[1682] | 1 | !> @file lpm_advec.f90 |
---|
[2000] | 2 | !------------------------------------------------------------------------------! |
---|
[2696] | 3 | ! This file is part of the PALM model system. |
---|
[1036] | 4 | ! |
---|
[2000] | 5 | ! PALM is free software: you can redistribute it and/or modify it under the |
---|
| 6 | ! terms of the GNU General Public License as published by the Free Software |
---|
| 7 | ! Foundation, either version 3 of the License, or (at your option) any later |
---|
| 8 | ! version. |
---|
[1036] | 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
[2718] | 17 | ! Copyright 1997-2018 Leibniz Universitaet Hannover |
---|
[2000] | 18 | !------------------------------------------------------------------------------! |
---|
[1036] | 19 | ! |
---|
[849] | 20 | ! Current revisions: |
---|
| 21 | ! ------------------ |
---|
[2701] | 22 | ! |
---|
| 23 | ! |
---|
| 24 | ! Former revisions: |
---|
| 25 | ! ----------------- |
---|
| 26 | ! $Id: lpm_advec.f90 2886 2018-03-14 11:51:53Z knoop $ |
---|
[2886] | 27 | ! Bugfix in passive particle SGS Model: |
---|
| 28 | ! Sometimes the added SGS velocities would lead to a violation of the CFL |
---|
| 29 | ! criterion for single particles. For this a check was added after the |
---|
| 30 | ! calculation of SGS velocities. |
---|
| 31 | ! |
---|
| 32 | ! 2718 2018-01-02 08:49:38Z maronga |
---|
[2716] | 33 | ! Corrected "Former revisions" section |
---|
| 34 | ! |
---|
| 35 | ! 2701 2017-12-15 15:40:50Z suehring |
---|
| 36 | ! Changes from last commit documented |
---|
| 37 | ! |
---|
| 38 | ! 2698 2017-12-14 18:46:24Z suehring |
---|
[2698] | 39 | ! Particle interpolations at walls in case of SGS velocities revised and not |
---|
| 40 | ! required parts are removed. (responsible Philipp Thiele) |
---|
[2716] | 41 | ! Bugfix in get_topography_top_index |
---|
[2698] | 42 | ! |
---|
[2716] | 43 | ! 2696 2017-12-14 17:12:51Z kanani |
---|
| 44 | ! Change in file header (GPL part) |
---|
| 45 | ! |
---|
| 46 | ! 2630 2017-11-20 12:58:20Z schwenkel |
---|
[2629] | 47 | ! Removed indices ilog and jlog which are no longer needed since particle box |
---|
| 48 | ! locations are identical to scalar boxes and topography. |
---|
| 49 | ! |
---|
[2630] | 50 | ! 2628 2017-11-20 12:40:38Z raasch |
---|
[2610] | 51 | ! bugfix in logarithmic interpolation of v-component (usws was used by mistake) |
---|
| 52 | ! |
---|
| 53 | ! 2606 2017-11-10 10:36:31Z schwenkel |
---|
[2606] | 54 | ! Changed particle box locations: center of particle box now coincides |
---|
| 55 | ! with scalar grid point of same index. |
---|
| 56 | ! Renamed module and subroutines: lpm_pack_arrays_mod -> lpm_pack_and_sort_mod |
---|
| 57 | ! lpm_pack_all_arrays -> lpm_sort_in_subboxes, lpm_pack_arrays -> lpm_pack |
---|
| 58 | ! lpm_sort -> lpm_sort_timeloop_done |
---|
| 59 | ! |
---|
| 60 | ! 2417 2017-09-06 15:22:27Z suehring |
---|
[2417] | 61 | ! Particle loops adapted for sub-box structure, i.e. for each sub-box the |
---|
| 62 | ! particle loop runs from start_index up to end_index instead from 1 to |
---|
| 63 | ! number_of_particles. This way, it is possible to skip unnecessary |
---|
| 64 | ! computations for particles that already completed the LES timestep. |
---|
| 65 | ! |
---|
| 66 | ! 2318 2017-07-20 17:27:44Z suehring |
---|
[2318] | 67 | ! Get topography top index via Function call |
---|
| 68 | ! |
---|
| 69 | ! 2317 2017-07-20 17:27:19Z suehring |
---|
[1930] | 70 | ! |
---|
[2233] | 71 | ! 2232 2017-05-30 17:47:52Z suehring |
---|
| 72 | ! Adjustments to new topography and surface concept |
---|
| 73 | ! |
---|
[2101] | 74 | ! 2100 2017-01-05 16:40:16Z suehring |
---|
| 75 | ! Prevent extremely large SGS-velocities in regions where TKE is zero, e.g. |
---|
| 76 | ! at the begin of simulations and/or in non-turbulent regions. |
---|
| 77 | ! |
---|
[2001] | 78 | ! 2000 2016-08-20 18:09:15Z knoop |
---|
| 79 | ! Forced header and separation lines into 80 columns |
---|
| 80 | ! |
---|
[1937] | 81 | ! 1936 2016-06-13 13:37:44Z suehring |
---|
| 82 | ! Formatting adjustments |
---|
| 83 | ! |
---|
[1930] | 84 | ! 1929 2016-06-09 16:25:25Z suehring |
---|
[1929] | 85 | ! Put stochastic equation in an extra subroutine. |
---|
| 86 | ! Set flag for stochastic equation to communicate whether a particle is near |
---|
| 87 | ! topography. This case, memory and drift term are disabled in the Weil equation. |
---|
[1889] | 88 | ! |
---|
[1929] | 89 | ! Enable vertical logarithmic interpolation also above topography. This case, |
---|
| 90 | ! set a lower limit for the friction velocity, as it can become very small |
---|
[1930] | 91 | ! in narrow street canyons, leading to too large particle speeds. |
---|
[1823] | 92 | ! |
---|
[1889] | 93 | ! 1888 2016-04-21 12:20:49Z suehring |
---|
| 94 | ! Bugfix concerning logarithmic interpolation of particle speed |
---|
| 95 | ! |
---|
[1823] | 96 | ! 1822 2016-04-07 07:49:42Z hoffmann |
---|
[1822] | 97 | ! Random velocity fluctuations for particles added. Terminal fall velocity |
---|
| 98 | ! for droplets is calculated from a parameterization (which is better than |
---|
| 99 | ! the previous, physically correct calculation, which demands a very short |
---|
| 100 | ! time step that is not used in the model). |
---|
| 101 | ! |
---|
| 102 | ! Unused variables deleted. |
---|
[1321] | 103 | ! |
---|
[1692] | 104 | ! 1691 2015-10-26 16:17:44Z maronga |
---|
| 105 | ! Renamed prandtl_layer to constant_flux_layer. |
---|
| 106 | ! |
---|
[1686] | 107 | ! 1685 2015-10-08 07:32:13Z raasch |
---|
| 108 | ! TKE check for negative values (so far, only zero value was checked) |
---|
| 109 | ! offset_ocean_nzt_m1 removed |
---|
| 110 | ! |
---|
[1683] | 111 | ! 1682 2015-10-07 23:56:08Z knoop |
---|
| 112 | ! Code annotations made doxygen readable |
---|
| 113 | ! |
---|
[1584] | 114 | ! 1583 2015-04-15 12:16:27Z suehring |
---|
| 115 | ! Bugfix: particle advection within Prandtl-layer in case of Galilei |
---|
| 116 | ! transformation. |
---|
| 117 | ! |
---|
[1370] | 118 | ! 1369 2014-04-24 05:57:38Z raasch |
---|
| 119 | ! usage of module interfaces removed |
---|
| 120 | ! |
---|
[1360] | 121 | ! 1359 2014-04-11 17:15:14Z hoffmann |
---|
| 122 | ! New particle structure integrated. |
---|
| 123 | ! Kind definition added to all floating point numbers. |
---|
| 124 | ! |
---|
[1323] | 125 | ! 1322 2014-03-20 16:38:49Z raasch |
---|
| 126 | ! REAL constants defined as wp_kind |
---|
| 127 | ! |
---|
[1321] | 128 | ! 1320 2014-03-20 08:40:49Z raasch |
---|
[1320] | 129 | ! ONLY-attribute added to USE-statements, |
---|
| 130 | ! kind-parameters added to all INTEGER and REAL declaration statements, |
---|
| 131 | ! kinds are defined in new module kinds, |
---|
| 132 | ! revision history before 2012 removed, |
---|
| 133 | ! comment fields (!:) to be used for variable explanations added to |
---|
| 134 | ! all variable declaration statements |
---|
[849] | 135 | ! |
---|
[1315] | 136 | ! 1314 2014-03-14 18:25:17Z suehring |
---|
| 137 | ! Vertical logarithmic interpolation of horizontal particle speed for particles |
---|
| 138 | ! between roughness height and first vertical grid level. |
---|
| 139 | ! |
---|
[1037] | 140 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
| 141 | ! code put under GPL (PALM 3.9) |
---|
| 142 | ! |
---|
[850] | 143 | ! 849 2012-03-15 10:35:09Z raasch |
---|
| 144 | ! initial revision (former part of advec_particles) |
---|
[849] | 145 | ! |
---|
[850] | 146 | ! |
---|
[849] | 147 | ! Description: |
---|
| 148 | ! ------------ |
---|
[1682] | 149 | !> Calculation of new particle positions due to advection using a simple Euler |
