[1682] | 1 | !> @file lpm_advec.f90 |
---|
[2000] | 2 | !------------------------------------------------------------------------------! |
---|
[1036] | 3 | ! This file is part of PALM. |
---|
| 4 | ! |
---|
[2000] | 5 | ! PALM is free software: you can redistribute it and/or modify it under the |
---|
| 6 | ! terms of the GNU General Public License as published by the Free Software |
---|
| 7 | ! Foundation, either version 3 of the License, or (at your option) any later |
---|
| 8 | ! version. |
---|
[1036] | 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
[2101] | 17 | ! Copyright 1997-2017 Leibniz Universitaet Hannover |
---|
[2000] | 18 | !------------------------------------------------------------------------------! |
---|
[1036] | 19 | ! |
---|
[849] | 20 | ! Current revisions: |
---|
| 21 | ! ------------------ |
---|
[1930] | 22 | ! |
---|
[2318] | 23 | ! |
---|
[1930] | 24 | ! Former revisions: |
---|
| 25 | ! ----------------- |
---|
| 26 | ! $Id: lpm_advec.f90 2610 2017-11-15 08:24:11Z raasch $ |
---|
[2610] | 27 | ! bugfix in logarithmic interpolation of v-component (usws was used by mistake) |
---|
| 28 | ! |
---|
| 29 | ! 2606 2017-11-10 10:36:31Z schwenkel |
---|
[2606] | 30 | ! Changed particle box locations: center of particle box now coincides |
---|
| 31 | ! with scalar grid point of same index. |
---|
| 32 | ! Renamed module and subroutines: lpm_pack_arrays_mod -> lpm_pack_and_sort_mod |
---|
| 33 | ! lpm_pack_all_arrays -> lpm_sort_in_subboxes, lpm_pack_arrays -> lpm_pack |
---|
| 34 | ! lpm_sort -> lpm_sort_timeloop_done |
---|
| 35 | ! |
---|
| 36 | ! 2417 2017-09-06 15:22:27Z suehring |
---|
[2417] | 37 | ! Particle loops adapted for sub-box structure, i.e. for each sub-box the |
---|
| 38 | ! particle loop runs from start_index up to end_index instead from 1 to |
---|
| 39 | ! number_of_particles. This way, it is possible to skip unnecessary |
---|
| 40 | ! computations for particles that already completed the LES timestep. |
---|
| 41 | ! |
---|
| 42 | ! 2318 2017-07-20 17:27:44Z suehring |
---|
[2318] | 43 | ! Get topography top index via Function call |
---|
| 44 | ! |
---|
| 45 | ! 2317 2017-07-20 17:27:19Z suehring |
---|
[1930] | 46 | ! |
---|
[2233] | 47 | ! 2232 2017-05-30 17:47:52Z suehring |
---|
| 48 | ! Adjustments to new topography and surface concept |
---|
| 49 | ! |
---|
[2101] | 50 | ! 2100 2017-01-05 16:40:16Z suehring |
---|
| 51 | ! Prevent extremely large SGS-velocities in regions where TKE is zero, e.g. |
---|
| 52 | ! at the begin of simulations and/or in non-turbulent regions. |
---|
| 53 | ! |
---|
[2001] | 54 | ! 2000 2016-08-20 18:09:15Z knoop |
---|
| 55 | ! Forced header and separation lines into 80 columns |
---|
| 56 | ! |
---|
[1937] | 57 | ! 1936 2016-06-13 13:37:44Z suehring |
---|
| 58 | ! Formatting adjustments |
---|
| 59 | ! |
---|
[1930] | 60 | ! 1929 2016-06-09 16:25:25Z suehring |
---|
[1929] | 61 | ! Put stochastic equation in an extra subroutine. |
---|
| 62 | ! Set flag for stochastic equation to communicate whether a particle is near |
---|
| 63 | ! topography. This case, memory and drift term are disabled in the Weil equation. |
---|
[1889] | 64 | ! |
---|
[1929] | 65 | ! Enable vertical logarithmic interpolation also above topography. This case, |
---|
| 66 | ! set a lower limit for the friction velocity, as it can become very small |
---|
[1930] | 67 | ! in narrow street canyons, leading to too large particle speeds. |
---|
[1823] | 68 | ! |
---|
[1889] | 69 | ! 1888 2016-04-21 12:20:49Z suehring |
---|
| 70 | ! Bugfix concerning logarithmic interpolation of particle speed |
---|
| 71 | ! |
---|
[1823] | 72 | ! 1822 2016-04-07 07:49:42Z hoffmann |
---|
[1822] | 73 | ! Random velocity fluctuations for particles added. Terminal fall velocity |
---|
| 74 | ! for droplets is calculated from a parameterization (which is better than |
---|
| 75 | ! the previous, physically correct calculation, which demands a very short |
---|
| 76 | ! time step that is not used in the model). |
---|
| 77 | ! |
---|
| 78 | ! Unused variables deleted. |
---|
[1321] | 79 | ! |
---|
[1692] | 80 | ! 1691 2015-10-26 16:17:44Z maronga |
---|
| 81 | ! Renamed prandtl_layer to constant_flux_layer. |
---|
| 82 | ! |
---|
[1686] | 83 | ! 1685 2015-10-08 07:32:13Z raasch |
---|
| 84 | ! TKE check for negative values (so far, only zero value was checked) |
---|
| 85 | ! offset_ocean_nzt_m1 removed |
---|
| 86 | ! |
---|
[1683] | 87 | ! 1682 2015-10-07 23:56:08Z knoop |
---|
| 88 | ! Code annotations made doxygen readable |
---|
| 89 | ! |
---|
[1584] | 90 | ! 1583 2015-04-15 12:16:27Z suehring |
---|
| 91 | ! Bugfix: particle advection within Prandtl-layer in case of Galilei |
---|
| 92 | ! transformation. |
---|
| 93 | ! |
---|
[1370] | 94 | ! 1369 2014-04-24 05:57:38Z raasch |
---|
| 95 | ! usage of module interfaces removed |
---|
| 96 | ! |
---|
[1360] | 97 | ! 1359 2014-04-11 17:15:14Z hoffmann |
---|
| 98 | ! New particle structure integrated. |
---|
| 99 | ! Kind definition added to all floating point numbers. |
---|
| 100 | ! |
---|
[1323] | 101 | ! 1322 2014-03-20 16:38:49Z raasch |
---|
| 102 | ! REAL constants defined as wp_kind |
---|
| 103 | ! |
---|
[1321] | 104 | ! 1320 2014-03-20 08:40:49Z raasch |
---|
[1320] | 105 | ! ONLY-attribute added to USE-statements, |
---|
| 106 | ! kind-parameters added to all INTEGER and REAL declaration statements, |
---|
| 107 | ! kinds are defined in new module kinds, |
---|
| 108 | ! revision history before 2012 removed, |
---|
| 109 | ! comment fields (!:) to be used for variable explanations added to |
---|
| 110 | ! all variable declaration statements |
---|
[849] | 111 | ! |
---|
[1315] | 112 | ! 1314 2014-03-14 18:25:17Z suehring |
---|
| 113 | ! Vertical logarithmic interpolation of horizontal particle speed for particles |
---|
| 114 | ! between roughness height and first vertical grid level. |
---|
| 115 | ! |
---|
[1037] | 116 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
| 117 | ! code put under GPL (PALM 3.9) |
---|
| 118 | ! |
---|
[850] | 119 | ! 849 2012-03-15 10:35:09Z raasch |
---|
| 120 | ! initial revision (former part of advec_particles) |
---|
[849] | 121 | ! |
---|
[850] | 122 | ! |
---|
[849] | 123 | ! Description: |
---|
| 124 | ! ------------ |
---|
[1682] | 125 | !> Calculation of new particle positions due to advection using a simple Euler |
---|
| 126 | !> scheme. Particles may feel inertia effects. SGS transport can be included |
---|
| 127 | !> using the stochastic model of Weil et al. (2004, JAS, 61, 2877-2887). |
---|
[849] | 128 | !------------------------------------------------------------------------------! |
---|
[1682] | 129 | SUBROUTINE lpm_advec (ip,jp,kp) |
---|
| 130 | |
---|
[849] | 131 | |
---|
[1320] | 132 | USE arrays_3d, & |
---|
[2232] | 133 | ONLY: de_dx, de_dy, de_dz, diss, e, km, u, v, w, zu, zw |
---|
[849] | 134 | |
---|
[1359] | 135 | USE cpulog |
---|
| 136 | |
---|
| 137 | USE pegrid |
---|
| 138 | |
---|
[1320] | 139 | USE control_parameters, & |
---|
[1691] | 140 | ONLY: atmos_ocean_sign, cloud_droplets, constant_flux_layer, dt_3d, & |
---|
[1822] | 141 | dt_3d_reached_l, dz, g, kappa, topography, u_gtrans, v_gtrans |
---|
[849] | 142 | |
---|
[1320] | 143 | USE grid_variables, & |
---|
| 144 | ONLY: ddx, dx, ddy, dy |
---|
| 145 | |
---|
| 146 | USE indices, & |
---|
[2317] | 147 | ONLY: nzb, nzt |
---|
[1320] | 148 | |
---|
| 149 | USE kinds |
---|
| 150 | |
---|
| 151 | USE particle_attributes, & |
---|
[1822] | 152 | ONLY: block_offset, c_0, dt_min_part, grid_particles, & |
---|
[1359] | 153 | iran_part, log_z_z0, number_of_particles, number_of_sublayers, & |
---|
[1929] | 154 | particles, particle_groups, offset_ocean_nzt, sgs_wf_part, & |
---|
| 155 | use_sgs_for_particles, vertical_particle_advection, z0_av_global |
---|
[1320] | 156 | |
---|
| 157 | USE statistics, & |
---|
| 158 | ONLY: hom |
---|
[849] | 159 | |
---|
[2232] | 160 | USE surface_mod, & |
---|
[2317] | 161 | ONLY: get_topography_top_index, surf_def_h, surf_lsm_h, surf_usm_h |
---|
[2232] | 162 | |
---|
[1320] | 163 | IMPLICIT NONE |
---|
[849] | 164 | |
---|
[1929] | 165 | INTEGER(iwp) :: agp !< loop variable |
---|
| 166 | INTEGER(iwp) :: gp_outside_of_building(1:8) !< number of grid points used for particle interpolation in case of topography |
---|
| 167 | INTEGER(iwp) :: i !< index variable along x |
---|
| 168 | INTEGER(iwp) :: ip !< index variable along x |
---|
| 169 | INTEGER(iwp) :: ilog !< index variable along x |
---|
| 170 | INTEGER(iwp) :: j !< index variable along y |
---|
| 171 | INTEGER(iwp) :: jp !< index variable along y |
---|
| 172 | INTEGER(iwp) :: jlog !< index variable along y |
---|
| 173 | INTEGER(iwp) :: k !< index variable along z |
---|
[2232] | 174 | INTEGER(iwp) :: k_wall !< vertical index of topography top |
---|
[1929] | 175 | INTEGER(iwp) :: kp !< index variable along z |
---|
| 176 | INTEGER(iwp) :: kw !< index variable along z |
---|
| 177 | INTEGER(iwp) :: n !< loop variable over all particles in a grid box |
---|
| 178 | INTEGER(iwp) :: nb !< block number particles are sorted in |
---|
| 179 | INTEGER(iwp) :: num_gp !< number of adjacent grid points inside topography |
---|
[2232] | 180 | INTEGER(iwp) :: surf_start !< Index on surface data-type for current grid box |
---|
[849] | 181 | |
---|
[1929] | 182 | INTEGER(iwp), DIMENSION(0:7) :: start_index !< start particle index for current block |
---|
| 183 | INTEGER(iwp), DIMENSION(0:7) :: end_index !< start particle index for current block |
---|
[1359] | 184 | |
---|
[1929] | 185 | REAL(wp) :: aa !< dummy argument for horizontal particle interpolation |
---|
| 186 | REAL(wp) :: bb !< dummy argument for horizontal particle interpolation |
---|
| 187 | REAL(wp) :: cc !< dummy argument for horizontal particle interpolation |
---|
| 188 | REAL(wp) :: d_sum !< dummy argument for horizontal particle interpolation in case of topography |
---|
| 189 | REAL(wp) :: d_z_p_z0 !< inverse of interpolation length for logarithmic interpolation |
---|
| 190 | REAL(wp) :: dd !< dummy argument for horizontal particle interpolation |
---|
| 191 | REAL(wp) :: de_dx_int_l !< x/y-interpolated TKE gradient (x) at particle position at lower vertical level |
---|
| 192 | REAL(wp) :: de_dx_int_u !< x/y-interpolated TKE gradient (x) at particle position at upper vertical level |
---|
| 193 | REAL(wp) :: de_dy_int_l !< x/y-interpolated TKE gradient (y) at particle position at lower vertical level |
---|
| 194 | REAL(wp) :: de_dy_int_u !< x/y-interpolated TKE gradient (y) at particle position at upper vertical level |
---|
| 195 | REAL(wp) :: de_dt !< temporal derivative of TKE experienced by the particle |
