside_of_building(2) == 0 ) THEN |
---|
610 | num_gp = num_gp + 1 |
---|
611 | location(num_gp,1) = i * dx + 0.5 * dx |
---|
612 | location(num_gp,2) = (j+1) * dy |
---|
613 | location(num_gp,3) = k * dz - 0.5 * dz |
---|
614 | ei(num_gp) = e(k,j+1,i+1) |
---|
615 | dissi(num_gp) = diss(k,j+1,i+1) |
---|
616 | de_dxi(num_gp) = 0.0 |
---|
617 | de_dyi(num_gp) = de_dy(k,j+1,i+1) |
---|
618 | de_dzi(num_gp) = de_dz(k,j+1,i+1) |
---|
619 | ENDIF |
---|
620 | |
---|
621 | ! |
---|
622 | !-- If wall between gridpoint 1 and gridpoint 2, then |
---|
623 | !-- Neumann boundary condition has to be applied |
---|
624 | IF ( gp_outside_of_building(1) == 1 .AND. & |
---|
625 | gp_outside_of_building(2) == 0 ) THEN |
---|
626 | num_gp = num_gp + 1 |
---|
627 | location(num_gp,1) = i * dx |
---|
628 | location(num_gp,2) = j * dy + 0.5 * dy |
---|
629 | location(num_gp,3) = k * dz - 0.5 * dz |
---|
630 | ei(num_gp) = e(k,j,i) |
---|
631 | dissi(num_gp) = diss(k,j,i) |
---|
632 | de_dxi(num_gp) = de_dx(k,j,i) |
---|
633 | de_dyi(num_gp) = 0.0 |
---|
634 | de_dzi(num_gp) = de_dz(k,j,i) |
---|
635 | ENDIF |
---|
636 | |
---|
637 | IF ( gp_outside_of_building(2) == 1 .AND. & |
---|
638 | gp_outside_of_building(1) == 0 ) THEN |
---|
639 | num_gp = num_gp + 1 |
---|
640 | location(num_gp,1) = i * dx |
---|
641 | location(num_gp,2) = j * dy + 0.5 * dy |
---|
642 | location(num_gp,3) = k * dz - 0.5 * dz |
---|
643 | ei(num_gp) = e(k,j+1,i) |
---|
644 | dissi(num_gp) = diss(k,j+1,i) |
---|
645 | de_dxi(num_gp) = de_dx(k,j+1,i) |
---|
646 | de_dyi(num_gp) = 0.0 |
---|
647 | de_dzi(num_gp) = de_dz(k,j+1,i) |
---|
648 | ENDIF |
---|
649 | |
---|
650 | ! |
---|
651 | !-- If wall between gridpoint 3 and gridpoint 7, then |
---|
652 | !-- Neumann boundary condition has to be applied |
---|
653 | IF ( gp_outside_of_building(3) == 1 .AND. & |
---|
654 | gp_outside_of_building(7) == 0 ) THEN |
---|
655 | num_gp = num_gp + 1 |
---|
656 | location(num_gp,1) = i * dx + 0.5 * dx |
---|
657 | location(num_gp,2) = j * dy |
---|
658 | location(num_gp,3) = k * dz + 0.5 * dz |
---|
659 | ei(num_gp) = e(k+1,j,i) |
---|
660 | dissi(num_gp) = diss(k+1,j,i) |
---|
661 | de_dxi(num_gp) = 0.0 |
---|
662 | de_dyi(num_gp) = de_dy(k+1,j,i) |
---|
663 | de_dzi(num_gp) = de_dz(k+1,j,i) |
---|
664 | ENDIF |
---|
665 | |
---|
666 | IF ( gp_outside_of_building(7) == 1 .AND. & |
---|
667 | gp_outside_of_building(3) == 0 ) THEN |
---|
668 | num_gp = num_gp + 1 |
---|
669 | location(num_gp,1) = i * dx + 0.5 * dx |
---|
670 | location(num_gp,2) = j * dy |
---|
671 | location(num_gp,3) = k * dz + 0.5 * dz |
---|
672 | ei(num_gp) = e(k+1,j,i+1) |
---|
673 | dissi(num_gp) = diss(k+1,j,i+1) |
---|