---|
| 150 | !> scheme. Particles may feel inertia effects. SGS transport can be included |
---|
| 151 | !> using the stochastic model of Weil et al. (2004, JAS, 61, 2877-2887). |
---|
[849] | 152 | !------------------------------------------------------------------------------! |
---|
[1682] | 153 | SUBROUTINE lpm_advec (ip,jp,kp) |
---|
| 154 | |
---|
[849] | 155 | |
---|
[1320] | 156 | USE arrays_3d, & |
---|
[2232] | 157 | ONLY: de_dx, de_dy, de_dz, diss, e, km, u, v, w, zu, zw |
---|
[849] | 158 | |
---|
[1359] | 159 | USE cpulog |
---|
| 160 | |
---|
| 161 | USE pegrid |
---|
| 162 | |
---|
[1320] | 163 | USE control_parameters, & |
---|
[1691] | 164 | ONLY: atmos_ocean_sign, cloud_droplets, constant_flux_layer, dt_3d, & |
---|
[1822] | 165 | dt_3d_reached_l, dz, g, kappa, topography, u_gtrans, v_gtrans |
---|
[849] | 166 | |
---|
[1320] | 167 | USE grid_variables, & |
---|
| 168 | ONLY: ddx, dx, ddy, dy |
---|
| 169 | |
---|
| 170 | USE indices, & |
---|
[2698] | 171 | ONLY: nzb, nzt, wall_flags_0 |
---|
[1320] | 172 | |
---|
| 173 | USE kinds |
---|
| 174 | |
---|
| 175 | USE particle_attributes, & |
---|
[1822] | 176 | ONLY: block_offset, c_0, dt_min_part, grid_particles, & |
---|
[1359] | 177 | iran_part, log_z_z0, number_of_particles, number_of_sublayers, & |
---|
[1929] | 178 | particles, particle_groups, offset_ocean_nzt, sgs_wf_part, & |
---|
| 179 | use_sgs_for_particles, vertical_particle_advection, z0_av_global |
---|
[1320] | 180 | |
---|
| 181 | USE statistics, & |
---|
| 182 | ONLY: hom |
---|
[849] | 183 | |
---|
[2232] | 184 | USE surface_mod, & |
---|
[2698] | 185 | ONLY: get_topography_top_index_ji, surf_def_h, surf_lsm_h, surf_usm_h |
---|
[2232] | 186 | |
---|
[1320] | 187 | IMPLICIT NONE |
---|
[849] | 188 | |
---|
[2698] | 189 | LOGICAL :: subbox_at_wall !< flag to see if the current subgridbox is adjacent to a wall |
---|
| 190 | |
---|
[1929] | 191 | INTEGER(iwp) :: agp !< loop variable |
---|
| 192 | INTEGER(iwp) :: gp_outside_of_building(1:8) !< number of grid points used for particle interpolation in case of topography |
---|
| 193 | INTEGER(iwp) :: i !< index variable along x |
---|
| 194 | INTEGER(iwp) :: ip !< index variable along x |
---|
| 195 | INTEGER(iwp) :: j !< index variable along y |
---|
| 196 | INTEGER(iwp) :: jp !< index variable along y |
---|
| 197 | INTEGER(iwp) :: k !< index variable along z |
---|
[2232] | 198 | INTEGER(iwp) :: k_wall !< vertical index of topography top |
---|
[1929] | 199 | INTEGER(iwp) :: kp !< index variable along z |
---|
| 200 | INTEGER(iwp) :: kw !< index variable along z |
---|
| 201 | INTEGER(iwp) :: n !< loop variable over all particles in a grid box |
---|
| 202 | INTEGER(iwp) :: nb !< block number particles are sorted in |
---|
| 203 | INTEGER(iwp) :: num_gp !< number of adjacent grid points inside topography |
---|
[2232] | 204 | INTEGER(iwp) :: surf_start !< Index on surface data-type for current grid box |
---|
[849] | 205 | |
---|
[1929] | 206 | INTEGER(iwp), DIMENSION(0:7) :: start_index !< start particle index for current block |
---|
| 207 | INTEGER(iwp), DIMENSION(0:7) :: end_index !< start particle index for current block |
---|
[1359] | 208 | |
---|
[1929] | 209 | REAL(wp) :: aa !< dummy argument for horizontal particle interpolation |
---|
| 210 | REAL(wp) :: bb !< dummy argument for horizontal particle interpolation |
---|
| 211 | REAL(wp) :: cc !< dummy argument for horizontal particle interpolation |
---|
| 212 | REAL(wp) :: d_sum !< dummy argument for horizontal particle interpolation in case of topography |
---|
| 213 | REAL(wp) :: d_z_p_z0 !< inverse of interpolation length for logarithmic interpolation |
---|
| 214 | REAL(wp) :: dd !< dummy argument for horizontal particle interpolation |
---|
| 215 | REAL(wp) :: de_dx_int_l !< x/y-interpolated TKE gradient (x) at particle position at lower vertical level |
---|
| 216 | REAL(wp) :: de_dx_int_u !< x/y-interpolated TKE gradient (x) at particle position at upper vertical level |
---|
| 217 | REAL(wp) :: de_dy_int_l !< x/y-interpolated TKE gradient (y) at particle position at lower vertical level |
---|
| 218 | REAL(wp) :: de_dy_int_u !< x/y-interpolated TKE gradient (y) at particle position at upper vertical level |
---|
| 219 | REAL(wp) :: de_dt !< temporal derivative of TKE experienced by the particle |
---|
| 220 | REAL(wp) :: de_dt_min !< lower level for temporal TKE derivative |
---|
| 221 | REAL(wp) :: de_dz_int_l !< x/y-interpolated TKE gradient (z) at particle position at lower vertical level |
---|
| 222 | REAL(wp) :: de_dz_int_u !< x/y-interpolated TKE gradient (z) at particle position at upper vertical level |
---|
[1822] | 223 | REAL(wp) :: diameter !< diamter of droplet |
---|
[1929] | 224 | REAL(wp) :: diss_int_l !< x/y-interpolated dissipation at particle position at lower vertical level |
---|
| 225 | REAL(wp) :: diss_int_u !< x/y-interpolated dissipation at particle position at upper vertical level |
---|
| 226 | REAL(wp) :: dt_particle_m !< previous particle time step |
---|
[2886] | 227 | REAL(wp) :: dz_temp !< |
---|
[1929] | 228 | REAL(wp) :: e_int_l !< x/y-interpolated TKE at particle position at lower vertical level |
---|
| 229 | REAL(wp) :: e_int_u !< x/y-interpolated TKE at particle position at upper vertical level |
---|
| 230 | REAL(wp) :: e_mean_int !< horizontal mean TKE at particle height |
---|
[1682] | 231 | REAL(wp) :: exp_arg !< |
---|
| 232 | REAL(wp) :: exp_term !< |
---|
[1929] | 233 | REAL(wp) :: gg !< dummy argument for horizontal particle interpolation |
---|
| 234 | REAL(wp) :: height_p !< dummy argument for logarithmic interpolation |
---|
| 235 | REAL(wp) :: location(1:30,1:3) !< wall locations |
---|
| 236 | REAL(wp) :: log_z_z0_int !< logarithmus used for surface_layer interpolation |
---|
[1682] | 237 | REAL(wp) :: random_gauss !< |
---|
[1822] | 238 | REAL(wp) :: RL !< Lagrangian autocorrelation coefficient |
---|
| 239 | REAL(wp) :: rg1 !< Gaussian distributed random number |
---|
| 240 | REAL(wp) :: rg2 !< Gaussian distributed random number |
---|
| 241 | REAL(wp) :: rg3 !< Gaussian distributed random number |
---|
| 242 | REAL(wp) :: sigma !< velocity standard deviation |
---|
[1929] | 243 | REAL(wp) :: u_int_l !< x/y-interpolated u-component at particle position at lower vertical level |
---|
| 244 | REAL(wp) :: u_int_u !< x/y-interpolated u-component at particle position at upper vertical level |
---|
| 245 | REAL(wp) :: us_int !< friction velocity at particle grid box |
---|
[2232] | 246 | REAL(wp) :: usws_int !< surface momentum flux (u component) at particle grid box |
---|
[1929] | 247 | REAL(wp) :: v_int_l !< x/y-interpolated v-component at particle position at lower vertical level |
---|
| 248 | REAL(wp) :: v_int_u !< x/y-interpolated v-component at particle position at upper vertical level |
---|
[2232] | 249 | REAL(wp) :: vsws_int !< surface momentum flux (u component) at particle grid box |
---|
[1682] | 250 | REAL(wp) :: vv_int !< |
---|
[1929] | 251 | REAL(wp) :: w_int_l !< x/y-interpolated w-component at particle position at lower vertical level |
---|
| 252 | REAL(wp) :: w_int_u !< x/y-interpolated w-component at particle position at upper vertical level |
---|
[1822] | 253 | REAL(wp) :: w_s !< terminal velocity of droplets |
---|
[1929] | 254 | REAL(wp) :: x !< dummy argument for horizontal particle interpolation |
---|
| 255 | REAL(wp) :: y !< dummy argument for horizontal particle interpolation |
---|
| 256 | REAL(wp) :: z_p !< surface layer height (0.5 dz) |
---|
[849] | 257 | |
---|
[1822] | 258 | REAL(wp), PARAMETER :: a_rog = 9.65_wp !< parameter for fall velocity |