---|
| 196 | REAL(wp) :: de_dt_min !< lower level for temporal TKE derivative |
---|
| 197 | REAL(wp) :: de_dz_int_l !< x/y-interpolated TKE gradient (z) at particle position at lower vertical level |
---|
| 198 | REAL(wp) :: de_dz_int_u !< x/y-interpolated TKE gradient (z) at particle position at upper vertical level |
---|
[1822] | 199 | REAL(wp) :: diameter !< diamter of droplet |
---|
[1929] | 200 | REAL(wp) :: diss_int_l !< x/y-interpolated dissipation at particle position at lower vertical level |
---|
| 201 | REAL(wp) :: diss_int_u !< x/y-interpolated dissipation at particle position at upper vertical level |
---|
| 202 | REAL(wp) :: dt_gap !< remaining time until particle time integration reaches LES time |
---|
| 203 | REAL(wp) :: dt_particle_m !< previous particle time step |
---|
| 204 | REAL(wp) :: e_int_l !< x/y-interpolated TKE at particle position at lower vertical level |
---|
| 205 | REAL(wp) :: e_int_u !< x/y-interpolated TKE at particle position at upper vertical level |
---|
| 206 | REAL(wp) :: e_mean_int !< horizontal mean TKE at particle height |
---|
[1682] | 207 | REAL(wp) :: exp_arg !< |
---|
| 208 | REAL(wp) :: exp_term !< |
---|
[1929] | 209 | REAL(wp) :: gg !< dummy argument for horizontal particle interpolation |
---|
| 210 | REAL(wp) :: height_p !< dummy argument for logarithmic interpolation |
---|
[1822] | 211 | REAL(wp) :: lagr_timescale !< Lagrangian timescale |
---|
[1929] | 212 | REAL(wp) :: location(1:30,1:3) !< wall locations |
---|
| 213 | REAL(wp) :: log_z_z0_int !< logarithmus used for surface_layer interpolation |
---|
[1682] | 214 | REAL(wp) :: random_gauss !< |
---|
[1822] | 215 | REAL(wp) :: RL !< Lagrangian autocorrelation coefficient |
---|
| 216 | REAL(wp) :: rg1 !< Gaussian distributed random number |
---|
| 217 | REAL(wp) :: rg2 !< Gaussian distributed random number |
---|
| 218 | REAL(wp) :: rg3 !< Gaussian distributed random number |
---|
| 219 | REAL(wp) :: sigma !< velocity standard deviation |
---|
[1929] | 220 | REAL(wp) :: u_int_l !< x/y-interpolated u-component at particle position at lower vertical level |
---|
| 221 | REAL(wp) :: u_int_u !< x/y-interpolated u-component at particle position at upper vertical level |
---|
| 222 | REAL(wp) :: us_int !< friction velocity at particle grid box |
---|
[2232] | 223 | REAL(wp) :: usws_int !< surface momentum flux (u component) at particle grid box |
---|
[1929] | 224 | REAL(wp) :: v_int_l !< x/y-interpolated v-component at particle position at lower vertical level |
---|
| 225 | REAL(wp) :: v_int_u !< x/y-interpolated v-component at particle position at upper vertical level |
---|
[2232] | 226 | REAL(wp) :: vsws_int !< surface momentum flux (u component) at particle grid box |
---|
[1682] | 227 | REAL(wp) :: vv_int !< |
---|
[1929] | 228 | REAL(wp) :: w_int_l !< x/y-interpolated w-component at particle position at lower vertical level |
---|
| 229 | REAL(wp) :: w_int_u !< x/y-interpolated w-component at particle position at upper vertical level |
---|
[1822] | 230 | REAL(wp) :: w_s !< terminal velocity of droplets |
---|
[1929] | 231 | REAL(wp) :: x !< dummy argument for horizontal particle interpolation |
---|
| 232 | REAL(wp) :: y !< dummy argument for horizontal particle interpolation |
---|
| 233 | REAL(wp) :: z_p !< surface layer height (0.5 dz) |
---|
[849] | 234 | |
---|
[1822] | 235 | REAL(wp), PARAMETER :: a_rog = 9.65_wp !< parameter for fall velocity |
---|
| 236 | REAL(wp), PARAMETER :: b_rog = 10.43_wp !< parameter for fall velocity |
---|
| 237 | REAL(wp), PARAMETER :: c_rog = 0.6_wp !< parameter for fall velocity |
---|
| 238 | REAL(wp), PARAMETER :: k_cap_rog = 4.0_wp !< parameter for fall velocity |
---|
| 239 | REAL(wp), PARAMETER :: k_low_rog = 12.0_wp !< parameter for fall velocity |
---|
| 240 | REAL(wp), PARAMETER :: d0_rog = 0.745_wp !< separation diameter |
---|
| 241 | |
---|
[1929] | 242 | REAL(wp), DIMENSION(1:30) :: d_gp_pl !< dummy argument for particle interpolation scheme in case of topography |
---|
| 243 | REAL(wp), DIMENSION(1:30) :: de_dxi !< horizontal TKE gradient along x at adjacent wall |
---|
| 244 | REAL(wp), DIMENSION(1:30) :: de_dyi !< horizontal TKE gradient along y at adjacent wall |
---|
| 245 | REAL(wp), DIMENSION(1:30) :: de_dzi !< horizontal TKE gradient along z at adjacent wall |
---|
| 246 | REAL(wp), DIMENSION(1:30) :: dissi !< dissipation at adjacent wall |
---|
| 247 | REAL(wp), DIMENSION(1:30) :: ei !< TKE at adjacent wall |
---|
[849] | 248 | |
---|
[1929] | 249 | REAL(wp), DIMENSION(number_of_particles) :: term_1_2 !< flag to communicate whether a particle is near topography or not |
---|
[1682] | 250 | REAL(wp), DIMENSION(number_of_particles) :: dens_ratio !< |
---|
[1929] | 251 | REAL(wp), DIMENSION(number_of_particles) :: de_dx_int !< horizontal TKE gradient along x at particle position |
---|
| 252 | REAL(wp), DIMENSION(number_of_particles) :: de_dy_int !< horizontal TKE gradient along y at particle position |
---|
| 253 | REAL(wp), DIMENSION(number_of_particles) :: de_dz_int !< horizontal TKE gradient along z at particle position |
---|
| 254 | REAL(wp), DIMENSION(number_of_particles) :: diss_int !< dissipation at particle position |
---|
| 255 | REAL(wp), DIMENSION(number_of_particles) :: dt_particle !< particle time step |
---|
| 256 | REAL(wp), DIMENSION(number_of_particles) :: e_int !< TKE at particle position |
---|
| 257 | REAL(wp), DIMENSION(number_of_particles) :: fs_int !< weighting factor for subgrid-scale particle speed |
---|
| 258 | REAL(wp), DIMENSION(number_of_particles) :: u_int !< u-component of particle speed |
---|
| 259 | REAL(wp), DIMENSION(number_of_particles) :: v_int !< v-component of particle speed |
---|
| 260 | REAL(wp), DIMENSION(number_of_particles) :: w_int !< w-component of particle speed |
---|
| 261 | REAL(wp), DIMENSION(number_of_particles) :: xv !< x-position |
---|
| 262 | REAL(wp), DIMENSION(number_of_particles) :: yv !< y-position |
---|
| 263 | REAL(wp), DIMENSION(number_of_particles) :: zv !< z-position |
---|
[1359] | 264 | |
---|
[1929] | 265 | REAL(wp), DIMENSION(number_of_particles, 3) :: rg !< vector of Gaussian distributed random numbers |
---|
[1359] | 266 | |
---|
| 267 | CALL cpu_log( log_point_s(44), 'lpm_advec', 'continue' ) |
---|
| 268 | |
---|
[1314] | 269 | ! |
---|
| 270 | !-- Determine height of Prandtl layer and distance between Prandtl-layer |
---|
| 271 | !-- height and horizontal mean roughness height, which are required for |
---|
| 272 | !-- vertical logarithmic interpolation of horizontal particle speeds |
---|
| 273 | !-- (for particles below first vertical grid level). |
---|
| 274 | z_p = zu(nzb+1) - zw(nzb) |
---|
[1359] | 275 | d_z_p_z0 = 1.0_wp / ( z_p - z0_av_global ) |
---|
[849] | 276 | |
---|
[1359] | 277 | start_index = grid_particles(kp,jp,ip)%start_index |
---|
| 278 | end_index = grid_particles(kp,jp,ip)%end_index |
---|
[849] | 279 | |
---|
[1359] | 280 | xv = particles(1:number_of_particles)%x |
---|
| 281 | yv = particles(1:number_of_particles)%y |
---|
| 282 | zv = particles(1:number_of_particles)%z |
---|
[849] | 283 | |
---|
[1359] | 284 | DO nb = 0, 7 |
---|
[2606] | 285 | ! |
---|
| 286 | !-- Interpolate u velocity-component |
---|
[1359] | 287 | i = ip |
---|
| 288 | j = jp + block_offset(nb)%j_off |
---|
| 289 | k = kp + block_offset(nb)%k_off |
---|
[2606] | 290 | |
---|
[1359] | 291 | DO n = start_index(nb), end_index(nb) |
---|
[1314] | 292 | ! |
---|
[1359] | 293 | !-- Interpolation of the u velocity component onto particle position. |
---|
| 294 | !-- Particles are interpolation bi-linearly in the horizontal and a |
---|
| 295 | !-- linearly in the vertical. An exception is made for particles below |
---|
| 296 | !-- the first vertical grid level in case of a prandtl layer. In this |
---|
| 297 | !-- case the horizontal particle velocity components are determined using |
---|
| 298 | !-- Monin-Obukhov relations (if branch). |
---|
| 299 | !-- First, check if particle is located below first vertical grid level |
---|
[2232] | 300 | !-- above topography (Prandtl-layer height) |
---|
[2606] | 301 | ilog = particles(n)%x * ddx |
---|
| 302 | jlog = particles(n)%y * ddy |
---|
[2232] | 303 | ! |
---|
| 304 | !-- Determine vertical index of topography top |
---|
[2417] | 305 | k_wall = get_topography_top_index( jlog, ilog, 's' ) |
---|
[1929] | 306 | |
---|
[2232] | 307 | IF ( constant_flux_layer .AND. zv(n) - zw(k_wall) < z_p ) THEN |
---|
[1314] | 308 | ! |
---|
[1359] | 309 | !-- Resolved-scale horizontal particle velocity is zero below z0. |
---|
[2232] | 310 | IF ( zv(n) - zw(k_wall) < z0_av_global ) THEN |
---|
[1359] | 311 | u_int(n) = 0.0_wp |
---|
| 312 | ELSE |
---|
[1314] | 313 | ! |
---|
[1359] | 314 | !-- Determine the sublayer. Further used as index. |
---|
[2232] | 315 | height_p = ( zv(n) - zw(k_wall) - z0_av_global ) & |
---|
[1936] | 316 | * REAL( number_of_sublayers, KIND=wp ) & |
---|
[1359] | 317 | * d_z_p_z0 |
---|
[1314] | 318 | ! |
---|
[1359] | 319 | !-- Calculate LOG(z/z0) for exact particle height. Therefore, |
---|
| 320 | !-- interpolate linearly between precalculated logarithm. |
---|
[1929] | 321 | log_z_z0_int = log_z_z0(INT(height_p)) & |
---|
[1359] | 322 | + ( height_p - INT(height_p) ) & |
---|
| 323 | * ( log_z_z0(INT(height_p)+1) & |
---|
| 324 | - log_z_z0(INT(height_p)) & |
---|
| 325 | ) |
---|
[1314] | 326 | ! |
---|
[2232] | 327 | !-- Get friction velocity and momentum flux from new surface data |
---|
| 328 | !-- types. |
---|
| 329 | IF ( surf_def_h(0)%start_index(jlog,ilog) <= & |
---|
| 330 | surf_def_h(0)%end_index(jlog,ilog) ) THEN |
---|
| 331 | surf_start = surf_def_h(0)%start_index(jlog,ilog) |
---|
| 332 | !-- Limit friction velocity. In narrow canyons or holes the |
---|
| 333 | !-- friction velocity can become very small, resulting in a too |
---|
| 334 | !-- large particle speed. |
---|
| 335 | us_int = MAX( surf_def_h(0)%us(surf_start), 0.01_wp ) |
---|
| 336 | usws_int = surf_def_h(0)%usws(surf_start) |
---|
| 337 | ELSEIF ( surf_lsm_h%start_index(jlog,ilog) <= & |
---|
| 338 | surf_lsm_h%end_index(jlog,ilog) ) THEN |
---|
| 339 | surf_start = surf_lsm_h%start_index(jlog,ilog) |
---|
| 340 | us_int = MAX( surf_lsm_h%us(surf_start), 0.01_wp ) |
---|
| 341 | usws_int = surf_lsm_h%usws(surf_start) |
---|
| 342 | ELSEIF ( surf_usm_h%start_index(jlog,ilog) <= & |
---|
| 343 | surf_usm_h%end_index(jlog,ilog) ) THEN |
---|
| 344 | surf_start = surf_usm_h%start_index(jlog,ilog) |
---|
| 345 | us_int = MAX( surf_usm_h%us(surf_start), 0.01_wp ) |
---|
| 346 | usws_int = surf_usm_h%usws(surf_start) |
---|
| 347 | ENDIF |
---|
| 348 | |
---|