674 | de_dxi(num_gp) = 0.0 |
---|
675 | de_dyi(num_gp) = de_dy(k+1,j,i+1) |
---|
676 | de_dzi(num_gp) = de_dz(k+1,j,i+1) |
---|
677 | ENDIF |
---|
678 | |
---|
679 | ! |
---|
680 | !-- If wall between gridpoint 7 and gridpoint 8, then |
---|
681 | !-- Neumann boundary condition has to be applied |
---|
682 | IF ( gp_outside_of_building(7) == 1 .AND. & |
---|
683 | gp_outside_of_building(8) == 0 ) THEN |
---|
684 | num_gp = num_gp + 1 |
---|
685 | location(num_gp,1) = (i+1) * dx |
---|
686 | location(num_gp,2) = j * dy + 0.5 * dy |
---|
687 | location(num_gp,3) = k * dz + 0.5 * dz |
---|
688 | ei(num_gp) = e(k+1,j,i+1) |
---|
689 | dissi(num_gp) = diss(k+1,j,i+1) |
---|
690 | de_dxi(num_gp) = de_dx(k+1,j,i+1) |
---|
691 | de_dyi(num_gp) = 0.0 |
---|
692 | de_dzi(num_gp) = de_dz(k+1,j,i+1) |
---|
693 | ENDIF |
---|
694 | |
---|
695 | IF ( gp_outside_of_building(8) == 1 .AND. & |
---|
696 | gp_outside_of_building(7) == 0 ) THEN |
---|
697 | num_gp = num_gp + 1 |
---|
698 | location(num_gp,1) = (i+1) * dx |
---|
699 | location(num_gp,2) = j * dy + 0.5 * dy |
---|
700 | location(num_gp,3) = k * dz + 0.5 * dz |
---|
701 | ei(num_gp) = e(k+1,j+1,i+1) |
---|
702 | dissi(num_gp) = diss(k+1,j+1,i+1) |
---|
703 | de_dxi(num_gp) = de_dx(k+1,j+1,i+1) |
---|
704 | de_dyi(num_gp) = 0.0 |
---|
705 | de_dzi(num_gp) = de_dz(k+1,j+1,i+1) |
---|
706 | ENDIF |
---|
707 | |
---|
708 | ! |
---|
709 | !-- If wall between gridpoint 4 and gridpoint 8, then |
---|
710 | !-- Neumann boundary condition has to be applied |
---|
711 | IF ( gp_outside_of_building(4) == 1 .AND. & |
---|
712 | gp_outside_of_building(8) == 0 ) THEN |
---|
713 | num_gp = num_gp + 1 |
---|
714 | location(num_gp,1) = i * dx + 0.5 * dx |
---|
715 | location(num_gp,2) = (j+1) * dy |
---|
716 | location(num_gp,3) = k * dz + 0.5 * dz |
---|
717 | ei(num_gp) = e(k+1,j+1,i) |
---|
718 | dissi(num_gp) = diss(k+1,j+1,i) |
---|
719 | de_dxi(num_gp) = 0.0 |
---|
720 | de_dyi(num_gp) = de_dy(k+1,j+1,i) |
---|
721 | de_dzi(num_gp) = de_dz(k+1,j+1,i) |
---|
722 | ENDIF |
---|
723 | |
---|
724 | IF ( gp_outside_of_building(8) == 1 .AND. & |
---|
725 | gp_outside_of_building(4) == 0 ) THEN |
---|
726 | num_gp = num_gp + 1 |
---|
727 | location(num_gp,1) = i * dx + 0.5 * dx |
---|
728 | location(num_gp,2) = (j+1) * dy |
---|
729 | location(num_gp,3) = k * dz + 0.5 * dz |
---|
730 | ei(num_gp) = e(k+1,j+1,i+1) |
---|
731 | dissi(num_gp) = diss(k+1,j+1,i+1) |
---|
732 | de_dxi(num_gp) = 0.0 |
---|
733 | de_dyi(num_gp) = de_dy(k+1,j+1,i+1) |
---|
734 | de_dzi(num_gp) = de_dz(k+1,j+1,i+1) |
---|
735 | ENDIF |
---|
736 | |
---|
737 | ! |
---|
738 | !-- If wall between gridpoint 3 and gridpoint 4, then |
---|