---|
| 259 | REAL(wp), PARAMETER :: b_rog = 10.43_wp !< parameter for fall velocity |
---|
| 260 | REAL(wp), PARAMETER :: c_rog = 0.6_wp !< parameter for fall velocity |
---|
| 261 | REAL(wp), PARAMETER :: k_cap_rog = 4.0_wp !< parameter for fall velocity |
---|
| 262 | REAL(wp), PARAMETER :: k_low_rog = 12.0_wp !< parameter for fall velocity |
---|
| 263 | REAL(wp), PARAMETER :: d0_rog = 0.745_wp !< separation diameter |
---|
| 264 | |
---|
[1929] | 265 | REAL(wp), DIMENSION(1:30) :: d_gp_pl !< dummy argument for particle interpolation scheme in case of topography |
---|
| 266 | REAL(wp), DIMENSION(1:30) :: de_dxi !< horizontal TKE gradient along x at adjacent wall |
---|
| 267 | REAL(wp), DIMENSION(1:30) :: de_dyi !< horizontal TKE gradient along y at adjacent wall |
---|
| 268 | REAL(wp), DIMENSION(1:30) :: de_dzi !< horizontal TKE gradient along z at adjacent wall |
---|
| 269 | REAL(wp), DIMENSION(1:30) :: dissi !< dissipation at adjacent wall |
---|
| 270 | REAL(wp), DIMENSION(1:30) :: ei !< TKE at adjacent wall |
---|
[849] | 271 | |
---|
[2886] | 272 | REAL(wp), DIMENSION(number_of_particles) :: term_1_2 !< flag to communicate whether a particle is near topography or not |
---|
| 273 | REAL(wp), DIMENSION(number_of_particles) :: dens_ratio !< |
---|
| 274 | REAL(wp), DIMENSION(number_of_particles) :: de_dx_int !< horizontal TKE gradient along x at particle position |
---|
| 275 | REAL(wp), DIMENSION(number_of_particles) :: de_dy_int !< horizontal TKE gradient along y at particle position |
---|
| 276 | REAL(wp), DIMENSION(number_of_particles) :: de_dz_int !< horizontal TKE gradient along z at particle position |
---|
| 277 | REAL(wp), DIMENSION(number_of_particles) :: diss_int !< dissipation at particle position |
---|
| 278 | REAL(wp), DIMENSION(number_of_particles) :: dt_gap !< remaining time until particle time integration reaches LES time |
---|
| 279 | REAL(wp), DIMENSION(number_of_particles) :: dt_particle !< particle time step |
---|
| 280 | REAL(wp), DIMENSION(number_of_particles) :: e_int !< TKE at particle position |
---|
| 281 | REAL(wp), DIMENSION(number_of_particles) :: fs_int !< weighting factor for subgrid-scale particle speed |
---|
| 282 | REAL(wp), DIMENSION(number_of_particles) :: lagr_timescale !< Lagrangian timescale |
---|
| 283 | REAL(wp), DIMENSION(number_of_particles) :: rvar1_temp !< |
---|
| 284 | REAL(wp), DIMENSION(number_of_particles) :: rvar2_temp !< |
---|
| 285 | REAL(wp), DIMENSION(number_of_particles) :: rvar3_temp !< |
---|
| 286 | REAL(wp), DIMENSION(number_of_particles) :: u_int !< u-component of particle speed |
---|
| 287 | REAL(wp), DIMENSION(number_of_particles) :: v_int !< v-component of particle speed |
---|
| 288 | REAL(wp), DIMENSION(number_of_particles) :: w_int !< w-component of particle speed |
---|
| 289 | REAL(wp), DIMENSION(number_of_particles) :: xv !< x-position |
---|
| 290 | REAL(wp), DIMENSION(number_of_particles) :: yv !< y-position |
---|
| 291 | REAL(wp), DIMENSION(number_of_particles) :: zv !< z-position |
---|
[1359] | 292 | |
---|
[1929] | 293 | REAL(wp), DIMENSION(number_of_particles, 3) :: rg !< vector of Gaussian distributed random numbers |
---|
[1359] | 294 | |
---|
| 295 | CALL cpu_log( log_point_s(44), 'lpm_advec', 'continue' ) |
---|
| 296 | |
---|
[1314] | 297 | ! |
---|
| 298 | !-- Determine height of Prandtl layer and distance between Prandtl-layer |
---|
| 299 | !-- height and horizontal mean roughness height, which are required for |
---|
| 300 | !-- vertical logarithmic interpolation of horizontal particle speeds |
---|
| 301 | !-- (for particles below first vertical grid level). |
---|
| 302 | z_p = zu(nzb+1) - zw(nzb) |
---|
[1359] | 303 | d_z_p_z0 = 1.0_wp / ( z_p - z0_av_global ) |
---|
[849] | 304 | |
---|
[1359] | 305 | start_index = grid_particles(kp,jp,ip)%start_index |
---|
| 306 | end_index = grid_particles(kp,jp,ip)%end_index |
---|
[849] | 307 | |
---|
[1359] | 308 | xv = particles(1:number_of_particles)%x |
---|
| 309 | yv = particles(1:number_of_particles)%y |
---|
| 310 | zv = particles(1:number_of_particles)%z |
---|
[849] | 311 | |
---|
[1359] | 312 | DO nb = 0, 7 |
---|
[2606] | 313 | ! |
---|
| 314 | !-- Interpolate u velocity-component |
---|
[1359] | 315 | i = ip |
---|
| 316 | j = jp + block_offset(nb)%j_off |
---|
| 317 | k = kp + block_offset(nb)%k_off |
---|
[2606] | 318 | |
---|
[1359] | 319 | DO n = start_index(nb), end_index(nb) |
---|
[1314] | 320 | ! |
---|
[1359] | 321 | !-- Interpolation of the u velocity component onto particle position. |
---|
| 322 | !-- Particles are interpolation bi-linearly in the horizontal and a |
---|
| 323 | !-- linearly in the vertical. An exception is made for particles below |
---|
| 324 | !-- the first vertical grid level in case of a prandtl layer. In this |
---|
| 325 | !-- case the horizontal particle velocity components are determined using |
---|
| 326 | !-- Monin-Obukhov relations (if branch). |
---|
| 327 | !-- First, check if particle is located below first vertical grid level |
---|
[2232] | 328 | !-- above topography (Prandtl-layer height) |
---|
| 329 | !-- Determine vertical index of topography top |
---|
[2698] | 330 | k_wall = get_topography_top_index_ji( jp, ip, 's' ) |
---|
[1929] | 331 | |
---|
[2232] | 332 | IF ( constant_flux_layer .AND. zv(n) - zw(k_wall) < z_p ) THEN |
---|
[1314] | 333 | ! |
---|
[1359] | 334 | !-- Resolved-scale horizontal particle velocity is zero below z0. |
---|
[2232] | 335 | IF ( zv(n) - zw(k_wall) < z0_av_global ) THEN |
---|
[1359] | 336 | u_int(n) = 0.0_wp |
---|
| 337 | ELSE |
---|
[1314] | 338 | ! |
---|
[1359] | 339 | !-- Determine the sublayer. Further used as index. |
---|
[2232] | 340 | height_p = ( zv(n) - zw(k_wall) - z0_av_global ) & |
---|
[1936] | 341 | * REAL( number_of_sublayers, KIND=wp ) & |
---|
[1359] | 342 | * d_z_p_z0 |
---|
[1314] | 343 | ! |
---|
[1359] | 344 | !-- Calculate LOG(z/z0) for exact particle height. Therefore, |
---|
| 345 | !-- interpolate linearly between precalculated logarithm. |
---|
[1929] | 346 | log_z_z0_int = log_z_z0(INT(height_p)) & |
---|
[1359] | 347 | + ( height_p - INT(height_p) ) & |
---|
| 348 | * ( log_z_z0(INT(height_p)+1) & |
---|
| 349 | - log_z_z0(INT(height_p)) & |
---|
| 350 | ) |
---|
[1314] | 351 | ! |
---|
[2232] | 352 | !-- Get friction velocity and momentum flux from new surface data |
---|
| 353 | !-- types. |
---|
[2628] | 354 | IF ( surf_def_h(0)%start_index(jp,ip) <= & |
---|
| 355 | surf_def_h(0)%end_index(jp,ip) ) THEN |
---|
| 356 | surf_start = surf_def_h(0)%start_index(jp,ip) |
---|
[2232] | 357 | !-- Limit friction velocity. In narrow canyons or holes the |
---|
| 358 | !-- friction velocity can become very small, resulting in a too |
---|
| 359 | !-- large particle speed. |
---|
| 360 | us_int = MAX( surf_def_h(0)%us(surf_start), 0.01_wp ) |
---|
| 361 | usws_int = surf_def_h(0)%usws(surf_start) |
---|
[2628] | 362 | ELSEIF ( surf_lsm_h%start_index(jp,ip) <= & |
---|
| 363 | surf_lsm_h%end_index(jp,ip) ) THEN |
---|
| 364 | surf_start = surf_lsm_h%start_index(jp,ip) |
---|
[2232] | 365 | us_int = MAX( surf_lsm_h%us(surf_start), 0.01_wp ) |
---|
| 366 | usws_int = surf_lsm_h%usws(surf_start) |
---|
[2628] | 367 | ELSEIF ( surf_usm_h%start_index(jp,ip) <= & |
---|
| 368 | surf_usm_h%end_index(jp,ip) ) THEN |
---|
| 369 | surf_start = surf_usm_h%start_index(jp,ip) |
---|
[2232] | 370 | us_int = MAX( surf_usm_h%us(surf_start), 0.01_wp ) |
---|
| 371 | usws_int = surf_usm_h%usws(surf_start) |
---|
| 372 | ENDIF |
---|
| 373 | |
---|
[1929] | 374 | ! |
---|
[1359] | 375 | !-- Neutral solution is applied for all situations, e.g. also for |
