[1682] | 1 | !> @file lpm_advec.f90 |
---|
[2000] | 2 | !------------------------------------------------------------------------------! |
---|
[1036] | 3 | ! This file is part of PALM. |
---|
| 4 | ! |
---|
[2000] | 5 | ! PALM is free software: you can redistribute it and/or modify it under the |
---|
| 6 | ! terms of the GNU General Public License as published by the Free Software |
---|
| 7 | ! Foundation, either version 3 of the License, or (at your option) any later |
---|
| 8 | ! version. |
---|
[1036] | 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
[2101] | 17 | ! Copyright 1997-2017 Leibniz Universitaet Hannover |
---|
[2000] | 18 | !------------------------------------------------------------------------------! |
---|
[1036] | 19 | ! |
---|
[849] | 20 | ! Current revisions: |
---|
| 21 | ! ------------------ |
---|
[1930] | 22 | ! |
---|
[2318] | 23 | ! |
---|
[1930] | 24 | ! Former revisions: |
---|
| 25 | ! ----------------- |
---|
| 26 | ! $Id: lpm_advec.f90 2318 2017-07-20 17:27:44Z Giersch $ |
---|
[2318] | 27 | ! Get topography top index via Function call |
---|
| 28 | ! |
---|
| 29 | ! 2317 2017-07-20 17:27:19Z suehring |
---|
[1930] | 30 | ! |
---|
[2233] | 31 | ! 2232 2017-05-30 17:47:52Z suehring |
---|
| 32 | ! Adjustments to new topography and surface concept |
---|
| 33 | ! |
---|
[2101] | 34 | ! 2100 2017-01-05 16:40:16Z suehring |
---|
| 35 | ! Prevent extremely large SGS-velocities in regions where TKE is zero, e.g. |
---|
| 36 | ! at the begin of simulations and/or in non-turbulent regions. |
---|
| 37 | ! |
---|
[2001] | 38 | ! 2000 2016-08-20 18:09:15Z knoop |
---|
| 39 | ! Forced header and separation lines into 80 columns |
---|
| 40 | ! |
---|
[1937] | 41 | ! 1936 2016-06-13 13:37:44Z suehring |
---|
| 42 | ! Formatting adjustments |
---|
| 43 | ! |
---|
[1930] | 44 | ! 1929 2016-06-09 16:25:25Z suehring |
---|
[1929] | 45 | ! Put stochastic equation in an extra subroutine. |
---|
| 46 | ! Set flag for stochastic equation to communicate whether a particle is near |
---|
| 47 | ! topography. This case, memory and drift term are disabled in the Weil equation. |
---|
[1889] | 48 | ! |
---|
[1929] | 49 | ! Enable vertical logarithmic interpolation also above topography. This case, |
---|
| 50 | ! set a lower limit for the friction velocity, as it can become very small |
---|
[1930] | 51 | ! in narrow street canyons, leading to too large particle speeds. |
---|
[1823] | 52 | ! |
---|
[1889] | 53 | ! 1888 2016-04-21 12:20:49Z suehring |
---|
| 54 | ! Bugfix concerning logarithmic interpolation of particle speed |
---|
| 55 | ! |
---|
[1823] | 56 | ! 1822 2016-04-07 07:49:42Z hoffmann |
---|
[1822] | 57 | ! Random velocity fluctuations for particles added. Terminal fall velocity |
---|
| 58 | ! for droplets is calculated from a parameterization (which is better than |
---|
| 59 | ! the previous, physically correct calculation, which demands a very short |
---|
| 60 | ! time step that is not used in the model). |
---|
| 61 | ! |
---|
| 62 | ! Unused variables deleted. |
---|
[1321] | 63 | ! |
---|
[1692] | 64 | ! 1691 2015-10-26 16:17:44Z maronga |
---|
| 65 | ! Renamed prandtl_layer to constant_flux_layer. |
---|
| 66 | ! |
---|
[1686] | 67 | ! 1685 2015-10-08 07:32:13Z raasch |
---|
| 68 | ! TKE check for negative values (so far, only zero value was checked) |
---|
| 69 | ! offset_ocean_nzt_m1 removed |
---|
| 70 | ! |
---|
[1683] | 71 | ! 1682 2015-10-07 23:56:08Z knoop |
---|
| 72 | ! Code annotations made doxygen readable |
---|
| 73 | ! |
---|
[1584] | 74 | ! 1583 2015-04-15 12:16:27Z suehring |
---|
| 75 | ! Bugfix: particle advection within Prandtl-layer in case of Galilei |
---|
| 76 | ! transformation. |
---|
| 77 | ! |
---|
[1370] | 78 | ! 1369 2014-04-24 05:57:38Z raasch |
---|
| 79 | ! usage of module interfaces removed |
---|
| 80 | ! |
---|
[1360] | 81 | ! 1359 2014-04-11 17:15:14Z hoffmann |
---|
| 82 | ! New particle structure integrated. |
---|
| 83 | ! Kind definition added to all floating point numbers. |
---|
| 84 | ! |
---|
[1323] | 85 | ! 1322 2014-03-20 16:38:49Z raasch |
---|
| 86 | ! REAL constants defined as wp_kind |
---|
| 87 | ! |
---|
[1321] | 88 | ! 1320 2014-03-20 08:40:49Z raasch |
---|
[1320] | 89 | ! ONLY-attribute added to USE-statements, |
---|
| 90 | ! kind-parameters added to all INTEGER and REAL declaration statements, |
---|
| 91 | ! kinds are defined in new module kinds, |
---|
| 92 | ! revision history before 2012 removed, |
---|
| 93 | ! comment fields (!:) to be used for variable explanations added to |
---|
| 94 | ! all variable declaration statements |
---|
[849] | 95 | ! |
---|
[1315] | 96 | ! 1314 2014-03-14 18:25:17Z suehring |
---|
| 97 | ! Vertical logarithmic interpolation of horizontal particle speed for particles |
---|
| 98 | ! between roughness height and first vertical grid level. |
---|
| 99 | ! |
---|
[1037] | 100 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
| 101 | ! code put under GPL (PALM 3.9) |
---|
| 102 | ! |
---|
[850] | 103 | ! 849 2012-03-15 10:35:09Z raasch |
---|
| 104 | ! initial revision (former part of advec_particles) |
---|
[849] | 105 | ! |
---|
[850] | 106 | ! |
---|
[849] | 107 | ! Description: |
---|
| 108 | ! ------------ |
---|
[1682] | 109 | !> Calculation of new particle positions due to advection using a simple Euler |
---|
| 110 | !> scheme. Particles may feel inertia effects. SGS transport can be included |
---|
| 111 | !> using the stochastic model of Weil et al. (2004, JAS, 61, 2877-2887). |
---|
[849] | 112 | !------------------------------------------------------------------------------! |
---|
[1682] | 113 | SUBROUTINE lpm_advec (ip,jp,kp) |
---|
| 114 | |
---|
[849] | 115 | |
---|
[1320] | 116 | USE arrays_3d, & |
---|
[2232] | 117 | ONLY: de_dx, de_dy, de_dz, diss, e, km, u, v, w, zu, zw |
---|
[849] | 118 | |
---|
[1359] | 119 | USE cpulog |
---|
| 120 | |
---|
| 121 | USE pegrid |
---|
| 122 | |
---|
[1320] | 123 | USE control_parameters, & |
---|
[1691] | 124 | ONLY: atmos_ocean_sign, cloud_droplets, constant_flux_layer, dt_3d, & |
---|
[1822] | 125 | dt_3d_reached_l, dz, g, kappa, topography, u_gtrans, v_gtrans |
---|
[849] | 126 | |
---|
[1320] | 127 | USE grid_variables, & |
---|
| 128 | ONLY: ddx, dx, ddy, dy |
---|
| 129 | |
---|
| 130 | USE indices, & |
---|
[2317] | 131 | ONLY: nzb, nzt |
---|
[1320] | 132 | |
---|
| 133 | USE kinds |
---|
| 134 | |
---|
| 135 | USE particle_attributes, & |
---|
[1822] | 136 | ONLY: block_offset, c_0, dt_min_part, grid_particles, & |
---|
[1359] | 137 | iran_part, log_z_z0, number_of_particles, number_of_sublayers, & |
---|