739 | !-- Neumann boundary condition has to be applied |
---|
740 | IF ( gp_outside_of_building(3) == 1 .AND. & |
---|
741 | gp_outside_of_building(4) == 0 ) THEN |
---|
742 | num_gp = num_gp + 1 |
---|
743 | location(num_gp,1) = i * dx |
---|
744 | location(num_gp,2) = j * dy + 0.5 * dy |
---|
745 | location(num_gp,3) = k * dz + 0.5 * dz |
---|
746 | ei(num_gp) = e(k+1,j,i) |
---|
747 | dissi(num_gp) = diss(k+1,j,i) |
---|
748 | de_dxi(num_gp) = de_dx(k+1,j,i) |
---|
749 | de_dyi(num_gp) = 0.0 |
---|
750 | de_dzi(num_gp) = de_dz(k+1,j,i) |
---|
751 | ENDIF |
---|
752 | |
---|
753 | IF ( gp_outside_of_building(4) == 1 .AND. & |
---|
754 | gp_outside_of_building(3) == 0 ) THEN |
---|
755 | num_gp = num_gp + 1 |
---|
756 | location(num_gp,1) = i * dx |
---|
757 | location(num_gp,2) = j * dy + 0.5 * dy |
---|
758 | location(num_gp,3) = k * dz + 0.5 * dz |
---|
759 | ei(num_gp) = e(k+1,j+1,i) |
---|
760 | dissi(num_gp) = diss(k+1,j+1,i) |
---|
761 | de_dxi(num_gp) = de_dx(k+1,j+1,i) |
---|
762 | de_dyi(num_gp) = 0.0 |
---|
763 | de_dzi(num_gp) = de_dz(k+1,j+1,i) |
---|
764 | ENDIF |
---|
765 | |
---|
766 | ! |
---|
767 | !-- If wall between gridpoint 1 and gridpoint 3, then |
---|
768 | !-- Neumann boundary condition has to be applied |
---|
769 | !-- (only one case as only building beneath is possible) |
---|
770 | IF ( gp_outside_of_building(1) == 0 .AND. & |
---|
771 | gp_outside_of_building(3) == 1 ) THEN |
---|
772 | num_gp = num_gp + 1 |
---|
773 | location(num_gp,1) = i * dx |
---|
774 | location(num_gp,2) = j * dy |
---|
775 | location(num_gp,3) = k * dz |
---|
776 | ei(num_gp) = e(k+1,j,i) |
---|
777 | dissi(num_gp) = diss(k+1,j,i) |
---|
778 | de_dxi(num_gp) = de_dx(k+1,j,i) |
---|
779 | de_dyi(num_gp) = de_dy(k+1,j,i) |
---|
780 | de_dzi(num_gp) = 0.0 |
---|
781 | ENDIF |
---|
782 | |
---|
783 | ! |
---|
784 | !-- If wall between gridpoint 5 and gridpoint 7, then |
---|
785 | !-- Neumann boundary condition has to be applied |
---|
786 | !-- (only one case as only building beneath is possible) |
---|
787 | IF ( gp_outside_of_building(5) == 0 .AND. & |
---|
788 | gp_outside_of_building(7) == 1 ) THEN |
---|
789 | num_gp = num_gp + 1 |
---|
790 | location(num_gp,1) = (i+1) * dx |
---|
791 | location(num_gp,2) = j * dy |
---|
792 | location(num_gp,3) = k * dz |
---|
793 | ei(num_gp) = e(k+1,j,i+1) |
---|
794 | dissi(num_gp) = diss(k+1,j,i+1) |
---|
795 | de_dxi(num_gp) = de_dx(k+1,j,i+1) |
---|
796 | de_dyi(num_gp) = de_dy(k+1,j,i+1) |
---|
797 | de_dzi(num_gp) = 0.0 |
---|
798 | ENDIF |
---|
799 | |
---|
800 | ! |
---|
801 | !-- If wall between gridpoint 2 and gridpoint 4, then |
---|
802 | !-- Neumann boundary condition has to be applied |
---|
