[1682] | 1 | !> @file lpm_advec.f90 |
---|
[2000] | 2 | !------------------------------------------------------------------------------! |
---|
[1036] | 3 | ! This file is part of PALM. |
---|
| 4 | ! |
---|
[2000] | 5 | ! PALM is free software: you can redistribute it and/or modify it under the |
---|
| 6 | ! terms of the GNU General Public License as published by the Free Software |
---|
| 7 | ! Foundation, either version 3 of the License, or (at your option) any later |
---|
| 8 | ! version. |
---|
[1036] | 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
[2101] | 17 | ! Copyright 1997-2017 Leibniz Universitaet Hannover |
---|
[2000] | 18 | !------------------------------------------------------------------------------! |
---|
[1036] | 19 | ! |
---|
[849] | 20 | ! Current revisions: |
---|
| 21 | ! ------------------ |
---|
[1930] | 22 | ! |
---|
[2318] | 23 | ! |
---|
[1930] | 24 | ! Former revisions: |
---|
| 25 | ! ----------------- |
---|
| 26 | ! $Id: lpm_advec.f90 2417 2017-09-06 15:22:27Z knoop $ |
---|
[2417] | 27 | ! Particle loops adapted for sub-box structure, i.e. for each sub-box the |
---|
| 28 | ! particle loop runs from start_index up to end_index instead from 1 to |
---|
| 29 | ! number_of_particles. This way, it is possible to skip unnecessary |
---|
| 30 | ! computations for particles that already completed the LES timestep. |
---|
| 31 | ! |
---|
| 32 | ! 2318 2017-07-20 17:27:44Z suehring |
---|
[2318] | 33 | ! Get topography top index via Function call |
---|
| 34 | ! |
---|
| 35 | ! 2317 2017-07-20 17:27:19Z suehring |
---|
[1930] | 36 | ! |
---|
[2233] | 37 | ! 2232 2017-05-30 17:47:52Z suehring |
---|
| 38 | ! Adjustments to new topography and surface concept |
---|
| 39 | ! |
---|
[2101] | 40 | ! 2100 2017-01-05 16:40:16Z suehring |
---|
| 41 | ! Prevent extremely large SGS-velocities in regions where TKE is zero, e.g. |
---|
| 42 | ! at the begin of simulations and/or in non-turbulent regions. |
---|
| 43 | ! |
---|
[2001] | 44 | ! 2000 2016-08-20 18:09:15Z knoop |
---|
| 45 | ! Forced header and separation lines into 80 columns |
---|
| 46 | ! |
---|
[1937] | 47 | ! 1936 2016-06-13 13:37:44Z suehring |
---|
| 48 | ! Formatting adjustments |
---|
| 49 | ! |
---|
[1930] | 50 | ! 1929 2016-06-09 16:25:25Z suehring |
---|
[1929] | 51 | ! Put stochastic equation in an extra subroutine. |
---|
| 52 | ! Set flag for stochastic equation to communicate whether a particle is near |
---|
| 53 | ! topography. This case, memory and drift term are disabled in the Weil equation. |
---|
[1889] | 54 | ! |
---|
[1929] | 55 | ! Enable vertical logarithmic interpolation also above topography. This case, |
---|
| 56 | ! set a lower limit for the friction velocity, as it can become very small |
---|
[1930] | 57 | ! in narrow street canyons, leading to too large particle speeds. |
---|
[1823] | 58 | ! |
---|
[1889] | 59 | ! 1888 2016-04-21 12:20:49Z suehring |
---|
| 60 | ! Bugfix concerning logarithmic interpolation of particle speed |
---|
| 61 | ! |
---|
[1823] | 62 | ! 1822 2016-04-07 07:49:42Z hoffmann |
---|
[1822] | 63 | ! Random velocity fluctuations for particles added. Terminal fall velocity |
---|
| 64 | ! for droplets is calculated from a parameterization (which is better than |
---|
| 65 | ! the previous, physically correct calculation, which demands a very short |
---|
| 66 | ! time step that is not used in the model). |
---|
| 67 | ! |
---|
| 68 | ! Unused variables deleted. |
---|
[1321] | 69 | ! |
---|
[1692] | 70 | ! 1691 2015-10-26 16:17:44Z maronga |
---|
| 71 | ! Renamed prandtl_layer to constant_flux_layer. |
---|
| 72 | ! |
---|
[1686] | 73 | ! 1685 2015-10-08 07:32:13Z raasch |
---|
| 74 | ! TKE check for negative values (so far, only zero value was checked) |
---|
| 75 | ! offset_ocean_nzt_m1 removed |
---|
| 76 | ! |
---|
[1683] | 77 | ! 1682 2015-10-07 23:56:08Z knoop |
---|
| 78 | ! Code annotations made doxygen readable |
---|
| 79 | ! |
---|
[1584] | 80 | ! 1583 2015-04-15 12:16:27Z suehring |
---|
| 81 | ! Bugfix: particle advection within Prandtl-layer in case of Galilei |
---|
| 82 | ! transformation. |
---|
| 83 | ! |
---|
[1370] | 84 | ! 1369 2014-04-24 05:57:38Z raasch |
---|
| 85 | ! usage of module interfaces removed |
---|
| 86 | ! |
---|
[1360] | 87 | ! 1359 2014-04-11 17:15:14Z hoffmann |
---|
| 88 | ! New particle structure integrated. |
---|
| 89 | ! Kind definition added to all floating point numbers. |
---|
| 90 | ! |
---|
[1323] | 91 | ! 1322 2014-03-20 16:38:49Z raasch |
---|
| 92 | ! REAL constants defined as wp_kind |
---|
| 93 | ! |
---|
[1321] | 94 | ! 1320 2014-03-20 08:40:49Z raasch |
---|
[1320] | 95 | ! ONLY-attribute added to USE-statements, |
---|
| 96 | ! kind-parameters added to all INTEGER and REAL declaration statements, |
---|
| 97 | ! kinds are defined in new module kinds, |
---|
| 98 | ! revision history before 2012 removed, |
---|
| 99 | ! comment fields (!:) to be used for variable explanations added to |
---|
| 100 | ! all variable declaration statements |
---|
[849] | 101 | ! |
---|
[1315] | 102 | ! 1314 2014-03-14 18:25:17Z suehring |
---|
| 103 | ! Vertical logarithmic interpolation of horizontal particle speed for particles |
---|
| 104 | ! between roughness height and first vertical grid level. |
---|
| 105 | ! |
---|
[1037] | 106 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
| 107 | ! code put under GPL (PALM 3.9) |
---|
| 108 | ! |
---|
[850] | 109 | ! 849 2012-03-15 10:35:09Z raasch |
---|
| 110 | ! initial revision (former part of advec_particles) |
---|
[849] | 111 | ! |
---|
[850] | 112 | ! |
---|
[849] | 113 | ! Description: |
---|
| 114 | ! ------------ |
---|
[1682] | 115 | !> Calculation of new particle positions due to advection using a simple Euler |
---|
| 116 | !> scheme. Particles may feel inertia effects. SGS transport can be included |
---|
| 117 | !> using the stochastic model of Weil et al. (2004, JAS, 61, 2877-2887). |
---|
[849] | 118 | !------------------------------------------------------------------------------! |
---|
[1682] | 119 | SUBROUTINE lpm_advec (ip,jp,kp) |
---|
| 120 | |
---|
[849] | 121 | |
---|
[1320] | 122 | USE arrays_3d, & |
---|
[2232] | 123 | ONLY: de_dx, de_dy, de_dz, diss, e, km, u, v, w, zu, zw |
---|
[849] | 124 | |
---|
[1359] | 125 | USE cpulog |
---|
| 126 | |
---|
| 127 | USE pegrid |
---|
| 128 | |
---|
[1320] | 129 | USE control_parameters, & |
---|
[1691] | 130 | ONLY: atmos_ocean_sign, cloud_droplets, constant_flux_layer, dt_3d, & |
---|
[1822] | 131 | dt_3d_reached_l, dz, g, kappa, topography, u_gtrans, v_gtrans |
---|
[849] | 132 | |
---|
[1320] | 133 | USE grid_variables, & |
---|
| 134 | ONLY: ddx, dx, ddy, dy |
---|
| 135 | |
---|
| 136 | USE indices, & |
---|
[2317] | 137 | ONLY: nzb, nzt |
---|
[1320] | 138 | |
---|
| 139 | USE kinds |
---|
| 140 | |
---|
| 141 | USE particle_attributes, & |
---|
[1822] | 142 | ONLY: block_offset, c_0, dt_min_part, grid_particles, & |
---|
[1359] | 143 | iran_part, log_z_z0, number_of_particles, number_of_sublayers, & |
---|
[1929] | 144 | particles, particle_groups, offset_ocean_nzt, sgs_wf_part, & |
---|
| 145 | use_sgs_for_particles, vertical_particle_advection, z0_av_global |
---|
[1320] | 146 | |
---|
| 147 | USE statistics, & |
---|
| 148 | ONLY: hom |
---|
[849] | 149 | |
---|
[2232] | 150 | USE surface_mod, & |
---|
[2317] | 151 | ONLY: get_topography_top_index, surf_def_h, surf_lsm_h, surf_usm_h |
---|
[2232] | 152 | |
---|
[1320] | 153 | IMPLICIT NONE |
---|
[849] | 154 | |
---|
[1929] | 155 | INTEGER(iwp) :: agp !< loop variable |
---|
| 156 | INTEGER(iwp) :: gp_outside_of_building(1:8) !< number of grid points used for particle interpolation in case of topography |
---|
| 157 | INTEGER(iwp) :: i !< index variable along x |
---|
| 158 | INTEGER(iwp) :: ip !< index variable along x |
---|
| 159 | INTEGER(iwp) :: ilog !< index variable along x |
---|
| 160 | INTEGER(iwp) :: j !< index variable along y |
---|
| 161 | INTEGER(iwp) :: jp !< index variable along y |
---|
| 162 | INTEGER(iwp) :: jlog !< index variable along y |
---|
| 163 | INTEGER(iwp) :: k !< index variable along z |
---|
[2232] | 164 | INTEGER(iwp) :: k_wall !< vertical index of topography top |
---|
[1929] | 165 | INTEGER(iwp) :: kp !< index variable along z |
---|
| 166 | INTEGER(iwp) :: kw !< index variable along z |
---|
| 167 | INTEGER(iwp) :: n !< loop variable over all particles in a grid box |
---|
| 168 | INTEGER(iwp) :: nb !< block number particles are sorted in |
---|
| 169 | INTEGER(iwp) :: num_gp !< number of adjacent grid points inside topography |
---|
[2232] | 170 | INTEGER(iwp) :: surf_start !< Index on surface data-type for current grid box |
---|
[849] | 171 | |
---|
[1929] | 172 | INTEGER(iwp), DIMENSION(0:7) :: start_index !< start particle index for current block |
---|
| 173 | INTEGER(iwp), DIMENSION(0:7) :: end_index !< start particle index for current block |
---|
[1359] | 174 | |
---|
[1929] | 175 | REAL(wp) :: aa !< dummy argument for horizontal particle interpolation |
---|
| 176 | REAL(wp) :: bb !< dummy argument for horizontal particle interpolation |
---|
| 177 | REAL(wp) :: cc !< dummy argument for horizontal particle interpolation |
---|
| 178 | REAL(wp) :: d_sum !< dummy argument for horizontal particle interpolation in case of topography |
---|
| 179 | REAL(wp) :: d_z_p_z0 !< inverse of interpolation length for logarithmic interpolation |
---|
| 180 | REAL(wp) :: dd !< dummy argument for horizontal particle interpolation |
---|
| 181 | REAL(wp) :: de_dx_int_l !< x/y-interpolated TKE gradient (x) at particle position at lower vertical level |
---|
| 182 | REAL(wp) :: de_dx_int_u !< x/y-interpolated TKE gradient (x) at particle position at upper vertical level |
---|
| 183 | REAL(wp) :: de_dy_int_l !< x/y-interpolated TKE gradient (y) at particle position at lower vertical level |
---|
| 184 | REAL(wp) :: de_dy_int_u !< x/y-interpolated TKE gradient (y) at particle position at upper vertical level |
---|
| 185 | REAL(wp) :: de_dt !< temporal derivative of TKE experienced by the particle |
---|
| 186 | REAL(wp) :: de_dt_min !< lower level for temporal TKE derivative |
---|
| 187 | REAL(wp) :: de_dz_int_l !< x/y-interpolated TKE gradient (z) at particle position at lower vertical level |
---|
| 188 | REAL(wp) :: de_dz_int_u !< x/y-interpolated TKE gradient (z) at particle position at upper vertical level |
---|
[1822] | 189 | REAL(wp) :: diameter !< diamter of droplet |
---|
[1929] | 190 | REAL(wp) :: diss_int_l !< x/y-interpolated dissipation at particle position at lower vertical level |
---|