[1929] | 138 | particles, particle_groups, offset_ocean_nzt, sgs_wf_part, & |
---|
| 139 | use_sgs_for_particles, vertical_particle_advection, z0_av_global |
---|
[1320] | 140 | |
---|
| 141 | USE statistics, & |
---|
| 142 | ONLY: hom |
---|
[849] | 143 | |
---|
[2232] | 144 | USE surface_mod, & |
---|
[2317] | 145 | ONLY: get_topography_top_index, surf_def_h, surf_lsm_h, surf_usm_h |
---|
[2232] | 146 | |
---|
[1320] | 147 | IMPLICIT NONE |
---|
[849] | 148 | |
---|
[1929] | 149 | INTEGER(iwp) :: agp !< loop variable |
---|
| 150 | INTEGER(iwp) :: gp_outside_of_building(1:8) !< number of grid points used for particle interpolation in case of topography |
---|
| 151 | INTEGER(iwp) :: i !< index variable along x |
---|
| 152 | INTEGER(iwp) :: ip !< index variable along x |
---|
| 153 | INTEGER(iwp) :: ilog !< index variable along x |
---|
| 154 | INTEGER(iwp) :: j !< index variable along y |
---|
| 155 | INTEGER(iwp) :: jp !< index variable along y |
---|
| 156 | INTEGER(iwp) :: jlog !< index variable along y |
---|
| 157 | INTEGER(iwp) :: k !< index variable along z |
---|
[2232] | 158 | INTEGER(iwp) :: k_wall !< vertical index of topography top |
---|
[1929] | 159 | INTEGER(iwp) :: kp !< index variable along z |
---|
| 160 | INTEGER(iwp) :: kw !< index variable along z |
---|
| 161 | INTEGER(iwp) :: n !< loop variable over all particles in a grid box |
---|
| 162 | INTEGER(iwp) :: nb !< block number particles are sorted in |
---|
| 163 | INTEGER(iwp) :: num_gp !< number of adjacent grid points inside topography |
---|
[2232] | 164 | INTEGER(iwp) :: surf_start !< Index on surface data-type for current grid box |
---|
[849] | 165 | |
---|
[1929] | 166 | INTEGER(iwp), DIMENSION(0:7) :: start_index !< start particle index for current block |
---|
| 167 | INTEGER(iwp), DIMENSION(0:7) :: end_index !< start particle index for current block |
---|
[1359] | 168 | |
---|
[1929] | 169 | REAL(wp) :: aa !< dummy argument for horizontal particle interpolation |
---|
| 170 | REAL(wp) :: bb !< dummy argument for horizontal particle interpolation |
---|
| 171 | REAL(wp) :: cc !< dummy argument for horizontal particle interpolation |
---|
| 172 | REAL(wp) :: d_sum !< dummy argument for horizontal particle interpolation in case of topography |
---|
| 173 | REAL(wp) :: d_z_p_z0 !< inverse of interpolation length for logarithmic interpolation |
---|
| 174 | REAL(wp) :: dd !< dummy argument for horizontal particle interpolation |
---|
| 175 | REAL(wp) :: de_dx_int_l !< x/y-interpolated TKE gradient (x) at particle position at lower vertical level |
---|
| 176 | REAL(wp) :: de_dx_int_u !< x/y-interpolated TKE gradient (x) at particle position at upper vertical level |
---|
| 177 | REAL(wp) :: de_dy_int_l !< x/y-interpolated TKE gradient (y) at particle position at lower vertical level |
---|
| 178 | REAL(wp) :: de_dy_int_u !< x/y-interpolated TKE gradient (y) at particle position at upper vertical level |
---|
| 179 | REAL(wp) :: de_dt !< temporal derivative of TKE experienced by the particle |
---|
| 180 | REAL(wp) :: de_dt_min !< lower level for temporal TKE derivative |
---|
| 181 | REAL(wp) :: de_dz_int_l !< x/y-interpolated TKE gradient (z) at particle position at lower vertical level |
---|
| 182 | REAL(wp) :: de_dz_int_u !< x/y-interpolated TKE gradient (z) at particle position at upper vertical level |
---|
[1822] | 183 | REAL(wp) :: diameter !< diamter of droplet |
---|
[1929] | 184 | REAL(wp) :: diss_int_l !< x/y-interpolated dissipation at particle position at lower vertical level |
---|
| 185 | REAL(wp) :: diss_int_u !< x/y-interpolated dissipation at particle position at upper vertical level |
---|
| 186 | REAL(wp) :: dt_gap !< remaining time until particle time integration reaches LES time |
---|
| 187 | REAL(wp) :: dt_particle_m !< previous particle time step |
---|
| 188 | REAL(wp) :: e_int_l !< x/y-interpolated TKE at particle position at lower vertical level |
---|
| 189 | REAL(wp) :: e_int_u !< x/y-interpolated TKE at particle position at upper vertical level |
---|
| 190 | REAL(wp) :: e_mean_int !< horizontal mean TKE at particle height |
---|
[1682] | 191 | REAL(wp) :: exp_arg !< |
---|
| 192 | REAL(wp) :: exp_term !< |
---|
[1929] | 193 | REAL(wp) :: gg !< dummy argument for horizontal particle interpolation |
---|
| 194 | REAL(wp) :: height_p !< dummy argument for logarithmic interpolation |
---|
[1822] | 195 | REAL(wp) :: lagr_timescale !< Lagrangian timescale |
---|
[1929] | 196 | REAL(wp) :: location(1:30,1:3) !< wall locations |
---|
| 197 | REAL(wp) :: log_z_z0_int !< logarithmus used for surface_layer interpolation |
---|
[1682] | 198 | REAL(wp) :: random_gauss !< |
---|
[1822] | 199 | REAL(wp) :: RL !< Lagrangian autocorrelation coefficient |
---|
| 200 | REAL(wp) :: rg1 !< Gaussian distributed random number |
---|
| 201 | REAL(wp) :: rg2 !< Gaussian distributed random number |
---|
| 202 | REAL(wp) :: rg3 !< Gaussian distributed random number |
---|
| 203 | REAL(wp) :: sigma !< velocity standard deviation |
---|
[1929] | 204 | REAL(wp) :: u_int_l !< x/y-interpolated u-component at particle position at lower vertical level |
---|
| 205 | REAL(wp) :: u_int_u !< x/y-interpolated u-component at particle position at upper vertical level |
---|
| 206 | REAL(wp) :: us_int !< friction velocity at particle grid box |
---|
[2232] | 207 | REAL(wp) :: usws_int !< surface momentum flux (u component) at particle grid box |
---|
[1929] | 208 | REAL(wp) :: v_int_l !< x/y-interpolated v-component at particle position at lower vertical level |
---|
| 209 | REAL(wp) :: v_int_u !< x/y-interpolated v-component at particle position at upper vertical level |
---|
[2232] | 210 | REAL(wp) :: vsws_int !< surface momentum flux (u component) at particle grid box |
---|
[1682] | 211 | REAL(wp) :: vv_int !< |
---|
[1929] | 212 | REAL(wp) :: w_int_l !< x/y-interpolated w-component at particle position at lower vertical level |
---|
| 213 | REAL(wp) :: w_int_u !< x/y-interpolated w-component at particle position at upper vertical level |
---|
[1822] | 214 | REAL(wp) :: w_s !< terminal velocity of droplets |
---|
[1929] | 215 | REAL(wp) :: x !< dummy argument for horizontal particle interpolation |
---|
| 216 | REAL(wp) :: y !< dummy argument for horizontal particle interpolation |
---|
| 217 | REAL(wp) :: z_p !< surface layer height (0.5 dz) |
---|
[849] | 218 | |
---|
[1822] | 219 | REAL(wp), PARAMETER :: a_rog = 9.65_wp !< parameter for fall velocity |
---|
| 220 | REAL(wp), PARAMETER :: b_rog = 10.43_wp !< parameter for fall velocity |
---|
| 221 | REAL(wp), PARAMETER :: c_rog = 0.6_wp !< parameter for fall velocity |
---|