803 | !-- (only one case as only building beneath is possible) |
---|
804 | IF ( gp_outside_of_building(2) == 0 .AND. & |
---|
805 | gp_outside_of_building(4) == 1 ) THEN |
---|
806 | num_gp = num_gp + 1 |
---|
807 | location(num_gp,1) = i * dx |
---|
808 | location(num_gp,2) = (j+1) * dy |
---|
809 | location(num_gp,3) = k * dz |
---|
810 | ei(num_gp) = e(k+1,j+1,i) |
---|
811 | dissi(num_gp) = diss(k+1,j+1,i) |
---|
812 | de_dxi(num_gp) = de_dx(k+1,j+1,i) |
---|
813 | de_dyi(num_gp) = de_dy(k+1,j+1,i) |
---|
814 | de_dzi(num_gp) = 0.0 |
---|
815 | ENDIF |
---|
816 | |
---|
817 | ! |
---|
818 | !-- If wall between gridpoint 6 and gridpoint 8, then |
---|
819 | !-- Neumann boundary condition has to be applied |
---|
820 | !-- (only one case as only building beneath is possible) |
---|
821 | IF ( gp_outside_of_building(6) == 0 .AND. & |
---|
822 | gp_outside_of_building(8) == 1 ) THEN |
---|
823 | num_gp = num_gp + 1 |
---|
824 | location(num_gp,1) = (i+1) * dx |
---|
825 | location(num_gp,2) = (j+1) * dy |
---|
826 | location(num_gp,3) = k * dz |
---|
827 | ei(num_gp) = e(k+1,j+1,i+1) |
---|
828 | dissi(num_gp) = diss(k+1,j+1,i+1) |
---|
829 | de_dxi(num_gp) = de_dx(k+1,j+1,i+1) |
---|
830 | de_dyi(num_gp) = de_dy(k+1,j+1,i+1) |
---|
831 | de_dzi(num_gp) = 0.0 |
---|
832 | ENDIF |
---|
833 | |
---|
834 | ! |
---|
835 | !-- Carry out the interpolation |
---|
836 | IF ( num_gp == 1 ) THEN |
---|
837 | ! |
---|
838 | !-- If only one of the gridpoints is situated outside of the |
---|
839 | !-- building, it follows that the values at the particle |
---|
840 | !-- location are the same as the gridpoint values |
---|
841 | e_int = ei(num_gp) |
---|
842 | diss_int = dissi(num_gp) |
---|
843 | de_dx_int = de_dxi(num_gp) |
---|
844 | de_dy_int = de_dyi(num_gp) |
---|
845 | de_dz_int = de_dzi(num_gp) |
---|
846 | ELSE IF ( num_gp > 1 ) THEN |
---|
847 | |
---|
848 | d_sum = 0.0 |
---|
849 | ! |
---|
850 | !-- Evaluation of the distances between the gridpoints |
---|
851 | !-- contributing to the interpolated values, and the particle |
---|
852 | !-- location |
---|
853 | DO agp = 1, num_gp |
---|
854 | d_gp_pl(agp) = ( particles(n)%x-location(agp,1) )**2 & |
---|
855 | + ( particles(n)%y-location(agp,2) )**2 & |
---|
856 | + ( particles(n)%z-location(agp,3) )**2 |
---|
857 | d_sum = d_sum + d_gp_pl(agp) |
---|
858 | ENDDO |
---|
859 | |
---|
860 | ! |
---|
861 | !-- Finally the interpolation can be carried out |
---|
862 | e_int = 0.0 |
---|
863 | diss_int = 0.0 |
---|
864 | de_dx_int = 0.0 |
---|
865 | de_dy_int = 0.0 |
---|
866 | de_dz_int = 0.0 |
---|
867 | DO agp = 1, num_gp |
---|
868 | e_int = e_int + ( d_sum - d_gp_pl(agp) ) * & |
---|
869 | ei(agp) / ( (num_gp-1) * d_sum ) |