---|
| 376 | !-- unstable and stable situations. Even though this is not exact |
---|
| 377 | !-- this saves a lot of CPU time since several calls of intrinsic |
---|
| 378 | !-- FORTRAN procedures (LOG, ATAN) are avoided, This is justified |
---|
| 379 | !-- as sensitivity studies revealed no significant effect of |
---|
| 380 | !-- using the neutral solution also for un/stable situations. |
---|
[2232] | 381 | u_int(n) = -usws_int / ( us_int * kappa + 1E-10_wp ) & |
---|
[1929] | 382 | * log_z_z0_int - u_gtrans |
---|
| 383 | |
---|
[1359] | 384 | ENDIF |
---|
| 385 | ! |
---|
| 386 | !-- Particle above the first grid level. Bi-linear interpolation in the |
---|
| 387 | !-- horizontal and linear interpolation in the vertical direction. |
---|
[1314] | 388 | ELSE |
---|
| 389 | |
---|
[1359] | 390 | x = xv(n) + ( 0.5_wp - i ) * dx |
---|
| 391 | y = yv(n) - j * dy |
---|
| 392 | aa = x**2 + y**2 |
---|
| 393 | bb = ( dx - x )**2 + y**2 |
---|
| 394 | cc = x**2 + ( dy - y )**2 |
---|
| 395 | dd = ( dx - x )**2 + ( dy - y )**2 |
---|
| 396 | gg = aa + bb + cc + dd |
---|
[1314] | 397 | |
---|
[1359] | 398 | u_int_l = ( ( gg - aa ) * u(k,j,i) + ( gg - bb ) * u(k,j,i+1) & |
---|
| 399 | + ( gg - cc ) * u(k,j+1,i) + ( gg - dd ) * & |
---|
| 400 | u(k,j+1,i+1) ) / ( 3.0_wp * gg ) - u_gtrans |
---|
[1314] | 401 | |
---|
[1359] | 402 | IF ( k == nzt ) THEN |
---|
| 403 | u_int(n) = u_int_l |
---|
| 404 | ELSE |
---|
| 405 | u_int_u = ( ( gg-aa ) * u(k+1,j,i) + ( gg-bb ) * u(k+1,j,i+1) & |
---|
| 406 | + ( gg-cc ) * u(k+1,j+1,i) + ( gg-dd ) * & |
---|
| 407 | u(k+1,j+1,i+1) ) / ( 3.0_wp * gg ) - u_gtrans |
---|
| 408 | u_int(n) = u_int_l + ( zv(n) - zu(k) ) / dz * & |
---|
| 409 | ( u_int_u - u_int_l ) |
---|
| 410 | ENDIF |
---|
[1929] | 411 | |
---|
[1314] | 412 | ENDIF |
---|
| 413 | |
---|
[1359] | 414 | ENDDO |
---|
[2606] | 415 | ! |
---|
| 416 | !-- Same procedure for interpolation of the v velocity-component |
---|
[1359] | 417 | i = ip + block_offset(nb)%i_off |
---|
| 418 | j = jp |
---|
| 419 | k = kp + block_offset(nb)%k_off |
---|
[2606] | 420 | |
---|
[1359] | 421 | DO n = start_index(nb), end_index(nb) |
---|
[1685] | 422 | |
---|
[2232] | 423 | ! |
---|
| 424 | !-- Determine vertical index of topography top |
---|
[2698] | 425 | k_wall = get_topography_top_index_ji( jp,ip, 's' ) |
---|
[849] | 426 | |
---|
[2232] | 427 | IF ( constant_flux_layer .AND. zv(n) - zw(k_wall) < z_p ) THEN |
---|
| 428 | IF ( zv(n) - zw(k_wall) < z0_av_global ) THEN |
---|
[1314] | 429 | ! |
---|
[1359] | 430 | !-- Resolved-scale horizontal particle velocity is zero below z0. |
---|
| 431 | v_int(n) = 0.0_wp |
---|
| 432 | ELSE |
---|
| 433 | ! |
---|
[1929] | 434 | !-- Determine the sublayer. Further used as index. Please note, |
---|
| 435 | !-- logarithmus can not be reused from above, as in in case of |
---|
| 436 | !-- topography particle on u-grid can be above surface-layer height, |
---|
| 437 | !-- whereas it can be below on v-grid. |
---|
[2232] | 438 | height_p = ( zv(n) - zw(k_wall) - z0_av_global ) & |
---|
[1936] | 439 | * REAL( number_of_sublayers, KIND=wp ) & |
---|
[1929] | 440 | * d_z_p_z0 |
---|
| 441 | ! |
---|
| 442 | !-- Calculate LOG(z/z0) for exact particle height. Therefore, |
---|
| 443 | !-- interpolate linearly between precalculated logarithm. |
---|
| 444 | log_z_z0_int = log_z_z0(INT(height_p)) & |
---|
| 445 | + ( height_p - INT(height_p) ) & |
---|
| 446 | * ( log_z_z0(INT(height_p)+1) & |
---|
| 447 | - log_z_z0(INT(height_p)) & |
---|
| 448 | ) |
---|
| 449 | ! |
---|
[2232] | 450 | !-- Get friction velocity and momentum flux from new surface data |
---|
| 451 | !-- types. |
---|
[2628] | 452 | IF ( surf_def_h(0)%start_index(jp,ip) <= & |
---|
| 453 | surf_def_h(0)%end_index(jp,ip) ) THEN |
---|
| 454 | surf_start = surf_def_h(0)%start_index(jp,ip) |
---|
[2232] | 455 | !-- Limit friction velocity. In narrow canyons or holes the |
---|
| 456 | !-- friction velocity can become very small, resulting in a too |
---|
| 457 | !-- large particle speed. |
---|
| 458 | us_int = MAX( surf_def_h(0)%us(surf_start), 0.01_wp ) |
---|
[2610] | 459 | vsws_int = surf_def_h(0)%vsws(surf_start) |
---|
[2628] | 460 | ELSEIF ( surf_lsm_h%start_index(jp,ip) <= & |
---|
| 461 | surf_lsm_h%end_index(jp,ip) ) THEN |
---|
| 462 | surf_start = surf_lsm_h%start_index(jp,ip) |
---|
[2232] | 463 | us_int = MAX( surf_lsm_h%us(surf_start), 0.01_wp ) |
---|
[2610] | 464 | vsws_int = surf_lsm_h%vsws(surf_start) |
---|
[2628] | 465 | ELSEIF ( surf_usm_h%start_index(jp,ip) <= & |
---|
| 466 | surf_usm_h%end_index(jp,ip) ) THEN |
---|
| 467 | surf_start = surf_usm_h%start_index(jp,ip) |
---|
[2232] | 468 | us_int = MAX( surf_usm_h%us(surf_start), 0.01_wp ) |
---|
[2610] | 469 | vsws_int = surf_usm_h%vsws(surf_start) |
---|
[2232] | 470 | ENDIF |
---|
[1929] | 471 | ! |
---|
[1359] | 472 | !-- Neutral solution is applied for all situations, e.g. also for |
---|
| 473 | !-- unstable and stable situations. Even though this is not exact |
---|
| 474 | !-- this saves a lot of CPU time since several calls of intrinsic |
---|
| 475 | !-- FORTRAN procedures (LOG, ATAN) are avoided, This is justified |
---|
| 476 | !-- as sensitivity studies revealed no significant effect of |
---|
| 477 | !-- using the neutral solution also for un/stable situations. |
---|
[2232] | 478 | v_int(n) = -vsws_int / ( us_int * kappa + 1E-10_wp ) & |
---|
[1929] | 479 | * log_z_z0_int - v_gtrans |
---|
[1314] | 480 | |
---|
[1359] | 481 | ENDIF |
---|
[1929] | 482 | |
---|
[1359] | 483 | ELSE |
---|
| 484 | x = xv(n) - i * dx |
---|
| 485 | y = yv(n) + ( 0.5_wp - j ) * dy |
---|
| 486 | aa = x**2 + y**2 |
---|
| 487 | bb = ( dx - x )**2 + y**2 |
---|
| 488 | cc = x**2 + ( dy - y )**2 |
---|
| 489 | dd = ( dx - x )**2 + ( dy - y )**2 |
---|
| 490 | gg = aa + bb + cc + dd |
---|
[1314] | 491 | |
---|
[1359] | 492 | v_int_l = ( ( gg - aa ) * v(k,j,i) + ( gg - bb ) * v(k,j,i+1) & |
---|
| 493 | + ( gg - cc ) * v(k,j+1,i) + ( gg - dd ) * v(k,j+1,i+1) & |
---|
| 494 | ) / ( 3.0_wp * gg ) - v_gtrans |
---|
[1314] | 495 | |
---|
[1359] | 496 | IF ( k == nzt ) THEN |
---|
| 497 | v_int(n) = v_int_l |
---|
| 498 | ELSE |
---|
| 499 | v_int_u = ( ( gg-aa ) * v(k+1,j,i) + ( gg-bb ) * v(k+1,j,i+1) & |
---|
| 500 | + ( gg-cc ) * v(k+1,j+1,i) + ( gg-dd ) * v(k+1,j+1,i+1) & |
---|
| 501 | ) / ( 3.0_wp * gg ) - v_gtrans |
---|
| 502 | v_int(n) = v_int_l + ( zv(n) - zu(k) ) / dz * & |
---|
| 503 | ( v_int_u - v_int_l ) |
---|
| 504 | ENDIF |
---|
[1929] | 505 | |
---|
[1314] | 506 | ENDIF |
---|
| 507 | |
---|
[1359] | 508 | ENDDO |
---|
[2606] | 509 | ! |
---|
| 510 | !-- Same procedure for interpolation of the w velocity-component |
---|
[1359] | 511 | i = ip + block_offset(nb)%i_off |
---|
| 512 | j = jp + block_offset(nb)%j_off |
---|
[1929] | 513 | k = kp - 1 |
---|
[2606] | 514 | |
---|
[1359] | 515 | DO n = start_index(nb), end_index(nb) |
---|
[849] | 516 | |
---|
[1359] | 517 | IF ( vertical_particle_advection(particles(n)%group) ) THEN |
---|
[849] | 518 | |
---|
[1359] | 519 | x = xv(n) - i * dx |
---|
| 520 | y = yv(n) - j * dy |
---|
[849] | 521 | aa = x**2 + y**2 |
---|
| 522 | bb = ( dx - x )**2 + y**2 |
---|
| 523 | cc = x**2 + ( dy - y )**2 |
---|
| 524 | dd = ( dx - x )**2 + ( dy - y )**2 |
---|
| 525 | gg = aa + bb + cc + dd |
---|
| 526 | |
---|
[1359] | 527 | w_int_l = ( ( gg - aa ) * w(k,j,i) + ( gg - bb ) * w(k,j,i+1) & |
---|
| 528 | + ( gg - cc ) * w(k,j+1,i) + ( gg - dd ) * w(k,j+1,i+1) & |
---|
| 529 | ) / ( 3.0_wp * gg ) |
---|
[849] | 530 | |
---|
[1359] | 531 | IF ( k == nzt ) THEN |
---|