| 222 | REAL(wp), PARAMETER :: k_cap_rog = 4.0_wp !< parameter for fall velocity |
---|
| 223 | REAL(wp), PARAMETER :: k_low_rog = 12.0_wp !< parameter for fall velocity |
---|
| 224 | REAL(wp), PARAMETER :: d0_rog = 0.745_wp !< separation diameter |
---|
| 225 | |
---|
[1929] | 226 | REAL(wp), DIMENSION(1:30) :: d_gp_pl !< dummy argument for particle interpolation scheme in case of topography |
---|
| 227 | REAL(wp), DIMENSION(1:30) :: de_dxi !< horizontal TKE gradient along x at adjacent wall |
---|
| 228 | REAL(wp), DIMENSION(1:30) :: de_dyi !< horizontal TKE gradient along y at adjacent wall |
---|
| 229 | REAL(wp), DIMENSION(1:30) :: de_dzi !< horizontal TKE gradient along z at adjacent wall |
---|
| 230 | REAL(wp), DIMENSION(1:30) :: dissi !< dissipation at adjacent wall |
---|
| 231 | REAL(wp), DIMENSION(1:30) :: ei !< TKE at adjacent wall |
---|
[849] | 232 | |
---|
[1929] | 233 | REAL(wp), DIMENSION(number_of_particles) :: term_1_2 !< flag to communicate whether a particle is near topography or not |
---|
[1682] | 234 | REAL(wp), DIMENSION(number_of_particles) :: dens_ratio !< |
---|
[1929] | 235 | REAL(wp), DIMENSION(number_of_particles) :: de_dx_int !< horizontal TKE gradient along x at particle position |
---|
| 236 | REAL(wp), DIMENSION(number_of_particles) :: de_dy_int !< horizontal TKE gradient along y at particle position |
---|
| 237 | REAL(wp), DIMENSION(number_of_particles) :: de_dz_int !< horizontal TKE gradient along z at particle position |
---|
| 238 | REAL(wp), DIMENSION(number_of_particles) :: diss_int !< dissipation at particle position |
---|
| 239 | REAL(wp), DIMENSION(number_of_particles) :: dt_particle !< particle time step |
---|
| 240 | REAL(wp), DIMENSION(number_of_particles) :: e_int !< TKE at particle position |
---|
| 241 | REAL(wp), DIMENSION(number_of_particles) :: fs_int !< weighting factor for subgrid-scale particle speed |
---|
| 242 | REAL(wp), DIMENSION(number_of_particles) :: u_int !< u-component of particle speed |
---|
| 243 | REAL(wp), DIMENSION(number_of_particles) :: v_int !< v-component of particle speed |
---|
| 244 | REAL(wp), DIMENSION(number_of_particles) :: w_int !< w-component of particle speed |
---|
| 245 | REAL(wp), DIMENSION(number_of_particles) :: xv !< x-position |
---|
| 246 | REAL(wp), DIMENSION(number_of_particles) :: yv !< y-position |
---|
| 247 | REAL(wp), DIMENSION(number_of_particles) :: zv !< z-position |
---|
[1359] | 248 | |
---|
[1929] | 249 | REAL(wp), DIMENSION(number_of_particles, 3) :: rg !< vector of Gaussian distributed random numbers |
---|
[1359] | 250 | |
---|
| 251 | CALL cpu_log( log_point_s(44), 'lpm_advec', 'continue' ) |
---|
| 252 | |
---|
[1314] | 253 | ! |
---|
| 254 | !-- Determine height of Prandtl layer and distance between Prandtl-layer |
---|
| 255 | !-- height and horizontal mean roughness height, which are required for |
---|
| 256 | !-- vertical logarithmic interpolation of horizontal particle speeds |
---|
| 257 | !-- (for particles below first vertical grid level). |
---|
| 258 | z_p = zu(nzb+1) - zw(nzb) |
---|
[1359] | 259 | d_z_p_z0 = 1.0_wp / ( z_p - z0_av_global ) |
---|
[849] | 260 | |
---|
[1359] | 261 | start_index = grid_particles(kp,jp,ip)%start_index |
---|
| 262 | end_index = grid_particles(kp,jp,ip)%end_index |
---|
[849] | 263 | |
---|
[1359] | 264 | xv = particles(1:number_of_particles)%x |
---|
| 265 | yv = particles(1:number_of_particles)%y |
---|
| 266 | zv = particles(1:number_of_particles)%z |
---|
[849] | 267 | |
---|
[1359] | 268 | DO nb = 0, 7 |
---|
[1314] | 269 | |
---|
[1359] | 270 | i = ip |
---|
| 271 | j = jp + block_offset(nb)%j_off |
---|
| 272 | k = kp + block_offset(nb)%k_off |
---|
[849] | 273 | ! |
---|
[1359] | 274 | !-- Interpolate u velocity-component |
---|
| 275 | DO n = start_index(nb), end_index(nb) |
---|
[1314] | 276 | ! |
---|
[1359] | 277 | !-- Interpolation of the u velocity component onto particle position. |
---|
| 278 | !-- Particles are interpolation bi-linearly in the horizontal and a |
---|
| 279 | !-- linearly in the vertical. An exception is made for particles below |
---|
| 280 | !-- the first vertical grid level in case of a prandtl layer. In this |
---|
| 281 | !-- case the horizontal particle velocity components are determined using |
---|
| 282 | !-- Monin-Obukhov relations (if branch). |
---|
| 283 | !-- First, check if particle is located below first vertical grid level |
---|
[2232] | 284 | !-- above topography (Prandtl-layer height) |
---|
[1929] | 285 | ilog = ( particles(n)%x + 0.5_wp * dx ) * ddx |
---|
| 286 | jlog = ( particles(n)%y + 0.5_wp * dy ) * ddy |
---|
[2232] | 287 | ! |
---|
| 288 | !-- Determine vertical index of topography top |
---|
[2317] | 289 | k_wall = get_topography_top_index( jlog,ilog, 's' ) |
---|
[1929] | 290 | |
---|
[2232] | 291 | IF ( constant_flux_layer .AND. zv(n) - zw(k_wall) < z_p ) THEN |
---|
[1314] | 292 | ! |
---|
[1359] | 293 | !-- Resolved-scale horizontal particle velocity is zero below z0. |
---|
[2232] | 294 | IF ( zv(n) - zw(k_wall) < z0_av_global ) THEN |
---|
[1359] | 295 | u_int(n) = 0.0_wp |
---|
| 296 | ELSE |
---|
[1314] | 297 | ! |
---|
[1359] | 298 | !-- Determine the sublayer. Further used as index. |
---|
[2232] | 299 | height_p = ( zv(n) - zw(k_wall) - z0_av_global ) & |
---|
[1936] | 300 | * REAL( number_of_sublayers, KIND=wp ) & |
---|
[1359] | 301 | * d_z_p_z0 |
---|
[1314] | 302 | ! |
---|
[1359] | 303 | !-- Calculate LOG(z/z0) for exact particle height. Therefore, |
---|
| 304 | !-- interpolate linearly between precalculated logarithm. |
---|
[1929] | 305 | log_z_z0_int = log_z_z0(INT(height_p)) & |
---|
[1359] | 306 | + ( height_p - INT(height_p) ) & |
---|
| 307 | * ( log_z_z0(INT(height_p)+1) & |
---|
| 308 | - log_z_z0(INT(height_p)) & |
---|
| 309 | ) |
---|
[1314] | 310 | ! |
---|
[2232] | 311 | !-- Get friction velocity and momentum flux from new surface data |
---|
| 312 | !-- types. |
---|
| 313 | IF ( surf_def_h(0)%start_index(jlog,ilog) <= & |
---|
| 314 | surf_def_h(0)%end_index(jlog,ilog) ) THEN |
---|
| 315 | surf_start = surf_def_h(0)%start_index(jlog,ilog) |
---|
| 316 | !-- Limit friction velocity. In narrow canyons or holes the |
---|
| 317 | !-- friction velocity can become very small, resulting in a too |
---|
| 318 | !-- large particle speed. |
---|
| 319 | us_int = MAX( surf_def_h(0)%us(surf_start), 0.01_wp ) |
---|
| 320 | usws_int = surf_def_h(0)%usws(surf_start) |
---|
| 321 | ELSEIF ( surf_lsm_h%start_index(jlog,ilog) <= & |
---|
| 322 | surf_lsm_h%end_index(jlog,ilog) ) THEN |
---|
| 323 | surf_start = surf_lsm_h%start_index(jlog,ilog) |
---|
| 324 | us_int = MAX( surf_lsm_h%us(surf_start), 0.01_wp ) |