---|
870 | diss_int = diss_int + ( d_sum - d_gp_pl(agp) ) * & |
---|
871 | dissi(agp) / ( (num_gp-1) * d_sum ) |
---|
872 | de_dx_int = de_dx_int + ( d_sum - d_gp_pl(agp) ) * & |
---|
873 | de_dxi(agp) / ( (num_gp-1) * d_sum ) |
---|
874 | de_dy_int = de_dy_int + ( d_sum - d_gp_pl(agp) ) * & |
---|
875 | de_dyi(agp) / ( (num_gp-1) * d_sum ) |
---|
876 | de_dz_int = de_dz_int + ( d_sum - d_gp_pl(agp) ) * & |
---|
877 | de_dzi(agp) / ( (num_gp-1) * d_sum ) |
---|
878 | ENDDO |
---|
879 | |
---|
880 | ENDIF |
---|
881 | |
---|
882 | ENDIF |
---|
883 | |
---|
884 | ENDIF |
---|
885 | |
---|
886 | ! |
---|
887 | !-- Vertically interpolate the horizontally averaged SGS TKE and |
---|
888 | !-- resolved-scale velocity variances and use the interpolated values |
---|
889 | !-- to calculate the coefficient fs, which is a measure of the ratio |
---|
890 | !-- of the subgrid-scale turbulent kinetic energy to the total amount |
---|
891 | !-- of turbulent kinetic energy. |
---|
892 | IF ( k == 0 ) THEN |
---|
893 | e_mean_int = hom(0,1,8,0) |
---|
894 | ELSE |
---|
895 | e_mean_int = hom(k,1,8,0) + & |
---|
896 | ( hom(k+1,1,8,0) - hom(k,1,8,0) ) / & |
---|
897 | ( zu(k+1) - zu(k) ) * & |
---|
898 | ( particles(n)%z - zu(k) ) |
---|
899 | ENDIF |
---|
900 | |
---|
901 | kw = particles(n)%z / dz |
---|
902 | |
---|
903 | IF ( k == 0 ) THEN |
---|
904 | aa = hom(k+1,1,30,0) * ( particles(n)%z / & |
---|
905 | ( 0.5 * ( zu(k+1) - zu(k) ) ) ) |
---|
906 | bb = hom(k+1,1,31,0) * ( particles(n)%z / & |
---|
907 | ( 0.5 * ( zu(k+1) - zu(k) ) ) ) |
---|
908 | cc = hom(kw+1,1,32,0) * ( particles(n)%z / & |
---|
909 | ( 1.0 * ( zw(kw+1) - zw(kw) ) ) ) |
---|
910 | ELSE |
---|
911 | aa = hom(k,1,30,0) + ( hom(k+1,1,30,0) - hom(k,1,30,0) ) * & |
---|
912 | ( ( particles(n)%z - zu(k) ) / ( zu(k+1) - zu(k) ) ) |
---|
913 | bb = hom(k,1,31,0) + ( hom(k+1,1,31,0) - hom(k,1,31,0) ) * & |
---|
914 | ( ( particles(n)%z - zu(k) ) / ( zu(k+1) - zu(k) ) ) |
---|
915 | cc = hom(kw,1,32,0) + ( hom(kw+1,1,32,0)-hom(kw,1,32,0) ) *& |
---|
916 | ( ( particles(n)%z - zw(kw) ) / ( zw(kw+1)-zw(kw) ) ) |
---|
917 | ENDIF |
---|
918 | |
---|
919 | vv_int = ( 1.0 / 3.0 ) * ( aa + bb + cc ) |
---|
920 | |
---|
921 | fs_int = ( 2.0 / 3.0 ) * e_mean_int / & |
---|
922 | ( vv_int + ( 2.0 / 3.0 ) * e_mean_int ) |
---|
923 | |
---|
924 | ! |
---|
925 | !-- Calculate the Lagrangian timescale according to Weil et al. (2004). |
---|
926 | lagr_timescale = ( 4.0 * e_int ) / & |
---|
927 | ( 3.0 * fs_int * c_0 * diss_int ) |
---|
928 | |
---|
929 | ! |
---|
930 | !-- Calculate the next particle timestep. dt_gap is the time needed to |
---|
931 | !-- complete the current LES timestep. |