| 191 | REAL(wp) :: diss_int_u !< x/y-interpolated dissipation at particle position at upper vertical level |
---|
| 192 | REAL(wp) :: dt_gap !< remaining time until particle time integration reaches LES time |
---|
| 193 | REAL(wp) :: dt_particle_m !< previous particle time step |
---|
| 194 | REAL(wp) :: e_int_l !< x/y-interpolated TKE at particle position at lower vertical level |
---|
| 195 | REAL(wp) :: e_int_u !< x/y-interpolated TKE at particle position at upper vertical level |
---|
| 196 | REAL(wp) :: e_mean_int !< horizontal mean TKE at particle height |
---|
[1682] | 197 | REAL(wp) :: exp_arg !< |
---|
| 198 | REAL(wp) :: exp_term !< |
---|
[1929] | 199 | REAL(wp) :: gg !< dummy argument for horizontal particle interpolation |
---|
| 200 | REAL(wp) :: height_p !< dummy argument for logarithmic interpolation |
---|
[1822] | 201 | REAL(wp) :: lagr_timescale !< Lagrangian timescale |
---|
[1929] | 202 | REAL(wp) :: location(1:30,1:3) !< wall locations |
---|
| 203 | REAL(wp) :: log_z_z0_int !< logarithmus used for surface_layer interpolation |
---|
[1682] | 204 | REAL(wp) :: random_gauss !< |
---|
[1822] | 205 | REAL(wp) :: RL !< Lagrangian autocorrelation coefficient |
---|
| 206 | REAL(wp) :: rg1 !< Gaussian distributed random number |
---|
| 207 | REAL(wp) :: rg2 !< Gaussian distributed random number |
---|
| 208 | REAL(wp) :: rg3 !< Gaussian distributed random number |
---|
| 209 | REAL(wp) :: sigma !< velocity standard deviation |
---|
[1929] | 210 | REAL(wp) :: u_int_l !< x/y-interpolated u-component at particle position at lower vertical level |
---|
| 211 | REAL(wp) :: u_int_u !< x/y-interpolated u-component at particle position at upper vertical level |
---|
| 212 | REAL(wp) :: us_int !< friction velocity at particle grid box |
---|
[2232] | 213 | REAL(wp) :: usws_int !< surface momentum flux (u component) at particle grid box |
---|
[1929] | 214 | REAL(wp) :: v_int_l !< x/y-interpolated v-component at particle position at lower vertical level |
---|
| 215 | REAL(wp) :: v_int_u !< x/y-interpolated v-component at particle position at upper vertical level |
---|
[2232] | 216 | REAL(wp) :: vsws_int !< surface momentum flux (u component) at particle grid box |
---|
[1682] | 217 | REAL(wp) :: vv_int !< |
---|
[1929] | 218 | REAL(wp) :: w_int_l !< x/y-interpolated w-component at particle position at lower vertical level |
---|
| 219 | REAL(wp) :: w_int_u !< x/y-interpolated w-component at particle position at upper vertical level |
---|
[1822] | 220 | REAL(wp) :: w_s !< terminal velocity of droplets |
---|
[1929] | 221 | REAL(wp) :: x !< dummy argument for horizontal particle interpolation |
---|
| 222 | REAL(wp) :: y !< dummy argument for horizontal particle interpolation |
---|
| 223 | REAL(wp) :: z_p !< surface layer height (0.5 dz) |
---|
[849] | 224 | |
---|
[1822] | 225 | REAL(wp), PARAMETER :: a_rog = 9.65_wp !< parameter for fall velocity |
---|
| 226 | REAL(wp), PARAMETER :: b_rog = 10.43_wp !< parameter for fall velocity |
---|
| 227 | REAL(wp), PARAMETER :: c_rog = 0.6_wp !< parameter for fall velocity |
---|
| 228 | REAL(wp), PARAMETER :: k_cap_rog = 4.0_wp !< parameter for fall velocity |
---|
| 229 | REAL(wp), PARAMETER :: k_low_rog = 12.0_wp !< parameter for fall velocity |
---|
| 230 | REAL(wp), PARAMETER :: d0_rog = 0.745_wp !< separation diameter |
---|
| 231 | |
---|
[1929] | 232 | REAL(wp), DIMENSION(1:30) :: d_gp_pl !< dummy argument for particle interpolation scheme in case of topography |
---|
| 233 | REAL(wp), DIMENSION(1:30) :: de_dxi !< horizontal TKE gradient along x at adjacent wall |
---|
| 234 | REAL(wp), DIMENSION(1:30) :: de_dyi !< horizontal TKE gradient along y at adjacent wall |
---|
| 235 | REAL(wp), DIMENSION(1:30) :: de_dzi !< horizontal TKE gradient along z at adjacent wall |
---|
| 236 | REAL(wp), DIMENSION(1:30) :: dissi !< dissipation at adjacent wall |
---|
| 237 | REAL(wp), DIMENSION(1:30) :: ei !< TKE at adjacent wall |
---|
[849] | 238 | |
---|
[1929] | 239 | REAL(wp), DIMENSION(number_of_particles) :: term_1_2 !< flag to communicate whether a particle is near topography or not |
---|
[1682] | 240 | REAL(wp), DIMENSION(number_of_particles) :: dens_ratio !< |
---|
[1929] | 241 | REAL(wp), DIMENSION(number_of_particles) :: de_dx_int !< horizontal TKE gradient along x at particle position |
---|
| 242 | REAL(wp), DIMENSION(number_of_particles) :: de_dy_int !< horizontal TKE gradient along y at particle position |
---|
| 243 | REAL(wp), DIMENSION(number_of_particles) :: de_dz_int !< horizontal TKE gradient along z at particle position |
---|
| 244 | REAL(wp), DIMENSION(number_of_particles) :: diss_int !< dissipation at particle position |
---|
| 245 | REAL(wp), DIMENSION(number_of_particles) :: dt_particle !< particle time step |
---|
| 246 | REAL(wp), DIMENSION(number_of_particles) :: e_int !< TKE at particle position |
---|
| 247 | REAL(wp), DIMENSION(number_of_particles) :: fs_int !< weighting factor for subgrid-scale particle speed |
---|
| 248 | REAL(wp), DIMENSION(number_of_particles) :: u_int !< u-component of particle speed |
---|
| 249 | REAL(wp), DIMENSION(number_of_particles) :: v_int !< v-component of particle speed |
---|
| 250 | REAL(wp), DIMENSION(number_of_particles) :: w_int !< w-component of particle speed |
---|
| 251 | REAL(wp), DIMENSION(number_of_particles) :: xv !< x-position |
---|
| 252 | REAL(wp), DIMENSION(number_of_particles) :: yv !< y-position |
---|
| 253 | REAL(wp), DIMENSION(number_of_particles) :: zv !< z-position |
---|
[1359] | 254 | |
---|
[1929] | 255 | REAL(wp), DIMENSION(number_of_particles, 3) :: rg !< vector of Gaussian distributed random numbers |
---|
[1359] | 256 | |
---|
| 257 | CALL cpu_log( log_point_s(44), 'lpm_advec', 'continue' ) |
---|
| 258 | |
---|
[1314] | 259 | ! |
---|
| 260 | !-- Determine height of Prandtl layer and distance between Prandtl-layer |
---|
| 261 | !-- height and horizontal mean roughness height, which are required for |
---|
| 262 | !-- vertical logarithmic interpolation of horizontal particle speeds |
---|
| 263 | !-- (for particles below first vertical grid level). |
---|
| 264 | z_p = zu(nzb+1) - zw(nzb) |
---|
[1359] | 265 | d_z_p_z0 = 1.0_wp / ( z_p - z0_av_global ) |
---|
[849] | 266 | |
---|
[1359] | 267 | start_index = grid_particles(kp,jp,ip)%start_index |
---|
| 268 | end_index = grid_particles(kp,jp,ip)%end_index |
---|
[849] | 269 | |
---|
[1359] | 270 | xv = particles(1:number_of_particles)%x |
---|
| 271 | yv = particles(1:number_of_particles)%y |
---|
| 272 | zv = particles(1:number_of_particles)%z |
---|
[849] | 273 | |
---|
[1359] | 274 | DO nb = 0, 7 |
---|
[2417] | 275 | |
---|
[1359] | 276 | i = ip |
---|
| 277 | j = jp + block_offset(nb)%j_off |
---|
| 278 | k = kp + block_offset(nb)%k_off |
---|
[849] | 279 | ! |
---|
[1359] | 280 | !-- Interpolate u velocity-component |
---|
| 281 | DO n = start_index(nb), end_index(nb) |
---|
[1314] | 282 | ! |
---|
[1359] | 283 | !-- Interpolation of the u velocity component onto particle position. |
---|
| 284 | !-- Particles are interpolation bi-linearly in the horizontal and a |
---|
| 285 | !-- linearly in the vertical. An exception is made for particles below |
---|
| 286 | !-- the first vertical grid level in case of a prandtl layer. In this |
---|
| 287 | !-- case the horizontal particle velocity components are determined using |
---|
| 288 | !-- Monin-Obukhov relations (if branch). |
---|
| 289 | !-- First, check if particle is located below first vertical grid level |
---|
[2232] | 290 | !-- above topography (Prandtl-layer height) |
---|
[1929] | 291 | ilog = ( particles(n)%x + 0.5_wp * dx ) * ddx |
---|
| 292 | jlog = ( particles(n)%y + 0.5_wp * dy ) * ddy |
---|
[2232] | 293 | ! |
---|
| 294 | !-- Determine vertical index of topography top |
---|
[2417] | 295 | k_wall = get_topography_top_index( jlog, ilog, 's' ) |
---|
[1929] | 296 | |
---|
[2232] | 297 | IF ( constant_flux_layer .AND. zv(n) - zw(k_wall) < z_p ) THEN |
---|
[1314] | 298 | ! |
---|
[1359] | 299 | !-- Resolved-scale horizontal particle velocity is zero below z0. |
---|
[2232] | 300 | IF ( zv(n) - zw(k_wall) < z0_av_global ) THEN |
---|
[1359] | 301 | u_int(n) = 0.0_wp |
---|
| 302 | ELSE |
---|
[1314] | 303 | ! |
---|
[1359] | 304 | !-- Determine the sublayer. Further used as index. |
---|
[2232] | 305 | height_p = ( zv(n) - zw(k_wall) - z0_av_global ) & |
---|
[1936] | 306 | * REAL( number_of_sublayers, KIND=wp ) & |
---|
[1359] | 307 | * d_z_p_z0 |
---|
[1314] | 308 | ! |
---|
[1359] | 309 | !-- Calculate LOG(z/z0) for exact particle height. Therefore, |
---|
| 310 | !-- interpolate linearly between precalculated logarithm. |
---|
[1929] | 311 | log_z_z0_int = log_z_z0(INT(height_p)) & |
---|
[1359] | 312 | + ( height_p - INT(height_p) ) & |
---|
| 313 | * ( log_z_z0(INT(height_p)+1) & |
---|
| 314 | - log_z_z0(INT(height_p)) & |
---|
| 315 | ) |
---|
[1314] | 316 | ! |
---|
[2232] | 317 | !-- Get friction velocity and momentum flux from new surface data |
---|
| 318 | !-- types. |
---|
| 319 | IF ( surf_def_h(0)%start_index(jlog,ilog) <= & |
---|
| 320 | surf_def_h(0)%end_index(jlog,ilog) ) THEN |
---|
| 321 | surf_start = surf_def_h(0)%start_index(jlog,ilog) |
---|
| 322 | !-- Limit friction velocity. In narrow canyons or holes the |
---|
| 323 | !-- friction velocity can become very small, resulting in a too |
---|
| 324 | !-- large particle speed. |
---|
| 325 | us_int = MAX( surf_def_h(0)%us(surf_start), 0.01_wp ) |
---|
| 326 | usws_int = surf_def_h(0)%usws(surf_start) |
---|
| 327 | ELSEIF ( surf_lsm_h%start_index(jlog,ilog) <= & |
---|
| 328 | surf_lsm_h%end_index(jlog,ilog) ) THEN |
---|
| 329 | surf_start = surf_lsm_h%start_index(jlog,ilog) |
---|
| 330 | us_int = MAX( surf_lsm_h%us(surf_start), 0.01_wp ) |
---|
| 331 | usws_int = surf_lsm_h%usws(surf_start) |
---|
| 332 | ELSEIF ( surf_usm_h%start_index(jlog,ilog) <= & |
---|
| 333 | surf_usm_h%end_index(jlog,ilog) ) THEN |
---|
| 334 | surf_start = surf_usm_h%start_index(jlog,ilog) |
---|
| 335 | us_int = MAX( surf_usm_h%us(surf_start), 0.01_wp ) |
---|
| 336 | usws_int = surf_usm_h%usws(surf_start) |
---|
| 337 | ENDIF |
---|
| 338 | |
---|
[1929] | 339 | ! |
---|
[1359] | 340 | !-- Neutral solution is applied for all situations, e.g. also for |
---|
| 341 | !-- unstable and stable situations. Even though this is not exact |
---|
| 342 | !-- this saves a lot of CPU time since several calls of intrinsic |
---|
| 343 | !-- FORTRAN procedures (LOG, ATAN) are avoided, This is justified |
---|
| 344 | !-- as sensitivity studies revealed no significant effect of |
---|