---|
| 325 | usws_int = surf_lsm_h%usws(surf_start) |
---|
| 326 | ELSEIF ( surf_usm_h%start_index(jlog,ilog) <= & |
---|
| 327 | surf_usm_h%end_index(jlog,ilog) ) THEN |
---|
| 328 | surf_start = surf_usm_h%start_index(jlog,ilog) |
---|
| 329 | us_int = MAX( surf_usm_h%us(surf_start), 0.01_wp ) |
---|
| 330 | usws_int = surf_usm_h%usws(surf_start) |
---|
| 331 | ENDIF |
---|
| 332 | |
---|
[1929] | 333 | ! |
---|
[1359] | 334 | !-- Neutral solution is applied for all situations, e.g. also for |
---|
| 335 | !-- unstable and stable situations. Even though this is not exact |
---|
| 336 | !-- this saves a lot of CPU time since several calls of intrinsic |
---|
| 337 | !-- FORTRAN procedures (LOG, ATAN) are avoided, This is justified |
---|
| 338 | !-- as sensitivity studies revealed no significant effect of |
---|
| 339 | !-- using the neutral solution also for un/stable situations. |
---|
[2232] | 340 | u_int(n) = -usws_int / ( us_int * kappa + 1E-10_wp ) & |
---|
[1929] | 341 | * log_z_z0_int - u_gtrans |
---|
| 342 | |
---|
[1359] | 343 | ENDIF |
---|
| 344 | ! |
---|
| 345 | !-- Particle above the first grid level. Bi-linear interpolation in the |
---|
| 346 | !-- horizontal and linear interpolation in the vertical direction. |
---|
[1314] | 347 | ELSE |
---|
| 348 | |
---|
[1359] | 349 | x = xv(n) + ( 0.5_wp - i ) * dx |
---|
| 350 | y = yv(n) - j * dy |
---|
| 351 | aa = x**2 + y**2 |
---|
| 352 | bb = ( dx - x )**2 + y**2 |
---|
| 353 | cc = x**2 + ( dy - y )**2 |
---|
| 354 | dd = ( dx - x )**2 + ( dy - y )**2 |
---|
| 355 | gg = aa + bb + cc + dd |
---|
[1314] | 356 | |
---|
[1359] | 357 | u_int_l = ( ( gg - aa ) * u(k,j,i) + ( gg - bb ) * u(k,j,i+1) & |
---|
| 358 | + ( gg - cc ) * u(k,j+1,i) + ( gg - dd ) * & |
---|
| 359 | u(k,j+1,i+1) ) / ( 3.0_wp * gg ) - u_gtrans |
---|
[1314] | 360 | |
---|
[1359] | 361 | IF ( k == nzt ) THEN |
---|
| 362 | u_int(n) = u_int_l |
---|
| 363 | ELSE |
---|
| 364 | u_int_u = ( ( gg-aa ) * u(k+1,j,i) + ( gg-bb ) * u(k+1,j,i+1) & |
---|
| 365 | + ( gg-cc ) * u(k+1,j+1,i) + ( gg-dd ) * & |
---|
| 366 | u(k+1,j+1,i+1) ) / ( 3.0_wp * gg ) - u_gtrans |
---|
| 367 | u_int(n) = u_int_l + ( zv(n) - zu(k) ) / dz * & |
---|
| 368 | ( u_int_u - u_int_l ) |
---|
| 369 | ENDIF |
---|
[1929] | 370 | |
---|
[1314] | 371 | ENDIF |
---|
| 372 | |
---|
[1359] | 373 | ENDDO |
---|
[849] | 374 | |
---|
[1359] | 375 | i = ip + block_offset(nb)%i_off |
---|
| 376 | j = jp |
---|
| 377 | k = kp + block_offset(nb)%k_off |
---|
[849] | 378 | ! |
---|
[1359] | 379 | !-- Same procedure for interpolation of the v velocity-component |
---|
| 380 | DO n = start_index(nb), end_index(nb) |
---|
[1685] | 381 | |
---|
[1929] | 382 | ilog = ( particles(n)%x + 0.5_wp * dx ) * ddx |
---|
| 383 | jlog = ( particles(n)%y + 0.5_wp * dy ) * ddy |
---|
[2232] | 384 | ! |
---|
| 385 | !-- Determine vertical index of topography top |
---|
[2317] | 386 | k_wall = get_topography_top_index( jlog,ilog, 's' ) |
---|
[849] | 387 | |
---|
[2232] | 388 | IF ( constant_flux_layer .AND. zv(n) - zw(k_wall) < z_p ) THEN |
---|
| 389 | IF ( zv(n) - zw(k_wall) < z0_av_global ) THEN |
---|
[1314] | 390 | ! |
---|
[1359] | 391 | !-- Resolved-scale horizontal particle velocity is zero below z0. |
---|
| 392 | v_int(n) = 0.0_wp |
---|
| 393 | ELSE |
---|
| 394 | ! |
---|
[1929] | 395 | !-- Determine the sublayer. Further used as index. Please note, |
---|
| 396 | !-- logarithmus can not be reused from above, as in in case of |
---|
| 397 | !-- topography particle on u-grid can be above surface-layer height, |
---|
| 398 | !-- whereas it can be below on v-grid. |
---|
[2232] | 399 | height_p = ( zv(n) - zw(k_wall) - z0_av_global ) & |
---|
[1936] | 400 | * REAL( number_of_sublayers, KIND=wp ) & |
---|
[1929] | 401 | * d_z_p_z0 |
---|
| 402 | ! |
---|
| 403 | !-- Calculate LOG(z/z0) for exact particle height. Therefore, |
---|
| 404 | !-- interpolate linearly between precalculated logarithm. |
---|
| 405 | log_z_z0_int = log_z_z0(INT(height_p)) & |
---|
| 406 | + ( height_p - INT(height_p) ) & |
---|
| 407 | * ( log_z_z0(INT(height_p)+1) & |
---|
| 408 | - log_z_z0(INT(height_p)) & |
---|
| 409 | ) |
---|
| 410 | ! |
---|
[2232] | 411 | !-- Get friction velocity and momentum flux from new surface data |
---|
| 412 | !-- types. |
---|
| 413 | IF ( surf_def_h(0)%start_index(jlog,ilog) <= & |
---|
| 414 | surf_def_h(0)%end_index(jlog,ilog) ) THEN |
---|
| 415 | surf_start = surf_def_h(0)%start_index(jlog,ilog) |
---|
| 416 | !-- Limit friction velocity. In narrow canyons or holes the |
---|
| 417 | !-- friction velocity can become very small, resulting in a too |
---|
| 418 | !-- large particle speed. |
---|
| 419 | us_int = MAX( surf_def_h(0)%us(surf_start), 0.01_wp ) |
---|
| 420 | vsws_int = surf_def_h(0)%usws(surf_start) |
---|
| 421 | ELSEIF ( surf_lsm_h%start_index(jlog,ilog) <= & |
---|
| 422 | surf_lsm_h%end_index(jlog,ilog) ) THEN |
---|
| 423 | surf_start = surf_lsm_h%start_index(jlog,ilog) |
---|
| 424 | us_int = MAX( surf_lsm_h%us(surf_start), 0.01_wp ) |
---|
| 425 | vsws_int = surf_lsm_h%usws(surf_start) |
---|
| 426 | ELSEIF ( surf_usm_h%start_index(jlog,ilog) <= & |
---|
| 427 | surf_usm_h%end_index(jlog,ilog) ) THEN |
---|
| 428 | surf_start = surf_usm_h%start_index(jlog,ilog) |
---|
| 429 | us_int = MAX( surf_usm_h%us(surf_start), 0.01_wp ) |
---|
| 430 | vsws_int = surf_usm_h%usws(surf_start) |
---|
| 431 | ENDIF |
---|
[1929] | 432 | ! |
---|
[1359] | 433 | !-- Neutral solution is applied for all situations, e.g. also for |
---|
| 434 | !-- unstable and stable situations. Even though this is not exact |
---|
| 435 | !-- this saves a lot of CPU time since several calls of intrinsic |
---|
| 436 | !-- FORTRAN procedures (LOG, ATAN) are avoided, This is justified |
---|
| 437 | !-- as sensitivity studies revealed no significant effect of |
---|
| 438 | !-- using the neutral solution also for un/stable situations. |
---|
[2232] | 439 | v_int(n) = -vsws_int / ( us_int * kappa + 1E-10_wp ) & |
---|
[1929] | 440 | * log_z_z0_int - v_gtrans |
---|
[1314] | 441 | |
---|
[1359] | 442 | ENDIF |
---|
[1929] | 443 | |
---|
[1359] | 444 | ELSE |
---|
| 445 | x = xv(n) - i * dx |
---|
| 446 | y = yv(n) + ( 0.5_wp - j ) * dy |
---|
| 447 | aa = x**2 + y**2 |
---|
| 448 | bb = ( dx - x )**2 + y**2 |
---|
| 449 | cc = x**2 + ( dy - y )**2 |
---|
| 450 | dd = ( dx - x )**2 + ( dy - y )**2 |
---|
| 451 | gg = aa + bb + cc + dd |
---|
[1314] | 452 | |
---|
[1359] | 453 | v_int_l = ( ( gg - aa ) * v(k,j,i) + ( gg - bb ) * v(k,j,i+1) & |
---|
| 454 | + ( gg - cc ) * v(k,j+1,i) + ( gg - dd ) * v(k,j+1,i+1) & |
---|