---|
932 | dt_gap = dt_3d - particles(n)%dt_sum |
---|
933 | dt_particle = MIN( dt_3d, 0.025 * lagr_timescale, dt_gap ) |
---|
934 | |
---|
935 | ! |
---|
936 | !-- The particle timestep should not be too small in order to prevent |
---|
937 | !-- the number of particle timesteps of getting too large |
---|
938 | IF ( dt_particle < dt_min_part .AND. dt_min_part < dt_gap ) & |
---|
939 | THEN |
---|
940 | dt_particle = dt_min_part |
---|
941 | ENDIF |
---|
942 | |
---|
943 | ! |
---|
944 | !-- Calculate the SGS velocity components |
---|
945 | IF ( particles(n)%age == 0.0 ) THEN |
---|
946 | ! |
---|
947 | !-- For new particles the SGS components are derived from the SGS |
---|
948 | !-- TKE. Limit the Gaussian random number to the interval |
---|
949 | !-- [-5.0*sigma, 5.0*sigma] in order to prevent the SGS velocities |
---|
950 | !-- from becoming unrealistically large. |
---|
951 | particles(n)%rvar1 = SQRT( 2.0 * sgs_wfu_part * e_int ) * & |
---|
952 | ( random_gauss( iran_part, 5.0 ) - 1.0 ) |
---|
953 | particles(n)%rvar2 = SQRT( 2.0 * sgs_wfv_part * e_int ) * & |
---|
954 | ( random_gauss( iran_part, 5.0 ) - 1.0 ) |
---|
955 | particles(n)%rvar3 = SQRT( 2.0 * sgs_wfw_part * e_int ) * & |
---|
956 | ( random_gauss( iran_part, 5.0 ) - 1.0 ) |
---|
957 | |
---|
958 | ELSE |
---|
959 | |
---|
960 | ! |
---|
961 | !-- Restriction of the size of the new timestep: compared to the |
---|
962 | !-- previous timestep the increase must not exceed 200% |
---|
963 | |
---|
964 | dt_particle_m = particles(n)%age - particles(n)%age_m |
---|
965 | IF ( dt_particle > 2.0 * dt_particle_m ) THEN |
---|
966 | dt_particle = 2.0 * dt_particle_m |
---|
967 | ENDIF |
---|
968 | |
---|
969 | ! |
---|
970 | !-- For old particles the SGS components are correlated with the |
---|
971 | !-- values from the previous timestep. Random numbers have also to |
---|
972 | !-- be limited (see above). |
---|
973 | !-- As negative values for the subgrid TKE are not allowed, the |
---|
974 | !-- change of the subgrid TKE with time cannot be smaller than |
---|
975 | !-- -e_int/dt_particle. This value is used as a lower boundary |
---|
976 | !-- value for the change of TKE |
---|
977 | |
---|
978 | de_dt_min = - e_int / dt_particle |
---|
979 | |
---|
980 | de_dt = ( e_int - particles(n)%e_m ) / dt_particle_m |
---|
981 | |
---|
982 | IF ( de_dt < de_dt_min ) THEN |
---|
983 | de_dt = de_dt_min |
---|
984 | ENDIF |
---|
985 | |
---|
986 | particles(n)%rvar1 = particles(n)%rvar1 - fs_int * c_0 * & |
---|
987 | diss_int * particles(n)%rvar1 * dt_particle /& |
---|
988 | ( 4.0 * sgs_wfu_part * e_int ) + & |
---|
989 | ( 2.0 * sgs_wfu_part * de_dt * & |
---|
990 | particles(n)%rvar1 / & |