| 345 | !-- using the neutral solution also for un/stable situations. |
---|
[2232] | 346 | u_int(n) = -usws_int / ( us_int * kappa + 1E-10_wp ) & |
---|
[1929] | 347 | * log_z_z0_int - u_gtrans |
---|
| 348 | |
---|
[1359] | 349 | ENDIF |
---|
| 350 | ! |
---|
| 351 | !-- Particle above the first grid level. Bi-linear interpolation in the |
---|
| 352 | !-- horizontal and linear interpolation in the vertical direction. |
---|
[1314] | 353 | ELSE |
---|
| 354 | |
---|
[1359] | 355 | x = xv(n) + ( 0.5_wp - i ) * dx |
---|
| 356 | y = yv(n) - j * dy |
---|
| 357 | aa = x**2 + y**2 |
---|
| 358 | bb = ( dx - x )**2 + y**2 |
---|
| 359 | cc = x**2 + ( dy - y )**2 |
---|
| 360 | dd = ( dx - x )**2 + ( dy - y )**2 |
---|
| 361 | gg = aa + bb + cc + dd |
---|
[1314] | 362 | |
---|
[1359] | 363 | u_int_l = ( ( gg - aa ) * u(k,j,i) + ( gg - bb ) * u(k,j,i+1) & |
---|
| 364 | + ( gg - cc ) * u(k,j+1,i) + ( gg - dd ) * & |
---|
| 365 | u(k,j+1,i+1) ) / ( 3.0_wp * gg ) - u_gtrans |
---|
[1314] | 366 | |
---|
[1359] | 367 | IF ( k == nzt ) THEN |
---|
| 368 | u_int(n) = u_int_l |
---|
| 369 | ELSE |
---|
| 370 | u_int_u = ( ( gg-aa ) * u(k+1,j,i) + ( gg-bb ) * u(k+1,j,i+1) & |
---|
| 371 | + ( gg-cc ) * u(k+1,j+1,i) + ( gg-dd ) * & |
---|
| 372 | u(k+1,j+1,i+1) ) / ( 3.0_wp * gg ) - u_gtrans |
---|
| 373 | u_int(n) = u_int_l + ( zv(n) - zu(k) ) / dz * & |
---|
| 374 | ( u_int_u - u_int_l ) |
---|
| 375 | ENDIF |
---|
[1929] | 376 | |
---|
[1314] | 377 | ENDIF |
---|
| 378 | |
---|
[1359] | 379 | ENDDO |
---|
[849] | 380 | |
---|
[1359] | 381 | i = ip + block_offset(nb)%i_off |
---|
| 382 | j = jp |
---|
| 383 | k = kp + block_offset(nb)%k_off |
---|
[849] | 384 | ! |
---|
[1359] | 385 | !-- Same procedure for interpolation of the v velocity-component |
---|
| 386 | DO n = start_index(nb), end_index(nb) |
---|
[1685] | 387 | |
---|
[1929] | 388 | ilog = ( particles(n)%x + 0.5_wp * dx ) * ddx |
---|
| 389 | jlog = ( particles(n)%y + 0.5_wp * dy ) * ddy |
---|
[2232] | 390 | ! |
---|
| 391 | !-- Determine vertical index of topography top |
---|
[2317] | 392 | k_wall = get_topography_top_index( jlog,ilog, 's' ) |
---|
[849] | 393 | |
---|
[2232] | 394 | IF ( constant_flux_layer .AND. zv(n) - zw(k_wall) < z_p ) THEN |
---|
| 395 | IF ( zv(n) - zw(k_wall) < z0_av_global ) THEN |
---|
[1314] | 396 | ! |
---|
[1359] | 397 | !-- Resolved-scale horizontal particle velocity is zero below z0. |
---|
| 398 | v_int(n) = 0.0_wp |
---|
| 399 | ELSE |
---|
| 400 | ! |
---|
[1929] | 401 | !-- Determine the sublayer. Further used as index. Please note, |
---|
| 402 | !-- logarithmus can not be reused from above, as in in case of |
---|
| 403 | !-- topography particle on u-grid can be above surface-layer height, |
---|
| 404 | !-- whereas it can be below on v-grid. |
---|
[2232] | 405 | height_p = ( zv(n) - zw(k_wall) - z0_av_global ) & |
---|
[1936] | 406 | * REAL( number_of_sublayers, KIND=wp ) & |
---|
[1929] | 407 | * d_z_p_z0 |
---|
| 408 | ! |
---|
| 409 | !-- Calculate LOG(z/z0) for exact particle height. Therefore, |
---|
| 410 | !-- interpolate linearly between precalculated logarithm. |
---|
| 411 | log_z_z0_int = log_z_z0(INT(height_p)) & |
---|
| 412 | + ( height_p - INT(height_p) ) & |
---|
| 413 | * ( log_z_z0(INT(height_p)+1) & |
---|
| 414 | - log_z_z0(INT(height_p)) & |
---|
| 415 | ) |
---|
| 416 | ! |
---|
[2232] | 417 | !-- Get friction velocity and momentum flux from new surface data |
---|
| 418 | !-- types. |
---|
| 419 | IF ( surf_def_h(0)%start_index(jlog,ilog) <= & |
---|
| 420 | surf_def_h(0)%end_index(jlog,ilog) ) THEN |
---|
| 421 | surf_start = surf_def_h(0)%start_index(jlog,ilog) |
---|
| 422 | !-- Limit friction velocity. In narrow canyons or holes the |
---|
| 423 | !-- friction velocity can become very small, resulting in a too |
---|
| 424 | !-- large particle speed. |
---|
| 425 | us_int = MAX( surf_def_h(0)%us(surf_start), 0.01_wp ) |
---|
| 426 | vsws_int = surf_def_h(0)%usws(surf_start) |
---|
| 427 | ELSEIF ( surf_lsm_h%start_index(jlog,ilog) <= & |
---|
| 428 | surf_lsm_h%end_index(jlog,ilog) ) THEN |
---|
| 429 | surf_start = surf_lsm_h%start_index(jlog,ilog) |
---|
| 430 | us_int = MAX( surf_lsm_h%us(surf_start), 0.01_wp ) |
---|
| 431 | vsws_int = surf_lsm_h%usws(surf_start) |
---|
| 432 | ELSEIF ( surf_usm_h%start_index(jlog,ilog) <= & |
---|
| 433 | surf_usm_h%end_index(jlog,ilog) ) THEN |
---|
| 434 | surf_start = surf_usm_h%start_index(jlog,ilog) |
---|
| 435 | us_int = MAX( surf_usm_h%us(surf_start), 0.01_wp ) |
---|
| 436 | vsws_int = surf_usm_h%usws(surf_start) |
---|
| 437 | ENDIF |
---|
[1929] | 438 | ! |
---|
[1359] | 439 | !-- Neutral solution is applied for all situations, e.g. also for |
---|
| 440 | !-- unstable and stable situations. Even though this is not exact |
---|
| 441 | !-- this saves a lot of CPU time since several calls of intrinsic |
---|
| 442 | !-- FORTRAN procedures (LOG, ATAN) are avoided, This is justified |
---|
| 443 | !-- as sensitivity studies revealed no significant effect of |
---|
| 444 | !-- using the neutral solution also for un/stable situations. |
---|
[2232] | 445 | v_int(n) = -vsws_int / ( us_int * kappa + 1E-10_wp ) & |
---|
[1929] | 446 | * log_z_z0_int - v_gtrans |
---|
[1314] | 447 | |
---|
[1359] | 448 | ENDIF |
---|
[1929] | 449 | |
---|
[1359] | 450 | ELSE |
---|
| 451 | x = xv(n) - i * dx |
---|
| 452 | y = yv(n) + ( 0.5_wp - j ) * dy |
---|
| 453 | aa = x**2 + y**2 |
---|
| 454 | bb = ( dx - x )**2 + y**2 |
---|
| 455 | cc = x**2 + ( dy - y )**2 |
---|
| 456 | dd = ( dx - x )**2 + ( dy - y )**2 |
---|
| 457 | gg = aa + bb + cc + dd |
---|
[1314] | 458 | |
---|
[1359] | 459 | v_int_l = ( ( gg - aa ) * v(k,j,i) + ( gg - bb ) * v(k,j,i+1) & |
---|
| 460 | + ( gg - cc ) * v(k,j+1,i) + ( gg - dd ) * v(k,j+1,i+1) & |
---|
| 461 | ) / ( 3.0_wp * gg ) - v_gtrans |
---|
[1314] | 462 | |
---|
[1359] | 463 | IF ( k == nzt ) THEN |
---|
| 464 | v_int(n) = v_int_l |
---|
| 465 | ELSE |
---|
| 466 | v_int_u = ( ( gg-aa ) * v(k+1,j,i) + ( gg-bb ) * v(k+1,j,i+1) & |
---|
| 467 | + ( gg-cc ) * v(k+1,j+1,i) + ( gg-dd ) * v(k+1,j+1,i+1) & |
---|
| 468 | ) / ( 3.0_wp * gg ) - v_gtrans |
---|
| 469 | v_int(n) = v_int_l + ( zv(n) - zu(k) ) / dz * & |
---|
| 470 | ( v_int_u - v_int_l ) |
---|
| 471 | ENDIF |
---|
[1929] | 472 | |
---|
[1314] | 473 | ENDIF |
---|
| 474 | |
---|
[1359] | 475 | ENDDO |
---|
[1314] | 476 | |
---|
[1359] | 477 | i = ip + block_offset(nb)%i_off |
---|
| 478 | j = jp + block_offset(nb)%j_off |
---|
[1929] | 479 | k = kp - 1 |
---|
[849] | 480 | ! |
---|
[1314] | 481 | !-- Same procedure for interpolation of the w velocity-component |
---|
[1359] | 482 | DO n = start_index(nb), end_index(nb) |
---|
[849] | 483 | |
---|
[1359] | 484 | IF ( vertical_particle_advection(particles(n)%group) ) THEN |
---|
[849] | 485 | |
---|
[1359] | 486 | x = xv(n) - i * dx |
---|
| 487 | y = yv(n) - j * dy |
---|
[849] | 488 | aa = x**2 + y**2 |
---|
| 489 | bb = ( dx - x )**2 + y**2 |
---|
| 490 | cc = x**2 + ( dy - y )**2 |
---|
| 491 | dd = ( dx - x )**2 + ( dy - y )**2 |
---|
| 492 | gg = aa + bb + cc + dd |
---|
| 493 | |
---|
[1359] | 494 | w_int_l = ( ( gg - aa ) * w(k,j,i) + ( gg - bb ) * w(k,j,i+1) & |
---|
| 495 | + ( gg - cc ) * w(k,j+1,i) + ( gg - dd ) * w(k,j+1,i+1) & |
---|
| 496 | ) / ( 3.0_wp * gg ) |
---|
[849] | 497 | |
---|
[1359] | 498 | IF ( k == nzt ) THEN |
---|
| 499 | w_int(n) = w_int_l |
---|
[849] | 500 | ELSE |
---|
[1359] | 501 | w_int_u = ( ( gg-aa ) * w(k+1,j,i) + & |
---|
| 502 | ( gg-bb ) * w(k+1,j,i+1) + & |
---|
| 503 | ( gg-cc ) * w(k+1,j+1,i) + & |
---|
| 504 | ( gg-dd ) * w(k+1,j+1,i+1) & |
---|
| 505 | ) / ( 3.0_wp * gg ) |
---|
| 506 | w_int(n) = w_int_l + ( zv(n) - zw(k) ) / dz * & |
---|
| 507 | ( w_int_u - w_int_l ) |
---|
[849] | 508 | ENDIF |
---|
| 509 | |
---|
[1359] | 510 | ELSE |
---|
[849] | 511 | |
---|
[1359] | 512 | w_int(n) = 0.0_wp |
---|
[849] | 513 | |
---|
[1359] | 514 | ENDIF |
---|
| 515 | |
---|
| 516 | ENDDO |
---|
| 517 | |
---|
| 518 | ENDDO |
---|
| 519 | |
---|
| 520 | !-- Interpolate and calculate quantities needed for calculating the SGS |
---|
| 521 | !-- velocities |
---|
[1822] | 522 | IF ( use_sgs_for_particles .AND. .NOT. cloud_droplets ) THEN |
---|
[1359] | 523 | |
---|
| 524 | IF ( topography == 'flat' ) THEN |
---|
| 525 | |
---|
| 526 | DO nb = 0,7 |
---|
| 527 | |
---|
| 528 | i = ip + block_offset(nb)%i_off |
---|
| 529 | j = jp + block_offset(nb)%j_off |
---|
| 530 | k = kp + block_offset(nb)%k_off |
---|
| 531 | |
---|
| 532 | DO n = start_index(nb), end_index(nb) |
---|
[849] | 533 | ! |
---|
[1359] | 534 | !-- Interpolate TKE |
---|
| 535 | x = xv(n) - i * dx |
---|
| 536 | y = yv(n) - j * dy |
---|
| 537 | aa = x**2 + y**2 |
---|
| 538 | bb = ( dx - x )**2 + y**2 |
---|
| 539 | cc = x**2 + ( dy - y )**2 |
---|
| 540 | dd = ( dx - x )**2 + ( dy - y )**2 |
---|
| 541 | gg = aa + bb + cc + dd |
---|
[849] | 542 | |
---|
[1359] | 543 | e_int_l = ( ( gg-aa ) * e(k,j,i) + ( gg-bb ) * e(k,j,i+1) & |
---|
| 544 | + ( gg-cc ) * e(k,j+1,i) + ( gg-dd ) * e(k,j+1,i+1) & |
---|
| 545 | ) / ( 3.0_wp * gg ) |
---|
| 546 | |
---|
| 547 | IF ( k+1 == nzt+1 ) THEN |
---|
| 548 | e_int(n) = e_int_l |
---|
| 549 | ELSE |
---|
| 550 | e_int_u = ( ( gg - aa ) * e(k+1,j,i) + & |
---|
| 551 | ( gg - bb ) * e(k+1,j,i+1) + & |
---|
| 552 | ( gg - cc ) * e(k+1,j+1,i) + & |
---|
| 553 | ( gg - dd ) * e(k+1,j+1,i+1) & |
---|
| 554 | ) / ( 3.0_wp * gg ) |
---|
| 555 | e_int(n) = e_int_l + ( zv(n) - zu(k) ) / dz * & |
---|
| 556 | ( e_int_u - e_int_l ) |
---|
| 557 | ENDIF |
---|
[849] | 558 | ! |
---|
[1685] | 559 | !-- Needed to avoid NaN particle velocities (this might not be |
---|
| 560 | !-- required any more) |
---|
| 561 | IF ( e_int(n) <= 0.0_wp ) THEN |
---|
[1359] | 562 | e_int(n) = 1.0E-20_wp |
---|
| 563 | ENDIF |
---|
| 564 | ! |
---|
| 565 | !-- Interpolate the TKE gradient along x (adopt incides i,j,k and |
---|
| 566 | !-- all position variables from above (TKE)) |
---|
| 567 | de_dx_int_l = ( ( gg - aa ) * de_dx(k,j,i) + & |
---|
| 568 | ( gg - bb ) * de_dx(k,j,i+1) + & |
---|
| 569 | ( gg - cc ) * de_dx(k,j+1,i) + & |
---|
| 570 | ( gg - dd ) * de_dx(k,j+1,i+1) & |
---|
| 571 | ) / ( 3.0_wp * gg ) |
---|
[849] | 572 | |
---|
| 573 | IF ( ( k+1 == nzt+1 ) .OR. ( k == nzb ) ) THEN |
---|
[1359] | 574 | de_dx_int(n) = de_dx_int_l |
---|
[849] | 575 | ELSE |
---|
[1359] | 576 | de_dx_int_u = ( ( gg - aa ) * de_dx(k+1,j,i) + & |
---|
| 577 | ( gg - bb ) * de_dx(k+1,j,i+1) + & |
---|
| 578 | ( gg - cc ) * de_dx(k+1,j+1,i) + & |
---|
| 579 | ( gg - dd ) * de_dx(k+1,j+1,i+1) & |
---|