[1929] | 349 | ! |
---|
[1359] | 350 | !-- Neutral solution is applied for all situations, e.g. also for |
---|
| 351 | !-- unstable and stable situations. Even though this is not exact |
---|
| 352 | !-- this saves a lot of CPU time since several calls of intrinsic |
---|
| 353 | !-- FORTRAN procedures (LOG, ATAN) are avoided, This is justified |
---|
| 354 | !-- as sensitivity studies revealed no significant effect of |
---|
| 355 | !-- using the neutral solution also for un/stable situations. |
---|
[2232] | 356 | u_int(n) = -usws_int / ( us_int * kappa + 1E-10_wp ) & |
---|
[1929] | 357 | * log_z_z0_int - u_gtrans |
---|
| 358 | |
---|
[1359] | 359 | ENDIF |
---|
| 360 | ! |
---|
| 361 | !-- Particle above the first grid level. Bi-linear interpolation in the |
---|
| 362 | !-- horizontal and linear interpolation in the vertical direction. |
---|
[1314] | 363 | ELSE |
---|
| 364 | |
---|
[1359] | 365 | x = xv(n) + ( 0.5_wp - i ) * dx |
---|
| 366 | y = yv(n) - j * dy |
---|
| 367 | aa = x**2 + y**2 |
---|
| 368 | bb = ( dx - x )**2 + y**2 |
---|
| 369 | cc = x**2 + ( dy - y )**2 |
---|
| 370 | dd = ( dx - x )**2 + ( dy - y )**2 |
---|
| 371 | gg = aa + bb + cc + dd |
---|
[1314] | 372 | |
---|
[1359] | 373 | u_int_l = ( ( gg - aa ) * u(k,j,i) + ( gg - bb ) * u(k,j,i+1) & |
---|
| 374 | + ( gg - cc ) * u(k,j+1,i) + ( gg - dd ) * & |
---|
| 375 | u(k,j+1,i+1) ) / ( 3.0_wp * gg ) - u_gtrans |
---|
[1314] | 376 | |
---|
[1359] | 377 | IF ( k == nzt ) THEN |
---|
| 378 | u_int(n) = u_int_l |
---|
| 379 | ELSE |
---|
| 380 | u_int_u = ( ( gg-aa ) * u(k+1,j,i) + ( gg-bb ) * u(k+1,j,i+1) & |
---|
| 381 | + ( gg-cc ) * u(k+1,j+1,i) + ( gg-dd ) * & |
---|
| 382 | u(k+1,j+1,i+1) ) / ( 3.0_wp * gg ) - u_gtrans |
---|
| 383 | u_int(n) = u_int_l + ( zv(n) - zu(k) ) / dz * & |
---|
| 384 | ( u_int_u - u_int_l ) |
---|
| 385 | ENDIF |
---|
[1929] | 386 | |
---|
[1314] | 387 | ENDIF |
---|
| 388 | |
---|
[1359] | 389 | ENDDO |
---|
[2606] | 390 | ! |
---|
| 391 | !-- Same procedure for interpolation of the v velocity-component |
---|
[1359] | 392 | i = ip + block_offset(nb)%i_off |
---|
| 393 | j = jp |
---|
| 394 | k = kp + block_offset(nb)%k_off |
---|
[2606] | 395 | |
---|
[1359] | 396 | DO n = start_index(nb), end_index(nb) |
---|
[1685] | 397 | |
---|
[2606] | 398 | ilog = particles(n)%x * ddx |
---|
| 399 | jlog = particles(n)%y * ddy |
---|
[2232] | 400 | ! |
---|
| 401 | !-- Determine vertical index of topography top |
---|
[2317] | 402 | k_wall = get_topography_top_index( jlog,ilog, 's' ) |
---|
[849] | 403 | |
---|
[2232] | 404 | IF ( constant_flux_layer .AND. zv(n) - zw(k_wall) < z_p ) THEN |
---|
| 405 | IF ( zv(n) - zw(k_wall) < z0_av_global ) THEN |
---|
[1314] | 406 | ! |
---|
[1359] | 407 | !-- Resolved-scale horizontal particle velocity is zero below z0. |
---|
| 408 | v_int(n) = 0.0_wp |
---|
| 409 | ELSE |
---|
| 410 | ! |
---|
[1929] | 411 | !-- Determine the sublayer. Further used as index. Please note, |
---|
| 412 | !-- logarithmus can not be reused from above, as in in case of |
---|
| 413 | !-- topography particle on u-grid can be above surface-layer height, |
---|
| 414 | !-- whereas it can be below on v-grid. |
---|
[2232] | 415 | height_p = ( zv(n) - zw(k_wall) - z0_av_global ) & |
---|
[1936] | 416 | * REAL( number_of_sublayers, KIND=wp ) & |
---|
[1929] | 417 | * d_z_p_z0 |
---|
| 418 | ! |
---|
| 419 | !-- Calculate LOG(z/z0) for exact particle height. Therefore, |
---|
| 420 | !-- interpolate linearly between precalculated logarithm. |
---|
| 421 | log_z_z0_int = log_z_z0(INT(height_p)) & |
---|
| 422 | + ( height_p - INT(height_p) ) & |
---|
| 423 | * ( log_z_z0(INT(height_p)+1) & |
---|
| 424 | - log_z_z0(INT(height_p)) & |
---|
| 425 | ) |
---|
| 426 | ! |
---|
[2232] | 427 | !-- Get friction velocity and momentum flux from new surface data |
---|
| 428 | !-- types. |
---|
| 429 | IF ( surf_def_h(0)%start_index(jlog,ilog) <= & |
---|
| 430 | surf_def_h(0)%end_index(jlog,ilog) ) THEN |
---|
| 431 | surf_start = surf_def_h(0)%start_index(jlog,ilog) |
---|
| 432 | !-- Limit friction velocity. In narrow canyons or holes the |
---|
| 433 | !-- friction velocity can become very small, resulting in a too |
---|
| 434 | !-- large particle speed. |
---|
| 435 | us_int = MAX( surf_def_h(0)%us(surf_start), 0.01_wp ) |
---|
[2610] | 436 | vsws_int = surf_def_h(0)%vsws(surf_start) |
---|
[2232] | 437 | ELSEIF ( surf_lsm_h%start_index(jlog,ilog) <= & |
---|
| 438 | surf_lsm_h%end_index(jlog,ilog) ) THEN |
---|
| 439 | surf_start = surf_lsm_h%start_index(jlog,ilog) |
---|
| 440 | us_int = MAX( surf_lsm_h%us(surf_start), 0.01_wp ) |
---|
[2610] | 441 | vsws_int = surf_lsm_h%vsws(surf_start) |
---|
[2232] | 442 | ELSEIF ( surf_usm_h%start_index(jlog,ilog) <= & |
---|
| 443 | surf_usm_h%end_index(jlog,ilog) ) THEN |
---|
| 444 | surf_start = surf_usm_h%start_index(jlog,ilog) |
---|
| 445 | us_int = MAX( surf_usm_h%us(surf_start), 0.01_wp ) |
---|
[2610] | 446 | vsws_int = surf_usm_h%vsws(surf_start) |
---|
[2232] | 447 | ENDIF |
---|
[1929] | 448 | ! |
---|
[1359] | 449 | !-- Neutral solution is applied for all situations, e.g. also for |
---|
| 450 | !-- unstable and stable situations. Even though this is not exact |
---|
| 451 | !-- this saves a lot of CPU time since several calls of intrinsic |
---|
| 452 | !-- FORTRAN procedures (LOG, ATAN) are avoided, This is justified |
---|
| 453 | !-- as sensitivity studies revealed no significant effect of |
---|
| 454 | !-- using the neutral solution also for un/stable situations. |
---|
[2232] | 455 | v_int(n) = -vsws_int / ( us_int * kappa + 1E-10_wp ) & |
---|
[1929] | 456 | * log_z_z0_int - v_gtrans |
---|
[1314] | 457 | |
---|
[1359] | 458 | ENDIF |
---|
[1929] | 459 | |
---|
[1359] | 460 | ELSE |
---|
| 461 | x = xv(n) - i * dx |
---|
| 462 | y = yv(n) + ( 0.5_wp - j ) * dy |
---|
| 463 | aa = x**2 + y**2 |
---|
| 464 | bb = ( dx - x )**2 + y**2 |
---|
| 465 | cc = x**2 + ( dy - y )**2 |
---|
| 466 | dd = ( dx - x )**2 + ( dy - y )**2 |
---|
| 467 | gg = aa + bb + cc + dd |
---|
[1314] | 468 | |
---|
[1359] | 469 | v_int_l = ( ( gg - aa ) * v(k,j,i) + ( gg - bb ) * v(k,j,i+1) & |
---|
| 470 | + ( gg - cc ) * v(k,j+1,i) + ( gg - dd ) * v(k,j+1,i+1) & |
---|
| 471 | ) / ( 3.0_wp * gg ) - v_gtrans |
---|
[1314] | 472 | |
---|
[1359] | 473 | IF ( k == nzt ) THEN |
---|
| 474 | v_int(n) = v_int_l |
---|
| 475 | ELSE |
---|
| 476 | v_int_u = ( ( gg-aa ) * v(k+1,j,i) + ( gg-bb ) * v(k+1,j,i+1) & |
---|
| 477 | + ( gg-cc ) * v(k+1,j+1,i) + ( gg-dd ) * v(k+1,j+1,i+1) & |
---|
| 478 | ) / ( 3.0_wp * gg ) - v_gtrans |
---|
| 479 | v_int(n) = v_int_l + ( zv(n) - zu(k) ) / dz * & |
---|
| 480 | ( v_int_u - v_int_l ) |
---|
| 481 | ENDIF |
---|
[1929] | 482 | |
---|
[1314] | 483 | ENDIF |
---|
| 484 | |
---|
[1359] | 485 | ENDDO |
---|
[2606] | 486 | ! |
---|
| 487 | !-- Same procedure for interpolation of the w velocity-component |
---|
[1359] | 488 | i = ip + block_offset(nb)%i_off |
---|
| 489 | j = jp + block_offset(nb)%j_off |
---|
[1929] | 490 | k = kp - 1 |
---|
[2606] | 491 | |
---|
[1359] | 492 | DO n = start_index(nb), end_index(nb) |
---|
[849] | 493 | |
---|
[1359] | 494 | IF ( vertical_particle_advection(particles(n)%group) ) THEN |
---|
[849] | 495 | |
---|
[1359] | 496 | x = xv(n) - i * dx |
---|
| 497 | y = yv(n) - j * dy |
---|
[849] | 498 | aa = x**2 + y**2 |
---|
| 499 | bb = ( dx - x )**2 + y**2 |
---|
| 500 | cc = x**2 + ( dy - y )**2 |
---|
| 501 | dd = ( dx - x )**2 + ( dy - y )**2 |
---|
| 502 | gg = aa + bb + cc + dd |
---|
| 503 | |
---|
[1359] | 504 | w_int_l = ( ( gg - aa ) * w(k,j,i) + ( gg - bb ) * w(k,j,i+1) & |
---|
| 505 | + ( gg - cc ) * w(k,j+1,i) + ( gg - dd ) * w(k,j+1,i+1) & |
---|
| 506 | ) / ( 3.0_wp * gg ) |
---|
[849] | 507 | |
---|
[1359] | 508 | IF ( k == nzt ) THEN |
---|
| 509 | w_int(n) = w_int_l |
---|
[849] | 510 | ELSE |
---|
[1359] | 511 | w_int_u = ( ( gg-aa ) * w(k+1,j,i) + & |
---|
| 512 | ( gg-bb ) * w(k+1,j,i+1) + & |
---|
| 513 | ( gg-cc ) * w(k+1,j+1,i) + & |
---|
| 514 | ( gg-dd ) * w(k+1,j+1,i+1) & |
---|
| 515 | ) / ( 3.0_wp * gg ) |
---|
| 516 | w_int(n) = w_int_l + ( zv(n) - zw(k) ) / dz * & |
---|
| 517 | ( w_int_u - w_int_l ) |
---|
[849] | 518 | ENDIF |
---|
| 519 | |
---|
[1359] | 520 | ELSE |
---|
[849] | 521 | |
---|
[1359] | 522 | w_int(n) = 0.0_wp |
---|
[849] | 523 | |
---|
[1359] | 524 | ENDIF |
---|
| 525 | |
---|
| 526 | ENDDO |
---|
| 527 | |
---|
| 528 | ENDDO |
---|
| 529 | |
---|
| 530 | !-- Interpolate and calculate quantities needed for calculating the SGS |
---|
| 531 | !-- velocities |
---|
[1822] | 532 | IF ( use_sgs_for_particles .AND. .NOT. cloud_droplets ) THEN |
---|
[1359] | 533 | |
---|
| 534 | IF ( topography == 'flat' ) THEN |
---|
| 535 | |
---|
| 536 | DO nb = 0,7 |
---|
| 537 | |
---|
| 538 | i = ip + block_offset(nb)%i_off |
---|
| 539 | j = jp + block_offset(nb)%j_off |
---|
| 540 | k = kp + block_offset(nb)%k_off |
---|
| 541 | |
---|
| 542 | DO n = start_index(nb), end_index(nb) |
---|
[849] | 543 | ! |
---|
[1359] | 544 | !-- Interpolate TKE |
---|
| 545 | x = xv(n) - i * dx |
---|
| 546 | y = yv(n) - j * dy |
---|
| 547 | aa = x**2 + y**2 |
---|
| 548 | bb = ( dx - x )**2 + y**2 |
---|
| 549 | cc = x**2 + ( dy - y )**2 |
---|
| 550 | dd = ( dx - x )**2 + ( dy - y )**2 |
---|
| 551 | gg = aa + bb + cc + dd |
---|
[849] | 552 | |
---|
[1359] | 553 | e_int_l = ( ( gg-aa ) * e(k,j,i) + ( gg-bb ) * e(k,j,i+1) & |
---|
| 554 | + ( gg-cc ) * e(k,j+1,i) + ( gg-dd ) * e(k,j+1,i+1) & |
---|
| 555 | ) / ( 3.0_wp * gg ) |
---|
| 556 | |
---|
| 557 | IF ( k+1 == nzt+1 ) THEN |
---|
| 558 | e_int(n) = e_int_l |
---|
| 559 | ELSE |
---|
| 560 | e_int_u = ( ( gg - aa ) * e(k+1,j,i) + & |
---|
| 561 | ( gg - bb ) * e(k+1,j,i+1) + & |
---|
| 562 | ( gg - cc ) * e(k+1,j+1,i) + & |
---|
| 563 | ( gg - dd ) * e(k+1,j+1,i+1) & |
---|
| 564 | ) / ( 3.0_wp * gg ) |
---|
| 565 | e_int(n) = e_int_l + ( zv(n) - zu(k) ) / dz * & |
---|
| 566 | ( e_int_u - e_int_l ) |
---|
| 567 | ENDIF |
---|
[849] | 568 | ! |
---|
[1685] | 569 | !-- Needed to avoid NaN particle velocities (this might not be |
---|
| 570 | !-- required any more) |
---|
| 571 | IF ( e_int(n) <= 0.0_wp ) THEN |
---|
[1359] | 572 | e_int(n) = 1.0E-20_wp |
---|
| 573 | ENDIF |
---|
| 574 | ! |
---|
| 575 | !-- Interpolate the TKE gradient along x (adopt incides i,j,k and |
---|
| 576 | !-- all position variables from above (TKE)) |
---|
| 577 | de_dx_int_l = ( ( gg - aa ) * de_dx(k,j,i) + & |
---|
| 578 | ( gg - bb ) * de_dx(k,j,i+1) + & |
---|
| 579 | ( gg - cc ) * de_dx(k,j+1,i) + & |
---|
| 580 | ( gg - dd ) * de_dx(k,j+1,i+1) & |
---|
| 581 | ) / ( 3.0_wp * gg ) |
---|
[849] | 582 | |