| 455 | ) / ( 3.0_wp * gg ) - v_gtrans |
---|
[1314] | 456 | |
---|
[1359] | 457 | IF ( k == nzt ) THEN |
---|
| 458 | v_int(n) = v_int_l |
---|
| 459 | ELSE |
---|
| 460 | v_int_u = ( ( gg-aa ) * v(k+1,j,i) + ( gg-bb ) * v(k+1,j,i+1) & |
---|
| 461 | + ( gg-cc ) * v(k+1,j+1,i) + ( gg-dd ) * v(k+1,j+1,i+1) & |
---|
| 462 | ) / ( 3.0_wp * gg ) - v_gtrans |
---|
| 463 | v_int(n) = v_int_l + ( zv(n) - zu(k) ) / dz * & |
---|
| 464 | ( v_int_u - v_int_l ) |
---|
| 465 | ENDIF |
---|
[1929] | 466 | |
---|
[1314] | 467 | ENDIF |
---|
| 468 | |
---|
[1359] | 469 | ENDDO |
---|
[1314] | 470 | |
---|
[1359] | 471 | i = ip + block_offset(nb)%i_off |
---|
| 472 | j = jp + block_offset(nb)%j_off |
---|
[1929] | 473 | k = kp - 1 |
---|
[849] | 474 | ! |
---|
[1314] | 475 | !-- Same procedure for interpolation of the w velocity-component |
---|
[1359] | 476 | DO n = start_index(nb), end_index(nb) |
---|
[849] | 477 | |
---|
[1359] | 478 | IF ( vertical_particle_advection(particles(n)%group) ) THEN |
---|
[849] | 479 | |
---|
[1359] | 480 | x = xv(n) - i * dx |
---|
| 481 | y = yv(n) - j * dy |
---|
[849] | 482 | aa = x**2 + y**2 |
---|
| 483 | bb = ( dx - x )**2 + y**2 |
---|
| 484 | cc = x**2 + ( dy - y )**2 |
---|
| 485 | dd = ( dx - x )**2 + ( dy - y )**2 |
---|
| 486 | gg = aa + bb + cc + dd |
---|
| 487 | |
---|
[1359] | 488 | w_int_l = ( ( gg - aa ) * w(k,j,i) + ( gg - bb ) * w(k,j,i+1) & |
---|
| 489 | + ( gg - cc ) * w(k,j+1,i) + ( gg - dd ) * w(k,j+1,i+1) & |
---|
| 490 | ) / ( 3.0_wp * gg ) |
---|
[849] | 491 | |
---|
[1359] | 492 | IF ( k == nzt ) THEN |
---|
| 493 | w_int(n) = w_int_l |
---|
[849] | 494 | ELSE |
---|
[1359] | 495 | w_int_u = ( ( gg-aa ) * w(k+1,j,i) + & |
---|
| 496 | ( gg-bb ) * w(k+1,j,i+1) + & |
---|
| 497 | ( gg-cc ) * w(k+1,j+1,i) + & |
---|
| 498 | ( gg-dd ) * w(k+1,j+1,i+1) & |
---|
| 499 | ) / ( 3.0_wp * gg ) |
---|
| 500 | w_int(n) = w_int_l + ( zv(n) - zw(k) ) / dz * & |
---|
| 501 | ( w_int_u - w_int_l ) |
---|
[849] | 502 | ENDIF |
---|
| 503 | |
---|
[1359] | 504 | ELSE |
---|
[849] | 505 | |
---|
[1359] | 506 | w_int(n) = 0.0_wp |
---|
[849] | 507 | |
---|
[1359] | 508 | ENDIF |
---|
| 509 | |
---|
| 510 | ENDDO |
---|
| 511 | |
---|
| 512 | ENDDO |
---|
| 513 | |
---|
| 514 | !-- Interpolate and calculate quantities needed for calculating the SGS |
---|
| 515 | !-- velocities |
---|
[1822] | 516 | IF ( use_sgs_for_particles .AND. .NOT. cloud_droplets ) THEN |
---|
[1359] | 517 | |
---|
| 518 | IF ( topography == 'flat' ) THEN |
---|
| 519 | |
---|
| 520 | DO nb = 0,7 |
---|
| 521 | |
---|
| 522 | i = ip + block_offset(nb)%i_off |
---|
| 523 | j = jp + block_offset(nb)%j_off |
---|
| 524 | k = kp + block_offset(nb)%k_off |
---|
| 525 | |
---|
| 526 | DO n = start_index(nb), end_index(nb) |
---|
[849] | 527 | ! |
---|
[1359] | 528 | !-- Interpolate TKE |
---|
| 529 | x = xv(n) - i * dx |
---|
| 530 | y = yv(n) - j * dy |
---|
| 531 | aa = x**2 + y**2 |
---|
| 532 | bb = ( dx - x )**2 + y**2 |
---|
| 533 | cc = x**2 + ( dy - y )**2 |
---|
| 534 | dd = ( dx - x )**2 + ( dy - y )**2 |
---|
| 535 | gg = aa + bb + cc + dd |
---|
[849] | 536 | |
---|
[1359] | 537 | e_int_l = ( ( gg-aa ) * e(k,j,i) + ( gg-bb ) * e(k,j,i+1) & |
---|
| 538 | + ( gg-cc ) * e(k,j+1,i) + ( gg-dd ) * e(k,j+1,i+1) & |
---|
| 539 | ) / ( 3.0_wp * gg ) |
---|
| 540 | |
---|
| 541 | IF ( k+1 == nzt+1 ) THEN |
---|
| 542 | e_int(n) = e_int_l |
---|
| 543 | ELSE |
---|
| 544 | e_int_u = ( ( gg - aa ) * e(k+1,j,i) + & |
---|
| 545 | ( gg - bb ) * e(k+1,j,i+1) + & |
---|
| 546 | ( gg - cc ) * e(k+1,j+1,i) + & |
---|
| 547 | ( gg - dd ) * e(k+1,j+1,i+1) & |
---|
| 548 | ) / ( 3.0_wp * gg ) |
---|
| 549 | e_int(n) = e_int_l + ( zv(n) - zu(k) ) / dz * & |
---|
| 550 | ( e_int_u - e_int_l ) |
---|
| 551 | ENDIF |
---|
[849] | 552 | ! |
---|
[1685] | 553 | !-- Needed to avoid NaN particle velocities (this might not be |
---|
| 554 | !-- required any more) |
---|
| 555 | IF ( e_int(n) <= 0.0_wp ) THEN |
---|
[1359] | 556 | e_int(n) = 1.0E-20_wp |
---|
| 557 | ENDIF |
---|
| 558 | ! |
---|
| 559 | !-- Interpolate the TKE gradient along x (adopt incides i,j,k and |
---|
| 560 | !-- all position variables from above (TKE)) |
---|
| 561 | de_dx_int_l = ( ( gg - aa ) * de_dx(k,j,i) + & |
---|
| 562 | ( gg - bb ) * de_dx(k,j,i+1) + & |
---|
| 563 | ( gg - cc ) * de_dx(k,j+1,i) + & |
---|
| 564 | ( gg - dd ) * de_dx(k,j+1,i+1) & |
---|
| 565 | ) / ( 3.0_wp * gg ) |
---|
[849] | 566 | |
---|
| 567 | IF ( ( k+1 == nzt+1 ) .OR. ( k == nzb ) ) THEN |
---|
[1359] | 568 | de_dx_int(n) = de_dx_int_l |
---|
[849] | 569 | ELSE |
---|
[1359] | 570 | de_dx_int_u = ( ( gg - aa ) * de_dx(k+1,j,i) + & |
---|
| 571 | ( gg - bb ) * de_dx(k+1,j,i+1) + & |
---|
| 572 | ( gg - cc ) * de_dx(k+1,j+1,i) + & |
---|
| 573 | ( gg - dd ) * de_dx(k+1,j+1,i+1) & |
---|
| 574 | ) / ( 3.0_wp * gg ) |
---|
| 575 | de_dx_int(n) = de_dx_int_l + ( zv(n) - zu(k) ) / dz * & |
---|
| 576 | ( de_dx_int_u - de_dx_int_l ) |
---|
[849] | 577 | ENDIF |
---|
[1359] | 578 | ! |
---|
| 579 | !-- Interpolate the TKE gradient along y |
---|
| 580 | de_dy_int_l = ( ( gg - aa ) * de_dy(k,j,i) + & |
---|
| 581 | ( gg - bb ) * de_dy(k,j,i+1) + & |
---|
| 582 | ( gg - cc ) * de_dy(k,j+1,i) + & |
---|
| 583 | ( gg - dd ) * de_dy(k,j+1,i+1) & |
---|
| 584 | ) / ( 3.0_wp * gg ) |
---|
| 585 | IF ( ( k+1 == nzt+1 ) .OR. ( k == nzb ) ) THEN |
---|
| 586 | de_dy_int(n) = de_dy_int_l |
---|
| 587 | ELSE |
---|
| 588 | de_dy_int_u = ( ( gg - aa ) * de_dy(k+1,j,i) + & |
---|
| 589 | ( gg - bb ) * de_dy(k+1,j,i+1) + & |
---|
| 590 | ( gg - cc ) * de_dy(k+1,j+1,i) + & |
---|
| 591 | ( gg - dd ) * de_dy(k+1,j+1,i+1) & |
---|
| 592 | ) / ( 3.0_wp * gg ) |
---|
| 593 | de_dy_int(n) = de_dy_int_l + ( zv(n) - zu(k) ) / dz * & |
---|
| 594 | ( de_dy_int_u - de_dy_int_l ) |
---|
| 595 | ENDIF |
---|
[849] | 596 | |
---|
| 597 | ! |
---|
[1359] | 598 | !-- Interpolate the TKE gradient along z |
---|
| 599 | IF ( zv(n) < 0.5_wp * dz ) THEN |
---|
| 600 | de_dz_int(n) = 0.0_wp |
---|
| 601 | ELSE |
---|
| 602 | de_dz_int_l = ( ( gg - aa ) * de_dz(k,j,i) + & |
---|
| 603 | ( gg - bb ) * de_dz(k,j,i+1) + & |
---|
| 604 | ( gg - cc ) * de_dz(k,j+1,i) + & |
---|
| 605 | ( gg - dd ) * de_dz(k,j+1,i+1) & |
---|
| 606 | ) / ( 3.0_wp * gg ) |
---|
[849] | 607 | |
---|
[1359] | 608 | IF ( ( k+1 == nzt+1 ) .OR. ( k == nzb ) ) THEN |
---|
| 609 | de_dz_int(n) = de_dz_int_l |
---|
| 610 | ELSE |
---|
| 611 | de_dz_int_u = ( ( gg - aa ) * de_dz(k+1,j,i) + & |
---|
| 612 | ( gg - bb ) * de_dz(k+1,j,i+1) + & |
---|
| 613 | ( gg - cc ) * de_dz(k+1,j+1,i) + & |
---|
| 614 | ( gg - dd ) * de_dz(k+1,j+1,i+1) & |
---|