| 580 | ) / ( 3.0_wp * gg ) |
---|
| 581 | de_dx_int(n) = de_dx_int_l + ( zv(n) - zu(k) ) / dz * & |
---|
| 582 | ( de_dx_int_u - de_dx_int_l ) |
---|
[849] | 583 | ENDIF |
---|
[1359] | 584 | ! |
---|
| 585 | !-- Interpolate the TKE gradient along y |
---|
| 586 | de_dy_int_l = ( ( gg - aa ) * de_dy(k,j,i) + & |
---|
| 587 | ( gg - bb ) * de_dy(k,j,i+1) + & |
---|
| 588 | ( gg - cc ) * de_dy(k,j+1,i) + & |
---|
| 589 | ( gg - dd ) * de_dy(k,j+1,i+1) & |
---|
| 590 | ) / ( 3.0_wp * gg ) |
---|
| 591 | IF ( ( k+1 == nzt+1 ) .OR. ( k == nzb ) ) THEN |
---|
| 592 | de_dy_int(n) = de_dy_int_l |
---|
| 593 | ELSE |
---|
| 594 | de_dy_int_u = ( ( gg - aa ) * de_dy(k+1,j,i) + & |
---|
| 595 | ( gg - bb ) * de_dy(k+1,j,i+1) + & |
---|
| 596 | ( gg - cc ) * de_dy(k+1,j+1,i) + & |
---|
| 597 | ( gg - dd ) * de_dy(k+1,j+1,i+1) & |
---|
| 598 | ) / ( 3.0_wp * gg ) |
---|
| 599 | de_dy_int(n) = de_dy_int_l + ( zv(n) - zu(k) ) / dz * & |
---|
| 600 | ( de_dy_int_u - de_dy_int_l ) |
---|
| 601 | ENDIF |
---|
[849] | 602 | |
---|
| 603 | ! |
---|
[1359] | 604 | !-- Interpolate the TKE gradient along z |
---|
| 605 | IF ( zv(n) < 0.5_wp * dz ) THEN |
---|
| 606 | de_dz_int(n) = 0.0_wp |
---|
| 607 | ELSE |
---|
| 608 | de_dz_int_l = ( ( gg - aa ) * de_dz(k,j,i) + & |
---|
| 609 | ( gg - bb ) * de_dz(k,j,i+1) + & |
---|
| 610 | ( gg - cc ) * de_dz(k,j+1,i) + & |
---|
| 611 | ( gg - dd ) * de_dz(k,j+1,i+1) & |
---|
| 612 | ) / ( 3.0_wp * gg ) |
---|
[849] | 613 | |
---|
[1359] | 614 | IF ( ( k+1 == nzt+1 ) .OR. ( k == nzb ) ) THEN |
---|
| 615 | de_dz_int(n) = de_dz_int_l |
---|
| 616 | ELSE |
---|
| 617 | de_dz_int_u = ( ( gg - aa ) * de_dz(k+1,j,i) + & |
---|
| 618 | ( gg - bb ) * de_dz(k+1,j,i+1) + & |
---|
| 619 | ( gg - cc ) * de_dz(k+1,j+1,i) + & |
---|
| 620 | ( gg - dd ) * de_dz(k+1,j+1,i+1) & |
---|
| 621 | ) / ( 3.0_wp * gg ) |
---|
| 622 | de_dz_int(n) = de_dz_int_l + ( zv(n) - zu(k) ) / dz * & |
---|
| 623 | ( de_dz_int_u - de_dz_int_l ) |
---|
| 624 | ENDIF |
---|
| 625 | ENDIF |
---|
[849] | 626 | |
---|
[1359] | 627 | ! |
---|
| 628 | !-- Interpolate the dissipation of TKE |
---|
| 629 | diss_int_l = ( ( gg - aa ) * diss(k,j,i) + & |
---|
| 630 | ( gg - bb ) * diss(k,j,i+1) + & |
---|
| 631 | ( gg - cc ) * diss(k,j+1,i) + & |
---|
| 632 | ( gg - dd ) * diss(k,j+1,i+1) & |
---|
| 633 | ) / ( 3.0_wp * gg ) |
---|
[849] | 634 | |
---|
[1359] | 635 | IF ( k == nzt ) THEN |
---|
| 636 | diss_int(n) = diss_int_l |
---|
| 637 | ELSE |
---|
| 638 | diss_int_u = ( ( gg - aa ) * diss(k+1,j,i) + & |
---|
| 639 | ( gg - bb ) * diss(k+1,j,i+1) + & |
---|
| 640 | ( gg - cc ) * diss(k+1,j+1,i) + & |
---|
| 641 | ( gg - dd ) * diss(k+1,j+1,i+1) & |
---|
| 642 | ) / ( 3.0_wp * gg ) |
---|
| 643 | diss_int(n) = diss_int_l + ( zv(n) - zu(k) ) / dz * & |
---|
| 644 | ( diss_int_u - diss_int_l ) |
---|
| 645 | ENDIF |
---|
| 646 | |
---|
[1929] | 647 | ! |
---|
| 648 | !-- Set flag for stochastic equation. |
---|
| 649 | term_1_2(n) = 1.0_wp |
---|
| 650 | |
---|
[1359] | 651 | ENDDO |
---|
| 652 | ENDDO |
---|
| 653 | |
---|
| 654 | ELSE ! non-flat topography, e.g., buildings |
---|
| 655 | |
---|
[2417] | 656 | DO nb = 0, 7 |
---|
[849] | 657 | |
---|
[2417] | 658 | DO n = start_index(nb), end_index(nb) |
---|
[849] | 659 | |
---|
[2417] | 660 | i = particles(n)%x * ddx |
---|
| 661 | j = particles(n)%y * ddy |
---|
| 662 | k = ( zv(n) + 0.5_wp * dz * atmos_ocean_sign ) / dz & |
---|
| 663 | + offset_ocean_nzt ! only exact if eq.dist |
---|
[2232] | 664 | ! |
---|
[2417] | 665 | !-- In case that there are buildings it has to be determined |
---|
| 666 | !-- how many of the gridpoints defining the particle box are |
---|
| 667 | !-- situated within a building |
---|
| 668 | !-- gp_outside_of_building(1): i,j,k |
---|
| 669 | !-- gp_outside_of_building(2): i,j+1,k |
---|
| 670 | !-- gp_outside_of_building(3): i,j,k+1 |
---|
| 671 | !-- gp_outside_of_building(4): i,j+1,k+1 |
---|
| 672 | !-- gp_outside_of_building(5): i+1,j,k |
---|
| 673 | !-- gp_outside_of_building(6): i+1,j+1,k |
---|
| 674 | !-- gp_outside_of_building(7): i+1,j,k+1 |
---|
| 675 | !-- gp_outside_of_building(8): i+1,j+1,k+1 |
---|
[2232] | 676 | |
---|
[2417] | 677 | gp_outside_of_building = 0 |
---|
| 678 | location = 0.0_wp |
---|
| 679 | num_gp = 0 |
---|
[2317] | 680 | |
---|
[2232] | 681 | ! |
---|
[2417] | 682 | !-- Determine vertical index of topography top at (j,i) |
---|
| 683 | k_wall = get_topography_top_index( j, i, 's' ) |
---|
[2232] | 684 | ! |
---|
[2417] | 685 | !-- To do: Reconsider order of computations in order to avoid |
---|
| 686 | !-- unnecessary index calculations. |
---|
| 687 | IF ( k > k_wall .OR. k_wall == 0 ) THEN |
---|
[849] | 688 | num_gp = num_gp + 1 |
---|
[2417] | 689 | gp_outside_of_building(1) = 1 |
---|
| 690 | location(num_gp,1) = i * dx |
---|
[849] | 691 | location(num_gp,2) = j * dy |
---|
[1359] | 692 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
[849] | 693 | ei(num_gp) = e(k,j,i) |
---|
| 694 | dissi(num_gp) = diss(k,j,i) |
---|
[2417] | 695 | de_dxi(num_gp) = de_dx(k,j,i) |
---|
[849] | 696 | de_dyi(num_gp) = de_dy(k,j,i) |
---|
| 697 | de_dzi(num_gp) = de_dz(k,j,i) |
---|
| 698 | ENDIF |
---|
| 699 | |
---|
| 700 | ! |
---|
[2417] | 701 | !-- Determine vertical index of topography top at (j+1,i) |
---|
| 702 | k_wall = get_topography_top_index( j+1, i, 's' ) |
---|
[849] | 703 | |
---|
[2417] | 704 | IF ( k > k_wall .OR. k_wall == 0 ) THEN |
---|
[849] | 705 | num_gp = num_gp + 1 |
---|
[2417] | 706 | gp_outside_of_building(2) = 1 |
---|
| 707 | location(num_gp,1) = i * dx |
---|
[849] | 708 | location(num_gp,2) = (j+1) * dy |
---|
[1359] | 709 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
[849] | 710 | ei(num_gp) = e(k,j+1,i) |
---|
| 711 | dissi(num_gp) = diss(k,j+1,i) |
---|
[2417] | 712 | de_dxi(num_gp) = de_dx(k,j+1,i) |
---|
[849] | 713 | de_dyi(num_gp) = de_dy(k,j+1,i) |
---|
| 714 | de_dzi(num_gp) = de_dz(k,j+1,i) |
---|
| 715 | ENDIF |
---|
| 716 | |
---|
| 717 | ! |
---|
[2417] | 718 | !-- Determine vertical index of topography top at (j,i) |
---|
| 719 | k_wall = get_topography_top_index( j, i, 's' ) |
---|
[849] | 720 | |
---|
[2417] | 721 | IF ( k+1 > k_wall .OR. k_wall == 0 ) THEN |
---|
[849] | 722 | num_gp = num_gp + 1 |
---|
[2417] | 723 | gp_outside_of_building(3) = 1 |
---|
[849] | 724 | location(num_gp,1) = i * dx |
---|
| 725 | location(num_gp,2) = j * dy |
---|
[2417] | 726 | location(num_gp,3) = (k+1) * dz - 0.5_wp * dz |
---|
[849] | 727 | ei(num_gp) = e(k+1,j,i) |
---|
| 728 | dissi(num_gp) = diss(k+1,j,i) |
---|
[2417] | 729 | de_dxi(num_gp) = de_dx(k+1,j,i) |
---|
[849] | 730 | de_dyi(num_gp) = de_dy(k+1,j,i) |
---|
[2417] | 731 | de_dzi(num_gp) = de_dz(k+1,j,i) |
---|
[849] | 732 | ENDIF |
---|
| 733 | |
---|
| 734 | ! |
---|
[2417] | 735 | !-- Determine vertical index of topography top at (j+1,i) |
---|
| 736 | k_wall = get_topography_top_index( j+1, i, 's' ) |
---|
| 737 | IF ( k+1 > k_wall .OR. k_wall == 0 ) THEN |
---|
[849] | 738 | num_gp = num_gp + 1 |
---|
[2417] | 739 | gp_outside_of_building(4) = 1 |
---|
| 740 | location(num_gp,1) = i * dx |
---|
[849] | 741 | location(num_gp,2) = (j+1) * dy |
---|
[2417] | 742 | location(num_gp,3) = (k+1) * dz - 0.5_wp * dz |
---|
[849] | 743 | ei(num_gp) = e(k+1,j+1,i) |
---|
| 744 | dissi(num_gp) = diss(k+1,j+1,i) |
---|
[2417] | 745 | de_dxi(num_gp) = de_dx(k+1,j+1,i) |
---|
[849] | 746 | de_dyi(num_gp) = de_dy(k+1,j+1,i) |
---|
| 747 | de_dzi(num_gp) = de_dz(k+1,j+1,i) |
---|
| 748 | ENDIF |
---|
| 749 | |
---|
[2417] | 750 | ! |
---|
| 751 | !-- Determine vertical index of topography top at (j,i+1) |
---|
| 752 | k_wall = get_topography_top_index( j, i+1, 's' ) |
---|
| 753 | IF ( k > k_wall .OR. k_wall == 0 ) THEN |
---|
[849] | 754 | num_gp = num_gp + 1 |
---|
[2417] | 755 | gp_outside_of_building(5) = 1 |
---|
| 756 | location(num_gp,1) = (i+1) * dx |
---|
| 757 | location(num_gp,2) = j * dy |
---|
| 758 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
| 759 | ei(num_gp) = e(k,j,i+1) |
---|
| 760 | dissi(num_gp) = diss(k,j,i+1) |
---|
| 761 | de_dxi(num_gp) = de_dx(k,j,i+1) |
---|
| 762 | de_dyi(num_gp) = de_dy(k,j,i+1) |
---|
| 763 | de_dzi(num_gp) = de_dz(k,j,i+1) |
---|
[849] | 764 | ENDIF |
---|
| 765 | |
---|
| 766 | ! |
---|
[2417] | 767 | !-- Determine vertical index of topography top at (j+1,i+1) |
---|
| 768 | k_wall = get_topography_top_index( j+1, i+1, 's' ) |
---|
[849] | 769 | |
---|
[2417] | 770 | IF ( k > k_wall .OR. k_wall == 0 ) THEN |
---|
[849] | 771 | num_gp = num_gp + 1 |
---|
[2417] | 772 | gp_outside_of_building(6) = 1 |
---|
| 773 | location(num_gp,1) = (i+1) * dx |
---|
| 774 | location(num_gp,2) = (j+1) * dy |
---|
| 775 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
| 776 | ei(num_gp) = e(k,j+1,i+1) |
---|
| 777 | dissi(num_gp) = diss(k,j+1,i+1) |
---|
| 778 | de_dxi(num_gp) = de_dx(k,j+1,i+1) |
---|
| 779 | de_dyi(num_gp) = de_dy(k,j+1,i+1) |
---|
| 780 | de_dzi(num_gp) = de_dz(k,j+1,i+1) |
---|
[849] | 781 | ENDIF |
---|
| 782 | |
---|
| 783 | ! |
---|
[2417] | 784 | !-- Determine vertical index of topography top at (j,i+1) |
---|
| 785 | k_wall = get_topography_top_index( j, i+1, 's' ) |
---|
[849] | 786 | |
---|
[2417] | 787 | IF ( k+1 > k_wall .OR. k_wall == 0 ) THEN |
---|
[849] | 788 | num_gp = num_gp + 1 |
---|
[2417] | 789 | gp_outside_of_building(7) = 1 |
---|
[849] | 790 | location(num_gp,1) = (i+1) * dx |
---|
| 791 | location(num_gp,2) = j * dy |
---|
[2417] | 792 | location(num_gp,3) = (k+1) * dz - 0.5_wp * dz |
---|
[849] | 793 | ei(num_gp) = e(k+1,j,i+1) |
---|
| 794 | dissi(num_gp) = diss(k+1,j,i+1) |
---|
| 795 | de_dxi(num_gp) = de_dx(k+1,j,i+1) |
---|
| 796 | de_dyi(num_gp) = de_dy(k+1,j,i+1) |
---|
[2417] | 797 | de_dzi(num_gp) = de_dz(k+1,j,i+1) |
---|
[849] | 798 | ENDIF |
---|
| 799 | |
---|
| 800 | ! |
---|
[2417] | 801 | !-- Determine vertical index of topography top at (j+1,i+1) |
---|
| 802 | k_wall = get_topography_top_index( j+1, i+1, 's' ) |
---|
[849] | 803 | |
---|
[2417] | 804 | IF ( k+1 > k_wall .OR. k_wall == 0) THEN |
---|
[849] | 805 | num_gp = num_gp + 1 |
---|
[2417] | 806 | gp_outside_of_building(8) = 1 |
---|
[849] | 807 | location(num_gp,1) = (i+1) * dx |
---|
| 808 | location(num_gp,2) = (j+1) * dy |
---|
[2417] | 809 | location(num_gp,3) = (k+1) * dz - 0.5_wp * dz |
---|
[849] | 810 | ei(num_gp) = e(k+1,j+1,i+1) |
---|
| 811 | dissi(num_gp) = diss(k+1,j+1,i+1) |
---|
| 812 | de_dxi(num_gp) = de_dx(k+1,j+1,i+1) |
---|
| 813 | de_dyi(num_gp) = de_dy(k+1,j+1,i+1) |
---|
[2417] | 814 | de_dzi(num_gp) = de_dz(k+1,j+1,i+1) |