---|
| 583 | IF ( ( k+1 == nzt+1 ) .OR. ( k == nzb ) ) THEN |
---|
[1359] | 584 | de_dx_int(n) = de_dx_int_l |
---|
[849] | 585 | ELSE |
---|
[1359] | 586 | de_dx_int_u = ( ( gg - aa ) * de_dx(k+1,j,i) + & |
---|
| 587 | ( gg - bb ) * de_dx(k+1,j,i+1) + & |
---|
| 588 | ( gg - cc ) * de_dx(k+1,j+1,i) + & |
---|
| 589 | ( gg - dd ) * de_dx(k+1,j+1,i+1) & |
---|
| 590 | ) / ( 3.0_wp * gg ) |
---|
| 591 | de_dx_int(n) = de_dx_int_l + ( zv(n) - zu(k) ) / dz * & |
---|
| 592 | ( de_dx_int_u - de_dx_int_l ) |
---|
[849] | 593 | ENDIF |
---|
[1359] | 594 | ! |
---|
| 595 | !-- Interpolate the TKE gradient along y |
---|
| 596 | de_dy_int_l = ( ( gg - aa ) * de_dy(k,j,i) + & |
---|
| 597 | ( gg - bb ) * de_dy(k,j,i+1) + & |
---|
| 598 | ( gg - cc ) * de_dy(k,j+1,i) + & |
---|
| 599 | ( gg - dd ) * de_dy(k,j+1,i+1) & |
---|
| 600 | ) / ( 3.0_wp * gg ) |
---|
| 601 | IF ( ( k+1 == nzt+1 ) .OR. ( k == nzb ) ) THEN |
---|
| 602 | de_dy_int(n) = de_dy_int_l |
---|
| 603 | ELSE |
---|
| 604 | de_dy_int_u = ( ( gg - aa ) * de_dy(k+1,j,i) + & |
---|
| 605 | ( gg - bb ) * de_dy(k+1,j,i+1) + & |
---|
| 606 | ( gg - cc ) * de_dy(k+1,j+1,i) + & |
---|
| 607 | ( gg - dd ) * de_dy(k+1,j+1,i+1) & |
---|
| 608 | ) / ( 3.0_wp * gg ) |
---|
| 609 | de_dy_int(n) = de_dy_int_l + ( zv(n) - zu(k) ) / dz * & |
---|
| 610 | ( de_dy_int_u - de_dy_int_l ) |
---|
| 611 | ENDIF |
---|
[849] | 612 | |
---|
| 613 | ! |
---|
[1359] | 614 | !-- Interpolate the TKE gradient along z |
---|
| 615 | IF ( zv(n) < 0.5_wp * dz ) THEN |
---|
| 616 | de_dz_int(n) = 0.0_wp |
---|
| 617 | ELSE |
---|
| 618 | de_dz_int_l = ( ( gg - aa ) * de_dz(k,j,i) + & |
---|
| 619 | ( gg - bb ) * de_dz(k,j,i+1) + & |
---|
| 620 | ( gg - cc ) * de_dz(k,j+1,i) + & |
---|
| 621 | ( gg - dd ) * de_dz(k,j+1,i+1) & |
---|
| 622 | ) / ( 3.0_wp * gg ) |
---|
[849] | 623 | |
---|
[1359] | 624 | IF ( ( k+1 == nzt+1 ) .OR. ( k == nzb ) ) THEN |
---|
| 625 | de_dz_int(n) = de_dz_int_l |
---|
| 626 | ELSE |
---|
| 627 | de_dz_int_u = ( ( gg - aa ) * de_dz(k+1,j,i) + & |
---|
| 628 | ( gg - bb ) * de_dz(k+1,j,i+1) + & |
---|
| 629 | ( gg - cc ) * de_dz(k+1,j+1,i) + & |
---|
| 630 | ( gg - dd ) * de_dz(k+1,j+1,i+1) & |
---|
| 631 | ) / ( 3.0_wp * gg ) |
---|
| 632 | de_dz_int(n) = de_dz_int_l + ( zv(n) - zu(k) ) / dz * & |
---|
| 633 | ( de_dz_int_u - de_dz_int_l ) |
---|
| 634 | ENDIF |
---|
| 635 | ENDIF |
---|
[849] | 636 | |
---|
[1359] | 637 | ! |
---|
| 638 | !-- Interpolate the dissipation of TKE |
---|
| 639 | diss_int_l = ( ( gg - aa ) * diss(k,j,i) + & |
---|
| 640 | ( gg - bb ) * diss(k,j,i+1) + & |
---|
| 641 | ( gg - cc ) * diss(k,j+1,i) + & |
---|
| 642 | ( gg - dd ) * diss(k,j+1,i+1) & |
---|
| 643 | ) / ( 3.0_wp * gg ) |
---|
[849] | 644 | |
---|
[1359] | 645 | IF ( k == nzt ) THEN |
---|
| 646 | diss_int(n) = diss_int_l |
---|
| 647 | ELSE |
---|
| 648 | diss_int_u = ( ( gg - aa ) * diss(k+1,j,i) + & |
---|
| 649 | ( gg - bb ) * diss(k+1,j,i+1) + & |
---|
| 650 | ( gg - cc ) * diss(k+1,j+1,i) + & |
---|
| 651 | ( gg - dd ) * diss(k+1,j+1,i+1) & |
---|
| 652 | ) / ( 3.0_wp * gg ) |
---|
| 653 | diss_int(n) = diss_int_l + ( zv(n) - zu(k) ) / dz * & |
---|
| 654 | ( diss_int_u - diss_int_l ) |
---|
| 655 | ENDIF |
---|
| 656 | |
---|
[1929] | 657 | ! |
---|
| 658 | !-- Set flag for stochastic equation. |
---|
| 659 | term_1_2(n) = 1.0_wp |
---|
| 660 | |
---|
[1359] | 661 | ENDDO |
---|
| 662 | ENDDO |
---|
| 663 | |
---|
| 664 | ELSE ! non-flat topography, e.g., buildings |
---|
| 665 | |
---|
[2417] | 666 | DO nb = 0, 7 |
---|
[849] | 667 | |
---|
[2417] | 668 | DO n = start_index(nb), end_index(nb) |
---|
[849] | 669 | |
---|
[2417] | 670 | i = particles(n)%x * ddx |
---|
| 671 | j = particles(n)%y * ddy |
---|
[2606] | 672 | k = ( zv(n) + dz * atmos_ocean_sign ) / dz & |
---|
[2417] | 673 | + offset_ocean_nzt ! only exact if eq.dist |
---|
[2232] | 674 | ! |
---|
[2417] | 675 | !-- In case that there are buildings it has to be determined |
---|
| 676 | !-- how many of the gridpoints defining the particle box are |
---|
| 677 | !-- situated within a building |
---|
| 678 | !-- gp_outside_of_building(1): i,j,k |
---|
| 679 | !-- gp_outside_of_building(2): i,j+1,k |
---|
| 680 | !-- gp_outside_of_building(3): i,j,k+1 |
---|
| 681 | !-- gp_outside_of_building(4): i,j+1,k+1 |
---|
| 682 | !-- gp_outside_of_building(5): i+1,j,k |
---|
| 683 | !-- gp_outside_of_building(6): i+1,j+1,k |
---|
| 684 | !-- gp_outside_of_building(7): i+1,j,k+1 |
---|
| 685 | !-- gp_outside_of_building(8): i+1,j+1,k+1 |
---|
[2232] | 686 | |
---|
[2417] | 687 | gp_outside_of_building = 0 |
---|
| 688 | location = 0.0_wp |
---|
| 689 | num_gp = 0 |
---|
[2317] | 690 | |
---|
[2232] | 691 | ! |
---|
[2417] | 692 | !-- Determine vertical index of topography top at (j,i) |
---|
| 693 | k_wall = get_topography_top_index( j, i, 's' ) |
---|
[2232] | 694 | ! |
---|
[2417] | 695 | !-- To do: Reconsider order of computations in order to avoid |
---|
| 696 | !-- unnecessary index calculations. |
---|
| 697 | IF ( k > k_wall .OR. k_wall == 0 ) THEN |
---|
[849] | 698 | num_gp = num_gp + 1 |
---|
[2417] | 699 | gp_outside_of_building(1) = 1 |
---|
| 700 | location(num_gp,1) = i * dx |
---|
[849] | 701 | location(num_gp,2) = j * dy |
---|
[1359] | 702 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
[849] | 703 | ei(num_gp) = e(k,j,i) |
---|
| 704 | dissi(num_gp) = diss(k,j,i) |
---|
[2417] | 705 | de_dxi(num_gp) = de_dx(k,j,i) |
---|
[849] | 706 | de_dyi(num_gp) = de_dy(k,j,i) |
---|
| 707 | de_dzi(num_gp) = de_dz(k,j,i) |
---|
| 708 | ENDIF |
---|
| 709 | |
---|
| 710 | ! |
---|
[2417] | 711 | !-- Determine vertical index of topography top at (j+1,i) |
---|
| 712 | k_wall = get_topography_top_index( j+1, i, 's' ) |
---|
[849] | 713 | |
---|
[2417] | 714 | IF ( k > k_wall .OR. k_wall == 0 ) THEN |
---|
[849] | 715 | num_gp = num_gp + 1 |
---|
[2417] | 716 | gp_outside_of_building(2) = 1 |
---|
| 717 | location(num_gp,1) = i * dx |
---|
[849] | 718 | location(num_gp,2) = (j+1) * dy |
---|
[1359] | 719 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
[849] | 720 | ei(num_gp) = e(k,j+1,i) |
---|
| 721 | dissi(num_gp) = diss(k,j+1,i) |
---|
[2417] | 722 | de_dxi(num_gp) = de_dx(k,j+1,i) |
---|
[849] | 723 | de_dyi(num_gp) = de_dy(k,j+1,i) |
---|
| 724 | de_dzi(num_gp) = de_dz(k,j+1,i) |
---|
| 725 | ENDIF |
---|
| 726 | |
---|
| 727 | ! |
---|
[2417] | 728 | !-- Determine vertical index of topography top at (j,i) |
---|
| 729 | k_wall = get_topography_top_index( j, i, 's' ) |
---|
[849] | 730 | |
---|
[2417] | 731 | IF ( k+1 > k_wall .OR. k_wall == 0 ) THEN |
---|
[849] | 732 | num_gp = num_gp + 1 |
---|
[2417] | 733 | gp_outside_of_building(3) = 1 |
---|
[849] | 734 | location(num_gp,1) = i * dx |
---|
| 735 | location(num_gp,2) = j * dy |
---|
[2417] | 736 | location(num_gp,3) = (k+1) * dz - 0.5_wp * dz |
---|
[849] | 737 | ei(num_gp) = e(k+1,j,i) |
---|
| 738 | dissi(num_gp) = diss(k+1,j,i) |
---|
[2417] | 739 | de_dxi(num_gp) = de_dx(k+1,j,i) |
---|
[849] | 740 | de_dyi(num_gp) = de_dy(k+1,j,i) |
---|
[2417] | 741 | de_dzi(num_gp) = de_dz(k+1,j,i) |
---|
[849] | 742 | ENDIF |
---|
| 743 | |
---|
| 744 | ! |
---|
[2417] | 745 | !-- Determine vertical index of topography top at (j+1,i) |
---|
| 746 | k_wall = get_topography_top_index( j+1, i, 's' ) |
---|
| 747 | IF ( k+1 > k_wall .OR. k_wall == 0 ) THEN |
---|
[849] | 748 | num_gp = num_gp + 1 |
---|
[2417] | 749 | gp_outside_of_building(4) = 1 |
---|
| 750 | location(num_gp,1) = i * dx |
---|
[849] | 751 | location(num_gp,2) = (j+1) * dy |
---|
[2417] | 752 | location(num_gp,3) = (k+1) * dz - 0.5_wp * dz |
---|
[849] | 753 | ei(num_gp) = e(k+1,j+1,i) |
---|
| 754 | dissi(num_gp) = diss(k+1,j+1,i) |
---|
[2417] | 755 | de_dxi(num_gp) = de_dx(k+1,j+1,i) |
---|
[849] | 756 | de_dyi(num_gp) = de_dy(k+1,j+1,i) |
---|
| 757 | de_dzi(num_gp) = de_dz(k+1,j+1,i) |
---|
| 758 | ENDIF |
---|
| 759 | |
---|
[2417] | 760 | ! |
---|
| 761 | !-- Determine vertical index of topography top at (j,i+1) |
---|
| 762 | k_wall = get_topography_top_index( j, i+1, 's' ) |
---|
| 763 | IF ( k > k_wall .OR. k_wall == 0 ) THEN |
---|
[849] | 764 | num_gp = num_gp + 1 |
---|
[2417] | 765 | gp_outside_of_building(5) = 1 |
---|
| 766 | location(num_gp,1) = (i+1) * dx |
---|
| 767 | location(num_gp,2) = j * dy |
---|
| 768 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
| 769 | ei(num_gp) = e(k,j,i+1) |
---|
| 770 | dissi(num_gp) = diss(k,j,i+1) |
---|
| 771 | de_dxi(num_gp) = de_dx(k,j,i+1) |
---|
| 772 | de_dyi(num_gp) = de_dy(k,j,i+1) |
---|
| 773 | de_dzi(num_gp) = de_dz(k,j,i+1) |
---|
[849] | 774 | ENDIF |
---|
| 775 | |
---|
| 776 | ! |
---|
[2417] | 777 | !-- Determine vertical index of topography top at (j+1,i+1) |
---|
| 778 | k_wall = get_topography_top_index( j+1, i+1, 's' ) |
---|
[849] | 779 | |
---|
[2417] | 780 | IF ( k > k_wall .OR. k_wall == 0 ) THEN |
---|
[849] | 781 | num_gp = num_gp + 1 |
---|
[2417] | 782 | gp_outside_of_building(6) = 1 |
---|
| 783 | location(num_gp,1) = (i+1) * dx |
---|
| 784 | location(num_gp,2) = (j+1) * dy |
---|
| 785 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
| 786 | ei(num_gp) = e(k,j+1,i+1) |
---|
| 787 | dissi(num_gp) = diss(k,j+1,i+1) |
---|
| 788 | de_dxi(num_gp) = de_dx(k,j+1,i+1) |
---|
| 789 | de_dyi(num_gp) = de_dy(k,j+1,i+1) |
---|
| 790 | de_dzi(num_gp) = de_dz(k,j+1,i+1) |
---|
[849] | 791 | ENDIF |
---|
| 792 | |
---|
| 793 | ! |
---|
[2417] | 794 | !-- Determine vertical index of topography top at (j,i+1) |
---|
| 795 | k_wall = get_topography_top_index( j, i+1, 's' ) |
---|
[849] | 796 | |
---|
[2417] | 797 | IF ( k+1 > k_wall .OR. k_wall == 0 ) THEN |
---|
[849] | 798 | num_gp = num_gp + 1 |
---|
[2417] | 799 | gp_outside_of_building(7) = 1 |
---|
[849] | 800 | location(num_gp,1) = (i+1) * dx |
---|
| 801 | location(num_gp,2) = j * dy |
---|
[2417] | 802 | location(num_gp,3) = (k+1) * dz - 0.5_wp * dz |
---|
[849] | 803 | ei(num_gp) = e(k+1,j,i+1) |
---|
| 804 | dissi(num_gp) = diss(k+1,j,i+1) |
---|
| 805 | de_dxi(num_gp) = de_dx(k+1,j,i+1) |
---|
| 806 | de_dyi(num_gp) = de_dy(k+1,j,i+1) |
---|
[2417] | 807 | de_dzi(num_gp) = de_dz(k+1,j,i+1) |
---|
[849] | 808 | ENDIF |
---|
| 809 | |
---|
| 810 | ! |
---|
[2417] | 811 | !-- Determine vertical index of topography top at (j+1,i+1) |
---|
| 812 | k_wall = get_topography_top_index( j+1, i+1, 's' ) |
---|
[849] | 813 | |
---|
[2417] | 814 | IF ( k+1 > k_wall .OR. k_wall == 0) THEN |
---|
[849] | 815 | num_gp = num_gp + 1 |
---|
[2417] | 816 | gp_outside_of_building(8) = 1 |
---|
[849] | 817 | location(num_gp,1) = (i+1) * dx |
---|
| 818 | location(num_gp,2) = (j+1) * dy |
---|