| 615 | ) / ( 3.0_wp * gg ) |
---|
| 616 | de_dz_int(n) = de_dz_int_l + ( zv(n) - zu(k) ) / dz * & |
---|
| 617 | ( de_dz_int_u - de_dz_int_l ) |
---|
| 618 | ENDIF |
---|
| 619 | ENDIF |
---|
[849] | 620 | |
---|
[1359] | 621 | ! |
---|
| 622 | !-- Interpolate the dissipation of TKE |
---|
| 623 | diss_int_l = ( ( gg - aa ) * diss(k,j,i) + & |
---|
| 624 | ( gg - bb ) * diss(k,j,i+1) + & |
---|
| 625 | ( gg - cc ) * diss(k,j+1,i) + & |
---|
| 626 | ( gg - dd ) * diss(k,j+1,i+1) & |
---|
| 627 | ) / ( 3.0_wp * gg ) |
---|
[849] | 628 | |
---|
[1359] | 629 | IF ( k == nzt ) THEN |
---|
| 630 | diss_int(n) = diss_int_l |
---|
| 631 | ELSE |
---|
| 632 | diss_int_u = ( ( gg - aa ) * diss(k+1,j,i) + & |
---|
| 633 | ( gg - bb ) * diss(k+1,j,i+1) + & |
---|
| 634 | ( gg - cc ) * diss(k+1,j+1,i) + & |
---|
| 635 | ( gg - dd ) * diss(k+1,j+1,i+1) & |
---|
| 636 | ) / ( 3.0_wp * gg ) |
---|
| 637 | diss_int(n) = diss_int_l + ( zv(n) - zu(k) ) / dz * & |
---|
| 638 | ( diss_int_u - diss_int_l ) |
---|
| 639 | ENDIF |
---|
| 640 | |
---|
[1929] | 641 | ! |
---|
| 642 | !-- Set flag for stochastic equation. |
---|
| 643 | term_1_2(n) = 1.0_wp |
---|
| 644 | |
---|
[1359] | 645 | ENDDO |
---|
| 646 | ENDDO |
---|
| 647 | |
---|
| 648 | ELSE ! non-flat topography, e.g., buildings |
---|
| 649 | |
---|
| 650 | DO n = 1, number_of_particles |
---|
| 651 | i = particles(n)%x * ddx |
---|
| 652 | j = particles(n)%y * ddy |
---|
| 653 | k = ( zv(n) + 0.5_wp * dz * atmos_ocean_sign ) / dz & |
---|
| 654 | + offset_ocean_nzt ! only exact if eq.dist |
---|
[849] | 655 | ! |
---|
| 656 | !-- In case that there are buildings it has to be determined |
---|
| 657 | !-- how many of the gridpoints defining the particle box are |
---|
| 658 | !-- situated within a building |
---|
| 659 | !-- gp_outside_of_building(1): i,j,k |
---|
| 660 | !-- gp_outside_of_building(2): i,j+1,k |
---|
| 661 | !-- gp_outside_of_building(3): i,j,k+1 |
---|
| 662 | !-- gp_outside_of_building(4): i,j+1,k+1 |
---|
| 663 | !-- gp_outside_of_building(5): i+1,j,k |
---|
| 664 | !-- gp_outside_of_building(6): i+1,j+1,k |
---|
| 665 | !-- gp_outside_of_building(7): i+1,j,k+1 |
---|
| 666 | !-- gp_outside_of_building(8): i+1,j+1,k+1 |
---|
| 667 | |
---|
| 668 | gp_outside_of_building = 0 |
---|
[1359] | 669 | location = 0.0_wp |
---|
[849] | 670 | num_gp = 0 |
---|
| 671 | |
---|
[2232] | 672 | ! |
---|
| 673 | !-- Determine vertical index of topography top at (j,i) |
---|
[2317] | 674 | k_wall = get_topography_top_index( j, i, 's' ) |
---|
[2232] | 675 | ! |
---|
| 676 | !-- To do: Reconsider order of computations in order to avoid |
---|
| 677 | !-- unnecessary index calculations. |
---|
| 678 | IF ( k > k_wall .OR. k_wall == 0 ) THEN |
---|
[849] | 679 | num_gp = num_gp + 1 |
---|
| 680 | gp_outside_of_building(1) = 1 |
---|
| 681 | location(num_gp,1) = i * dx |
---|
| 682 | location(num_gp,2) = j * dy |
---|
[1359] | 683 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
[849] | 684 | ei(num_gp) = e(k,j,i) |
---|
| 685 | dissi(num_gp) = diss(k,j,i) |
---|
| 686 | de_dxi(num_gp) = de_dx(k,j,i) |
---|
| 687 | de_dyi(num_gp) = de_dy(k,j,i) |
---|
| 688 | de_dzi(num_gp) = de_dz(k,j,i) |
---|
| 689 | ENDIF |
---|
[2232] | 690 | |
---|
| 691 | ! |
---|
| 692 | !-- Determine vertical index of topography top at (j+1,i) |
---|
[2317] | 693 | k_wall = get_topography_top_index( j+1, i, 's' ) |
---|
| 694 | |
---|
[2232] | 695 | IF ( k > k_wall .OR. k_wall == 0 ) THEN |
---|
[849] | 696 | num_gp = num_gp + 1 |
---|
| 697 | gp_outside_of_building(2) = 1 |
---|
| 698 | location(num_gp,1) = i * dx |
---|
| 699 | location(num_gp,2) = (j+1) * dy |
---|
[1359] | 700 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
[849] | 701 | ei(num_gp) = e(k,j+1,i) |
---|
| 702 | dissi(num_gp) = diss(k,j+1,i) |
---|
| 703 | de_dxi(num_gp) = de_dx(k,j+1,i) |
---|
| 704 | de_dyi(num_gp) = de_dy(k,j+1,i) |
---|
| 705 | de_dzi(num_gp) = de_dz(k,j+1,i) |
---|
| 706 | ENDIF |
---|
| 707 | |
---|
[2232] | 708 | ! |
---|
| 709 | !-- Determine vertical index of topography top at (j,i) |
---|
[2317] | 710 | k_wall = get_topography_top_index( j, i, 's' ) |
---|
| 711 | |
---|
[2232] | 712 | IF ( k+1 > k_wall .OR. k_wall == 0 ) THEN |
---|
[849] | 713 | num_gp = num_gp + 1 |
---|
| 714 | gp_outside_of_building(3) = 1 |
---|
| 715 | location(num_gp,1) = i * dx |
---|
| 716 | location(num_gp,2) = j * dy |
---|
[1359] | 717 | location(num_gp,3) = (k+1) * dz - 0.5_wp * dz |
---|
[849] | 718 | ei(num_gp) = e(k+1,j,i) |
---|
| 719 | dissi(num_gp) = diss(k+1,j,i) |
---|
| 720 | de_dxi(num_gp) = de_dx(k+1,j,i) |
---|
| 721 | de_dyi(num_gp) = de_dy(k+1,j,i) |
---|
| 722 | de_dzi(num_gp) = de_dz(k+1,j,i) |
---|
| 723 | ENDIF |
---|
| 724 | |
---|
[2232] | 725 | ! |
---|
| 726 | !-- Determine vertical index of topography top at (j+1,i) |
---|
[2317] | 727 | k_wall = get_topography_top_index( j+1, i, 's' ) |
---|
[2232] | 728 | IF ( k+1 > k_wall .OR. k_wall == 0 ) THEN |
---|
[849] | 729 | num_gp = num_gp + 1 |
---|
| 730 | gp_outside_of_building(4) = 1 |
---|
| 731 | location(num_gp,1) = i * dx |
---|
| 732 | location(num_gp,2) = (j+1) * dy |
---|
[1359] | 733 | location(num_gp,3) = (k+1) * dz - 0.5_wp * dz |
---|
[849] | 734 | ei(num_gp) = e(k+1,j+1,i) |
---|
| 735 | dissi(num_gp) = diss(k+1,j+1,i) |
---|
| 736 | de_dxi(num_gp) = de_dx(k+1,j+1,i) |
---|
| 737 | de_dyi(num_gp) = de_dy(k+1,j+1,i) |
---|
| 738 | de_dzi(num_gp) = de_dz(k+1,j+1,i) |
---|
| 739 | ENDIF |
---|
| 740 | |
---|
[2232] | 741 | ! |
---|
| 742 | !-- Determine vertical index of topography top at (j,i+1) |
---|
[2317] | 743 | k_wall = get_topography_top_index( j, i+1, 's' ) |
---|
[2232] | 744 | IF ( k > k_wall .OR. k_wall == 0 ) THEN |
---|
[849] | 745 | num_gp = num_gp + 1 |
---|
| 746 | gp_outside_of_building(5) = 1 |
---|
| 747 | location(num_gp,1) = (i+1) * dx |
---|
| 748 | location(num_gp,2) = j * dy |
---|
[1359] | 749 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
[849] | 750 | ei(num_gp) = e(k,j,i+1) |
---|
| 751 | dissi(num_gp) = diss(k,j,i+1) |
---|
| 752 | de_dxi(num_gp) = de_dx(k,j,i+1) |
---|
| 753 | de_dyi(num_gp) = de_dy(k,j,i+1) |
---|
| 754 | de_dzi(num_gp) = de_dz(k,j,i+1) |
---|
| 755 | ENDIF |
---|
| 756 | |
---|
[2232] | 757 | ! |
---|
| 758 | !-- Determine vertical index of topography top at (j+1,i+1) |
---|
[2317] | 759 | k_wall = get_topography_top_index( j+1, i+1, 's' ) |
---|
| 760 | |
---|
[2232] | 761 | IF ( k > k_wall .OR. k_wall == 0 ) THEN |
---|
[849] | 762 | num_gp = num_gp + 1 |
---|
| 763 | gp_outside_of_building(6) = 1 |
---|
| 764 | location(num_gp,1) = (i+1) * dx |
---|
| 765 | location(num_gp,2) = (j+1) * dy |