---|
[849] | 815 | ENDIF |
---|
| 816 | ! |
---|
[2417] | 817 | !-- If all gridpoints are situated outside of a building, then the |
---|
| 818 | !-- ordinary interpolation scheme can be used. |
---|
| 819 | IF ( num_gp == 8 ) THEN |
---|
| 820 | |
---|
| 821 | x = particles(n)%x - i * dx |
---|
| 822 | y = particles(n)%y - j * dy |
---|
| 823 | aa = x**2 + y**2 |
---|
| 824 | bb = ( dx - x )**2 + y**2 |
---|
| 825 | cc = x**2 + ( dy - y )**2 |
---|
| 826 | dd = ( dx - x )**2 + ( dy - y )**2 |
---|
| 827 | gg = aa + bb + cc + dd |
---|
| 828 | |
---|
| 829 | e_int_l = ( ( gg - aa ) * e(k,j,i) + ( gg - bb ) * e(k,j,i+1) & |
---|
| 830 | + ( gg - cc ) * e(k,j+1,i) + ( gg - dd ) * e(k,j+1,i+1) & |
---|
| 831 | ) / ( 3.0_wp * gg ) |
---|
| 832 | |
---|
| 833 | IF ( k == nzt ) THEN |
---|
| 834 | e_int(n) = e_int_l |
---|
| 835 | ELSE |
---|
| 836 | e_int_u = ( ( gg - aa ) * e(k+1,j,i) + & |
---|
| 837 | ( gg - bb ) * e(k+1,j,i+1) + & |
---|
| 838 | ( gg - cc ) * e(k+1,j+1,i) + & |
---|
| 839 | ( gg - dd ) * e(k+1,j+1,i+1) & |
---|
| 840 | ) / ( 3.0_wp * gg ) |
---|
| 841 | e_int(n) = e_int_l + ( zv(n) - zu(k) ) / dz * & |
---|
| 842 | ( e_int_u - e_int_l ) |
---|
| 843 | ENDIF |
---|
[1929] | 844 | ! |
---|
[2417] | 845 | !-- Needed to avoid NaN particle velocities (this might not be |
---|
| 846 | !-- required any more) |
---|
| 847 | IF ( e_int(n) <= 0.0_wp ) THEN |
---|
| 848 | e_int(n) = 1.0E-20_wp |
---|
| 849 | ENDIF |
---|
[1929] | 850 | ! |
---|
[2417] | 851 | !-- Interpolate the TKE gradient along x (adopt incides i,j,k |
---|
| 852 | !-- and all position variables from above (TKE)) |
---|
| 853 | de_dx_int_l = ( ( gg - aa ) * de_dx(k,j,i) + & |
---|
| 854 | ( gg - bb ) * de_dx(k,j,i+1) + & |
---|
| 855 | ( gg - cc ) * de_dx(k,j+1,i) + & |
---|
| 856 | ( gg - dd ) * de_dx(k,j+1,i+1) & |
---|
| 857 | ) / ( 3.0_wp * gg ) |
---|
| 858 | |
---|
| 859 | IF ( ( k == nzt ) .OR. ( k == nzb ) ) THEN |
---|
| 860 | de_dx_int(n) = de_dx_int_l |
---|
| 861 | ELSE |
---|
| 862 | de_dx_int_u = ( ( gg - aa ) * de_dx(k+1,j,i) + & |
---|
| 863 | ( gg - bb ) * de_dx(k+1,j,i+1) + & |
---|
| 864 | ( gg - cc ) * de_dx(k+1,j+1,i) + & |
---|
| 865 | ( gg - dd ) * de_dx(k+1,j+1,i+1) & |
---|
| 866 | ) / ( 3.0_wp * gg ) |
---|
| 867 | de_dx_int(n) = de_dx_int_l + ( zv(n) - zu(k) ) / & |
---|
| 868 | dz * ( de_dx_int_u - de_dx_int_l ) |
---|
| 869 | ENDIF |
---|
| 870 | |
---|
| 871 | ! |
---|
| 872 | !-- Interpolate the TKE gradient along y |
---|
| 873 | de_dy_int_l = ( ( gg - aa ) * de_dy(k,j,i) + & |
---|
| 874 | ( gg - bb ) * de_dy(k,j,i+1) + & |
---|
| 875 | ( gg - cc ) * de_dy(k,j+1,i) + & |
---|
| 876 | ( gg - dd ) * de_dy(k,j+1,i+1) & |
---|
| 877 | ) / ( 3.0_wp * gg ) |
---|
| 878 | IF ( ( k+1 == nzt+1 ) .OR. ( k == nzb ) ) THEN |
---|
| 879 | de_dy_int(n) = de_dy_int_l |
---|
| 880 | ELSE |
---|
| 881 | de_dy_int_u = ( ( gg - aa ) * de_dy(k+1,j,i) + & |
---|
| 882 | ( gg - bb ) * de_dy(k+1,j,i+1) + & |
---|
| 883 | ( gg - cc ) * de_dy(k+1,j+1,i) + & |
---|
| 884 | ( gg - dd ) * de_dy(k+1,j+1,i+1) & |
---|
| 885 | ) / ( 3.0_wp * gg ) |
---|
| 886 | de_dy_int(n) = de_dy_int_l + ( zv(n) - zu(k) ) / & |
---|
| 887 | dz * ( de_dy_int_u - de_dy_int_l ) |
---|
| 888 | ENDIF |
---|
| 889 | |
---|
| 890 | ! |
---|
| 891 | !-- Interpolate the TKE gradient along z |
---|
| 892 | IF ( zv(n) < 0.5_wp * dz ) THEN |
---|
| 893 | de_dz_int(n) = 0.0_wp |
---|
| 894 | ELSE |
---|
| 895 | de_dz_int_l = ( ( gg - aa ) * de_dz(k,j,i) + & |
---|
| 896 | ( gg - bb ) * de_dz(k,j,i+1) + & |
---|
| 897 | ( gg - cc ) * de_dz(k,j+1,i) + & |
---|
| 898 | ( gg - dd ) * de_dz(k,j+1,i+1) & |
---|
| 899 | ) / ( 3.0_wp * gg ) |
---|
| 900 | |
---|
| 901 | IF ( ( k+1 == nzt+1 ) .OR. ( k == nzb ) ) THEN |
---|
| 902 | de_dz_int(n) = de_dz_int_l |
---|
| 903 | ELSE |
---|
| 904 | de_dz_int_u = ( ( gg - aa ) * de_dz(k+1,j,i) + & |
---|
| 905 | ( gg - bb ) * de_dz(k+1,j,i+1) + & |
---|
| 906 | ( gg - cc ) * de_dz(k+1,j+1,i) + & |
---|
| 907 | ( gg - dd ) * de_dz(k+1,j+1,i+1) & |
---|
| 908 | ) / ( 3.0_wp * gg ) |
---|
| 909 | de_dz_int(n) = de_dz_int_l + ( zv(n) - zu(k) ) /& |
---|
| 910 | dz * ( de_dz_int_u - de_dz_int_l ) |
---|
| 911 | ENDIF |
---|
| 912 | ENDIF |
---|
| 913 | |
---|
| 914 | ! |
---|
| 915 | !-- Interpolate the dissipation of TKE |
---|
| 916 | diss_int_l = ( ( gg - aa ) * diss(k,j,i) + & |
---|
| 917 | ( gg - bb ) * diss(k,j,i+1) + & |
---|
| 918 | ( gg - cc ) * diss(k,j+1,i) + & |
---|
| 919 | ( gg - dd ) * diss(k,j+1,i+1) & |
---|
| 920 | ) / ( 3.0_wp * gg ) |
---|
| 921 | |
---|
| 922 | IF ( k == nzt ) THEN |
---|
| 923 | diss_int(n) = diss_int_l |
---|
| 924 | ELSE |
---|
| 925 | diss_int_u = ( ( gg - aa ) * diss(k+1,j,i) + & |
---|
| 926 | ( gg - bb ) * diss(k+1,j,i+1) + & |
---|
| 927 | ( gg - cc ) * diss(k+1,j+1,i) + & |
---|
| 928 | ( gg - dd ) * diss(k+1,j+1,i+1) & |
---|
| 929 | ) / ( 3.0_wp * gg ) |
---|
| 930 | diss_int(n) = diss_int_l + ( zv(n) - zu(k) ) / dz *& |
---|
| 931 | ( diss_int_u - diss_int_l ) |
---|
| 932 | ENDIF |
---|
| 933 | ! |
---|
| 934 | !-- Set flag for stochastic equation. |
---|
| 935 | term_1_2(n) = 1.0_wp |
---|
| 936 | |
---|
| 937 | ELSE |
---|
| 938 | |
---|
| 939 | ! |
---|
| 940 | !-- If wall between gridpoint 1 and gridpoint 5, then |
---|
| 941 | !-- Neumann boundary condition has to be applied |
---|
| 942 | IF ( gp_outside_of_building(1) == 1 .AND. & |
---|
| 943 | gp_outside_of_building(5) == 0 ) THEN |
---|
| 944 | num_gp = num_gp + 1 |
---|
| 945 | location(num_gp,1) = i * dx + 0.5_wp * dx |
---|
| 946 | location(num_gp,2) = j * dy |
---|
| 947 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
| 948 | ei(num_gp) = e(k,j,i) |
---|
| 949 | dissi(num_gp) = diss(k,j,i) |
---|
| 950 | de_dxi(num_gp) = 0.0_wp |
---|
| 951 | de_dyi(num_gp) = de_dy(k,j,i) |
---|
| 952 | de_dzi(num_gp) = de_dz(k,j,i) |
---|
| 953 | ENDIF |
---|
| 954 | |
---|
| 955 | IF ( gp_outside_of_building(5) == 1 .AND. & |
---|
| 956 | gp_outside_of_building(1) == 0 ) THEN |
---|
| 957 | num_gp = num_gp + 1 |
---|
| 958 | location(num_gp,1) = i * dx + 0.5_wp * dx |
---|
| 959 | location(num_gp,2) = j * dy |
---|
| 960 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
| 961 | ei(num_gp) = e(k,j,i+1) |
---|
| 962 | dissi(num_gp) = diss(k,j,i+1) |
---|
| 963 | de_dxi(num_gp) = 0.0_wp |
---|
| 964 | de_dyi(num_gp) = de_dy(k,j,i+1) |
---|
| 965 | de_dzi(num_gp) = de_dz(k,j,i+1) |
---|
| 966 | ENDIF |
---|
| 967 | |
---|
| 968 | ! |
---|
| 969 | !-- If wall between gridpoint 5 and gridpoint 6, then |
---|
| 970 | !-- then Neumann boundary condition has to be applied |
---|
| 971 | IF ( gp_outside_of_building(5) == 1 .AND. & |
---|
| 972 | gp_outside_of_building(6) == 0 ) THEN |
---|
| 973 | num_gp = num_gp + 1 |
---|
| 974 | location(num_gp,1) = (i+1) * dx |
---|
| 975 | location(num_gp,2) = j * dy + 0.5_wp * dy |
---|
| 976 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
| 977 | ei(num_gp) = e(k,j,i+1) |
---|
| 978 | dissi(num_gp) = diss(k,j,i+1) |
---|
| 979 | de_dxi(num_gp) = de_dx(k,j,i+1) |
---|
| 980 | de_dyi(num_gp) = 0.0_wp |
---|
| 981 | de_dzi(num_gp) = de_dz(k,j,i+1) |
---|
| 982 | ENDIF |
---|
| 983 | |
---|
| 984 | IF ( gp_outside_of_building(6) == 1 .AND. & |
---|
| 985 | gp_outside_of_building(5) == 0 ) THEN |
---|
| 986 | num_gp = num_gp + 1 |
---|
| 987 | location(num_gp,1) = (i+1) * dx |
---|
| 988 | location(num_gp,2) = j * dy + 0.5_wp * dy |
---|
| 989 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
| 990 | ei(num_gp) = e(k,j+1,i+1) |
---|
| 991 | dissi(num_gp) = diss(k,j+1,i+1) |
---|
| 992 | de_dxi(num_gp) = de_dx(k,j+1,i+1) |
---|
| 993 | de_dyi(num_gp) = 0.0_wp |
---|
| 994 | de_dzi(num_gp) = de_dz(k,j+1,i+1) |
---|
| 995 | ENDIF |
---|
| 996 | |
---|
| 997 | ! |
---|
| 998 | !-- If wall between gridpoint 2 and gridpoint 6, then |
---|
| 999 | !-- Neumann boundary condition has to be applied |
---|
| 1000 | IF ( gp_outside_of_building(2) == 1 .AND. & |
---|
| 1001 | gp_outside_of_building(6) == 0 ) THEN |
---|
| 1002 | num_gp = num_gp + 1 |
---|
| 1003 | location(num_gp,1) = i * dx + 0.5_wp * dx |
---|
| 1004 | location(num_gp,2) = (j+1) * dy |
---|
| 1005 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
| 1006 | ei(num_gp) = e(k,j+1,i) |
---|
| 1007 | dissi(num_gp) = diss(k,j+1,i) |
---|
| 1008 | de_dxi(num_gp) = 0.0_wp |
---|
| 1009 | de_dyi(num_gp) = de_dy(k,j+1,i) |
---|
| 1010 | de_dzi(num_gp) = de_dz(k,j+1,i) |
---|
| 1011 | ENDIF |
---|
| 1012 | |
---|
| 1013 | IF ( gp_outside_of_building(6) == 1 .AND. & |
---|
| 1014 | gp_outside_of_building(2) == 0 ) THEN |
---|
| 1015 | num_gp = num_gp + 1 |
---|
| 1016 | location(num_gp,1) = i * dx + 0.5_wp * dx |
---|
| 1017 | location(num_gp,2) = (j+1) * dy |
---|
| 1018 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
| 1019 | ei(num_gp) = e(k,j+1,i+1) |
---|
| 1020 | dissi(num_gp) = diss(k,j+1,i+1) |
---|
| 1021 | de_dxi(num_gp) = 0.0_wp |
---|
| 1022 | de_dyi(num_gp) = de_dy(k,j+1,i+1) |
---|
| 1023 | de_dzi(num_gp) = de_dz(k,j+1,i+1) |
---|
| 1024 | ENDIF |
---|
| 1025 | |
---|
| 1026 | ! |
---|
| 1027 | !-- If wall between gridpoint 1 and gridpoint 2, then |
---|
| 1028 | !-- Neumann boundary condition has to be applied |
---|
| 1029 | IF ( gp_outside_of_building(1) == 1 .AND. & |
---|
| 1030 | gp_outside_of_building(2) == 0 ) THEN |
---|
| 1031 | num_gp = num_gp + 1 |
---|
| 1032 | location(num_gp,1) = i * dx |
---|
| 1033 | location(num_gp,2) = j * dy + 0.5_wp * dy |
---|
| 1034 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
| 1035 | ei(num_gp) = e(k,j,i) |
---|
| 1036 | dissi(num_gp) = diss(k,j,i) |
---|
| 1037 | de_dxi(num_gp) = de_dx(k,j,i) |
---|
| 1038 | de_dyi(num_gp) = 0.0_wp |
---|
| 1039 | de_dzi(num_gp) = de_dz(k,j,i) |
---|
| 1040 | ENDIF |
---|
| 1041 | |
---|
| 1042 | IF ( gp_outside_of_building(2) == 1 .AND. & |
---|
| 1043 | gp_outside_of_building(1) == 0 ) THEN |
---|
| 1044 | num_gp = num_gp + 1 |
---|
| 1045 | location(num_gp,1) = i * dx |
---|
| 1046 | location(num_gp,2) = j * dy + 0.5_wp * dy |
---|
| 1047 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
| 1048 | ei(num_gp) = e(k,j+1,i) |
---|
| 1049 | dissi(num_gp) = diss(k,j+1,i) |
---|
| 1050 | de_dxi(num_gp) = de_dx(k,j+1,i) |
---|
| 1051 | de_dyi(num_gp) = 0.0_wp |
---|
| 1052 | de_dzi(num_gp) = de_dz(k,j+1,i) |
---|
| 1053 | ENDIF |
---|
| 1054 | |
---|
| 1055 | ! |
---|
| 1056 | !-- If wall between gridpoint 3 and gridpoint 7, then |
---|
| 1057 | !-- Neumann boundary condition has to be applied |
---|
| 1058 | IF ( gp_outside_of_building(3) == 1 .AND. & |
---|
| 1059 | gp_outside_of_building(7) == 0 ) THEN |
---|