[2417] | 819 | location(num_gp,3) = (k+1) * dz - 0.5_wp * dz |
---|
[849] | 820 | ei(num_gp) = e(k+1,j+1,i+1) |
---|
| 821 | dissi(num_gp) = diss(k+1,j+1,i+1) |
---|
| 822 | de_dxi(num_gp) = de_dx(k+1,j+1,i+1) |
---|
| 823 | de_dyi(num_gp) = de_dy(k+1,j+1,i+1) |
---|
[2417] | 824 | de_dzi(num_gp) = de_dz(k+1,j+1,i+1) |
---|
[849] | 825 | ENDIF |
---|
| 826 | ! |
---|
[2417] | 827 | !-- If all gridpoints are situated outside of a building, then the |
---|
| 828 | !-- ordinary interpolation scheme can be used. |
---|
| 829 | IF ( num_gp == 8 ) THEN |
---|
| 830 | |
---|
| 831 | x = particles(n)%x - i * dx |
---|
| 832 | y = particles(n)%y - j * dy |
---|
| 833 | aa = x**2 + y**2 |
---|
| 834 | bb = ( dx - x )**2 + y**2 |
---|
| 835 | cc = x**2 + ( dy - y )**2 |
---|
| 836 | dd = ( dx - x )**2 + ( dy - y )**2 |
---|
| 837 | gg = aa + bb + cc + dd |
---|
| 838 | |
---|
| 839 | e_int_l = ( ( gg - aa ) * e(k,j,i) + ( gg - bb ) * e(k,j,i+1) & |
---|
| 840 | + ( gg - cc ) * e(k,j+1,i) + ( gg - dd ) * e(k,j+1,i+1) & |
---|
| 841 | ) / ( 3.0_wp * gg ) |
---|
| 842 | |
---|
| 843 | IF ( k == nzt ) THEN |
---|
| 844 | e_int(n) = e_int_l |
---|
| 845 | ELSE |
---|
| 846 | e_int_u = ( ( gg - aa ) * e(k+1,j,i) + & |
---|
| 847 | ( gg - bb ) * e(k+1,j,i+1) + & |
---|
| 848 | ( gg - cc ) * e(k+1,j+1,i) + & |
---|
| 849 | ( gg - dd ) * e(k+1,j+1,i+1) & |
---|
| 850 | ) / ( 3.0_wp * gg ) |
---|
| 851 | e_int(n) = e_int_l + ( zv(n) - zu(k) ) / dz * & |
---|
| 852 | ( e_int_u - e_int_l ) |
---|
| 853 | ENDIF |
---|
[1929] | 854 | ! |
---|
[2417] | 855 | !-- Needed to avoid NaN particle velocities (this might not be |
---|
| 856 | !-- required any more) |
---|
| 857 | IF ( e_int(n) <= 0.0_wp ) THEN |
---|
| 858 | e_int(n) = 1.0E-20_wp |
---|
| 859 | ENDIF |
---|
[1929] | 860 | ! |
---|
[2417] | 861 | !-- Interpolate the TKE gradient along x (adopt incides i,j,k |
---|
| 862 | !-- and all position variables from above (TKE)) |
---|
| 863 | de_dx_int_l = ( ( gg - aa ) * de_dx(k,j,i) + & |
---|
| 864 | ( gg - bb ) * de_dx(k,j,i+1) + & |
---|
| 865 | ( gg - cc ) * de_dx(k,j+1,i) + & |
---|
| 866 | ( gg - dd ) * de_dx(k,j+1,i+1) & |
---|
| 867 | ) / ( 3.0_wp * gg ) |
---|
| 868 | |
---|
| 869 | IF ( ( k == nzt ) .OR. ( k == nzb ) ) THEN |
---|
| 870 | de_dx_int(n) = de_dx_int_l |
---|
| 871 | ELSE |
---|
| 872 | de_dx_int_u = ( ( gg - aa ) * de_dx(k+1,j,i) + & |
---|
| 873 | ( gg - bb ) * de_dx(k+1,j,i+1) + & |
---|
| 874 | ( gg - cc ) * de_dx(k+1,j+1,i) + & |
---|
| 875 | ( gg - dd ) * de_dx(k+1,j+1,i+1) & |
---|
| 876 | ) / ( 3.0_wp * gg ) |
---|
| 877 | de_dx_int(n) = de_dx_int_l + ( zv(n) - zu(k) ) / & |
---|
| 878 | dz * ( de_dx_int_u - de_dx_int_l ) |
---|
| 879 | ENDIF |
---|
| 880 | |
---|
| 881 | ! |
---|
| 882 | !-- Interpolate the TKE gradient along y |
---|
| 883 | de_dy_int_l = ( ( gg - aa ) * de_dy(k,j,i) + & |
---|
| 884 | ( gg - bb ) * de_dy(k,j,i+1) + & |
---|
| 885 | ( gg - cc ) * de_dy(k,j+1,i) + & |
---|
| 886 | ( gg - dd ) * de_dy(k,j+1,i+1) & |
---|
| 887 | ) / ( 3.0_wp * gg ) |
---|
| 888 | IF ( ( k+1 == nzt+1 ) .OR. ( k == nzb ) ) THEN |
---|
| 889 | de_dy_int(n) = de_dy_int_l |
---|
| 890 | ELSE |
---|
| 891 | de_dy_int_u = ( ( gg - aa ) * de_dy(k+1,j,i) + & |
---|
| 892 | ( gg - bb ) * de_dy(k+1,j,i+1) + & |
---|
| 893 | ( gg - cc ) * de_dy(k+1,j+1,i) + & |
---|
| 894 | ( gg - dd ) * de_dy(k+1,j+1,i+1) & |
---|
| 895 | ) / ( 3.0_wp * gg ) |
---|
| 896 | de_dy_int(n) = de_dy_int_l + ( zv(n) - zu(k) ) / & |
---|
| 897 | dz * ( de_dy_int_u - de_dy_int_l ) |
---|
| 898 | ENDIF |
---|
| 899 | |
---|
| 900 | ! |
---|
| 901 | !-- Interpolate the TKE gradient along z |
---|
| 902 | IF ( zv(n) < 0.5_wp * dz ) THEN |
---|
| 903 | de_dz_int(n) = 0.0_wp |
---|
| 904 | ELSE |
---|
| 905 | de_dz_int_l = ( ( gg - aa ) * de_dz(k,j,i) + & |
---|
| 906 | ( gg - bb ) * de_dz(k,j,i+1) + & |
---|
| 907 | ( gg - cc ) * de_dz(k,j+1,i) + & |
---|
| 908 | ( gg - dd ) * de_dz(k,j+1,i+1) & |
---|
| 909 | ) / ( 3.0_wp * gg ) |
---|
| 910 | |
---|
| 911 | IF ( ( k+1 == nzt+1 ) .OR. ( k == nzb ) ) THEN |
---|
| 912 | de_dz_int(n) = de_dz_int_l |
---|
| 913 | ELSE |
---|
| 914 | de_dz_int_u = ( ( gg - aa ) * de_dz(k+1,j,i) + & |
---|
| 915 | ( gg - bb ) * de_dz(k+1,j,i+1) + & |
---|
| 916 | ( gg - cc ) * de_dz(k+1,j+1,i) + & |
---|
| 917 | ( gg - dd ) * de_dz(k+1,j+1,i+1) & |
---|
| 918 | ) / ( 3.0_wp * gg ) |
---|
| 919 | de_dz_int(n) = de_dz_int_l + ( zv(n) - zu(k) ) /& |
---|
| 920 | dz * ( de_dz_int_u - de_dz_int_l ) |
---|
| 921 | ENDIF |
---|
| 922 | ENDIF |
---|
| 923 | |
---|
| 924 | ! |
---|
| 925 | !-- Interpolate the dissipation of TKE |
---|
| 926 | diss_int_l = ( ( gg - aa ) * diss(k,j,i) + & |
---|
| 927 | ( gg - bb ) * diss(k,j,i+1) + & |
---|
| 928 | ( gg - cc ) * diss(k,j+1,i) + & |
---|
| 929 | ( gg - dd ) * diss(k,j+1,i+1) & |
---|
| 930 | ) / ( 3.0_wp * gg ) |
---|
| 931 | |
---|
| 932 | IF ( k == nzt ) THEN |
---|
| 933 | diss_int(n) = diss_int_l |
---|
| 934 | ELSE |
---|
| 935 | diss_int_u = ( ( gg - aa ) * diss(k+1,j,i) + & |
---|
| 936 | ( gg - bb ) * diss(k+1,j,i+1) + & |
---|
| 937 | ( gg - cc ) * diss(k+1,j+1,i) + & |
---|
| 938 | ( gg - dd ) * diss(k+1,j+1,i+1) & |
---|
| 939 | ) / ( 3.0_wp * gg ) |
---|
| 940 | diss_int(n) = diss_int_l + ( zv(n) - zu(k) ) / dz *& |
---|
| 941 | ( diss_int_u - diss_int_l ) |
---|
| 942 | ENDIF |
---|
| 943 | ! |
---|
| 944 | !-- Set flag for stochastic equation. |
---|
| 945 | term_1_2(n) = 1.0_wp |
---|
| 946 | |
---|
| 947 | ELSE |
---|
| 948 | |
---|
| 949 | ! |
---|
| 950 | !-- If wall between gridpoint 1 and gridpoint 5, then |
---|
| 951 | !-- Neumann boundary condition has to be applied |
---|
| 952 | IF ( gp_outside_of_building(1) == 1 .AND. & |
---|
| 953 | gp_outside_of_building(5) == 0 ) THEN |
---|
| 954 | num_gp = num_gp + 1 |
---|
| 955 | location(num_gp,1) = i * dx + 0.5_wp * dx |
---|
| 956 | location(num_gp,2) = j * dy |
---|
| 957 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
| 958 | ei(num_gp) = e(k,j,i) |
---|
| 959 | dissi(num_gp) = diss(k,j,i) |
---|
| 960 | de_dxi(num_gp) = 0.0_wp |
---|
| 961 | de_dyi(num_gp) = de_dy(k,j,i) |
---|
| 962 | de_dzi(num_gp) = de_dz(k,j,i) |
---|
| 963 | ENDIF |
---|
| 964 | |
---|
| 965 | IF ( gp_outside_of_building(5) == 1 .AND. & |
---|
| 966 | gp_outside_of_building(1) == 0 ) THEN |
---|
| 967 | num_gp = num_gp + 1 |
---|
| 968 | location(num_gp,1) = i * dx + 0.5_wp * dx |
---|
| 969 | location(num_gp,2) = j * dy |
---|
| 970 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
| 971 | ei(num_gp) = e(k,j,i+1) |
---|
| 972 | dissi(num_gp) = diss(k,j,i+1) |
---|
| 973 | de_dxi(num_gp) = 0.0_wp |
---|
| 974 | de_dyi(num_gp) = de_dy(k,j,i+1) |
---|
| 975 | de_dzi(num_gp) = de_dz(k,j,i+1) |
---|
| 976 | ENDIF |
---|
| 977 | |
---|
| 978 | ! |
---|
| 979 | !-- If wall between gridpoint 5 and gridpoint 6, then |
---|
| 980 | !-- then Neumann boundary condition has to be applied |
---|
| 981 | IF ( gp_outside_of_building(5) == 1 .AND. & |
---|
| 982 | gp_outside_of_building(6) == 0 ) THEN |
---|
| 983 | num_gp = num_gp + 1 |
---|
| 984 | location(num_gp,1) = (i+1) * dx |
---|
| 985 | location(num_gp,2) = j * dy + 0.5_wp * dy |
---|
| 986 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
| 987 | ei(num_gp) = e(k,j,i+1) |
---|
| 988 | dissi(num_gp) = diss(k,j,i+1) |
---|
| 989 | de_dxi(num_gp) = de_dx(k,j,i+1) |
---|
| 990 | de_dyi(num_gp) = 0.0_wp |
---|
| 991 | de_dzi(num_gp) = de_dz(k,j,i+1) |
---|
| 992 | ENDIF |
---|
| 993 | |
---|
| 994 | IF ( gp_outside_of_building(6) == 1 .AND. & |
---|
| 995 | gp_outside_of_building(5) == 0 ) THEN |
---|
| 996 | num_gp = num_gp + 1 |
---|
| 997 | location(num_gp,1) = (i+1) * dx |
---|
| 998 | location(num_gp,2) = j * dy + 0.5_wp * dy |
---|
| 999 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
| 1000 | ei(num_gp) = e(k,j+1,i+1) |
---|
| 1001 | dissi(num_gp) = diss(k,j+1,i+1) |
---|
| 1002 | de_dxi(num_gp) = de_dx(k,j+1,i+1) |
---|
| 1003 | de_dyi(num_gp) = 0.0_wp |
---|
| 1004 | de_dzi(num_gp) = de_dz(k,j+1,i+1) |
---|
| 1005 | ENDIF |
---|
| 1006 | |
---|
| 1007 | ! |
---|
| 1008 | !-- If wall between gridpoint 2 and gridpoint 6, then |
---|
| 1009 | !-- Neumann boundary condition has to be applied |
---|
| 1010 | IF ( gp_outside_of_building(2) == 1 .AND. & |
---|
| 1011 | gp_outside_of_building(6) == 0 ) THEN |
---|
| 1012 | num_gp = num_gp + 1 |
---|
| 1013 | location(num_gp,1) = i * dx + 0.5_wp * dx |
---|
| 1014 | location(num_gp,2) = (j+1) * dy |
---|
| 1015 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
| 1016 | ei(num_gp) = e(k,j+1,i) |
---|
| 1017 | dissi(num_gp) = diss(k,j+1,i) |
---|
| 1018 | de_dxi(num_gp) = 0.0_wp |
---|
| 1019 | de_dyi(num_gp) = de_dy(k,j+1,i) |
---|
| 1020 | de_dzi(num_gp) = de_dz(k,j+1,i) |
---|
| 1021 | ENDIF |
---|
| 1022 | |
---|
| 1023 | IF ( gp_outside_of_building(6) == 1 .AND. & |
---|
| 1024 | gp_outside_of_building(2) == 0 ) THEN |
---|
| 1025 | num_gp = num_gp + 1 |
---|
| 1026 | location(num_gp,1) = i * dx + 0.5_wp * dx |
---|
| 1027 | location(num_gp,2) = (j+1) * dy |
---|
| 1028 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
| 1029 | ei(num_gp) = e(k,j+1,i+1) |
---|
| 1030 | dissi(num_gp) = diss(k,j+1,i+1) |
---|
| 1031 | de_dxi(num_gp) = 0.0_wp |
---|
| 1032 | de_dyi(num_gp) = de_dy(k,j+1,i+1) |
---|
| 1033 | de_dzi(num_gp) = de_dz(k,j+1,i+1) |
---|
| 1034 | ENDIF |
---|
| 1035 | |
---|
| 1036 | ! |
---|
| 1037 | !-- If wall between gridpoint 1 and gridpoint 2, then |
---|
| 1038 | !-- Neumann boundary condition has to be applied |
---|
| 1039 | IF ( gp_outside_of_building(1) == 1 .AND. & |
---|
| 1040 | gp_outside_of_building(2) == 0 ) THEN |
---|
| 1041 | num_gp = num_gp + 1 |
---|
| 1042 | location(num_gp,1) = i * dx |
---|
| 1043 | location(num_gp,2) = j * dy + 0.5_wp * dy |
---|
| 1044 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
| 1045 | ei(num_gp) = e(k,j,i) |
---|
| 1046 | dissi(num_gp) = diss(k,j,i) |
---|
| 1047 | de_dxi(num_gp) = de_dx(k,j,i) |
---|
| 1048 | de_dyi(num_gp) = 0.0_wp |
---|
| 1049 | de_dzi(num_gp) = de_dz(k,j,i) |
---|
| 1050 | ENDIF |
---|
| 1051 | |
---|
| 1052 | IF ( gp_outside_of_building(2) == 1 .AND. & |
---|
| 1053 | gp_outside_of_building(1) == 0 ) THEN |
---|
| 1054 | num_gp = num_gp + 1 |
---|
| 1055 | location(num_gp,1) = i * dx |
---|
| 1056 | location(num_gp,2) = j * dy + 0.5_wp * dy |
---|
| 1057 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
| 1058 | ei(num_gp) = e(k,j+1,i) |
---|
| 1059 | dissi(num_gp) = diss(k,j+1,i) |
---|
| 1060 | de_dxi(num_gp) = de_dx(k,j+1,i) |
---|
| 1061 | de_dyi(num_gp) = 0.0_wp |
---|
| 1062 | de_dzi(num_gp) = de_dz(k,j+1,i) |
---|
| 1063 | ENDIF |
---|
| 1064 | |
---|
| 1065 | ! |
---|