---|
991 | ( 2.0 * sgs_wfu_part * e_int ) + de_dx_int & |
---|
992 | ) * dt_particle / 2.0 + & |
---|
993 | SQRT( fs_int * c_0 * diss_int ) * & |
---|
994 | ( random_gauss( iran_part, 5.0 ) - 1.0 ) * & |
---|
995 | SQRT( dt_particle ) |
---|
996 | |
---|
997 | particles(n)%rvar2 = particles(n)%rvar2 - fs_int * c_0 * & |
---|
998 | diss_int * particles(n)%rvar2 * dt_particle /& |
---|
999 | ( 4.0 * sgs_wfv_part * e_int ) + & |
---|
1000 | ( 2.0 * sgs_wfv_part * de_dt * & |
---|
1001 | particles(n)%rvar2 / & |
---|
1002 | ( 2.0 * sgs_wfv_part * e_int ) + de_dy_int & |
---|
1003 | ) * dt_particle / 2.0 + & |
---|
1004 | SQRT( fs_int * c_0 * diss_int ) * & |
---|
1005 | ( random_gauss( iran_part, 5.0 ) - 1.0 ) * & |
---|
1006 | SQRT( dt_particle ) |
---|
1007 | |
---|
1008 | particles(n)%rvar3 = particles(n)%rvar3 - fs_int * c_0 * & |
---|
1009 | diss_int * particles(n)%rvar3 * dt_particle /& |
---|
1010 | ( 4.0 * sgs_wfw_part * e_int ) + & |
---|
1011 | ( 2.0 * sgs_wfw_part * de_dt * & |
---|
1012 | particles(n)%rvar3 / & |
---|
1013 | ( 2.0 * sgs_wfw_part * e_int ) + de_dz_int & |
---|
1014 | ) * dt_particle / 2.0 + & |
---|
1015 | SQRT( fs_int * c_0 * diss_int ) * & |
---|
1016 | ( random_gauss( iran_part, 5.0 ) - 1.0 ) * & |
---|
1017 | SQRT( dt_particle ) |
---|
1018 | |
---|
1019 | ENDIF |
---|
1020 | |
---|
1021 | u_int = u_int + particles(n)%rvar1 |
---|
1022 | v_int = v_int + particles(n)%rvar2 |
---|
1023 | w_int = w_int + particles(n)%rvar3 |
---|
1024 | |
---|
1025 | ! |
---|
1026 | !-- Store the SGS TKE of the current timelevel which is needed for |
---|
1027 | !-- for calculating the SGS particle velocities at the next timestep |
---|
1028 | particles(n)%e_m = e_int |
---|
1029 | |
---|
1030 | ELSE |
---|
1031 | ! |
---|
1032 | !-- If no SGS velocities are used, only the particle timestep has to |
---|
1033 | !-- be set |
---|
1034 | dt_particle = dt_3d |
---|
1035 | |
---|
1036 | ENDIF |
---|
1037 | |
---|
1038 | ! |
---|
1039 | !-- Store the old age of the particle ( needed to prevent that a |
---|
1040 | !-- particle crosses several PEs during one timestep, and for the |
---|
1041 | !-- evaluation of the subgrid particle velocity fluctuations ) |
---|
1042 | particles(n)%age_m = particles(n)%age |
---|
1043 | |
---|
1044 | |
---|
1045 | ! |
---|
1046 | !-- Particle advection |
---|
1047 | IF ( particle_groups(particles(n)%group)%density_ratio == 0.0 ) THEN |
---|
1048 | ! |
---|
1049 | !-- Pure passive transport (without particle inertia) |
---|
1050 | particles(n)%x = particles(n)%x + u_int * dt_particle |
---|
1051 | particles(n)%y = particles(n)%y + v_int * dt_particle |
---|
1052 | particles(n)%z = particles(n)%z + w_int * dt_particle |