| 1060 | num_gp = num_gp + 1 |
---|
| 1061 | location(num_gp,1) = i * dx + 0.5_wp * dx |
---|
| 1062 | location(num_gp,2) = j * dy |
---|
| 1063 | location(num_gp,3) = k * dz + 0.5_wp * dz |
---|
| 1064 | ei(num_gp) = e(k+1,j,i) |
---|
| 1065 | dissi(num_gp) = diss(k+1,j,i) |
---|
| 1066 | de_dxi(num_gp) = 0.0_wp |
---|
| 1067 | de_dyi(num_gp) = de_dy(k+1,j,i) |
---|
| 1068 | de_dzi(num_gp) = de_dz(k+1,j,i) |
---|
| 1069 | ENDIF |
---|
| 1070 | |
---|
| 1071 | IF ( gp_outside_of_building(7) == 1 .AND. & |
---|
| 1072 | gp_outside_of_building(3) == 0 ) THEN |
---|
| 1073 | num_gp = num_gp + 1 |
---|
| 1074 | location(num_gp,1) = i * dx + 0.5_wp * dx |
---|
| 1075 | location(num_gp,2) = j * dy |
---|
| 1076 | location(num_gp,3) = k * dz + 0.5_wp * dz |
---|
| 1077 | ei(num_gp) = e(k+1,j,i+1) |
---|
| 1078 | dissi(num_gp) = diss(k+1,j,i+1) |
---|
| 1079 | de_dxi(num_gp) = 0.0_wp |
---|
| 1080 | de_dyi(num_gp) = de_dy(k+1,j,i+1) |
---|
| 1081 | de_dzi(num_gp) = de_dz(k+1,j,i+1) |
---|
| 1082 | ENDIF |
---|
| 1083 | |
---|
| 1084 | ! |
---|
| 1085 | !-- If wall between gridpoint 7 and gridpoint 8, then |
---|
| 1086 | !-- Neumann boundary condition has to be applied |
---|
| 1087 | IF ( gp_outside_of_building(7) == 1 .AND. & |
---|
| 1088 | gp_outside_of_building(8) == 0 ) THEN |
---|
| 1089 | num_gp = num_gp + 1 |
---|
| 1090 | location(num_gp,1) = (i+1) * dx |
---|
| 1091 | location(num_gp,2) = j * dy + 0.5_wp * dy |
---|
| 1092 | location(num_gp,3) = k * dz + 0.5_wp * dz |
---|
| 1093 | ei(num_gp) = e(k+1,j,i+1) |
---|
| 1094 | dissi(num_gp) = diss(k+1,j,i+1) |
---|
| 1095 | de_dxi(num_gp) = de_dx(k+1,j,i+1) |
---|
| 1096 | de_dyi(num_gp) = 0.0_wp |
---|
| 1097 | de_dzi(num_gp) = de_dz(k+1,j,i+1) |
---|
| 1098 | ENDIF |
---|
| 1099 | |
---|
| 1100 | IF ( gp_outside_of_building(8) == 1 .AND. & |
---|
| 1101 | gp_outside_of_building(7) == 0 ) THEN |
---|
| 1102 | num_gp = num_gp + 1 |
---|
| 1103 | location(num_gp,1) = (i+1) * dx |
---|
| 1104 | location(num_gp,2) = j * dy + 0.5_wp * dy |
---|
| 1105 | location(num_gp,3) = k * dz + 0.5_wp * dz |
---|
| 1106 | ei(num_gp) = e(k+1,j+1,i+1) |
---|
| 1107 | dissi(num_gp) = diss(k+1,j+1,i+1) |
---|
| 1108 | de_dxi(num_gp) = de_dx(k+1,j+1,i+1) |
---|
| 1109 | de_dyi(num_gp) = 0.0_wp |
---|
| 1110 | de_dzi(num_gp) = de_dz(k+1,j+1,i+1) |
---|
| 1111 | ENDIF |
---|
| 1112 | |
---|
| 1113 | ! |
---|
| 1114 | !-- If wall between gridpoint 4 and gridpoint 8, then |
---|
| 1115 | !-- Neumann boundary condition has to be applied |
---|
| 1116 | IF ( gp_outside_of_building(4) == 1 .AND. & |
---|
| 1117 | gp_outside_of_building(8) == 0 ) THEN |
---|
| 1118 | num_gp = num_gp + 1 |
---|
| 1119 | location(num_gp,1) = i * dx + 0.5_wp * dx |
---|
| 1120 | location(num_gp,2) = (j+1) * dy |
---|
| 1121 | location(num_gp,3) = k * dz + 0.5_wp * dz |
---|
| 1122 | ei(num_gp) = e(k+1,j+1,i) |
---|
| 1123 | dissi(num_gp) = diss(k+1,j+1,i) |
---|
| 1124 | de_dxi(num_gp) = 0.0_wp |
---|
| 1125 | de_dyi(num_gp) = de_dy(k+1,j+1,i) |
---|
| 1126 | de_dzi(num_gp) = de_dz(k+1,j+1,i) |
---|
| 1127 | ENDIF |
---|
| 1128 | |
---|
| 1129 | IF ( gp_outside_of_building(8) == 1 .AND. & |
---|
| 1130 | gp_outside_of_building(4) == 0 ) THEN |
---|
| 1131 | num_gp = num_gp + 1 |
---|
| 1132 | location(num_gp,1) = i * dx + 0.5_wp * dx |
---|
| 1133 | location(num_gp,2) = (j+1) * dy |
---|
| 1134 | location(num_gp,3) = k * dz + 0.5_wp * dz |
---|
| 1135 | ei(num_gp) = e(k+1,j+1,i+1) |
---|
| 1136 | dissi(num_gp) = diss(k+1,j+1,i+1) |
---|
| 1137 | de_dxi(num_gp) = 0.0_wp |
---|
| 1138 | de_dyi(num_gp) = de_dy(k+1,j+1,i+1) |
---|
| 1139 | de_dzi(num_gp) = de_dz(k+1,j+1,i+1) |
---|
| 1140 | ENDIF |
---|
| 1141 | |
---|
| 1142 | ! |
---|
| 1143 | !-- If wall between gridpoint 3 and gridpoint 4, then |
---|
| 1144 | !-- Neumann boundary condition has to be applied |
---|
| 1145 | IF ( gp_outside_of_building(3) == 1 .AND. & |
---|
| 1146 | gp_outside_of_building(4) == 0 ) THEN |
---|
| 1147 | num_gp = num_gp + 1 |
---|
| 1148 | location(num_gp,1) = i * dx |
---|
| 1149 | location(num_gp,2) = j * dy + 0.5_wp * dy |
---|
| 1150 | location(num_gp,3) = k * dz + 0.5_wp * dz |
---|
| 1151 | ei(num_gp) = e(k+1,j,i) |
---|
| 1152 | dissi(num_gp) = diss(k+1,j,i) |
---|
| 1153 | de_dxi(num_gp) = de_dx(k+1,j,i) |
---|
| 1154 | de_dyi(num_gp) = 0.0_wp |
---|
| 1155 | de_dzi(num_gp) = de_dz(k+1,j,i) |
---|
| 1156 | ENDIF |
---|
| 1157 | |
---|
| 1158 | IF ( gp_outside_of_building(4) == 1 .AND. & |
---|
| 1159 | gp_outside_of_building(3) == 0 ) THEN |
---|
| 1160 | num_gp = num_gp + 1 |
---|
| 1161 | location(num_gp,1) = i * dx |
---|
| 1162 | location(num_gp,2) = j * dy + 0.5_wp * dy |
---|
| 1163 | location(num_gp,3) = k * dz + 0.5_wp * dz |
---|
| 1164 | ei(num_gp) = e(k+1,j+1,i) |
---|
| 1165 | dissi(num_gp) = diss(k+1,j+1,i) |
---|
| 1166 | de_dxi(num_gp) = de_dx(k+1,j+1,i) |
---|
| 1167 | de_dyi(num_gp) = 0.0_wp |
---|
| 1168 | de_dzi(num_gp) = de_dz(k+1,j+1,i) |
---|
| 1169 | ENDIF |
---|
| 1170 | |
---|
| 1171 | ! |
---|
| 1172 | !-- If wall between gridpoint 1 and gridpoint 3, then |
---|
| 1173 | !-- Neumann boundary condition has to be applied |
---|
| 1174 | !-- (only one case as only building beneath is possible) |
---|
| 1175 | IF ( gp_outside_of_building(1) == 0 .AND. & |
---|
| 1176 | gp_outside_of_building(3) == 1 ) THEN |
---|
| 1177 | num_gp = num_gp + 1 |
---|
| 1178 | location(num_gp,1) = i * dx |
---|
| 1179 | location(num_gp,2) = j * dy |
---|
| 1180 | location(num_gp,3) = k * dz |
---|
| 1181 | ei(num_gp) = e(k+1,j,i) |
---|
| 1182 | dissi(num_gp) = diss(k+1,j,i) |
---|
| 1183 | de_dxi(num_gp) = de_dx(k+1,j,i) |
---|
| 1184 | de_dyi(num_gp) = de_dy(k+1,j,i) |
---|
| 1185 | de_dzi(num_gp) = 0.0_wp |
---|
| 1186 | ENDIF |
---|
| 1187 | |
---|
| 1188 | ! |
---|
| 1189 | !-- If wall between gridpoint 5 and gridpoint 7, then |
---|
| 1190 | !-- Neumann boundary condition has to be applied |
---|
| 1191 | !-- (only one case as only building beneath is possible) |
---|
| 1192 | IF ( gp_outside_of_building(5) == 0 .AND. & |
---|
| 1193 | gp_outside_of_building(7) == 1 ) THEN |
---|
| 1194 | num_gp = num_gp + 1 |
---|
| 1195 | location(num_gp,1) = (i+1) * dx |
---|
| 1196 | location(num_gp,2) = j * dy |
---|
| 1197 | location(num_gp,3) = k * dz |
---|
| 1198 | ei(num_gp) = e(k+1,j,i+1) |
---|
| 1199 | dissi(num_gp) = diss(k+1,j,i+1) |
---|
| 1200 | de_dxi(num_gp) = de_dx(k+1,j,i+1) |
---|
| 1201 | de_dyi(num_gp) = de_dy(k+1,j,i+1) |
---|
| 1202 | de_dzi(num_gp) = 0.0_wp |
---|
| 1203 | ENDIF |
---|
| 1204 | |
---|
| 1205 | ! |
---|
| 1206 | !-- If wall between gridpoint 2 and gridpoint 4, then |
---|
| 1207 | !-- Neumann boundary condition has to be applied |
---|
| 1208 | !-- (only one case as only building beneath is possible) |
---|
| 1209 | IF ( gp_outside_of_building(2) == 0 .AND. & |
---|
| 1210 | gp_outside_of_building(4) == 1 ) THEN |
---|
| 1211 | num_gp = num_gp + 1 |
---|
| 1212 | location(num_gp,1) = i * dx |
---|
| 1213 | location(num_gp,2) = (j+1) * dy |
---|
| 1214 | location(num_gp,3) = k * dz |
---|
| 1215 | ei(num_gp) = e(k+1,j+1,i) |
---|
| 1216 | dissi(num_gp) = diss(k+1,j+1,i) |
---|
| 1217 | de_dxi(num_gp) = de_dx(k+1,j+1,i) |
---|
| 1218 | de_dyi(num_gp) = de_dy(k+1,j+1,i) |
---|
| 1219 | de_dzi(num_gp) = 0.0_wp |
---|
| 1220 | ENDIF |
---|
| 1221 | |
---|
| 1222 | ! |
---|
| 1223 | !-- If wall between gridpoint 6 and gridpoint 8, then |
---|
| 1224 | !-- Neumann boundary condition has to be applied |
---|
| 1225 | !-- (only one case as only building beneath is possible) |
---|
| 1226 | IF ( gp_outside_of_building(6) == 0 .AND. & |
---|
| 1227 | gp_outside_of_building(8) == 1 ) THEN |
---|
| 1228 | num_gp = num_gp + 1 |
---|
| 1229 | location(num_gp,1) = (i+1) * dx |
---|
| 1230 | location(num_gp,2) = (j+1) * dy |
---|
| 1231 | location(num_gp,3) = k * dz |
---|
| 1232 | ei(num_gp) = e(k+1,j+1,i+1) |
---|
| 1233 | dissi(num_gp) = diss(k+1,j+1,i+1) |
---|
| 1234 | de_dxi(num_gp) = de_dx(k+1,j+1,i+1) |
---|
| 1235 | de_dyi(num_gp) = de_dy(k+1,j+1,i+1) |
---|
| 1236 | de_dzi(num_gp) = 0.0_wp |
---|
| 1237 | ENDIF |
---|
| 1238 | |
---|
| 1239 | ! |
---|
| 1240 | !-- Carry out the interpolation |
---|
| 1241 | IF ( num_gp == 1 ) THEN |
---|
| 1242 | ! |
---|
| 1243 | !-- If only one of the gridpoints is situated outside of the |
---|
| 1244 | !-- building, it follows that the values at the particle |
---|
| 1245 | !-- location are the same as the gridpoint values |
---|
| 1246 | e_int(n) = ei(num_gp) |
---|
| 1247 | diss_int(n) = dissi(num_gp) |
---|
| 1248 | de_dx_int(n) = de_dxi(num_gp) |
---|
| 1249 | de_dy_int(n) = de_dyi(num_gp) |
---|
| 1250 | de_dz_int(n) = de_dzi(num_gp) |
---|
| 1251 | ! |
---|
| 1252 | !-- Set flag for stochastic equation which disables calculation |
---|
| 1253 | !-- of drift and memory term near topography. |
---|
| 1254 | term_1_2(n) = 0.0_wp |
---|
| 1255 | ELSE IF ( num_gp > 1 ) THEN |
---|
| 1256 | |
---|
| 1257 | d_sum = 0.0_wp |
---|
| 1258 | ! |
---|
| 1259 | !-- Evaluation of the distances between the gridpoints |
---|
| 1260 | !-- contributing to the interpolated values, and the particle |
---|
| 1261 | !-- location |
---|
| 1262 | DO agp = 1, num_gp |
---|
| 1263 | d_gp_pl(agp) = ( particles(n)%x-location(agp,1) )**2 & |
---|
| 1264 | + ( particles(n)%y-location(agp,2) )**2 & |
---|
| 1265 | + ( zv(n)-location(agp,3) )**2 |
---|
| 1266 | d_sum = d_sum + d_gp_pl(agp) |
---|
| 1267 | ENDDO |
---|
| 1268 | |
---|
| 1269 | ! |
---|
| 1270 | !-- Finally the interpolation can be carried out |
---|
| 1271 | e_int(n) = 0.0_wp |
---|
| 1272 | diss_int(n) = 0.0_wp |
---|
| 1273 | de_dx_int(n) = 0.0_wp |
---|
| 1274 | de_dy_int(n) = 0.0_wp |
---|
| 1275 | de_dz_int(n) = 0.0_wp |
---|
| 1276 | DO agp = 1, num_gp |
---|
| 1277 | e_int(n) = e_int(n) + ( d_sum - d_gp_pl(agp) ) * & |
---|
| 1278 | ei(agp) / ( (num_gp-1) * d_sum ) |
---|
| 1279 | diss_int(n) = diss_int(n) + ( d_sum - d_gp_pl(agp) ) * & |
---|
| 1280 | dissi(agp) / ( (num_gp-1) * d_sum ) |
---|
| 1281 | de_dx_int(n) = de_dx_int(n) + ( d_sum - d_gp_pl(agp) ) * & |
---|
| 1282 | de_dxi(agp) / ( (num_gp-1) * d_sum ) |
---|
| 1283 | de_dy_int(n) = de_dy_int(n) + ( d_sum - d_gp_pl(agp) ) * & |
---|
| 1284 | de_dyi(agp) / ( (num_gp-1) * d_sum ) |
---|
| 1285 | de_dz_int(n) = de_dz_int(n) + ( d_sum - d_gp_pl(agp) ) * & |
---|
| 1286 | de_dzi(agp) / ( (num_gp-1) * d_sum ) |
---|
| 1287 | ENDDO |
---|
| 1288 | |
---|
| 1289 | ENDIF |
---|
| 1290 | e_int(n) = MAX( 1E-20_wp, e_int(n) ) |
---|
| 1291 | diss_int(n) = MAX( 1E-20_wp, diss_int(n) ) |
---|
| 1292 | de_dx_int(n) = MAX( 1E-20_wp, de_dx_int(n) ) |