| 1066 | !-- If wall between gridpoint 3 and gridpoint 7, then |
---|
| 1067 | !-- Neumann boundary condition has to be applied |
---|
| 1068 | IF ( gp_outside_of_building(3) == 1 .AND. & |
---|
| 1069 | gp_outside_of_building(7) == 0 ) THEN |
---|
| 1070 | num_gp = num_gp + 1 |
---|
| 1071 | location(num_gp,1) = i * dx + 0.5_wp * dx |
---|
| 1072 | location(num_gp,2) = j * dy |
---|
| 1073 | location(num_gp,3) = k * dz + 0.5_wp * dz |
---|
| 1074 | ei(num_gp) = e(k+1,j,i) |
---|
| 1075 | dissi(num_gp) = diss(k+1,j,i) |
---|
| 1076 | de_dxi(num_gp) = 0.0_wp |
---|
| 1077 | de_dyi(num_gp) = de_dy(k+1,j,i) |
---|
| 1078 | de_dzi(num_gp) = de_dz(k+1,j,i) |
---|
| 1079 | ENDIF |
---|
| 1080 | |
---|
| 1081 | IF ( gp_outside_of_building(7) == 1 .AND. & |
---|
| 1082 | gp_outside_of_building(3) == 0 ) THEN |
---|
| 1083 | num_gp = num_gp + 1 |
---|
| 1084 | location(num_gp,1) = i * dx + 0.5_wp * dx |
---|
| 1085 | location(num_gp,2) = j * dy |
---|
| 1086 | location(num_gp,3) = k * dz + 0.5_wp * dz |
---|
| 1087 | ei(num_gp) = e(k+1,j,i+1) |
---|
| 1088 | dissi(num_gp) = diss(k+1,j,i+1) |
---|
| 1089 | de_dxi(num_gp) = 0.0_wp |
---|
| 1090 | de_dyi(num_gp) = de_dy(k+1,j,i+1) |
---|
| 1091 | de_dzi(num_gp) = de_dz(k+1,j,i+1) |
---|
| 1092 | ENDIF |
---|
| 1093 | |
---|
| 1094 | ! |
---|
| 1095 | !-- If wall between gridpoint 7 and gridpoint 8, then |
---|
| 1096 | !-- Neumann boundary condition has to be applied |
---|
| 1097 | IF ( gp_outside_of_building(7) == 1 .AND. & |
---|
| 1098 | gp_outside_of_building(8) == 0 ) THEN |
---|
| 1099 | num_gp = num_gp + 1 |
---|
| 1100 | location(num_gp,1) = (i+1) * dx |
---|
| 1101 | location(num_gp,2) = j * dy + 0.5_wp * dy |
---|
| 1102 | location(num_gp,3) = k * dz + 0.5_wp * dz |
---|
| 1103 | ei(num_gp) = e(k+1,j,i+1) |
---|
| 1104 | dissi(num_gp) = diss(k+1,j,i+1) |
---|
| 1105 | de_dxi(num_gp) = de_dx(k+1,j,i+1) |
---|
| 1106 | de_dyi(num_gp) = 0.0_wp |
---|
| 1107 | de_dzi(num_gp) = de_dz(k+1,j,i+1) |
---|
| 1108 | ENDIF |
---|
| 1109 | |
---|
| 1110 | IF ( gp_outside_of_building(8) == 1 .AND. & |
---|
| 1111 | gp_outside_of_building(7) == 0 ) THEN |
---|
| 1112 | num_gp = num_gp + 1 |
---|
| 1113 | location(num_gp,1) = (i+1) * dx |
---|
| 1114 | location(num_gp,2) = j * dy + 0.5_wp * dy |
---|
| 1115 | location(num_gp,3) = k * dz + 0.5_wp * dz |
---|
| 1116 | ei(num_gp) = e(k+1,j+1,i+1) |
---|
| 1117 | dissi(num_gp) = diss(k+1,j+1,i+1) |
---|
| 1118 | de_dxi(num_gp) = de_dx(k+1,j+1,i+1) |
---|
| 1119 | de_dyi(num_gp) = 0.0_wp |
---|
| 1120 | de_dzi(num_gp) = de_dz(k+1,j+1,i+1) |
---|
| 1121 | ENDIF |
---|
| 1122 | |
---|
| 1123 | ! |
---|
| 1124 | !-- If wall between gridpoint 4 and gridpoint 8, then |
---|
| 1125 | !-- Neumann boundary condition has to be applied |
---|
| 1126 | IF ( gp_outside_of_building(4) == 1 .AND. & |
---|
| 1127 | gp_outside_of_building(8) == 0 ) THEN |
---|
| 1128 | num_gp = num_gp + 1 |
---|
| 1129 | location(num_gp,1) = i * dx + 0.5_wp * dx |
---|
| 1130 | location(num_gp,2) = (j+1) * dy |
---|
| 1131 | location(num_gp,3) = k * dz + 0.5_wp * dz |
---|
| 1132 | ei(num_gp) = e(k+1,j+1,i) |
---|
| 1133 | dissi(num_gp) = diss(k+1,j+1,i) |
---|
| 1134 | de_dxi(num_gp) = 0.0_wp |
---|
| 1135 | de_dyi(num_gp) = de_dy(k+1,j+1,i) |
---|
| 1136 | de_dzi(num_gp) = de_dz(k+1,j+1,i) |
---|
| 1137 | ENDIF |
---|
| 1138 | |
---|
| 1139 | IF ( gp_outside_of_building(8) == 1 .AND. & |
---|
| 1140 | gp_outside_of_building(4) == 0 ) THEN |
---|
| 1141 | num_gp = num_gp + 1 |
---|
| 1142 | location(num_gp,1) = i * dx + 0.5_wp * dx |
---|
| 1143 | location(num_gp,2) = (j+1) * dy |
---|
| 1144 | location(num_gp,3) = k * dz + 0.5_wp * dz |
---|
| 1145 | ei(num_gp) = e(k+1,j+1,i+1) |
---|
| 1146 | dissi(num_gp) = diss(k+1,j+1,i+1) |
---|
| 1147 | de_dxi(num_gp) = 0.0_wp |
---|
| 1148 | de_dyi(num_gp) = de_dy(k+1,j+1,i+1) |
---|
| 1149 | de_dzi(num_gp) = de_dz(k+1,j+1,i+1) |
---|
| 1150 | ENDIF |
---|
| 1151 | |
---|
| 1152 | ! |
---|
| 1153 | !-- If wall between gridpoint 3 and gridpoint 4, then |
---|
| 1154 | !-- Neumann boundary condition has to be applied |
---|
| 1155 | IF ( gp_outside_of_building(3) == 1 .AND. & |
---|
| 1156 | gp_outside_of_building(4) == 0 ) THEN |
---|
| 1157 | num_gp = num_gp + 1 |
---|
| 1158 | location(num_gp,1) = i * dx |
---|
| 1159 | location(num_gp,2) = j * dy + 0.5_wp * dy |
---|
| 1160 | location(num_gp,3) = k * dz + 0.5_wp * dz |
---|
| 1161 | ei(num_gp) = e(k+1,j,i) |
---|
| 1162 | dissi(num_gp) = diss(k+1,j,i) |
---|
| 1163 | de_dxi(num_gp) = de_dx(k+1,j,i) |
---|
| 1164 | de_dyi(num_gp) = 0.0_wp |
---|
| 1165 | de_dzi(num_gp) = de_dz(k+1,j,i) |
---|
| 1166 | ENDIF |
---|
| 1167 | |
---|
| 1168 | IF ( gp_outside_of_building(4) == 1 .AND. & |
---|
| 1169 | gp_outside_of_building(3) == 0 ) THEN |
---|
| 1170 | num_gp = num_gp + 1 |
---|
| 1171 | location(num_gp,1) = i * dx |
---|
| 1172 | location(num_gp,2) = j * dy + 0.5_wp * dy |
---|
| 1173 | location(num_gp,3) = k * dz + 0.5_wp * dz |
---|
| 1174 | ei(num_gp) = e(k+1,j+1,i) |
---|
| 1175 | dissi(num_gp) = diss(k+1,j+1,i) |
---|
| 1176 | de_dxi(num_gp) = de_dx(k+1,j+1,i) |
---|
| 1177 | de_dyi(num_gp) = 0.0_wp |
---|
| 1178 | de_dzi(num_gp) = de_dz(k+1,j+1,i) |
---|
| 1179 | ENDIF |
---|
| 1180 | |
---|
| 1181 | ! |
---|
| 1182 | !-- If wall between gridpoint 1 and gridpoint 3, then |
---|
| 1183 | !-- Neumann boundary condition has to be applied |
---|
| 1184 | !-- (only one case as only building beneath is possible) |
---|
| 1185 | IF ( gp_outside_of_building(1) == 0 .AND. & |
---|
| 1186 | gp_outside_of_building(3) == 1 ) THEN |
---|
| 1187 | num_gp = num_gp + 1 |
---|
| 1188 | location(num_gp,1) = i * dx |
---|
| 1189 | location(num_gp,2) = j * dy |
---|
| 1190 | location(num_gp,3) = k * dz |
---|
| 1191 | ei(num_gp) = e(k+1,j,i) |
---|
| 1192 | dissi(num_gp) = diss(k+1,j,i) |
---|
| 1193 | de_dxi(num_gp) = de_dx(k+1,j,i) |
---|
| 1194 | de_dyi(num_gp) = de_dy(k+1,j,i) |
---|
| 1195 | de_dzi(num_gp) = 0.0_wp |
---|
| 1196 | ENDIF |
---|
| 1197 | |
---|
| 1198 | ! |
---|
| 1199 | !-- If wall between gridpoint 5 and gridpoint 7, then |
---|
| 1200 | !-- Neumann boundary condition has to be applied |
---|
| 1201 | !-- (only one case as only building beneath is possible) |
---|
| 1202 | IF ( gp_outside_of_building(5) == 0 .AND. & |
---|
| 1203 | gp_outside_of_building(7) == 1 ) THEN |
---|
| 1204 | num_gp = num_gp + 1 |
---|
| 1205 | location(num_gp,1) = (i+1) * dx |
---|
| 1206 | location(num_gp,2) = j * dy |
---|
| 1207 | location(num_gp,3) = k * dz |
---|
| 1208 | ei(num_gp) = e(k+1,j,i+1) |
---|
| 1209 | dissi(num_gp) = diss(k+1,j,i+1) |
---|
| 1210 | de_dxi(num_gp) = de_dx(k+1,j,i+1) |
---|
| 1211 | de_dyi(num_gp) = de_dy(k+1,j,i+1) |
---|
| 1212 | de_dzi(num_gp) = 0.0_wp |
---|
| 1213 | ENDIF |
---|
| 1214 | |
---|
| 1215 | ! |
---|
| 1216 | !-- If wall between gridpoint 2 and gridpoint 4, then |
---|
| 1217 | !-- Neumann boundary condition has to be applied |
---|
| 1218 | !-- (only one case as only building beneath is possible) |
---|
| 1219 | IF ( gp_outside_of_building(2) == 0 .AND. & |
---|
| 1220 | gp_outside_of_building(4) == 1 ) THEN |
---|
| 1221 | num_gp = num_gp + 1 |
---|
| 1222 | location(num_gp,1) = i * dx |
---|
| 1223 | location(num_gp,2) = (j+1) * dy |
---|
| 1224 | location(num_gp,3) = k * dz |
---|
| 1225 | ei(num_gp) = e(k+1,j+1,i) |
---|
| 1226 | dissi(num_gp) = diss(k+1,j+1,i) |
---|
| 1227 | de_dxi(num_gp) = de_dx(k+1,j+1,i) |
---|
| 1228 | de_dyi(num_gp) = de_dy(k+1,j+1,i) |
---|
| 1229 | de_dzi(num_gp) = 0.0_wp |
---|
| 1230 | ENDIF |
---|
| 1231 | |
---|
| 1232 | ! |
---|
| 1233 | !-- If wall between gridpoint 6 and gridpoint 8, then |
---|
| 1234 | !-- Neumann boundary condition has to be applied |
---|
| 1235 | !-- (only one case as only building beneath is possible) |
---|
| 1236 | IF ( gp_outside_of_building(6) == 0 .AND. & |
---|
| 1237 | gp_outside_of_building(8) == 1 ) THEN |
---|
| 1238 | num_gp = num_gp + 1 |
---|
| 1239 | location(num_gp,1) = (i+1) * dx |
---|
| 1240 | location(num_gp,2) = (j+1) * dy |
---|
| 1241 | location(num_gp,3) = k * dz |
---|
| 1242 | ei(num_gp) = e(k+1,j+1,i+1) |
---|
| 1243 | dissi(num_gp) = diss(k+1,j+1,i+1) |
---|
| 1244 | de_dxi(num_gp) = de_dx(k+1,j+1,i+1) |
---|
| 1245 | de_dyi(num_gp) = de_dy(k+1,j+1,i+1) |
---|
| 1246 | de_dzi(num_gp) = 0.0_wp |
---|
| 1247 | ENDIF |
---|
| 1248 | |
---|
| 1249 | ! |
---|
| 1250 | !-- Carry out the interpolation |
---|
| 1251 | IF ( num_gp == 1 ) THEN |
---|
| 1252 | ! |
---|
| 1253 | !-- If only one of the gridpoints is situated outside of the |
---|
| 1254 | !-- building, it follows that the values at the particle |
---|
| 1255 | !-- location are the same as the gridpoint values |
---|
| 1256 | e_int(n) = ei(num_gp) |
---|
| 1257 | diss_int(n) = dissi(num_gp) |
---|
| 1258 | de_dx_int(n) = de_dxi(num_gp) |
---|
| 1259 | de_dy_int(n) = de_dyi(num_gp) |
---|
| 1260 | de_dz_int(n) = de_dzi(num_gp) |
---|
| 1261 | ! |
---|
| 1262 | !-- Set flag for stochastic equation which disables calculation |
---|
| 1263 | !-- of drift and memory term near topography. |
---|
| 1264 | term_1_2(n) = 0.0_wp |
---|
| 1265 | ELSE IF ( num_gp > 1 ) THEN |
---|
| 1266 | |
---|
| 1267 | d_sum = 0.0_wp |
---|
| 1268 | ! |
---|
| 1269 | !-- Evaluation of the distances between the gridpoints |
---|
| 1270 | !-- contributing to the interpolated values, and the particle |
---|
| 1271 | !-- location |
---|
| 1272 | DO agp = 1, num_gp |
---|
| 1273 | d_gp_pl(agp) = ( particles(n)%x-location(agp,1) )**2 & |
---|
| 1274 | + ( particles(n)%y-location(agp,2) )**2 & |
---|
| 1275 | + ( zv(n)-location(agp,3) )**2 |
---|
| 1276 | d_sum = d_sum + d_gp_pl(agp) |
---|
| 1277 | ENDDO |
---|
| 1278 | |
---|
| 1279 | ! |
---|
| 1280 | !-- Finally the interpolation can be carried out |
---|
| 1281 | e_int(n) = 0.0_wp |
---|
| 1282 | diss_int(n) = 0.0_wp |
---|
| 1283 | de_dx_int(n) = 0.0_wp |
---|
| 1284 | de_dy_int(n) = 0.0_wp |
---|
| 1285 | de_dz_int(n) = 0.0_wp |
---|
| 1286 | DO agp = 1, num_gp |
---|
| 1287 | e_int(n) = e_int(n) + ( d_sum - d_gp_pl(agp) ) * & |
---|
| 1288 | ei(agp) / ( (num_gp-1) * d_sum ) |
---|
| 1289 | diss_int(n) = diss_int(n) + ( d_sum - d_gp_pl(agp) ) * & |
---|
| 1290 | dissi(agp) / ( (num_gp-1) * d_sum ) |
---|
| 1291 | de_dx_int(n) = de_dx_int(n) + ( d_sum - d_gp_pl(agp) ) * & |
---|
| 1292 | de_dxi(agp) / ( (num_gp-1) * d_sum ) |
---|
| 1293 | de_dy_int(n) = de_dy_int(n) + ( d_sum - d_gp_pl(agp) ) * & |
---|
| 1294 | de_dyi(agp) / ( (num_gp-1) * d_sum ) |
---|
| 1295 | de_dz_int(n) = de_dz_int(n) + ( d_sum - d_gp_pl(agp) ) * & |
---|
| 1296 | de_dzi(agp) / ( (num_gp-1) * d_sum ) |
---|
| 1297 | ENDDO |
---|
| 1298 | |
---|
| 1299 | ENDIF |
---|