| 532 | w_int(n) = w_int_l |
---|
[849] | 533 | ELSE |
---|
[1359] | 534 | w_int_u = ( ( gg-aa ) * w(k+1,j,i) + & |
---|
| 535 | ( gg-bb ) * w(k+1,j,i+1) + & |
---|
| 536 | ( gg-cc ) * w(k+1,j+1,i) + & |
---|
| 537 | ( gg-dd ) * w(k+1,j+1,i+1) & |
---|
| 538 | ) / ( 3.0_wp * gg ) |
---|
| 539 | w_int(n) = w_int_l + ( zv(n) - zw(k) ) / dz * & |
---|
| 540 | ( w_int_u - w_int_l ) |
---|
[849] | 541 | ENDIF |
---|
| 542 | |
---|
[1359] | 543 | ELSE |
---|
[849] | 544 | |
---|
[1359] | 545 | w_int(n) = 0.0_wp |
---|
[849] | 546 | |
---|
[1359] | 547 | ENDIF |
---|
| 548 | |
---|
| 549 | ENDDO |
---|
| 550 | |
---|
| 551 | ENDDO |
---|
| 552 | |
---|
| 553 | !-- Interpolate and calculate quantities needed for calculating the SGS |
---|
| 554 | !-- velocities |
---|
[1822] | 555 | IF ( use_sgs_for_particles .AND. .NOT. cloud_droplets ) THEN |
---|
[2698] | 556 | |
---|
| 557 | DO nb = 0,7 |
---|
| 558 | |
---|
| 559 | subbox_at_wall = .FALSE. |
---|
| 560 | ! |
---|
| 561 | !-- In case of topography check if subbox is adjacent to a wall |
---|
| 562 | IF ( .NOT. topography == 'flat' ) THEN |
---|
| 563 | i = ip + MERGE( -1_iwp , 1_iwp, BTEST( nb, 2 ) ) |
---|
| 564 | j = jp + MERGE( -1_iwp , 1_iwp, BTEST( nb, 1 ) ) |
---|
| 565 | k = kp + MERGE( -1_iwp , 1_iwp, BTEST( nb, 0 ) ) |
---|
| 566 | IF ( .NOT. BTEST(wall_flags_0(k, jp, ip), 0) .OR. & |
---|
| 567 | .NOT. BTEST(wall_flags_0(kp, j, ip), 0) .OR. & |
---|
| 568 | .NOT. BTEST(wall_flags_0(kp, jp, i ), 0) ) & |
---|
| 569 | THEN |
---|
| 570 | subbox_at_wall = .TRUE. |
---|
| 571 | ENDIF |
---|
| 572 | ENDIF |
---|
| 573 | IF ( subbox_at_wall ) THEN |
---|
| 574 | e_int(start_index(nb):end_index(nb)) = e(kp,jp,ip) |
---|
| 575 | diss_int(start_index(nb):end_index(nb)) = diss(kp,jp,ip) |
---|
| 576 | de_dx_int(start_index(nb):end_index(nb)) = de_dx(kp,jp,ip) |
---|
| 577 | de_dy_int(start_index(nb):end_index(nb)) = de_dy(kp,jp,ip) |
---|
| 578 | de_dz_int(start_index(nb):end_index(nb)) = de_dz(kp,jp,ip) |
---|
| 579 | ! |
---|
| 580 | !-- Set flag for stochastic equation. |
---|
| 581 | term_1_2(start_index(nb):end_index(nb)) = 0.0_wp |
---|
| 582 | ELSE |
---|
[1359] | 583 | i = ip + block_offset(nb)%i_off |
---|
| 584 | j = jp + block_offset(nb)%j_off |
---|
| 585 | k = kp + block_offset(nb)%k_off |
---|
| 586 | |
---|
| 587 | DO n = start_index(nb), end_index(nb) |
---|
[849] | 588 | ! |
---|
[1359] | 589 | !-- Interpolate TKE |
---|
| 590 | x = xv(n) - i * dx |
---|
| 591 | y = yv(n) - j * dy |
---|
| 592 | aa = x**2 + y**2 |
---|
| 593 | bb = ( dx - x )**2 + y**2 |
---|
| 594 | cc = x**2 + ( dy - y )**2 |
---|
| 595 | dd = ( dx - x )**2 + ( dy - y )**2 |
---|
| 596 | gg = aa + bb + cc + dd |
---|
[849] | 597 | |
---|
[1359] | 598 | e_int_l = ( ( gg-aa ) * e(k,j,i) + ( gg-bb ) * e(k,j,i+1) & |
---|
| 599 | + ( gg-cc ) * e(k,j+1,i) + ( gg-dd ) * e(k,j+1,i+1) & |
---|
| 600 | ) / ( 3.0_wp * gg ) |
---|
| 601 | |
---|
| 602 | IF ( k+1 == nzt+1 ) THEN |
---|
| 603 | e_int(n) = e_int_l |
---|
| 604 | ELSE |
---|
| 605 | e_int_u = ( ( gg - aa ) * e(k+1,j,i) + & |
---|
| 606 | ( gg - bb ) * e(k+1,j,i+1) + & |
---|
| 607 | ( gg - cc ) * e(k+1,j+1,i) + & |
---|
| 608 | ( gg - dd ) * e(k+1,j+1,i+1) & |
---|
| 609 | ) / ( 3.0_wp * gg ) |
---|
| 610 | e_int(n) = e_int_l + ( zv(n) - zu(k) ) / dz * & |
---|
| 611 | ( e_int_u - e_int_l ) |
---|
| 612 | ENDIF |
---|
[849] | 613 | ! |
---|
[1685] | 614 | !-- Needed to avoid NaN particle velocities (this might not be |
---|
| 615 | !-- required any more) |
---|
| 616 | IF ( e_int(n) <= 0.0_wp ) THEN |
---|
[1359] | 617 | e_int(n) = 1.0E-20_wp |
---|
| 618 | ENDIF |
---|
| 619 | ! |
---|
| 620 | !-- Interpolate the TKE gradient along x (adopt incides i,j,k and |
---|
| 621 | !-- all position variables from above (TKE)) |
---|
| 622 | de_dx_int_l = ( ( gg - aa ) * de_dx(k,j,i) + & |
---|
| 623 | ( gg - bb ) * de_dx(k,j,i+1) + & |
---|
| 624 | ( gg - cc ) * de_dx(k,j+1,i) + & |
---|
| 625 | ( gg - dd ) * de_dx(k,j+1,i+1) & |
---|
| 626 | ) / ( 3.0_wp * gg ) |
---|
[849] | 627 | |
---|
| 628 | IF ( ( k+1 == nzt+1 ) .OR. ( k == nzb ) ) THEN |
---|
[1359] | 629 | de_dx_int(n) = de_dx_int_l |
---|
[849] | 630 | ELSE |
---|
[1359] | 631 | de_dx_int_u = ( ( gg - aa ) * de_dx(k+1,j,i) + & |
---|
| 632 | ( gg - bb ) * de_dx(k+1,j,i+1) + & |
---|
| 633 | ( gg - cc ) * de_dx(k+1,j+1,i) + & |
---|
| 634 | ( gg - dd ) * de_dx(k+1,j+1,i+1) & |
---|
| 635 | ) / ( 3.0_wp * gg ) |
---|
| 636 | de_dx_int(n) = de_dx_int_l + ( zv(n) - zu(k) ) / dz * & |
---|
| 637 | ( de_dx_int_u - de_dx_int_l ) |
---|
[849] | 638 | ENDIF |
---|
[1359] | 639 | ! |
---|
| 640 | !-- Interpolate the TKE gradient along y |
---|
| 641 | de_dy_int_l = ( ( gg - aa ) * de_dy(k,j,i) + & |
---|
| 642 | ( gg - bb ) * de_dy(k,j,i+1) + & |
---|
| 643 | ( gg - cc ) * de_dy(k,j+1,i) + & |
---|
| 644 | ( gg - dd ) * de_dy(k,j+1,i+1) & |
---|
| 645 | ) / ( 3.0_wp * gg ) |
---|
| 646 | IF ( ( k+1 == nzt+1 ) .OR. ( k == nzb ) ) THEN |
---|
| 647 | de_dy_int(n) = de_dy_int_l |
---|
| 648 | ELSE |
---|
| 649 | de_dy_int_u = ( ( gg - aa ) * de_dy(k+1,j,i) + & |
---|
[2698] | 650 | ( gg - bb ) * de_dy(k+1,j,i+1) + & |
---|
| 651 | ( gg - cc ) * de_dy(k+1,j+1,i) + & |
---|
| 652 | ( gg - dd ) * de_dy(k+1,j+1,i+1) & |
---|
[1359] | 653 | ) / ( 3.0_wp * gg ) |
---|
[2698] | 654 | de_dy_int(n) = de_dy_int_l + ( zv(n) - zu(k) ) / dz * & |
---|
| 655 | ( de_dy_int_u - de_dy_int_l ) |
---|
[1359] | 656 | ENDIF |
---|
[849] | 657 | |
---|
| 658 | ! |
---|
[1359] | 659 | !-- Interpolate the TKE gradient along z |
---|
| 660 | IF ( zv(n) < 0.5_wp * dz ) THEN |
---|
| 661 | de_dz_int(n) = 0.0_wp |
---|
| 662 | ELSE |
---|
| 663 | de_dz_int_l = ( ( gg - aa ) * de_dz(k,j,i) + & |
---|
| 664 | ( gg - bb ) * de_dz(k,j,i+1) + & |
---|
| 665 | ( gg - cc ) * de_dz(k,j+1,i) + & |
---|
| 666 | ( gg - dd ) * de_dz(k,j+1,i+1) & |
---|
| 667 | ) / ( 3.0_wp * gg ) |
---|
[849] | 668 | |
---|
[1359] | 669 | IF ( ( k+1 == nzt+1 ) .OR. ( k == nzb ) ) THEN |
---|
| 670 | de_dz_int(n) = de_dz_int_l |
---|
| 671 | ELSE |
---|
| 672 | de_dz_int_u = ( ( gg - aa ) * de_dz(k+1,j,i) + & |
---|
| 673 | ( gg - bb ) * de_dz(k+1,j,i+1) + & |
---|
| 674 | ( gg - cc ) * de_dz(k+1,j+1,i) + & |
---|
| 675 | ( gg - dd ) * de_dz(k+1,j+1,i+1) & |
---|
| 676 | ) / ( 3.0_wp * gg ) |
---|
| 677 | de_dz_int(n) = de_dz_int_l + ( zv(n) - zu(k) ) / dz * & |
---|
| 678 | ( de_dz_int_u - de_dz_int_l ) |
---|
| 679 | ENDIF |
---|
| 680 | ENDIF |
---|
[849] | 681 | |
---|
[1359] | 682 | ! |
---|
| 683 | !-- Interpolate the dissipation of TKE |
---|
| 684 | diss_int_l = ( ( gg - aa ) * diss(k,j,i) + & |
---|
| 685 | ( gg - bb ) * diss(k,j,i+1) + & |
---|
| 686 | ( gg - cc ) * diss(k,j+1,i) + & |
---|
| 687 | ( gg - dd ) * diss(k,j+1,i+1) & |
---|
[2698] | 688 | ) / ( 3.0_wp * gg ) |
---|
[849] | 689 | |
---|
[1359] | 690 | IF ( k == nzt ) THEN |
---|
| 691 | diss_int(n) = diss_int_l |
---|
| 692 | ELSE |
---|
| 693 | diss_int_u = ( ( gg - aa ) * diss(k+1,j,i) + & |
---|
| 694 | ( gg - bb ) * diss(k+1,j,i+1) + & |
---|
| 695 | ( gg - cc ) * diss(k+1,j+1,i) + & |
---|
| 696 | ( gg - dd ) * diss(k+1,j+1,i+1) & |
---|
| 697 | ) / ( 3.0_wp * gg ) |
---|
| 698 | diss_int(n) = diss_int_l + ( zv(n) - zu(k) ) / dz * & |
---|
[2698] | 699 | ( diss_int_u - diss_int_l ) |
---|
[1359] | 700 | ENDIF |
---|
| 701 | |
---|
[1929] | 702 | ! |
---|
| 703 | !-- Set flag for stochastic equation. |
---|
| 704 | term_1_2(n) = 1.0_wp |
---|
[1359] | 705 | ENDDO |
---|
[2698] | 706 | ENDIF |
---|
| 707 | ENDDO |
---|
[1359] | 708 | |
---|
| 709 | DO nb = 0,7 |
---|
| 710 | i = ip + block_offset(nb)%i_off |
---|
| 711 | j = jp + block_offset(nb)%j_off |
---|