---|
| 1293 | de_dy_int(n) = MAX( 1E-20_wp, de_dy_int(n) ) |
---|
| 1294 | de_dz_int(n) = MAX( 1E-20_wp, de_dz_int(n) ) |
---|
| 1295 | ! |
---|
[1929] | 1296 | !-- Set flag for stochastic equation which disables calculation |
---|
| 1297 | !-- of drift and memory term near topography. |
---|
| 1298 | term_1_2(n) = 0.0_wp |
---|
[849] | 1299 | ENDIF |
---|
[2417] | 1300 | ENDDO |
---|
[1359] | 1301 | ENDDO |
---|
| 1302 | ENDIF |
---|
[849] | 1303 | |
---|
[1359] | 1304 | DO nb = 0,7 |
---|
| 1305 | i = ip + block_offset(nb)%i_off |
---|
| 1306 | j = jp + block_offset(nb)%j_off |
---|
| 1307 | k = kp + block_offset(nb)%k_off |
---|
[849] | 1308 | |
---|
[1359] | 1309 | DO n = start_index(nb), end_index(nb) |
---|
[849] | 1310 | ! |
---|
[1359] | 1311 | !-- Vertical interpolation of the horizontally averaged SGS TKE and |
---|
| 1312 | !-- resolved-scale velocity variances and use the interpolated values |
---|
| 1313 | !-- to calculate the coefficient fs, which is a measure of the ratio |
---|
| 1314 | !-- of the subgrid-scale turbulent kinetic energy to the total amount |
---|
| 1315 | !-- of turbulent kinetic energy. |
---|
| 1316 | IF ( k == 0 ) THEN |
---|
| 1317 | e_mean_int = hom(0,1,8,0) |
---|
| 1318 | ELSE |
---|
| 1319 | e_mean_int = hom(k,1,8,0) + & |
---|
| 1320 | ( hom(k+1,1,8,0) - hom(k,1,8,0) ) / & |
---|
| 1321 | ( zu(k+1) - zu(k) ) * & |
---|
| 1322 | ( zv(n) - zu(k) ) |
---|
| 1323 | ENDIF |
---|
[849] | 1324 | |
---|
[1685] | 1325 | kw = kp - 1 |
---|
[849] | 1326 | |
---|
[1359] | 1327 | IF ( k == 0 ) THEN |
---|
| 1328 | aa = hom(k+1,1,30,0) * ( zv(n) / & |
---|
| 1329 | ( 0.5_wp * ( zu(k+1) - zu(k) ) ) ) |
---|
| 1330 | bb = hom(k+1,1,31,0) * ( zv(n) / & |
---|
| 1331 | ( 0.5_wp * ( zu(k+1) - zu(k) ) ) ) |
---|
| 1332 | cc = hom(kw+1,1,32,0) * ( zv(n) / & |
---|
| 1333 | ( 1.0_wp * ( zw(kw+1) - zw(kw) ) ) ) |
---|
| 1334 | ELSE |
---|
| 1335 | aa = hom(k,1,30,0) + ( hom(k+1,1,30,0) - hom(k,1,30,0) ) * & |
---|
| 1336 | ( ( zv(n) - zu(k) ) / ( zu(k+1) - zu(k) ) ) |
---|
| 1337 | bb = hom(k,1,31,0) + ( hom(k+1,1,31,0) - hom(k,1,31,0) ) * & |
---|
| 1338 | ( ( zv(n) - zu(k) ) / ( zu(k+1) - zu(k) ) ) |
---|
| 1339 | cc = hom(kw,1,32,0) + ( hom(kw+1,1,32,0)-hom(kw,1,32,0) ) * & |
---|
| 1340 | ( ( zv(n) - zw(kw) ) / ( zw(kw+1)-zw(kw) ) ) |
---|
| 1341 | ENDIF |
---|
[849] | 1342 | |
---|
[1359] | 1343 | vv_int = ( 1.0_wp / 3.0_wp ) * ( aa + bb + cc ) |
---|
| 1344 | ! |
---|
| 1345 | !-- Needed to avoid NaN particle velocities. The value of 1.0 is just |
---|
| 1346 | !-- an educated guess for the given case. |
---|
| 1347 | IF ( vv_int + ( 2.0_wp / 3.0_wp ) * e_mean_int == 0.0_wp ) THEN |
---|
| 1348 | fs_int(n) = 1.0_wp |
---|
| 1349 | ELSE |
---|
| 1350 | fs_int(n) = ( 2.0_wp / 3.0_wp ) * e_mean_int / & |
---|
| 1351 | ( vv_int + ( 2.0_wp / 3.0_wp ) * e_mean_int ) |
---|
| 1352 | ENDIF |
---|
[849] | 1353 | |
---|
[1359] | 1354 | ENDDO |
---|
| 1355 | ENDDO |
---|
[849] | 1356 | |
---|
[2417] | 1357 | DO nb = 0, 7 |
---|
| 1358 | DO n = start_index(nb), end_index(nb) |
---|
| 1359 | rg(n,1) = random_gauss( iran_part, 5.0_wp ) |
---|
| 1360 | rg(n,2) = random_gauss( iran_part, 5.0_wp ) |
---|
| 1361 | rg(n,3) = random_gauss( iran_part, 5.0_wp ) |
---|
| 1362 | ENDDO |
---|
| 1363 | ENDDO |
---|
[1359] | 1364 | |
---|
[2417] | 1365 | DO nb = 0, 7 |
---|
| 1366 | DO n = start_index(nb), end_index(nb) |
---|
[1359] | 1367 | |
---|
[849] | 1368 | ! |
---|
[2417] | 1369 | !-- Calculate the Lagrangian timescale according to Weil et al. (2004). |
---|
| 1370 | lagr_timescale = ( 4.0_wp * e_int(n) + 1E-20_wp ) / & |
---|
| 1371 | ( 3.0_wp * fs_int(n) * c_0 * diss_int(n) + 1E-20_wp ) |
---|
[849] | 1372 | |
---|
| 1373 | ! |
---|
[2417] | 1374 | !-- Calculate the next particle timestep. dt_gap is the time needed to |
---|
| 1375 | !-- complete the current LES timestep. |
---|
| 1376 | dt_gap = dt_3d - particles(n)%dt_sum |
---|
| 1377 | dt_particle(n) = MIN( dt_3d, 0.025_wp * lagr_timescale, dt_gap ) |
---|
[849] | 1378 | |
---|
| 1379 | ! |
---|
[2417] | 1380 | !-- The particle timestep should not be too small in order to prevent |
---|
| 1381 | !-- the number of particle timesteps of getting too large |
---|
| 1382 | IF ( dt_particle(n) < dt_min_part .AND. dt_min_part < dt_gap ) THEN |
---|
| 1383 | dt_particle(n) = dt_min_part |
---|
| 1384 | ENDIF |
---|
[849] | 1385 | |
---|
| 1386 | ! |
---|
[2417] | 1387 | !-- Calculate the SGS velocity components |
---|
| 1388 | IF ( particles(n)%age == 0.0_wp ) THEN |
---|
[849] | 1389 | ! |
---|
[2417] | 1390 | !-- For new particles the SGS components are derived from the SGS |
---|
| 1391 | !-- TKE. Limit the Gaussian random number to the interval |
---|
| 1392 | !-- [-5.0*sigma, 5.0*sigma] in order to prevent the SGS velocities |
---|
| 1393 | !-- from becoming unrealistically large. |
---|
| 1394 | particles(n)%rvar1 = SQRT( 2.0_wp * sgs_wf_part * e_int(n) & |
---|
| 1395 | + 1E-20_wp ) * & |
---|
| 1396 | ( rg(n,1) - 1.0_wp ) |
---|
| 1397 | particles(n)%rvar2 = SQRT( 2.0_wp * sgs_wf_part * e_int(n) & |
---|
| 1398 | + 1E-20_wp ) * & |
---|
| 1399 | ( rg(n,2) - 1.0_wp ) |
---|
| 1400 | particles(n)%rvar3 = SQRT( 2.0_wp * sgs_wf_part * e_int(n) & |
---|
| 1401 | + 1E-20_wp ) * & |
---|
| 1402 | ( rg(n,3) - 1.0_wp ) |
---|
[849] | 1403 | |
---|
[2417] | 1404 | ELSE |
---|
[849] | 1405 | ! |
---|
[2417] | 1406 | !-- Restriction of the size of the new timestep: compared to the |
---|
| 1407 | !-- previous timestep the increase must not exceed 200%. First, |
---|
| 1408 | !-- check if age > age_m, in order to prevent that particles get zero |
---|
| 1409 | !-- timestep. |
---|
| 1410 | dt_particle_m = MERGE( dt_particle(n), & |
---|
| 1411 | particles(n)%age - particles(n)%age_m, & |
---|
| 1412 | particles(n)%age - particles(n)%age_m < & |
---|
| 1413 | 1E-8_wp ) |
---|
| 1414 | IF ( dt_particle(n) > 2.0_wp * dt_particle_m ) THEN |
---|
| 1415 | dt_particle(n) = 2.0_wp * dt_particle_m |
---|
| 1416 | ENDIF |
---|
[849] | 1417 | |
---|
| 1418 | ! |
---|
[2417] | 1419 | !-- For old particles the SGS components are correlated with the |
---|
| 1420 | !-- values from the previous timestep. Random numbers have also to |
---|
| 1421 | !-- be limited (see above). |
---|
| 1422 | !-- As negative values for the subgrid TKE are not allowed, the |
---|
| 1423 | !-- change of the subgrid TKE with time cannot be smaller than |
---|
| 1424 | !-- -e_int(n)/dt_particle. This value is used as a lower boundary |
---|
| 1425 | !-- value for the change of TKE |
---|
| 1426 | de_dt_min = - e_int(n) / dt_particle(n) |
---|
[849] | 1427 | |
---|
[2417] | 1428 | de_dt = ( e_int(n) - particles(n)%e_m ) / dt_particle_m |
---|
[849] | 1429 | |
---|
[2417] | 1430 | IF ( de_dt < de_dt_min ) THEN |
---|
| 1431 | de_dt = de_dt_min |
---|
| 1432 | ENDIF |
---|
[849] | 1433 | |
---|
[2417] | 1434 | CALL weil_stochastic_eq(particles(n)%rvar1, fs_int(n), e_int(n),& |
---|
| 1435 | de_dx_int(n), de_dt, diss_int(n), & |
---|
| 1436 | dt_particle(n), rg(n,1), term_1_2(n) ) |
---|
[849] | 1437 | |
---|
[2417] | 1438 | CALL weil_stochastic_eq(particles(n)%rvar2, fs_int(n), e_int(n),& |
---|
| 1439 | de_dy_int(n), de_dt, diss_int(n), & |
---|
| 1440 | dt_particle(n), rg(n,2), term_1_2(n) ) |
---|
[849] | 1441 | |
---|
[2417] | 1442 | CALL weil_stochastic_eq(particles(n)%rvar3, fs_int(n), e_int(n),& |
---|
| 1443 | de_dz_int(n), de_dt, diss_int(n), & |
---|
| 1444 | dt_particle(n), rg(n,3), term_1_2(n) ) |
---|
[849] | 1445 | |
---|
[2417] | 1446 | ENDIF |
---|
[849] | 1447 | |
---|
[2417] | 1448 | u_int(n) = u_int(n) + particles(n)%rvar1 |
---|
| 1449 | v_int(n) = v_int(n) + particles(n)%rvar2 |
---|
| 1450 | w_int(n) = w_int(n) + particles(n)%rvar3 |
---|
[849] | 1451 | ! |
---|
[2417] | 1452 | !-- Store the SGS TKE of the current timelevel which is needed for |
---|
| 1453 | !-- for calculating the SGS particle velocities at the next timestep |
---|
| 1454 | particles(n)%e_m = e_int(n) |
---|
| 1455 | ENDDO |
---|
[1359] | 1456 | ENDDO |
---|
[849] | 1457 | |
---|
[1359] | 1458 | ELSE |
---|
[849] | 1459 | ! |
---|
[1359] | 1460 | !-- If no SGS velocities are used, only the particle timestep has to |
---|
| 1461 | !-- be set |
---|
| 1462 | dt_particle = dt_3d |
---|
[849] | 1463 | |
---|
[1359] | 1464 | ENDIF |
---|
[849] | 1465 | |
---|
[1359] | 1466 | dens_ratio = particle_groups(particles(1:number_of_particles)%group)%density_ratio |
---|
[849] | 1467 | |
---|
[1359] | 1468 | IF ( ANY( dens_ratio == 0.0_wp ) ) THEN |
---|
[2417] | 1469 | DO nb = 0, 7 |
---|
| 1470 | DO n = start_index(nb), end_index(nb) |
---|
[1359] | 1471 | |
---|
[849] | 1472 | ! |
---|
[2417] | 1473 | !-- Particle advection |
---|
| 1474 | IF ( dens_ratio(n) == 0.0_wp ) THEN |
---|
[849] | 1475 | ! |
---|
[2417] | 1476 | !-- Pure passive transport (without particle inertia) |
---|
| 1477 | particles(n)%x = xv(n) + u_int(n) * dt_particle(n) |
---|
| 1478 | particles(n)%y = yv(n) + v_int(n) * dt_particle(n) |
---|
| 1479 | particles(n)%z = zv(n) + w_int(n) * dt_particle(n) |
---|
[849] | 1480 | |
---|
[2417] | 1481 | particles(n)%speed_x = u_int(n) |
---|
| 1482 | particles(n)%speed_y = v_int(n) |
---|
| 1483 | particles(n)%speed_z = w_int(n) |
---|
[849] | 1484 | |
---|
[2417] | 1485 | ELSE |
---|
[849] | 1486 | ! |
---|
[2417] | 1487 | !-- Transport of particles with inertia |
---|
| 1488 | particles(n)%x = particles(n)%x + particles(n)%speed_x * & |
---|
| 1489 | dt_particle(n) |
---|
| 1490 | particles(n)%y = particles(n)%y + particles(n)%speed_y * & |
---|
| 1491 | dt_particle(n) |
---|
| 1492 | particles(n)%z = particles(n)%z + particles(n)%speed_z * & |
---|
| 1493 | dt_particle(n) |
---|
[849] | 1494 | |
---|
| 1495 | ! |
---|
[2417] | 1496 | !-- Update of the particle velocity |
---|
| 1497 | IF ( cloud_droplets ) THEN |
---|
| 1498 | ! |
---|
| 1499 | !-- Terminal velocity is computed for vertical direction (Rogers et |
---|
| 1500 | !-- al., 1993, J. Appl. Meteorol.) |
---|
| 1501 | diameter = particles(n)%radius * 2000.0_wp !diameter in mm |
---|
| 1502 | IF ( diameter <= d0_rog ) THEN |
---|
| 1503 | w_s = k_cap_rog * diameter * ( 1.0_wp - EXP( -k_low_rog * diameter ) ) |
---|
| 1504 | ELSE |
---|
| 1505 | w_s = a_rog - b_rog * EXP( -c_rog * diameter ) |
---|
| 1506 | ENDIF |
---|
| 1507 | |
---|
| 1508 | ! |
---|
| 1509 | !-- If selected, add random velocities following Soelch and Kaercher |
---|
| 1510 | !-- (2010, Q. J. R. Meteorol. Soc.) |
---|
| 1511 | IF ( use_sgs_for_particles ) THEN |
---|
| 1512 | lagr_timescale = km(kp,jp,ip) / MAX( e(kp,jp,ip), 1.0E-20_wp ) |
---|