| 1300 | e_int(n) = MAX( 1E-20_wp, e_int(n) ) |
---|
| 1301 | diss_int(n) = MAX( 1E-20_wp, diss_int(n) ) |
---|
| 1302 | de_dx_int(n) = MAX( 1E-20_wp, de_dx_int(n) ) |
---|
| 1303 | de_dy_int(n) = MAX( 1E-20_wp, de_dy_int(n) ) |
---|
| 1304 | de_dz_int(n) = MAX( 1E-20_wp, de_dz_int(n) ) |
---|
| 1305 | ! |
---|
[1929] | 1306 | !-- Set flag for stochastic equation which disables calculation |
---|
| 1307 | !-- of drift and memory term near topography. |
---|
| 1308 | term_1_2(n) = 0.0_wp |
---|
[849] | 1309 | ENDIF |
---|
[2417] | 1310 | ENDDO |
---|
[1359] | 1311 | ENDDO |
---|
| 1312 | ENDIF |
---|
[849] | 1313 | |
---|
[1359] | 1314 | DO nb = 0,7 |
---|
| 1315 | i = ip + block_offset(nb)%i_off |
---|
| 1316 | j = jp + block_offset(nb)%j_off |
---|
| 1317 | k = kp + block_offset(nb)%k_off |
---|
[849] | 1318 | |
---|
[1359] | 1319 | DO n = start_index(nb), end_index(nb) |
---|
[849] | 1320 | ! |
---|
[1359] | 1321 | !-- Vertical interpolation of the horizontally averaged SGS TKE and |
---|
| 1322 | !-- resolved-scale velocity variances and use the interpolated values |
---|
| 1323 | !-- to calculate the coefficient fs, which is a measure of the ratio |
---|
| 1324 | !-- of the subgrid-scale turbulent kinetic energy to the total amount |
---|
| 1325 | !-- of turbulent kinetic energy. |
---|
| 1326 | IF ( k == 0 ) THEN |
---|
| 1327 | e_mean_int = hom(0,1,8,0) |
---|
| 1328 | ELSE |
---|
| 1329 | e_mean_int = hom(k,1,8,0) + & |
---|
| 1330 | ( hom(k+1,1,8,0) - hom(k,1,8,0) ) / & |
---|
| 1331 | ( zu(k+1) - zu(k) ) * & |
---|
| 1332 | ( zv(n) - zu(k) ) |
---|
| 1333 | ENDIF |
---|
[849] | 1334 | |
---|
[1685] | 1335 | kw = kp - 1 |
---|
[849] | 1336 | |
---|
[1359] | 1337 | IF ( k == 0 ) THEN |
---|
| 1338 | aa = hom(k+1,1,30,0) * ( zv(n) / & |
---|
| 1339 | ( 0.5_wp * ( zu(k+1) - zu(k) ) ) ) |
---|
| 1340 | bb = hom(k+1,1,31,0) * ( zv(n) / & |
---|
| 1341 | ( 0.5_wp * ( zu(k+1) - zu(k) ) ) ) |
---|
| 1342 | cc = hom(kw+1,1,32,0) * ( zv(n) / & |
---|
| 1343 | ( 1.0_wp * ( zw(kw+1) - zw(kw) ) ) ) |
---|
| 1344 | ELSE |
---|
| 1345 | aa = hom(k,1,30,0) + ( hom(k+1,1,30,0) - hom(k,1,30,0) ) * & |
---|
| 1346 | ( ( zv(n) - zu(k) ) / ( zu(k+1) - zu(k) ) ) |
---|
| 1347 | bb = hom(k,1,31,0) + ( hom(k+1,1,31,0) - hom(k,1,31,0) ) * & |
---|
| 1348 | ( ( zv(n) - zu(k) ) / ( zu(k+1) - zu(k) ) ) |
---|
| 1349 | cc = hom(kw,1,32,0) + ( hom(kw+1,1,32,0)-hom(kw,1,32,0) ) * & |
---|
| 1350 | ( ( zv(n) - zw(kw) ) / ( zw(kw+1)-zw(kw) ) ) |
---|
| 1351 | ENDIF |
---|
[849] | 1352 | |
---|
[1359] | 1353 | vv_int = ( 1.0_wp / 3.0_wp ) * ( aa + bb + cc ) |
---|
| 1354 | ! |
---|
| 1355 | !-- Needed to avoid NaN particle velocities. The value of 1.0 is just |
---|
| 1356 | !-- an educated guess for the given case. |
---|
| 1357 | IF ( vv_int + ( 2.0_wp / 3.0_wp ) * e_mean_int == 0.0_wp ) THEN |
---|
| 1358 | fs_int(n) = 1.0_wp |
---|
| 1359 | ELSE |
---|
| 1360 | fs_int(n) = ( 2.0_wp / 3.0_wp ) * e_mean_int / & |
---|
| 1361 | ( vv_int + ( 2.0_wp / 3.0_wp ) * e_mean_int ) |
---|
| 1362 | ENDIF |
---|
[849] | 1363 | |
---|
[1359] | 1364 | ENDDO |
---|
| 1365 | ENDDO |
---|
[849] | 1366 | |
---|
[2417] | 1367 | DO nb = 0, 7 |
---|
| 1368 | DO n = start_index(nb), end_index(nb) |
---|
| 1369 | rg(n,1) = random_gauss( iran_part, 5.0_wp ) |
---|
| 1370 | rg(n,2) = random_gauss( iran_part, 5.0_wp ) |
---|
| 1371 | rg(n,3) = random_gauss( iran_part, 5.0_wp ) |
---|
| 1372 | ENDDO |
---|
| 1373 | ENDDO |
---|
[1359] | 1374 | |
---|
[2417] | 1375 | DO nb = 0, 7 |
---|
| 1376 | DO n = start_index(nb), end_index(nb) |
---|
[1359] | 1377 | |
---|
[849] | 1378 | ! |
---|
[2417] | 1379 | !-- Calculate the Lagrangian timescale according to Weil et al. (2004). |
---|
| 1380 | lagr_timescale = ( 4.0_wp * e_int(n) + 1E-20_wp ) / & |
---|
| 1381 | ( 3.0_wp * fs_int(n) * c_0 * diss_int(n) + 1E-20_wp ) |
---|
[849] | 1382 | |
---|
| 1383 | ! |
---|
[2417] | 1384 | !-- Calculate the next particle timestep. dt_gap is the time needed to |
---|
| 1385 | !-- complete the current LES timestep. |
---|
| 1386 | dt_gap = dt_3d - particles(n)%dt_sum |
---|
| 1387 | dt_particle(n) = MIN( dt_3d, 0.025_wp * lagr_timescale, dt_gap ) |
---|
[849] | 1388 | |
---|
| 1389 | ! |
---|
[2417] | 1390 | !-- The particle timestep should not be too small in order to prevent |
---|
| 1391 | !-- the number of particle timesteps of getting too large |
---|
| 1392 | IF ( dt_particle(n) < dt_min_part .AND. dt_min_part < dt_gap ) THEN |
---|
| 1393 | dt_particle(n) = dt_min_part |
---|
| 1394 | ENDIF |
---|
[849] | 1395 | |
---|
| 1396 | ! |
---|
[2417] | 1397 | !-- Calculate the SGS velocity components |
---|
| 1398 | IF ( particles(n)%age == 0.0_wp ) THEN |
---|
[849] | 1399 | ! |
---|
[2417] | 1400 | !-- For new particles the SGS components are derived from the SGS |
---|
| 1401 | !-- TKE. Limit the Gaussian random number to the interval |
---|
| 1402 | !-- [-5.0*sigma, 5.0*sigma] in order to prevent the SGS velocities |
---|
| 1403 | !-- from becoming unrealistically large. |
---|
| 1404 | particles(n)%rvar1 = SQRT( 2.0_wp * sgs_wf_part * e_int(n) & |
---|
| 1405 | + 1E-20_wp ) * & |
---|
| 1406 | ( rg(n,1) - 1.0_wp ) |
---|
| 1407 | particles(n)%rvar2 = SQRT( 2.0_wp * sgs_wf_part * e_int(n) & |
---|
| 1408 | + 1E-20_wp ) * & |
---|
| 1409 | ( rg(n,2) - 1.0_wp ) |
---|
| 1410 | particles(n)%rvar3 = SQRT( 2.0_wp * sgs_wf_part * e_int(n) & |
---|
| 1411 | + 1E-20_wp ) * & |
---|
| 1412 | ( rg(n,3) - 1.0_wp ) |
---|
[849] | 1413 | |
---|
[2417] | 1414 | ELSE |
---|
[849] | 1415 | ! |
---|
[2417] | 1416 | !-- Restriction of the size of the new timestep: compared to the |
---|
| 1417 | !-- previous timestep the increase must not exceed 200%. First, |
---|
| 1418 | !-- check if age > age_m, in order to prevent that particles get zero |
---|
| 1419 | !-- timestep. |
---|
| 1420 | dt_particle_m = MERGE( dt_particle(n), & |
---|
| 1421 | particles(n)%age - particles(n)%age_m, & |
---|
| 1422 | particles(n)%age - particles(n)%age_m < & |
---|
| 1423 | 1E-8_wp ) |
---|
| 1424 | IF ( dt_particle(n) > 2.0_wp * dt_particle_m ) THEN |
---|
| 1425 | dt_particle(n) = 2.0_wp * dt_particle_m |
---|
| 1426 | ENDIF |
---|
[849] | 1427 | |
---|
| 1428 | ! |
---|
[2417] | 1429 | !-- For old particles the SGS components are correlated with the |
---|
| 1430 | !-- values from the previous timestep. Random numbers have also to |
---|
| 1431 | !-- be limited (see above). |
---|
| 1432 | !-- As negative values for the subgrid TKE are not allowed, the |
---|
| 1433 | !-- change of the subgrid TKE with time cannot be smaller than |
---|
| 1434 | !-- -e_int(n)/dt_particle. This value is used as a lower boundary |
---|
| 1435 | !-- value for the change of TKE |
---|
| 1436 | de_dt_min = - e_int(n) / dt_particle(n) |
---|
[849] | 1437 | |
---|
[2417] | 1438 | de_dt = ( e_int(n) - particles(n)%e_m ) / dt_particle_m |
---|
[849] | 1439 | |
---|
[2417] | 1440 | IF ( de_dt < de_dt_min ) THEN |
---|
| 1441 | de_dt = de_dt_min |
---|
| 1442 | ENDIF |
---|
[849] | 1443 | |
---|
[2417] | 1444 | CALL weil_stochastic_eq(particles(n)%rvar1, fs_int(n), e_int(n),& |
---|
| 1445 | de_dx_int(n), de_dt, diss_int(n), & |
---|
| 1446 | dt_particle(n), rg(n,1), term_1_2(n) ) |
---|
[849] | 1447 | |
---|
[2417] | 1448 | CALL weil_stochastic_eq(particles(n)%rvar2, fs_int(n), e_int(n),& |
---|
| 1449 | de_dy_int(n), de_dt, diss_int(n), & |
---|
| 1450 | dt_particle(n), rg(n,2), term_1_2(n) ) |
---|
[849] | 1451 | |
---|
[2417] | 1452 | CALL weil_stochastic_eq(particles(n)%rvar3, fs_int(n), e_int(n),& |
---|
| 1453 | de_dz_int(n), de_dt, diss_int(n), & |
---|
| 1454 | dt_particle(n), rg(n,3), term_1_2(n) ) |
---|
[849] | 1455 | |
---|
[2417] | 1456 | ENDIF |
---|
[849] | 1457 | |
---|
[2417] | 1458 | u_int(n) = u_int(n) + particles(n)%rvar1 |
---|
| 1459 | v_int(n) = v_int(n) + particles(n)%rvar2 |
---|
| 1460 | w_int(n) = w_int(n) + particles(n)%rvar3 |
---|
[849] | 1461 | ! |
---|
[2417] | 1462 | !-- Store the SGS TKE of the current timelevel which is needed for |
---|
| 1463 | !-- for calculating the SGS particle velocities at the next timestep |
---|
| 1464 | particles(n)%e_m = e_int(n) |
---|
| 1465 | ENDDO |
---|
[1359] | 1466 | ENDDO |
---|
[849] | 1467 | |
---|
[1359] | 1468 | ELSE |
---|
[849] | 1469 | ! |
---|
[1359] | 1470 | !-- If no SGS velocities are used, only the particle timestep has to |
---|
| 1471 | !-- be set |
---|
| 1472 | dt_particle = dt_3d |
---|
[849] | 1473 | |
---|
[1359] | 1474 | ENDIF |
---|
[849] | 1475 | |
---|
[1359] | 1476 | dens_ratio = particle_groups(particles(1:number_of_particles)%group)%density_ratio |
---|
[849] | 1477 | |
---|
[1359] | 1478 | IF ( ANY( dens_ratio == 0.0_wp ) ) THEN |
---|
[2417] | 1479 | DO nb = 0, 7 |
---|
| 1480 | DO n = start_index(nb), end_index(nb) |
---|
[1359] | 1481 | |
---|
[849] | 1482 | ! |
---|
[2417] | 1483 | !-- Particle advection |
---|
| 1484 | IF ( dens_ratio(n) == 0.0_wp ) THEN |
---|
[849] | 1485 | ! |
---|
[2417] | 1486 | !-- Pure passive transport (without particle inertia) |
---|
| 1487 | particles(n)%x = xv(n) + u_int(n) * dt_particle(n) |
---|
| 1488 | particles(n)%y = yv(n) + v_int(n) * dt_particle(n) |
---|
| 1489 | particles(n)%z = zv(n) + w_int(n) * dt_particle(n) |
---|
[849] | 1490 | |
---|
[2417] | 1491 | particles(n)%speed_x = u_int(n) |
---|
| 1492 | particles(n)%speed_y = v_int(n) |
---|
| 1493 | particles(n)%speed_z = w_int(n) |
---|
[849] | 1494 | |
---|
[2417] | 1495 | ELSE |
---|
[849] | 1496 | ! |
---|
[2417] | 1497 | !-- Transport of particles with inertia |
---|
| 1498 | particles(n)%x = particles(n)%x + particles(n)%speed_x * & |
---|
| 1499 | dt_particle(n) |
---|
| 1500 | particles(n)%y = particles(n)%y + particles(n)%speed_y * & |
---|
| 1501 | dt_particle(n) |
---|
| 1502 | particles(n)%z = particles(n)%z + particles(n)%speed_z * & |
---|
| 1503 | dt_particle(n) |
---|
[849] | 1504 | |
---|
| 1505 | ! |
---|
[2417] | 1506 | !-- Update of the particle velocity |
---|
| 1507 | IF ( cloud_droplets ) THEN |
---|
| 1508 | ! |
---|
| 1509 | !-- Terminal velocity is computed for vertical direction (Rogers et |
---|
| 1510 | !-- al., 1993, J. Appl. Meteorol.) |
---|
| 1511 | diameter = particles(n)%radius * 2000.0_wp !diameter in mm |
---|
| 1512 | IF ( diameter <= d0_rog ) THEN |
---|
| 1513 | w_s = k_cap_rog * diameter * ( 1.0_wp - EXP( -k_low_rog * diameter ) ) |
---|
| 1514 | ELSE |
---|
| 1515 | w_s = a_rog - b_rog * EXP( -c_rog * diameter ) |
---|
| 1516 | ENDIF |
---|
| 1517 | |
---|
| 1518 | ! |
---|
| 1519 | !-- If selected, add random velocities following Soelch and Kaercher |
---|
| 1520 | !-- (2010, Q. J. R. Meteorol. Soc.) |
---|
| 1521 | IF ( use_sgs_for_particles ) THEN |
---|