| 712 | k = kp + block_offset(nb)%k_off |
---|
[849] | 713 | |
---|
[1359] | 714 | DO n = start_index(nb), end_index(nb) |
---|
[849] | 715 | ! |
---|
[1359] | 716 | !-- Vertical interpolation of the horizontally averaged SGS TKE and |
---|
| 717 | !-- resolved-scale velocity variances and use the interpolated values |
---|
| 718 | !-- to calculate the coefficient fs, which is a measure of the ratio |
---|
| 719 | !-- of the subgrid-scale turbulent kinetic energy to the total amount |
---|
| 720 | !-- of turbulent kinetic energy. |
---|
| 721 | IF ( k == 0 ) THEN |
---|
| 722 | e_mean_int = hom(0,1,8,0) |
---|
| 723 | ELSE |
---|
| 724 | e_mean_int = hom(k,1,8,0) + & |
---|
| 725 | ( hom(k+1,1,8,0) - hom(k,1,8,0) ) / & |
---|
| 726 | ( zu(k+1) - zu(k) ) * & |
---|
| 727 | ( zv(n) - zu(k) ) |
---|
| 728 | ENDIF |
---|
[849] | 729 | |
---|
[1685] | 730 | kw = kp - 1 |
---|
[849] | 731 | |
---|
[1359] | 732 | IF ( k == 0 ) THEN |
---|
| 733 | aa = hom(k+1,1,30,0) * ( zv(n) / & |
---|
| 734 | ( 0.5_wp * ( zu(k+1) - zu(k) ) ) ) |
---|
| 735 | bb = hom(k+1,1,31,0) * ( zv(n) / & |
---|
| 736 | ( 0.5_wp * ( zu(k+1) - zu(k) ) ) ) |
---|
| 737 | cc = hom(kw+1,1,32,0) * ( zv(n) / & |
---|
| 738 | ( 1.0_wp * ( zw(kw+1) - zw(kw) ) ) ) |
---|
| 739 | ELSE |
---|
| 740 | aa = hom(k,1,30,0) + ( hom(k+1,1,30,0) - hom(k,1,30,0) ) * & |
---|
| 741 | ( ( zv(n) - zu(k) ) / ( zu(k+1) - zu(k) ) ) |
---|
| 742 | bb = hom(k,1,31,0) + ( hom(k+1,1,31,0) - hom(k,1,31,0) ) * & |
---|
| 743 | ( ( zv(n) - zu(k) ) / ( zu(k+1) - zu(k) ) ) |
---|
| 744 | cc = hom(kw,1,32,0) + ( hom(kw+1,1,32,0)-hom(kw,1,32,0) ) * & |
---|
| 745 | ( ( zv(n) - zw(kw) ) / ( zw(kw+1)-zw(kw) ) ) |
---|
| 746 | ENDIF |
---|
[849] | 747 | |
---|
[1359] | 748 | vv_int = ( 1.0_wp / 3.0_wp ) * ( aa + bb + cc ) |
---|
| 749 | ! |
---|
| 750 | !-- Needed to avoid NaN particle velocities. The value of 1.0 is just |
---|
| 751 | !-- an educated guess for the given case. |
---|
| 752 | IF ( vv_int + ( 2.0_wp / 3.0_wp ) * e_mean_int == 0.0_wp ) THEN |
---|
| 753 | fs_int(n) = 1.0_wp |
---|
| 754 | ELSE |
---|
| 755 | fs_int(n) = ( 2.0_wp / 3.0_wp ) * e_mean_int / & |
---|
| 756 | ( vv_int + ( 2.0_wp / 3.0_wp ) * e_mean_int ) |
---|
| 757 | ENDIF |
---|
[849] | 758 | |
---|
[1359] | 759 | ENDDO |
---|
| 760 | ENDDO |
---|
[849] | 761 | |
---|
[2417] | 762 | DO nb = 0, 7 |
---|
| 763 | DO n = start_index(nb), end_index(nb) |
---|
| 764 | rg(n,1) = random_gauss( iran_part, 5.0_wp ) |
---|
| 765 | rg(n,2) = random_gauss( iran_part, 5.0_wp ) |
---|
| 766 | rg(n,3) = random_gauss( iran_part, 5.0_wp ) |
---|
| 767 | ENDDO |
---|
| 768 | ENDDO |
---|
[1359] | 769 | |
---|
[2417] | 770 | DO nb = 0, 7 |
---|
| 771 | DO n = start_index(nb), end_index(nb) |
---|
[1359] | 772 | |
---|
[849] | 773 | ! |
---|
[2417] | 774 | !-- Calculate the Lagrangian timescale according to Weil et al. (2004). |
---|
[2886] | 775 | lagr_timescale(n) = ( 4.0_wp * e_int(n) + 1E-20_wp ) / & |
---|
[2417] | 776 | ( 3.0_wp * fs_int(n) * c_0 * diss_int(n) + 1E-20_wp ) |
---|
[849] | 777 | |
---|
| 778 | ! |
---|
[2417] | 779 | !-- Calculate the next particle timestep. dt_gap is the time needed to |
---|
| 780 | !-- complete the current LES timestep. |
---|
[2886] | 781 | dt_gap(n) = dt_3d - particles(n)%dt_sum |
---|
| 782 | dt_particle(n) = MIN( dt_3d, 0.025_wp * lagr_timescale(n), dt_gap(n) ) |
---|
| 783 | particles(n)%aux1 = lagr_timescale(n) |
---|
| 784 | particles(n)%aux2 = dt_gap(n) |
---|
[849] | 785 | ! |
---|
[2417] | 786 | !-- The particle timestep should not be too small in order to prevent |
---|
| 787 | !-- the number of particle timesteps of getting too large |
---|
[2886] | 788 | IF ( dt_particle(n) < dt_min_part .AND. dt_min_part < dt_gap(n) ) THEN |
---|
[2417] | 789 | dt_particle(n) = dt_min_part |
---|
| 790 | ENDIF |
---|
[2886] | 791 | rvar1_temp(n) = particles(n)%rvar1 |
---|
| 792 | rvar2_temp(n) = particles(n)%rvar2 |
---|
| 793 | rvar3_temp(n) = particles(n)%rvar3 |
---|
[849] | 794 | ! |
---|
[2417] | 795 | !-- Calculate the SGS velocity components |
---|
| 796 | IF ( particles(n)%age == 0.0_wp ) THEN |
---|
[849] | 797 | ! |
---|
[2417] | 798 | !-- For new particles the SGS components are derived from the SGS |
---|
| 799 | !-- TKE. Limit the Gaussian random number to the interval |
---|
| 800 | !-- [-5.0*sigma, 5.0*sigma] in order to prevent the SGS velocities |
---|
| 801 | !-- from becoming unrealistically large. |
---|
[2886] | 802 | rvar1_temp(n) = SQRT( 2.0_wp * sgs_wf_part * e_int(n) & |
---|
| 803 | + 1E-20_wp ) * ( rg(n,1) - 1.0_wp ) |
---|
| 804 | rvar2_temp(n) = SQRT( 2.0_wp * sgs_wf_part * e_int(n) & |
---|
| 805 | + 1E-20_wp ) * ( rg(n,2) - 1.0_wp ) |
---|
| 806 | rvar3_temp(n) = SQRT( 2.0_wp * sgs_wf_part * e_int(n) & |
---|
| 807 | + 1E-20_wp ) * ( rg(n,3) - 1.0_wp ) |
---|
[849] | 808 | |
---|
[2417] | 809 | ELSE |
---|
[849] | 810 | ! |
---|
[2417] | 811 | !-- Restriction of the size of the new timestep: compared to the |
---|
| 812 | !-- previous timestep the increase must not exceed 200%. First, |
---|
| 813 | !-- check if age > age_m, in order to prevent that particles get zero |
---|
| 814 | !-- timestep. |
---|
| 815 | dt_particle_m = MERGE( dt_particle(n), & |
---|
| 816 | particles(n)%age - particles(n)%age_m, & |
---|
| 817 | particles(n)%age - particles(n)%age_m < & |
---|
| 818 | 1E-8_wp ) |
---|
| 819 | IF ( dt_particle(n) > 2.0_wp * dt_particle_m ) THEN |
---|
| 820 | dt_particle(n) = 2.0_wp * dt_particle_m |
---|
| 821 | ENDIF |
---|
[849] | 822 | |
---|
[2417] | 823 | !-- For old particles the SGS components are correlated with the |
---|
| 824 | !-- values from the previous timestep. Random numbers have also to |
---|
| 825 | !-- be limited (see above). |
---|
| 826 | !-- As negative values for the subgrid TKE are not allowed, the |
---|
| 827 | !-- change of the subgrid TKE with time cannot be smaller than |
---|
| 828 | !-- -e_int(n)/dt_particle. This value is used as a lower boundary |
---|
| 829 | !-- value for the change of TKE |
---|
| 830 | de_dt_min = - e_int(n) / dt_particle(n) |
---|
[849] | 831 | |
---|
[2417] | 832 | de_dt = ( e_int(n) - particles(n)%e_m ) / dt_particle_m |
---|
[849] | 833 | |
---|
[2417] | 834 | IF ( de_dt < de_dt_min ) THEN |
---|
| 835 | de_dt = de_dt_min |
---|
| 836 | ENDIF |
---|
[849] | 837 | |
---|
[2886] | 838 | CALL weil_stochastic_eq(rvar1_temp(n), fs_int(n), e_int(n),& |
---|
[2417] | 839 | de_dx_int(n), de_dt, diss_int(n), & |
---|
| 840 | dt_particle(n), rg(n,1), term_1_2(n) ) |
---|
[849] | 841 | |
---|
[2886] | 842 | CALL weil_stochastic_eq(rvar2_temp(n), fs_int(n), e_int(n),& |
---|
[2417] | 843 | de_dy_int(n), de_dt, diss_int(n), & |
---|
| 844 | dt_particle(n), rg(n,2), term_1_2(n) ) |
---|
[849] | 845 | |
---|
[2886] | 846 | CALL weil_stochastic_eq(rvar3_temp(n), fs_int(n), e_int(n),& |
---|
[2417] | 847 | de_dz_int(n), de_dt, diss_int(n), & |
---|
| 848 | dt_particle(n), rg(n,3), term_1_2(n) ) |
---|
[849] | 849 | |
---|
[2417] | 850 | ENDIF |
---|
[849] | 851 | |
---|
[2886] | 852 | ENDDO |
---|
| 853 | ENDDO |
---|
| 854 | ! |
---|
| 855 | !-- Check if the added SGS velocities result in a violation of the CFL- |
---|
| 856 | !-- criterion. If yes choose a smaller timestep based on the new velocities |
---|
| 857 | !-- and calculate SGS velocities again |
---|
| 858 | dz_temp = zw(kp)-zw(kp-1) |
---|
| 859 | |
---|
| 860 | DO nb = 0, 7 |
---|
| 861 | DO n = start_index(nb), end_index(nb) |
---|
| 862 | IF ( .NOT. particles(n)%age == 0.0_wp .AND. & |
---|
| 863 | (ABS( u_int(n) + rvar1_temp(n) ) > (dx/dt_particle(n)) .OR. & |
---|
| 864 | ABS( v_int(n) + rvar2_temp(n) ) > (dy/dt_particle(n)) .OR. & |