---|
1053 | |
---|
1054 | particles(n)%speed_x = u_int |
---|
1055 | particles(n)%speed_y = v_int |
---|
1056 | particles(n)%speed_z = w_int |
---|
1057 | |
---|
1058 | ELSE |
---|
1059 | ! |
---|
1060 | !-- Transport of particles with inertia |
---|
1061 | particles(n)%x = particles(n)%x + particles(n)%speed_x * & |
---|
1062 | dt_particle |
---|
1063 | particles(n)%y = particles(n)%y + particles(n)%speed_y * & |
---|
1064 | dt_particle |
---|
1065 | particles(n)%z = particles(n)%z + particles(n)%speed_z * & |
---|
1066 | dt_particle |
---|
1067 | |
---|
1068 | ! |
---|
1069 | !-- Update of the particle velocity |
---|
1070 | dens_ratio = particle_groups(particles(n)%group)%density_ratio |
---|
1071 | IF ( cloud_droplets ) THEN |
---|
1072 | exp_arg = 4.5 * dens_ratio * molecular_viscosity / & |
---|
1073 | ( particles(n)%radius )**2 * & |
---|
1074 | ( 1.0 + 0.15 * ( 2.0 * particles(n)%radius * & |
---|
1075 | SQRT( ( u_int - particles(n)%speed_x )**2 + & |
---|
1076 | ( v_int - particles(n)%speed_y )**2 + & |
---|
1077 | ( w_int - particles(n)%speed_z )**2 ) / & |
---|
1078 | molecular_viscosity )**0.687 & |
---|
1079 | ) |
---|
1080 | exp_term = EXP( -exp_arg * dt_particle ) |
---|
1081 | ELSEIF ( use_sgs_for_particles ) THEN |
---|
1082 | exp_arg = particle_groups(particles(n)%group)%exp_arg |
---|
1083 | exp_term = EXP( -exp_arg * dt_particle ) |
---|
1084 | ELSE |
---|
1085 | exp_arg = particle_groups(particles(n)%group)%exp_arg |
---|
1086 | exp_term = particle_groups(particles(n)%group)%exp_term |
---|
1087 | ENDIF |
---|
1088 | particles(n)%speed_x = particles(n)%speed_x * exp_term + & |
---|
1089 | u_int * ( 1.0 - exp_term ) |
---|
1090 | particles(n)%speed_y = particles(n)%speed_y * exp_term + & |
---|
1091 | v_int * ( 1.0 - exp_term ) |
---|
1092 | particles(n)%speed_z = particles(n)%speed_z * exp_term + & |
---|
1093 | ( w_int - ( 1.0 - dens_ratio ) * g / exp_arg )& |
---|
1094 | * ( 1.0 - exp_term ) |
---|
1095 | ENDIF |
---|
1096 | |
---|
1097 | ! |
---|
1098 | !-- Increment the particle age and the total time that the particle |
---|
1099 | !-- has advanced within the particle timestep procedure |
---|
1100 | particles(n)%age = particles(n)%age + dt_particle |
---|
1101 | particles(n)%dt_sum = particles(n)%dt_sum + dt_particle |
---|
1102 | |
---|
1103 | ! |
---|
1104 | !-- Check whether there is still a particle that has not yet completed |
---|
1105 | !-- the total LES timestep |
---|
1106 | IF ( ( dt_3d - particles(n)%dt_sum ) > 1E-8 ) THEN |
---|
1107 | dt_3d_reached_l = .FALSE. |
---|
1108 | ENDIF |
---|
1109 | |
---|
1110 | ENDDO |
---|
1111 | |
---|
1112 | |
---|
1113 | END SUBROUTINE lpm_advec |
---|