---|
[1359] | 766 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
[849] | 767 | ei(num_gp) = e(k,j+1,i+1) |
---|
| 768 | dissi(num_gp) = diss(k,j+1,i+1) |
---|
| 769 | de_dxi(num_gp) = de_dx(k,j+1,i+1) |
---|
| 770 | de_dyi(num_gp) = de_dy(k,j+1,i+1) |
---|
| 771 | de_dzi(num_gp) = de_dz(k,j+1,i+1) |
---|
| 772 | ENDIF |
---|
| 773 | |
---|
[2232] | 774 | ! |
---|
| 775 | !-- Determine vertical index of topography top at (j,i+1) |
---|
[2317] | 776 | k_wall = get_topography_top_index( j, i+1, 's' ) |
---|
| 777 | |
---|
[2232] | 778 | IF ( k+1 > k_wall .OR. k_wall == 0 ) THEN |
---|
[849] | 779 | num_gp = num_gp + 1 |
---|
| 780 | gp_outside_of_building(7) = 1 |
---|
| 781 | location(num_gp,1) = (i+1) * dx |
---|
| 782 | location(num_gp,2) = j * dy |
---|
[1359] | 783 | location(num_gp,3) = (k+1) * dz - 0.5_wp * dz |
---|
[849] | 784 | ei(num_gp) = e(k+1,j,i+1) |
---|
| 785 | dissi(num_gp) = diss(k+1,j,i+1) |
---|
| 786 | de_dxi(num_gp) = de_dx(k+1,j,i+1) |
---|
| 787 | de_dyi(num_gp) = de_dy(k+1,j,i+1) |
---|
| 788 | de_dzi(num_gp) = de_dz(k+1,j,i+1) |
---|
| 789 | ENDIF |
---|
| 790 | |
---|
[2232] | 791 | ! |
---|
| 792 | !-- Determine vertical index of topography top at (j+1,i+1) |
---|
[2317] | 793 | k_wall = get_topography_top_index( j+1, i+1, 's' ) |
---|
| 794 | |
---|
[2232] | 795 | IF ( k+1 > k_wall .OR. k_wall == 0) THEN |
---|
[849] | 796 | num_gp = num_gp + 1 |
---|
| 797 | gp_outside_of_building(8) = 1 |
---|
| 798 | location(num_gp,1) = (i+1) * dx |
---|
| 799 | location(num_gp,2) = (j+1) * dy |
---|
[1359] | 800 | location(num_gp,3) = (k+1) * dz - 0.5_wp * dz |
---|
[849] | 801 | ei(num_gp) = e(k+1,j+1,i+1) |
---|
| 802 | dissi(num_gp) = diss(k+1,j+1,i+1) |
---|
| 803 | de_dxi(num_gp) = de_dx(k+1,j+1,i+1) |
---|
| 804 | de_dyi(num_gp) = de_dy(k+1,j+1,i+1) |
---|
| 805 | de_dzi(num_gp) = de_dz(k+1,j+1,i+1) |
---|
| 806 | ENDIF |
---|
| 807 | ! |
---|
| 808 | !-- If all gridpoints are situated outside of a building, then the |
---|
| 809 | !-- ordinary interpolation scheme can be used. |
---|
| 810 | IF ( num_gp == 8 ) THEN |
---|
| 811 | |
---|
| 812 | x = particles(n)%x - i * dx |
---|
| 813 | y = particles(n)%y - j * dy |
---|
| 814 | aa = x**2 + y**2 |
---|
| 815 | bb = ( dx - x )**2 + y**2 |
---|
| 816 | cc = x**2 + ( dy - y )**2 |
---|
| 817 | dd = ( dx - x )**2 + ( dy - y )**2 |
---|
| 818 | gg = aa + bb + cc + dd |
---|
[1929] | 819 | |
---|
[1359] | 820 | e_int_l = ( ( gg - aa ) * e(k,j,i) + ( gg - bb ) * e(k,j,i+1) & |
---|
| 821 | + ( gg - cc ) * e(k,j+1,i) + ( gg - dd ) * e(k,j+1,i+1) & |
---|
| 822 | ) / ( 3.0_wp * gg ) |
---|
[1929] | 823 | |
---|
[1359] | 824 | IF ( k == nzt ) THEN |
---|
| 825 | e_int(n) = e_int_l |
---|
[849] | 826 | ELSE |
---|
| 827 | e_int_u = ( ( gg - aa ) * e(k+1,j,i) + & |
---|
| 828 | ( gg - bb ) * e(k+1,j,i+1) + & |
---|
| 829 | ( gg - cc ) * e(k+1,j+1,i) + & |
---|
| 830 | ( gg - dd ) * e(k+1,j+1,i+1) & |
---|
[1359] | 831 | ) / ( 3.0_wp * gg ) |
---|
| 832 | e_int(n) = e_int_l + ( zv(n) - zu(k) ) / dz * & |
---|
[1929] | 833 | ( e_int_u - e_int_l ) |
---|
[849] | 834 | ENDIF |
---|
[1929] | 835 | ! |
---|
[1685] | 836 | !-- Needed to avoid NaN particle velocities (this might not be |
---|
| 837 | !-- required any more) |
---|
| 838 | IF ( e_int(n) <= 0.0_wp ) THEN |
---|
[1359] | 839 | e_int(n) = 1.0E-20_wp |
---|
| 840 | ENDIF |
---|
| 841 | ! |
---|
[849] | 842 | !-- Interpolate the TKE gradient along x (adopt incides i,j,k |
---|
| 843 | !-- and all position variables from above (TKE)) |
---|
| 844 | de_dx_int_l = ( ( gg - aa ) * de_dx(k,j,i) + & |
---|
| 845 | ( gg - bb ) * de_dx(k,j,i+1) + & |
---|
| 846 | ( gg - cc ) * de_dx(k,j+1,i) + & |
---|
| 847 | ( gg - dd ) * de_dx(k,j+1,i+1) & |
---|
[1359] | 848 | ) / ( 3.0_wp * gg ) |
---|
[849] | 849 | |
---|
[1359] | 850 | IF ( ( k == nzt ) .OR. ( k == nzb ) ) THEN |
---|
| 851 | de_dx_int(n) = de_dx_int_l |
---|
[849] | 852 | ELSE |
---|
| 853 | de_dx_int_u = ( ( gg - aa ) * de_dx(k+1,j,i) + & |
---|
| 854 | ( gg - bb ) * de_dx(k+1,j,i+1) + & |
---|
| 855 | ( gg - cc ) * de_dx(k+1,j+1,i) + & |
---|
| 856 | ( gg - dd ) * de_dx(k+1,j+1,i+1) & |
---|
[1359] | 857 | ) / ( 3.0_wp * gg ) |
---|
| 858 | de_dx_int(n) = de_dx_int_l + ( zv(n) - zu(k) ) / & |
---|
[849] | 859 | dz * ( de_dx_int_u - de_dx_int_l ) |
---|
| 860 | ENDIF |
---|
| 861 | |
---|
| 862 | ! |
---|
| 863 | !-- Interpolate the TKE gradient along y |
---|
| 864 | de_dy_int_l = ( ( gg - aa ) * de_dy(k,j,i) + & |
---|
| 865 | ( gg - bb ) * de_dy(k,j,i+1) + & |
---|
| 866 | ( gg - cc ) * de_dy(k,j+1,i) + & |
---|
| 867 | ( gg - dd ) * de_dy(k,j+1,i+1) & |
---|
[1359] | 868 | ) / ( 3.0_wp * gg ) |
---|
[849] | 869 | IF ( ( k+1 == nzt+1 ) .OR. ( k == nzb ) ) THEN |
---|
[1359] | 870 | de_dy_int(n) = de_dy_int_l |
---|
[849] | 871 | ELSE |
---|
| 872 | de_dy_int_u = ( ( gg - aa ) * de_dy(k+1,j,i) + & |
---|
| 873 | ( gg - bb ) * de_dy(k+1,j,i+1) + & |
---|
| 874 | ( gg - cc ) * de_dy(k+1,j+1,i) + & |
---|
| 875 | ( gg - dd ) * de_dy(k+1,j+1,i+1) & |
---|
[1359] | 876 | ) / ( 3.0_wp * gg ) |
---|
| 877 | de_dy_int(n) = de_dy_int_l + ( zv(n) - zu(k) ) / & |
---|
[849] | 878 | dz * ( de_dy_int_u - de_dy_int_l ) |
---|
| 879 | ENDIF |
---|
| 880 | |
---|
| 881 | ! |
---|
| 882 | !-- Interpolate the TKE gradient along z |
---|
[1359] | 883 | IF ( zv(n) < 0.5_wp * dz ) THEN |
---|
| 884 | de_dz_int(n) = 0.0_wp |
---|
[849] | 885 | ELSE |
---|
| 886 | de_dz_int_l = ( ( gg - aa ) * de_dz(k,j,i) + & |
---|
| 887 | ( gg - bb ) * de_dz(k,j,i+1) + & |
---|
| 888 | ( gg - cc ) * de_dz(k,j+1,i) + & |
---|
| 889 | ( gg - dd ) * de_dz(k,j+1,i+1) & |
---|
[1359] | 890 | ) / ( 3.0_wp * gg ) |
---|
[1929] | 891 | |
---|
[849] | 892 | IF ( ( k+1 == nzt+1 ) .OR. ( k == nzb ) ) THEN |
---|
[1359] | 893 | de_dz_int(n) = de_dz_int_l |
---|
[849] | 894 | ELSE |
---|
| 895 | de_dz_int_u = ( ( gg - aa ) * de_dz(k+1,j,i) + & |
---|
| 896 | ( gg - bb ) * de_dz(k+1,j,i+1) + & |
---|
| 897 | ( gg - cc ) * de_dz(k+1,j+1,i) + & |
---|
| 898 | ( gg - dd ) * de_dz(k+1,j+1,i+1) & |
---|
[1359] | 899 | ) / ( 3.0_wp * gg ) |
---|
| 900 | de_dz_int(n) = de_dz_int_l + ( zv(n) - zu(k) ) /& |
---|
[849] | 901 | dz * ( de_dz_int_u - de_dz_int_l ) |
---|
| 902 | ENDIF |
---|
| 903 | ENDIF |
---|
| 904 | |
---|
| 905 | ! |
---|
| 906 | !-- Interpolate the dissipation of TKE |
---|
| 907 | diss_int_l = ( ( gg - aa ) * diss(k,j,i) + & |
---|
| 908 | ( gg - bb ) * diss(k,j,i+1) + & |
---|
| 909 | ( gg - cc ) * diss(k,j+1,i) + & |
---|
| 910 | ( gg - dd ) * diss(k,j+1,i+1) & |
---|
[1359] | 911 | ) / ( 3.0_wp * gg ) |
---|
[1929] | 912 | |
---|
[1359] | 913 | IF ( k == nzt ) THEN |