| 1522 | lagr_timescale = km(kp,jp,ip) / MAX( e(kp,jp,ip), 1.0E-20_wp ) |
---|
| 1523 | RL = EXP( -1.0_wp * dt_3d / lagr_timescale ) |
---|
| 1524 | sigma = SQRT( e(kp,jp,ip) ) |
---|
| 1525 | |
---|
| 1526 | rg1 = random_gauss( iran_part, 5.0_wp ) - 1.0_wp |
---|
| 1527 | rg2 = random_gauss( iran_part, 5.0_wp ) - 1.0_wp |
---|
| 1528 | rg3 = random_gauss( iran_part, 5.0_wp ) - 1.0_wp |
---|
| 1529 | |
---|
| 1530 | particles(n)%rvar1 = RL * particles(n)%rvar1 + & |
---|
| 1531 | SQRT( 1.0_wp - RL**2 ) * sigma * rg1 |
---|
| 1532 | particles(n)%rvar2 = RL * particles(n)%rvar2 + & |
---|
| 1533 | SQRT( 1.0_wp - RL**2 ) * sigma * rg2 |
---|
| 1534 | particles(n)%rvar3 = RL * particles(n)%rvar3 + & |
---|
| 1535 | SQRT( 1.0_wp - RL**2 ) * sigma * rg3 |
---|
| 1536 | |
---|
| 1537 | particles(n)%speed_x = u_int(n) + particles(n)%rvar1 |
---|
| 1538 | particles(n)%speed_y = v_int(n) + particles(n)%rvar2 |
---|
| 1539 | particles(n)%speed_z = w_int(n) + particles(n)%rvar3 - w_s |
---|
| 1540 | ELSE |
---|
| 1541 | particles(n)%speed_x = u_int(n) |
---|
| 1542 | particles(n)%speed_y = v_int(n) |
---|
| 1543 | particles(n)%speed_z = w_int(n) - w_s |
---|
| 1544 | ENDIF |
---|
| 1545 | |
---|
| 1546 | ELSE |
---|
| 1547 | |
---|
| 1548 | IF ( use_sgs_for_particles ) THEN |
---|
| 1549 | exp_arg = particle_groups(particles(n)%group)%exp_arg |
---|
| 1550 | exp_term = EXP( -exp_arg * dt_particle(n) ) |
---|
| 1551 | ELSE |
---|
| 1552 | exp_arg = particle_groups(particles(n)%group)%exp_arg |
---|
| 1553 | exp_term = particle_groups(particles(n)%group)%exp_term |
---|
| 1554 | ENDIF |
---|
| 1555 | particles(n)%speed_x = particles(n)%speed_x * exp_term + & |
---|
| 1556 | u_int(n) * ( 1.0_wp - exp_term ) |
---|
| 1557 | particles(n)%speed_y = particles(n)%speed_y * exp_term + & |
---|
| 1558 | v_int(n) * ( 1.0_wp - exp_term ) |
---|
| 1559 | particles(n)%speed_z = particles(n)%speed_z * exp_term + & |
---|
| 1560 | ( w_int(n) - ( 1.0_wp - dens_ratio(n) ) * & |
---|
| 1561 | g / exp_arg ) * ( 1.0_wp - exp_term ) |
---|
| 1562 | ENDIF |
---|
| 1563 | |
---|
| 1564 | ENDIF |
---|
| 1565 | ENDDO |
---|
| 1566 | ENDDO |
---|
| 1567 | |
---|
| 1568 | ELSE |
---|
| 1569 | |
---|
| 1570 | DO nb = 0, 7 |
---|
| 1571 | DO n = start_index(nb), end_index(nb) |
---|
| 1572 | ! |
---|
| 1573 | !-- Transport of particles with inertia |
---|
| 1574 | particles(n)%x = xv(n) + particles(n)%speed_x * dt_particle(n) |
---|
| 1575 | particles(n)%y = yv(n) + particles(n)%speed_y * dt_particle(n) |
---|
| 1576 | particles(n)%z = zv(n) + particles(n)%speed_z * dt_particle(n) |
---|
| 1577 | ! |
---|
[1359] | 1578 | !-- Update of the particle velocity |
---|
| 1579 | IF ( cloud_droplets ) THEN |
---|
[1822] | 1580 | ! |
---|
[2417] | 1581 | !-- Terminal velocity is computed for vertical direction (Rogers et al., |
---|
| 1582 | !-- 1993, J. Appl. Meteorol.) |
---|
[1822] | 1583 | diameter = particles(n)%radius * 2000.0_wp !diameter in mm |
---|
| 1584 | IF ( diameter <= d0_rog ) THEN |
---|
| 1585 | w_s = k_cap_rog * diameter * ( 1.0_wp - EXP( -k_low_rog * diameter ) ) |
---|
| 1586 | ELSE |
---|
| 1587 | w_s = a_rog - b_rog * EXP( -c_rog * diameter ) |
---|
| 1588 | ENDIF |
---|
[1359] | 1589 | |
---|
[1822] | 1590 | ! |
---|
| 1591 | !-- If selected, add random velocities following Soelch and Kaercher |
---|
| 1592 | !-- (2010, Q. J. R. Meteorol. Soc.) |
---|
| 1593 | IF ( use_sgs_for_particles ) THEN |
---|
[2417] | 1594 | lagr_timescale = km(kp,jp,ip) / MAX( e(kp,jp,ip), 1.0E-20_wp ) |
---|
| 1595 | RL = EXP( -1.0_wp * dt_3d / lagr_timescale ) |
---|
| 1596 | sigma = SQRT( e(kp,jp,ip) ) |
---|
[1822] | 1597 | |
---|
[2417] | 1598 | rg1 = random_gauss( iran_part, 5.0_wp ) - 1.0_wp |
---|
| 1599 | rg2 = random_gauss( iran_part, 5.0_wp ) - 1.0_wp |
---|
| 1600 | rg3 = random_gauss( iran_part, 5.0_wp ) - 1.0_wp |
---|
[1822] | 1601 | |
---|
[2417] | 1602 | particles(n)%rvar1 = RL * particles(n)%rvar1 + & |
---|
| 1603 | SQRT( 1.0_wp - RL**2 ) * sigma * rg1 |
---|
| 1604 | particles(n)%rvar2 = RL * particles(n)%rvar2 + & |
---|
| 1605 | SQRT( 1.0_wp - RL**2 ) * sigma * rg2 |
---|
| 1606 | particles(n)%rvar3 = RL * particles(n)%rvar3 + & |
---|
| 1607 | SQRT( 1.0_wp - RL**2 ) * sigma * rg3 |
---|
[1822] | 1608 | |
---|
[2417] | 1609 | particles(n)%speed_x = u_int(n) + particles(n)%rvar1 |
---|
| 1610 | particles(n)%speed_y = v_int(n) + particles(n)%rvar2 |
---|
| 1611 | particles(n)%speed_z = w_int(n) + particles(n)%rvar3 - w_s |
---|
[1822] | 1612 | ELSE |
---|
[2417] | 1613 | particles(n)%speed_x = u_int(n) |
---|
| 1614 | particles(n)%speed_y = v_int(n) |
---|
| 1615 | particles(n)%speed_z = w_int(n) - w_s |
---|
[1822] | 1616 | ENDIF |
---|
| 1617 | |
---|
[1359] | 1618 | ELSE |
---|
[1822] | 1619 | |
---|
| 1620 | IF ( use_sgs_for_particles ) THEN |
---|
| 1621 | exp_arg = particle_groups(particles(n)%group)%exp_arg |
---|
| 1622 | exp_term = EXP( -exp_arg * dt_particle(n) ) |
---|
| 1623 | ELSE |
---|
| 1624 | exp_arg = particle_groups(particles(n)%group)%exp_arg |
---|
| 1625 | exp_term = particle_groups(particles(n)%group)%exp_term |
---|
| 1626 | ENDIF |
---|
[2417] | 1627 | particles(n)%speed_x = particles(n)%speed_x * exp_term + & |
---|
[1822] | 1628 | u_int(n) * ( 1.0_wp - exp_term ) |
---|
[2417] | 1629 | particles(n)%speed_y = particles(n)%speed_y * exp_term + & |
---|
[1822] | 1630 | v_int(n) * ( 1.0_wp - exp_term ) |
---|
[2417] | 1631 | particles(n)%speed_z = particles(n)%speed_z * exp_term + & |
---|
| 1632 | ( w_int(n) - ( 1.0_wp - dens_ratio(n) ) * g / & |
---|
| 1633 | exp_arg ) * ( 1.0_wp - exp_term ) |
---|
[1359] | 1634 | ENDIF |
---|
[2417] | 1635 | ENDDO |
---|
[1359] | 1636 | ENDDO |
---|
| 1637 | |
---|
[2417] | 1638 | ENDIF |
---|
[1359] | 1639 | |
---|
| 1640 | ! |
---|
[2417] | 1641 | !-- Store the old age of the particle ( needed to prevent that a |
---|
| 1642 | !-- particle crosses several PEs during one timestep, and for the |
---|
| 1643 | !-- evaluation of the subgrid particle velocity fluctuations ) |
---|
| 1644 | particles(1:number_of_particles)%age_m = particles(1:number_of_particles)%age |
---|
| 1645 | |
---|
| 1646 | DO nb = 0, 7 |
---|
| 1647 | DO n = start_index(nb), end_index(nb) |
---|
[1822] | 1648 | ! |
---|
[2417] | 1649 | !-- Increment the particle age and the total time that the particle |
---|
| 1650 | !-- has advanced within the particle timestep procedure |
---|
| 1651 | particles(n)%age = particles(n)%age + dt_particle(n) |
---|
| 1652 | particles(n)%dt_sum = particles(n)%dt_sum + dt_particle(n) |
---|
[1359] | 1653 | |
---|
[1822] | 1654 | ! |
---|
[2417] | 1655 | !-- Check whether there is still a particle that has not yet completed |
---|
| 1656 | !-- the total LES timestep |
---|
| 1657 | IF ( ( dt_3d - particles(n)%dt_sum ) > 1E-8_wp ) THEN |
---|
| 1658 | dt_3d_reached_l = .FALSE. |
---|
[849] | 1659 | ENDIF |
---|
[1822] | 1660 | |
---|
[1359] | 1661 | ENDDO |
---|
[849] | 1662 | ENDDO |
---|
| 1663 | |
---|
[1359] | 1664 | CALL cpu_log( log_point_s(44), 'lpm_advec', 'pause' ) |
---|
[849] | 1665 | |
---|
[1929] | 1666 | |
---|
[849] | 1667 | END SUBROUTINE lpm_advec |
---|
[1929] | 1668 | |
---|
| 1669 | ! Description: |
---|
| 1670 | ! ------------ |
---|
| 1671 | !> Calculation of subgrid-scale particle speed using the stochastic model |
---|
| 1672 | !> of Weil et al. (2004, JAS, 61, 2877-2887). |
---|
| 1673 | !------------------------------------------------------------------------------! |
---|
| 1674 | SUBROUTINE weil_stochastic_eq( v_sgs, fs_n, e_n, dedxi_n, dedt_n, diss_n, & |
---|
| 1675 | dt_n, rg_n, fac ) |
---|
| 1676 | |
---|
| 1677 | USE kinds |
---|
| 1678 | |
---|
| 1679 | USE particle_attributes, & |
---|
| 1680 | ONLY: c_0, sgs_wf_part |
---|
| 1681 | |
---|
| 1682 | IMPLICIT NONE |
---|
| 1683 | |
---|
| 1684 | REAL(wp) :: a1 !< dummy argument |
---|
| 1685 | REAL(wp) :: dedt_n !< time derivative of TKE at particle position |
---|
| 1686 | REAL(wp) :: dedxi_n !< horizontal derivative of TKE at particle position |
---|
| 1687 | REAL(wp) :: diss_n !< dissipation at particle position |
---|
| 1688 | REAL(wp) :: dt_n !< particle timestep |
---|
| 1689 | REAL(wp) :: e_n !< TKE at particle position |
---|
| 1690 | REAL(wp) :: fac !< flag to identify adjacent topography |
---|
| 1691 | REAL(wp) :: fs_n !< weighting factor to prevent that subgrid-scale particle speed becomes too large |
---|
| 1692 | REAL(wp) :: sgs_w !< constant (1/3) |
---|
| 1693 | REAL(wp) :: rg_n !< random number |
---|
| 1694 | REAL(wp) :: term1 !< memory term |
---|
| 1695 | REAL(wp) :: term2 !< drift correction term |
---|
| 1696 | REAL(wp) :: term3 !< random term |
---|
| 1697 | REAL(wp) :: v_sgs !< subgrid-scale velocity component |
---|
| 1698 | |
---|
[2100] | 1699 | !-- At first, limit TKE to a small non-zero number, in order to prevent |
---|
| 1700 | !-- the occurrence of extremely large SGS-velocities in case TKE is zero, |
---|
| 1701 | !-- (could occur at the simulation begin). |
---|
| 1702 | e_n = MAX( e_n, 1E-20_wp ) |
---|
[1929] | 1703 | ! |
---|
| 1704 | !-- Please note, terms 1 and 2 (drift and memory term, respectively) are |
---|
| 1705 | !-- multiplied by a flag to switch of both terms near topography. |
---|
| 1706 | !-- This is necessary, as both terms may cause a subgrid-scale velocity build up |
---|
| 1707 | !-- if particles are trapped in regions with very small TKE, e.g. in narrow street |
---|
| 1708 | !-- canyons resolved by only a few grid points. Hence, term 1 and term 2 are |
---|
| 1709 | !-- disabled if one of the adjacent grid points belongs to topography. |
---|
| 1710 | !-- Moreover, in this case, the previous subgrid-scale component is also set |
---|
| 1711 | !-- to zero. |
---|
| 1712 | |
---|
| 1713 | a1 = fs_n * c_0 * diss_n |
---|
| 1714 | ! |
---|
| 1715 | !-- Memory term |
---|
| 1716 | term1 = - a1 * v_sgs * dt_n / ( 4.0_wp * sgs_wf_part * e_n + 1E-20_wp ) & |
---|
| 1717 | * fac |
---|
| 1718 | ! |
---|
| 1719 | !-- Drift correction term |
---|
| 1720 | term2 = ( ( dedt_n * v_sgs / e_n ) + dedxi_n ) * 0.5_wp * dt_n & |
---|
| 1721 | * fac |
---|
| 1722 | ! |
---|
| 1723 | !-- Random term |
---|
| 1724 | term3 = SQRT( MAX( a1, 1E-20 ) ) * ( rg_n - 1.0_wp ) * SQRT( dt_n ) |
---|
| 1725 | ! |
---|
| 1726 | !-- In cese one of the adjacent grid-boxes belongs to topograhy, the previous |
---|
| 1727 | !-- subgrid-scale velocity component is set to zero, in order to prevent a |
---|
| 1728 | !-- velocity build-up. |
---|
| 1729 | !-- This case, set also previous subgrid-scale component to zero. |
---|
| 1730 | v_sgs = v_sgs * fac + term1 + term2 + term3 |
---|
| 1731 | |
---|
| 1732 | END SUBROUTINE weil_stochastic_eq |
---|