---|
| 865 | ABS( w_int(n) + rvar3_temp(n) ) > (dz_temp/dt_particle(n)))) THEN |
---|
| 866 | |
---|
| 867 | dt_particle(n) = 0.9_wp * MIN( & |
---|
| 868 | ( dx / ABS( u_int(n) + rvar1_temp(n) ) ), & |
---|
| 869 | ( dy / ABS( v_int(n) + rvar2_temp(n) ) ), & |
---|
| 870 | ( dz_temp / ABS( w_int(n) + rvar3_temp(n) ) ) ) |
---|
| 871 | |
---|
| 872 | ! |
---|
| 873 | !-- Reset temporary SGS velocites to "current" ones |
---|
| 874 | rvar1_temp(n) = particles(n)%rvar1 |
---|
| 875 | rvar2_temp(n) = particles(n)%rvar2 |
---|
| 876 | rvar3_temp(n) = particles(n)%rvar3 |
---|
| 877 | |
---|
| 878 | de_dt_min = - e_int(n) / dt_particle(n) |
---|
| 879 | |
---|
| 880 | de_dt = ( e_int(n) - particles(n)%e_m ) / dt_particle_m |
---|
| 881 | |
---|
| 882 | IF ( de_dt < de_dt_min ) THEN |
---|
| 883 | de_dt = de_dt_min |
---|
| 884 | ENDIF |
---|
| 885 | |
---|
| 886 | CALL weil_stochastic_eq(rvar1_temp(n), fs_int(n), e_int(n),& |
---|
| 887 | de_dx_int(n), de_dt, diss_int(n), & |
---|
| 888 | dt_particle(n), rg(n,1), term_1_2(n) ) |
---|
| 889 | |
---|
| 890 | CALL weil_stochastic_eq(rvar2_temp(n), fs_int(n), e_int(n),& |
---|
| 891 | de_dy_int(n), de_dt, diss_int(n), & |
---|
| 892 | dt_particle(n), rg(n,2), term_1_2(n) ) |
---|
| 893 | |
---|
| 894 | CALL weil_stochastic_eq(rvar3_temp(n), fs_int(n), e_int(n),& |
---|
| 895 | de_dz_int(n), de_dt, diss_int(n), & |
---|
| 896 | dt_particle(n), rg(n,3), term_1_2(n) ) |
---|
| 897 | ENDIF |
---|
| 898 | |
---|
| 899 | ! |
---|
| 900 | !-- Update particle velocites |
---|
| 901 | particles(n)%rvar1 = rvar1_temp(n) |
---|
| 902 | particles(n)%rvar2 = rvar2_temp(n) |
---|
| 903 | particles(n)%rvar3 = rvar3_temp(n) |
---|
[2417] | 904 | u_int(n) = u_int(n) + particles(n)%rvar1 |
---|
| 905 | v_int(n) = v_int(n) + particles(n)%rvar2 |
---|
| 906 | w_int(n) = w_int(n) + particles(n)%rvar3 |
---|
[849] | 907 | ! |
---|
[2417] | 908 | !-- Store the SGS TKE of the current timelevel which is needed for |
---|
| 909 | !-- for calculating the SGS particle velocities at the next timestep |
---|
| 910 | particles(n)%e_m = e_int(n) |
---|
| 911 | ENDDO |
---|
[1359] | 912 | ENDDO |
---|
[2886] | 913 | |
---|
[1359] | 914 | ELSE |
---|
[849] | 915 | ! |
---|
[1359] | 916 | !-- If no SGS velocities are used, only the particle timestep has to |
---|
| 917 | !-- be set |
---|
| 918 | dt_particle = dt_3d |
---|
[849] | 919 | |
---|
[1359] | 920 | ENDIF |
---|
[849] | 921 | |
---|
[1359] | 922 | dens_ratio = particle_groups(particles(1:number_of_particles)%group)%density_ratio |
---|
[849] | 923 | |
---|
[1359] | 924 | IF ( ANY( dens_ratio == 0.0_wp ) ) THEN |
---|
[2417] | 925 | DO nb = 0, 7 |
---|
| 926 | DO n = start_index(nb), end_index(nb) |
---|
[1359] | 927 | |
---|
[849] | 928 | ! |
---|
[2417] | 929 | !-- Particle advection |
---|
| 930 | IF ( dens_ratio(n) == 0.0_wp ) THEN |
---|
[849] | 931 | ! |
---|
[2417] | 932 | !-- Pure passive transport (without particle inertia) |
---|
| 933 | particles(n)%x = xv(n) + u_int(n) * dt_particle(n) |
---|
| 934 | particles(n)%y = yv(n) + v_int(n) * dt_particle(n) |
---|
| 935 | particles(n)%z = zv(n) + w_int(n) * dt_particle(n) |
---|
[849] | 936 | |
---|
[2417] | 937 | particles(n)%speed_x = u_int(n) |
---|
| 938 | particles(n)%speed_y = v_int(n) |
---|
| 939 | particles(n)%speed_z = w_int(n) |
---|
[849] | 940 | |
---|
[2417] | 941 | ELSE |
---|
[849] | 942 | ! |
---|
[2417] | 943 | !-- Transport of particles with inertia |
---|
| 944 | particles(n)%x = particles(n)%x + particles(n)%speed_x * & |
---|
| 945 | dt_particle(n) |
---|
| 946 | particles(n)%y = particles(n)%y + particles(n)%speed_y * & |
---|
| 947 | dt_particle(n) |
---|
| 948 | particles(n)%z = particles(n)%z + particles(n)%speed_z * & |
---|
| 949 | dt_particle(n) |
---|
[849] | 950 | |
---|
| 951 | ! |
---|
[2417] | 952 | !-- Update of the particle velocity |
---|
| 953 | IF ( cloud_droplets ) THEN |
---|
| 954 | ! |
---|
| 955 | !-- Terminal velocity is computed for vertical direction (Rogers et |
---|
| 956 | !-- al., 1993, J. Appl. Meteorol.) |
---|
| 957 | diameter = particles(n)%radius * 2000.0_wp !diameter in mm |
---|
| 958 | IF ( diameter <= d0_rog ) THEN |
---|
| 959 | w_s = k_cap_rog * diameter * ( 1.0_wp - EXP( -k_low_rog * diameter ) ) |
---|
| 960 | ELSE |
---|
| 961 | w_s = a_rog - b_rog * EXP( -c_rog * diameter ) |
---|
| 962 | ENDIF |
---|
| 963 | |
---|
| 964 | ! |
---|
| 965 | !-- If selected, add random velocities following Soelch and Kaercher |
---|
| 966 | !-- (2010, Q. J. R. Meteorol. Soc.) |
---|
| 967 | IF ( use_sgs_for_particles ) THEN |
---|
[2886] | 968 | lagr_timescale(n) = km(kp,jp,ip) / MAX( e(kp,jp,ip), 1.0E-20_wp ) |
---|
| 969 | RL = EXP( -1.0_wp * dt_3d / lagr_timescale(n) ) |
---|
[2417] | 970 | sigma = SQRT( e(kp,jp,ip) ) |
---|
| 971 | |
---|
| 972 | rg1 = random_gauss( iran_part, 5.0_wp ) - 1.0_wp |
---|
| 973 | rg2 = random_gauss( iran_part, 5.0_wp ) - 1.0_wp |
---|
| 974 | rg3 = random_gauss( iran_part, 5.0_wp ) - 1.0_wp |
---|
| 975 | |
---|
| 976 | particles(n)%rvar1 = RL * particles(n)%rvar1 + & |
---|
| 977 | SQRT( 1.0_wp - RL**2 ) * sigma * rg1 |
---|
| 978 | particles(n)%rvar2 = RL * particles(n)%rvar2 + & |
---|
| 979 | SQRT( 1.0_wp - RL**2 ) * sigma * rg2 |
---|
| 980 | particles(n)%rvar3 = RL * particles(n)%rvar3 + & |
---|
| 981 | SQRT( 1.0_wp - RL**2 ) * sigma * rg3 |
---|
| 982 | |
---|
| 983 | particles(n)%speed_x = u_int(n) + particles(n)%rvar1 |
---|
| 984 | particles(n)%speed_y = v_int(n) + particles(n)%rvar2 |
---|
| 985 | particles(n)%speed_z = w_int(n) + particles(n)%rvar3 - w_s |
---|
| 986 | ELSE |
---|
| 987 | particles(n)%speed_x = u_int(n) |
---|
| 988 | particles(n)%speed_y = v_int(n) |
---|
| 989 | particles(n)%speed_z = w_int(n) - w_s |
---|
| 990 | ENDIF |
---|
| 991 | |
---|
| 992 | ELSE |
---|
| 993 | |
---|
| 994 | IF ( use_sgs_for_particles ) THEN |
---|
| 995 | exp_arg = particle_groups(particles(n)%group)%exp_arg |
---|
| 996 | exp_term = EXP( -exp_arg * dt_particle(n) ) |
---|
| 997 | ELSE |
---|
| 998 | exp_arg = particle_groups(particles(n)%group)%exp_arg |
---|
| 999 | exp_term = particle_groups(particles(n)%group)%exp_term |
---|
| 1000 | ENDIF |
---|
| 1001 | particles(n)%speed_x = particles(n)%speed_x * exp_term + & |
---|
| 1002 | u_int(n) * ( 1.0_wp - exp_term ) |
---|
| 1003 | particles(n)%speed_y = particles(n)%speed_y * exp_term + & |
---|
| 1004 | v_int(n) * ( 1.0_wp - exp_term ) |
---|
| 1005 | particles(n)%speed_z = particles(n)%speed_z * exp_term + & |
---|
| 1006 | ( w_int(n) - ( 1.0_wp - dens_ratio(n) ) * & |
---|
| 1007 | g / exp_arg ) * ( 1.0_wp - exp_term ) |
---|
| 1008 | ENDIF |
---|
| 1009 | |
---|
| 1010 | ENDIF |
---|
| 1011 | ENDDO |
---|
| 1012 | ENDDO |
---|
| 1013 | |
---|
| 1014 | ELSE |
---|
| 1015 | |
---|
| 1016 | DO nb = 0, 7 |
---|
| 1017 | DO n = start_index(nb), end_index(nb) |
---|
| 1018 | ! |
---|
| 1019 | !-- Transport of particles with inertia |
---|
| 1020 | particles(n)%x = xv(n) + particles(n)%speed_x * dt_particle(n) |
---|
| 1021 | particles(n)%y = yv(n) + particles(n)%speed_y * dt_particle(n) |
---|
| 1022 | particles(n)%z = zv(n) + particles(n)%speed_z * dt_particle(n) |
---|
| 1023 | ! |
---|
[1359] | 1024 | !-- Update of the particle velocity |
---|
| 1025 | IF ( cloud_droplets ) THEN |
---|
[1822] | 1026 | ! |
---|
[2417] | 1027 | !-- Terminal velocity is computed for vertical direction (Rogers et al., |
---|
| 1028 | !-- 1993, J. Appl. Meteorol.) |
---|
[1822] | 1029 | diameter = particles(n)%radius * 2000.0_wp !diameter in mm |
---|
| 1030 | IF ( diameter <= d0_rog ) THEN |
---|
| 1031 | w_s = k_cap_rog * diameter * ( 1.0_wp - EXP( -k_low_rog * diameter ) ) |