| 1513 | RL = EXP( -1.0_wp * dt_3d / lagr_timescale ) |
---|
| 1514 | sigma = SQRT( e(kp,jp,ip) ) |
---|
| 1515 | |
---|
| 1516 | rg1 = random_gauss( iran_part, 5.0_wp ) - 1.0_wp |
---|
| 1517 | rg2 = random_gauss( iran_part, 5.0_wp ) - 1.0_wp |
---|
| 1518 | rg3 = random_gauss( iran_part, 5.0_wp ) - 1.0_wp |
---|
| 1519 | |
---|
| 1520 | particles(n)%rvar1 = RL * particles(n)%rvar1 + & |
---|
| 1521 | SQRT( 1.0_wp - RL**2 ) * sigma * rg1 |
---|
| 1522 | particles(n)%rvar2 = RL * particles(n)%rvar2 + & |
---|
| 1523 | SQRT( 1.0_wp - RL**2 ) * sigma * rg2 |
---|
| 1524 | particles(n)%rvar3 = RL * particles(n)%rvar3 + & |
---|
| 1525 | SQRT( 1.0_wp - RL**2 ) * sigma * rg3 |
---|
| 1526 | |
---|
| 1527 | particles(n)%speed_x = u_int(n) + particles(n)%rvar1 |
---|
| 1528 | particles(n)%speed_y = v_int(n) + particles(n)%rvar2 |
---|
| 1529 | particles(n)%speed_z = w_int(n) + particles(n)%rvar3 - w_s |
---|
| 1530 | ELSE |
---|
| 1531 | particles(n)%speed_x = u_int(n) |
---|
| 1532 | particles(n)%speed_y = v_int(n) |
---|
| 1533 | particles(n)%speed_z = w_int(n) - w_s |
---|
| 1534 | ENDIF |
---|
| 1535 | |
---|
| 1536 | ELSE |
---|
| 1537 | |
---|
| 1538 | IF ( use_sgs_for_particles ) THEN |
---|
| 1539 | exp_arg = particle_groups(particles(n)%group)%exp_arg |
---|
| 1540 | exp_term = EXP( -exp_arg * dt_particle(n) ) |
---|
| 1541 | ELSE |
---|
| 1542 | exp_arg = particle_groups(particles(n)%group)%exp_arg |
---|
| 1543 | exp_term = particle_groups(particles(n)%group)%exp_term |
---|
| 1544 | ENDIF |
---|
| 1545 | particles(n)%speed_x = particles(n)%speed_x * exp_term + & |
---|
| 1546 | u_int(n) * ( 1.0_wp - exp_term ) |
---|
| 1547 | particles(n)%speed_y = particles(n)%speed_y * exp_term + & |
---|
| 1548 | v_int(n) * ( 1.0_wp - exp_term ) |
---|
| 1549 | particles(n)%speed_z = particles(n)%speed_z * exp_term + & |
---|
| 1550 | ( w_int(n) - ( 1.0_wp - dens_ratio(n) ) * & |
---|
| 1551 | g / exp_arg ) * ( 1.0_wp - exp_term ) |
---|
| 1552 | ENDIF |
---|
| 1553 | |
---|
| 1554 | ENDIF |
---|
| 1555 | ENDDO |
---|
| 1556 | ENDDO |
---|
| 1557 | |
---|
| 1558 | ELSE |
---|
| 1559 | |
---|
| 1560 | DO nb = 0, 7 |
---|
| 1561 | DO n = start_index(nb), end_index(nb) |
---|
| 1562 | ! |
---|
| 1563 | !-- Transport of particles with inertia |
---|
| 1564 | particles(n)%x = xv(n) + particles(n)%speed_x * dt_particle(n) |
---|
| 1565 | particles(n)%y = yv(n) + particles(n)%speed_y * dt_particle(n) |
---|
| 1566 | particles(n)%z = zv(n) + particles(n)%speed_z * dt_particle(n) |
---|
| 1567 | ! |
---|
[1359] | 1568 | !-- Update of the particle velocity |
---|
| 1569 | IF ( cloud_droplets ) THEN |
---|
[1822] | 1570 | ! |
---|
[2417] | 1571 | !-- Terminal velocity is computed for vertical direction (Rogers et al., |
---|
| 1572 | !-- 1993, J. Appl. Meteorol.) |
---|
[1822] | 1573 | diameter = particles(n)%radius * 2000.0_wp !diameter in mm |
---|
| 1574 | IF ( diameter <= d0_rog ) THEN |
---|
| 1575 | w_s = k_cap_rog * diameter * ( 1.0_wp - EXP( -k_low_rog * diameter ) ) |
---|
| 1576 | ELSE |
---|
| 1577 | w_s = a_rog - b_rog * EXP( -c_rog * diameter ) |
---|
| 1578 | ENDIF |
---|
[1359] | 1579 | |
---|
[1822] | 1580 | ! |
---|
| 1581 | !-- If selected, add random velocities following Soelch and Kaercher |
---|
| 1582 | !-- (2010, Q. J. R. Meteorol. Soc.) |
---|
| 1583 | IF ( use_sgs_for_particles ) THEN |
---|
[2417] | 1584 | lagr_timescale = km(kp,jp,ip) / MAX( e(kp,jp,ip), 1.0E-20_wp ) |
---|
| 1585 | RL = EXP( -1.0_wp * dt_3d / lagr_timescale ) |
---|
| 1586 | sigma = SQRT( e(kp,jp,ip) ) |
---|
[1822] | 1587 | |
---|
[2417] | 1588 | rg1 = random_gauss( iran_part, 5.0_wp ) - 1.0_wp |
---|
| 1589 | rg2 = random_gauss( iran_part, 5.0_wp ) - 1.0_wp |
---|
| 1590 | rg3 = random_gauss( iran_part, 5.0_wp ) - 1.0_wp |
---|
[1822] | 1591 | |
---|
[2417] | 1592 | particles(n)%rvar1 = RL * particles(n)%rvar1 + & |
---|
| 1593 | SQRT( 1.0_wp - RL**2 ) * sigma * rg1 |
---|
| 1594 | particles(n)%rvar2 = RL * particles(n)%rvar2 + & |
---|
| 1595 | SQRT( 1.0_wp - RL**2 ) * sigma * rg2 |
---|
| 1596 | particles(n)%rvar3 = RL * particles(n)%rvar3 + & |
---|
| 1597 | SQRT( 1.0_wp - RL**2 ) * sigma * rg3 |
---|
[1822] | 1598 | |
---|
[2417] | 1599 | particles(n)%speed_x = u_int(n) + particles(n)%rvar1 |
---|
| 1600 | particles(n)%speed_y = v_int(n) + particles(n)%rvar2 |
---|
| 1601 | particles(n)%speed_z = w_int(n) + particles(n)%rvar3 - w_s |
---|
[1822] | 1602 | ELSE |
---|
[2417] | 1603 | particles(n)%speed_x = u_int(n) |
---|
| 1604 | particles(n)%speed_y = v_int(n) |
---|
| 1605 | particles(n)%speed_z = w_int(n) - w_s |
---|
[1822] | 1606 | ENDIF |
---|
| 1607 | |
---|
[1359] | 1608 | ELSE |
---|
[1822] | 1609 | |
---|
| 1610 | IF ( use_sgs_for_particles ) THEN |
---|
| 1611 | exp_arg = particle_groups(particles(n)%group)%exp_arg |
---|
| 1612 | exp_term = EXP( -exp_arg * dt_particle(n) ) |
---|
| 1613 | ELSE |
---|
| 1614 | exp_arg = particle_groups(particles(n)%group)%exp_arg |
---|
| 1615 | exp_term = particle_groups(particles(n)%group)%exp_term |
---|
| 1616 | ENDIF |
---|
[2417] | 1617 | particles(n)%speed_x = particles(n)%speed_x * exp_term + & |
---|
[1822] | 1618 | u_int(n) * ( 1.0_wp - exp_term ) |
---|
[2417] | 1619 | particles(n)%speed_y = particles(n)%speed_y * exp_term + & |
---|
[1822] | 1620 | v_int(n) * ( 1.0_wp - exp_term ) |
---|
[2417] | 1621 | particles(n)%speed_z = particles(n)%speed_z * exp_term + & |
---|
| 1622 | ( w_int(n) - ( 1.0_wp - dens_ratio(n) ) * g / & |
---|
| 1623 | exp_arg ) * ( 1.0_wp - exp_term ) |
---|
[1359] | 1624 | ENDIF |
---|
[2417] | 1625 | ENDDO |
---|
[1359] | 1626 | ENDDO |
---|
| 1627 | |
---|
[2417] | 1628 | ENDIF |
---|
[1359] | 1629 | |
---|
| 1630 | ! |
---|
[2417] | 1631 | !-- Store the old age of the particle ( needed to prevent that a |
---|
| 1632 | !-- particle crosses several PEs during one timestep, and for the |
---|
| 1633 | !-- evaluation of the subgrid particle velocity fluctuations ) |
---|
| 1634 | particles(1:number_of_particles)%age_m = particles(1:number_of_particles)%age |
---|
| 1635 | |
---|
| 1636 | DO nb = 0, 7 |
---|
| 1637 | DO n = start_index(nb), end_index(nb) |
---|
[1822] | 1638 | ! |
---|
[2417] | 1639 | !-- Increment the particle age and the total time that the particle |
---|
| 1640 | !-- has advanced within the particle timestep procedure |
---|
| 1641 | particles(n)%age = particles(n)%age + dt_particle(n) |
---|
| 1642 | particles(n)%dt_sum = particles(n)%dt_sum + dt_particle(n) |
---|
[1359] | 1643 | |
---|
[1822] | 1644 | ! |
---|
[2417] | 1645 | !-- Check whether there is still a particle that has not yet completed |
---|
| 1646 | !-- the total LES timestep |
---|
| 1647 | IF ( ( dt_3d - particles(n)%dt_sum ) > 1E-8_wp ) THEN |
---|
| 1648 | dt_3d_reached_l = .FALSE. |
---|
[849] | 1649 | ENDIF |
---|
[1822] | 1650 | |
---|
[1359] | 1651 | ENDDO |
---|
[849] | 1652 | ENDDO |
---|
| 1653 | |
---|
[1359] | 1654 | CALL cpu_log( log_point_s(44), 'lpm_advec', 'pause' ) |
---|
[849] | 1655 | |
---|
[1929] | 1656 | |
---|
[849] | 1657 | END SUBROUTINE lpm_advec |
---|
[1929] | 1658 | |
---|
| 1659 | ! Description: |
---|
| 1660 | ! ------------ |
---|
| 1661 | !> Calculation of subgrid-scale particle speed using the stochastic model |
---|
| 1662 | !> of Weil et al. (2004, JAS, 61, 2877-2887). |
---|
| 1663 | !------------------------------------------------------------------------------! |
---|
| 1664 | SUBROUTINE weil_stochastic_eq( v_sgs, fs_n, e_n, dedxi_n, dedt_n, diss_n, & |
---|
| 1665 | dt_n, rg_n, fac ) |
---|
| 1666 | |
---|
| 1667 | USE kinds |
---|
| 1668 | |
---|
| 1669 | USE particle_attributes, & |
---|
| 1670 | ONLY: c_0, sgs_wf_part |
---|
| 1671 | |
---|
| 1672 | IMPLICIT NONE |
---|
| 1673 | |
---|
| 1674 | REAL(wp) :: a1 !< dummy argument |
---|
| 1675 | REAL(wp) :: dedt_n !< time derivative of TKE at particle position |
---|
| 1676 | REAL(wp) :: dedxi_n !< horizontal derivative of TKE at particle position |
---|
| 1677 | REAL(wp) :: diss_n !< dissipation at particle position |
---|
| 1678 | REAL(wp) :: dt_n !< particle timestep |
---|
| 1679 | REAL(wp) :: e_n !< TKE at particle position |
---|
| 1680 | REAL(wp) :: fac !< flag to identify adjacent topography |
---|
| 1681 | REAL(wp) :: fs_n !< weighting factor to prevent that subgrid-scale particle speed becomes too large |
---|
| 1682 | REAL(wp) :: sgs_w !< constant (1/3) |
---|
| 1683 | REAL(wp) :: rg_n !< random number |
---|
| 1684 | REAL(wp) :: term1 !< memory term |
---|
| 1685 | REAL(wp) :: term2 !< drift correction term |
---|
| 1686 | REAL(wp) :: term3 !< random term |
---|
| 1687 | REAL(wp) :: v_sgs !< subgrid-scale velocity component |
---|
| 1688 | |
---|
[2100] | 1689 | !-- At first, limit TKE to a small non-zero number, in order to prevent |
---|
| 1690 | !-- the occurrence of extremely large SGS-velocities in case TKE is zero, |
---|
| 1691 | !-- (could occur at the simulation begin). |
---|
| 1692 | e_n = MAX( e_n, 1E-20_wp ) |
---|
[1929] | 1693 | ! |
---|
| 1694 | !-- Please note, terms 1 and 2 (drift and memory term, respectively) are |
---|
| 1695 | !-- multiplied by a flag to switch of both terms near topography. |
---|
| 1696 | !-- This is necessary, as both terms may cause a subgrid-scale velocity build up |
---|
| 1697 | !-- if particles are trapped in regions with very small TKE, e.g. in narrow street |
---|
| 1698 | !-- canyons resolved by only a few grid points. Hence, term 1 and term 2 are |
---|
| 1699 | !-- disabled if one of the adjacent grid points belongs to topography. |
---|
| 1700 | !-- Moreover, in this case, the previous subgrid-scale component is also set |
---|
| 1701 | !-- to zero. |
---|
| 1702 | |
---|
| 1703 | a1 = fs_n * c_0 * diss_n |
---|
| 1704 | ! |
---|
| 1705 | !-- Memory term |
---|
| 1706 | term1 = - a1 * v_sgs * dt_n / ( 4.0_wp * sgs_wf_part * e_n + 1E-20_wp ) & |
---|
| 1707 | * fac |
---|
| 1708 | ! |
---|
| 1709 | !-- Drift correction term |
---|
| 1710 | term2 = ( ( dedt_n * v_sgs / e_n ) + dedxi_n ) * 0.5_wp * dt_n & |
---|
| 1711 | * fac |
---|
| 1712 | ! |
---|
| 1713 | !-- Random term |
---|
| 1714 | term3 = SQRT( MAX( a1, 1E-20 ) ) * ( rg_n - 1.0_wp ) * SQRT( dt_n ) |
---|
| 1715 | ! |
---|
| 1716 | !-- In cese one of the adjacent grid-boxes belongs to topograhy, the previous |
---|
| 1717 | !-- subgrid-scale velocity component is set to zero, in order to prevent a |
---|
| 1718 | !-- velocity build-up. |
---|
| 1719 | !-- This case, set also previous subgrid-scale component to zero. |
---|
| 1720 | v_sgs = v_sgs * fac + term1 + term2 + term3 |
---|
| 1721 | |
---|
| 1722 | END SUBROUTINE weil_stochastic_eq |
---|