---|
| 1032 | ELSE |
---|
| 1033 | w_s = a_rog - b_rog * EXP( -c_rog * diameter ) |
---|
| 1034 | ENDIF |
---|
[1359] | 1035 | |
---|
[1822] | 1036 | ! |
---|
| 1037 | !-- If selected, add random velocities following Soelch and Kaercher |
---|
| 1038 | !-- (2010, Q. J. R. Meteorol. Soc.) |
---|
| 1039 | IF ( use_sgs_for_particles ) THEN |
---|
[2886] | 1040 | lagr_timescale(n) = km(kp,jp,ip) / MAX( e(kp,jp,ip), 1.0E-20_wp ) |
---|
| 1041 | RL = EXP( -1.0_wp * dt_3d / lagr_timescale(n) ) |
---|
[2417] | 1042 | sigma = SQRT( e(kp,jp,ip) ) |
---|
[1822] | 1043 | |
---|
[2417] | 1044 | rg1 = random_gauss( iran_part, 5.0_wp ) - 1.0_wp |
---|
| 1045 | rg2 = random_gauss( iran_part, 5.0_wp ) - 1.0_wp |
---|
| 1046 | rg3 = random_gauss( iran_part, 5.0_wp ) - 1.0_wp |
---|
[1822] | 1047 | |
---|
[2417] | 1048 | particles(n)%rvar1 = RL * particles(n)%rvar1 + & |
---|
| 1049 | SQRT( 1.0_wp - RL**2 ) * sigma * rg1 |
---|
| 1050 | particles(n)%rvar2 = RL * particles(n)%rvar2 + & |
---|
| 1051 | SQRT( 1.0_wp - RL**2 ) * sigma * rg2 |
---|
| 1052 | particles(n)%rvar3 = RL * particles(n)%rvar3 + & |
---|
| 1053 | SQRT( 1.0_wp - RL**2 ) * sigma * rg3 |
---|
[1822] | 1054 | |
---|
[2417] | 1055 | particles(n)%speed_x = u_int(n) + particles(n)%rvar1 |
---|
| 1056 | particles(n)%speed_y = v_int(n) + particles(n)%rvar2 |
---|
| 1057 | particles(n)%speed_z = w_int(n) + particles(n)%rvar3 - w_s |
---|
[1822] | 1058 | ELSE |
---|
[2417] | 1059 | particles(n)%speed_x = u_int(n) |
---|
| 1060 | particles(n)%speed_y = v_int(n) |
---|
| 1061 | particles(n)%speed_z = w_int(n) - w_s |
---|
[1822] | 1062 | ENDIF |
---|
| 1063 | |
---|
[1359] | 1064 | ELSE |
---|
[1822] | 1065 | |
---|
| 1066 | IF ( use_sgs_for_particles ) THEN |
---|
| 1067 | exp_arg = particle_groups(particles(n)%group)%exp_arg |
---|
| 1068 | exp_term = EXP( -exp_arg * dt_particle(n) ) |
---|
| 1069 | ELSE |
---|
| 1070 | exp_arg = particle_groups(particles(n)%group)%exp_arg |
---|
| 1071 | exp_term = particle_groups(particles(n)%group)%exp_term |
---|
| 1072 | ENDIF |
---|
[2417] | 1073 | particles(n)%speed_x = particles(n)%speed_x * exp_term + & |
---|
[1822] | 1074 | u_int(n) * ( 1.0_wp - exp_term ) |
---|
[2417] | 1075 | particles(n)%speed_y = particles(n)%speed_y * exp_term + & |
---|
[1822] | 1076 | v_int(n) * ( 1.0_wp - exp_term ) |
---|
[2417] | 1077 | particles(n)%speed_z = particles(n)%speed_z * exp_term + & |
---|
| 1078 | ( w_int(n) - ( 1.0_wp - dens_ratio(n) ) * g / & |
---|
| 1079 | exp_arg ) * ( 1.0_wp - exp_term ) |
---|
[1359] | 1080 | ENDIF |
---|
[2417] | 1081 | ENDDO |
---|
[1359] | 1082 | ENDDO |
---|
| 1083 | |
---|
[2417] | 1084 | ENDIF |
---|
[1359] | 1085 | |
---|
| 1086 | ! |
---|
[2417] | 1087 | !-- Store the old age of the particle ( needed to prevent that a |
---|
| 1088 | !-- particle crosses several PEs during one timestep, and for the |
---|
| 1089 | !-- evaluation of the subgrid particle velocity fluctuations ) |
---|
| 1090 | particles(1:number_of_particles)%age_m = particles(1:number_of_particles)%age |
---|
| 1091 | |
---|
| 1092 | DO nb = 0, 7 |
---|
| 1093 | DO n = start_index(nb), end_index(nb) |
---|
[1822] | 1094 | ! |
---|
[2417] | 1095 | !-- Increment the particle age and the total time that the particle |
---|
| 1096 | !-- has advanced within the particle timestep procedure |
---|
| 1097 | particles(n)%age = particles(n)%age + dt_particle(n) |
---|
| 1098 | particles(n)%dt_sum = particles(n)%dt_sum + dt_particle(n) |
---|
[1359] | 1099 | |
---|
[1822] | 1100 | ! |
---|
[2417] | 1101 | !-- Check whether there is still a particle that has not yet completed |
---|
| 1102 | !-- the total LES timestep |
---|
| 1103 | IF ( ( dt_3d - particles(n)%dt_sum ) > 1E-8_wp ) THEN |
---|
| 1104 | dt_3d_reached_l = .FALSE. |
---|
[849] | 1105 | ENDIF |
---|
[1822] | 1106 | |
---|
[1359] | 1107 | ENDDO |
---|
[849] | 1108 | ENDDO |
---|
| 1109 | |
---|
[1359] | 1110 | CALL cpu_log( log_point_s(44), 'lpm_advec', 'pause' ) |
---|
[849] | 1111 | |
---|
[1929] | 1112 | |
---|
[849] | 1113 | END SUBROUTINE lpm_advec |
---|
[1929] | 1114 | |
---|
| 1115 | ! Description: |
---|
| 1116 | ! ------------ |
---|
| 1117 | !> Calculation of subgrid-scale particle speed using the stochastic model |
---|
| 1118 | !> of Weil et al. (2004, JAS, 61, 2877-2887). |
---|
| 1119 | !------------------------------------------------------------------------------! |
---|
| 1120 | SUBROUTINE weil_stochastic_eq( v_sgs, fs_n, e_n, dedxi_n, dedt_n, diss_n, & |
---|
| 1121 | dt_n, rg_n, fac ) |
---|
| 1122 | |
---|
| 1123 | USE kinds |
---|
| 1124 | |
---|
| 1125 | USE particle_attributes, & |
---|
| 1126 | ONLY: c_0, sgs_wf_part |
---|
| 1127 | |
---|
| 1128 | IMPLICIT NONE |
---|
| 1129 | |
---|
| 1130 | REAL(wp) :: a1 !< dummy argument |
---|
| 1131 | REAL(wp) :: dedt_n !< time derivative of TKE at particle position |
---|
| 1132 | REAL(wp) :: dedxi_n !< horizontal derivative of TKE at particle position |
---|
| 1133 | REAL(wp) :: diss_n !< dissipation at particle position |
---|
| 1134 | REAL(wp) :: dt_n !< particle timestep |
---|
| 1135 | REAL(wp) :: e_n !< TKE at particle position |
---|
| 1136 | REAL(wp) :: fac !< flag to identify adjacent topography |
---|
| 1137 | REAL(wp) :: fs_n !< weighting factor to prevent that subgrid-scale particle speed becomes too large |
---|
| 1138 | REAL(wp) :: sgs_w !< constant (1/3) |
---|
| 1139 | REAL(wp) :: rg_n !< random number |
---|
| 1140 | REAL(wp) :: term1 !< memory term |
---|
| 1141 | REAL(wp) :: term2 !< drift correction term |
---|
| 1142 | REAL(wp) :: term3 !< random term |
---|
| 1143 | REAL(wp) :: v_sgs !< subgrid-scale velocity component |
---|
| 1144 | |
---|
[2100] | 1145 | !-- At first, limit TKE to a small non-zero number, in order to prevent |
---|
| 1146 | !-- the occurrence of extremely large SGS-velocities in case TKE is zero, |
---|
| 1147 | !-- (could occur at the simulation begin). |
---|
| 1148 | e_n = MAX( e_n, 1E-20_wp ) |
---|
[1929] | 1149 | ! |
---|
| 1150 | !-- Please note, terms 1 and 2 (drift and memory term, respectively) are |
---|
| 1151 | !-- multiplied by a flag to switch of both terms near topography. |
---|
| 1152 | !-- This is necessary, as both terms may cause a subgrid-scale velocity build up |
---|
| 1153 | !-- if particles are trapped in regions with very small TKE, e.g. in narrow street |
---|
| 1154 | !-- canyons resolved by only a few grid points. Hence, term 1 and term 2 are |
---|
| 1155 | !-- disabled if one of the adjacent grid points belongs to topography. |
---|
| 1156 | !-- Moreover, in this case, the previous subgrid-scale component is also set |
---|
| 1157 | !-- to zero. |
---|
| 1158 | |
---|
| 1159 | a1 = fs_n * c_0 * diss_n |
---|
| 1160 | ! |
---|
| 1161 | !-- Memory term |
---|
| 1162 | term1 = - a1 * v_sgs * dt_n / ( 4.0_wp * sgs_wf_part * e_n + 1E-20_wp ) & |
---|
| 1163 | * fac |
---|
| 1164 | ! |
---|
| 1165 | !-- Drift correction term |
---|
| 1166 | term2 = ( ( dedt_n * v_sgs / e_n ) + dedxi_n ) * 0.5_wp * dt_n & |
---|
| 1167 | * fac |
---|
| 1168 | ! |
---|
| 1169 | !-- Random term |
---|
| 1170 | term3 = SQRT( MAX( a1, 1E-20 ) ) * ( rg_n - 1.0_wp ) * SQRT( dt_n ) |
---|
| 1171 | ! |
---|
| 1172 | !-- In cese one of the adjacent grid-boxes belongs to topograhy, the previous |
---|
| 1173 | !-- subgrid-scale velocity component is set to zero, in order to prevent a |
---|
| 1174 | !-- velocity build-up. |
---|
| 1175 | !-- This case, set also previous subgrid-scale component to zero. |
---|
| 1176 | v_sgs = v_sgs * fac + term1 + term2 + term3 |
---|
| 1177 | |
---|
| 1178 | END SUBROUTINE weil_stochastic_eq |
---|