---|
| 914 | diss_int(n) = diss_int_l |
---|
[849] | 915 | ELSE |
---|
| 916 | diss_int_u = ( ( gg - aa ) * diss(k+1,j,i) + & |
---|
| 917 | ( gg - bb ) * diss(k+1,j,i+1) + & |
---|
| 918 | ( gg - cc ) * diss(k+1,j+1,i) + & |
---|
| 919 | ( gg - dd ) * diss(k+1,j+1,i+1) & |
---|
[1359] | 920 | ) / ( 3.0_wp * gg ) |
---|
| 921 | diss_int(n) = diss_int_l + ( zv(n) - zu(k) ) / dz *& |
---|
[849] | 922 | ( diss_int_u - diss_int_l ) |
---|
| 923 | ENDIF |
---|
[1929] | 924 | ! |
---|
| 925 | !-- Set flag for stochastic equation. |
---|
| 926 | term_1_2(n) = 1.0_wp |
---|
| 927 | |
---|
[849] | 928 | ELSE |
---|
[1929] | 929 | |
---|
[849] | 930 | ! |
---|
| 931 | !-- If wall between gridpoint 1 and gridpoint 5, then |
---|
| 932 | !-- Neumann boundary condition has to be applied |
---|
| 933 | IF ( gp_outside_of_building(1) == 1 .AND. & |
---|
| 934 | gp_outside_of_building(5) == 0 ) THEN |
---|
| 935 | num_gp = num_gp + 1 |
---|
[1359] | 936 | location(num_gp,1) = i * dx + 0.5_wp * dx |
---|
[849] | 937 | location(num_gp,2) = j * dy |
---|
[1359] | 938 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
[849] | 939 | ei(num_gp) = e(k,j,i) |
---|
| 940 | dissi(num_gp) = diss(k,j,i) |
---|
[1359] | 941 | de_dxi(num_gp) = 0.0_wp |
---|
[849] | 942 | de_dyi(num_gp) = de_dy(k,j,i) |
---|
| 943 | de_dzi(num_gp) = de_dz(k,j,i) |
---|
| 944 | ENDIF |
---|
| 945 | |
---|
| 946 | IF ( gp_outside_of_building(5) == 1 .AND. & |
---|
[1929] | 947 | gp_outside_of_building(1) == 0 ) THEN |
---|
[849] | 948 | num_gp = num_gp + 1 |
---|
[1359] | 949 | location(num_gp,1) = i * dx + 0.5_wp * dx |
---|
[849] | 950 | location(num_gp,2) = j * dy |
---|
[1359] | 951 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
[849] | 952 | ei(num_gp) = e(k,j,i+1) |
---|
| 953 | dissi(num_gp) = diss(k,j,i+1) |
---|
[1359] | 954 | de_dxi(num_gp) = 0.0_wp |
---|
[849] | 955 | de_dyi(num_gp) = de_dy(k,j,i+1) |
---|
| 956 | de_dzi(num_gp) = de_dz(k,j,i+1) |
---|
| 957 | ENDIF |
---|
| 958 | |
---|
| 959 | ! |
---|
| 960 | !-- If wall between gridpoint 5 and gridpoint 6, then |
---|
| 961 | !-- then Neumann boundary condition has to be applied |
---|
| 962 | IF ( gp_outside_of_building(5) == 1 .AND. & |
---|
| 963 | gp_outside_of_building(6) == 0 ) THEN |
---|
| 964 | num_gp = num_gp + 1 |
---|
| 965 | location(num_gp,1) = (i+1) * dx |
---|
[1359] | 966 | location(num_gp,2) = j * dy + 0.5_wp * dy |
---|
| 967 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
[849] | 968 | ei(num_gp) = e(k,j,i+1) |
---|
| 969 | dissi(num_gp) = diss(k,j,i+1) |
---|
| 970 | de_dxi(num_gp) = de_dx(k,j,i+1) |
---|
[1359] | 971 | de_dyi(num_gp) = 0.0_wp |
---|
[849] | 972 | de_dzi(num_gp) = de_dz(k,j,i+1) |
---|
| 973 | ENDIF |
---|
| 974 | |
---|
| 975 | IF ( gp_outside_of_building(6) == 1 .AND. & |
---|
| 976 | gp_outside_of_building(5) == 0 ) THEN |
---|
| 977 | num_gp = num_gp + 1 |
---|
| 978 | location(num_gp,1) = (i+1) * dx |
---|
[1359] | 979 | location(num_gp,2) = j * dy + 0.5_wp * dy |
---|
| 980 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
[849] | 981 | ei(num_gp) = e(k,j+1,i+1) |
---|
| 982 | dissi(num_gp) = diss(k,j+1,i+1) |
---|
| 983 | de_dxi(num_gp) = de_dx(k,j+1,i+1) |
---|
[1359] | 984 | de_dyi(num_gp) = 0.0_wp |
---|
[849] | 985 | de_dzi(num_gp) = de_dz(k,j+1,i+1) |
---|
| 986 | ENDIF |
---|
| 987 | |
---|
| 988 | ! |
---|
| 989 | !-- If wall between gridpoint 2 and gridpoint 6, then |
---|
| 990 | !-- Neumann boundary condition has to be applied |
---|
| 991 | IF ( gp_outside_of_building(2) == 1 .AND. & |
---|
| 992 | gp_outside_of_building(6) == 0 ) THEN |
---|
| 993 | num_gp = num_gp + 1 |
---|
[1359] | 994 | location(num_gp,1) = i * dx + 0.5_wp * dx |
---|
[849] | 995 | location(num_gp,2) = (j+1) * dy |
---|
[1359] | 996 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
[849] | 997 | ei(num_gp) = e(k,j+1,i) |
---|
| 998 | dissi(num_gp) = diss(k,j+1,i) |
---|
[1359] | 999 | de_dxi(num_gp) = 0.0_wp |
---|
[849] | 1000 | de_dyi(num_gp) = de_dy(k,j+1,i) |
---|
| 1001 | de_dzi(num_gp) = de_dz(k,j+1,i) |
---|
| 1002 | ENDIF |
---|
| 1003 | |
---|
| 1004 | IF ( gp_outside_of_building(6) == 1 .AND. & |
---|
| 1005 | gp_outside_of_building(2) == 0 ) THEN |
---|
| 1006 | num_gp = num_gp + 1 |
---|
[1359] | 1007 | location(num_gp,1) = i * dx + 0.5_wp * dx |
---|
[849] | 1008 | location(num_gp,2) = (j+1) * dy |
---|
[1359] | 1009 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
[849] | 1010 | ei(num_gp) = e(k,j+1,i+1) |
---|
| 1011 | dissi(num_gp) = diss(k,j+1,i+1) |
---|
[1359] | 1012 | de_dxi(num_gp) = 0.0_wp |
---|
[849] | 1013 | de_dyi(num_gp) = de_dy(k,j+1,i+1) |
---|
| 1014 | de_dzi(num_gp) = de_dz(k,j+1,i+1) |
---|
| 1015 | ENDIF |
---|
| 1016 | |
---|
| 1017 | ! |
---|
| 1018 | !-- If wall between gridpoint 1 and gridpoint 2, then |
---|
| 1019 | !-- Neumann boundary condition has to be applied |
---|
| 1020 | IF ( gp_outside_of_building(1) == 1 .AND. & |
---|
| 1021 | gp_outside_of_building(2) == 0 ) THEN |
---|
| 1022 | num_gp = num_gp + 1 |
---|
| 1023 | location(num_gp,1) = i * dx |
---|
[1359] | 1024 | location(num_gp,2) = j * dy + 0.5_wp * dy |
---|
| 1025 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
[849] | 1026 | ei(num_gp) = e(k,j,i) |
---|
| 1027 | dissi(num_gp) = diss(k,j,i) |
---|
| 1028 | de_dxi(num_gp) = de_dx(k,j,i) |
---|
[1359] | 1029 | de_dyi(num_gp) = 0.0_wp |
---|
[1929] | 1030 | de_dzi(num_gp) = de_dz(k,j,i) |
---|
[849] | 1031 | ENDIF |
---|
| 1032 | |
---|
| 1033 | IF ( gp_outside_of_building(2) == 1 .AND. & |
---|
| 1034 | gp_outside_of_building(1) == 0 ) THEN |
---|
| 1035 | num_gp = num_gp + 1 |
---|
| 1036 | location(num_gp,1) = i * dx |
---|
[1359] | 1037 | location(num_gp,2) = j * dy + 0.5_wp * dy |
---|
| 1038 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
[849] | 1039 | ei(num_gp) = e(k,j+1,i) |
---|
| 1040 | dissi(num_gp) = diss(k,j+1,i) |
---|
| 1041 | de_dxi(num_gp) = de_dx(k,j+1,i) |
---|
[1359] | 1042 | de_dyi(num_gp) = 0.0_wp |
---|
[849] | 1043 | de_dzi(num_gp) = de_dz(k,j+1,i) |
---|
| 1044 | ENDIF |
---|
| 1045 | |
---|
| 1046 | ! |
---|
| 1047 | !-- If wall between gridpoint 3 and gridpoint 7, then |
---|
| 1048 | !-- Neumann boundary condition has to be applied |
---|
| 1049 | IF ( gp_outside_of_building(3) == 1 .AND. & |
---|
| 1050 | gp_outside_of_building(7) == 0 ) THEN |
---|
| 1051 | num_gp = num_gp + 1 |
---|
[1359] | 1052 | location(num_gp,1) = i * dx + 0.5_wp * dx |
---|
[849] | 1053 | location(num_gp,2) = j * dy |
---|
[1359] | 1054 | location(num_gp,3) = k * dz + 0.5_wp * dz |
---|
[849] | 1055 | ei(num_gp) = e(k+1,j,i) |
---|
| 1056 | dissi(num_gp) = diss(k+1,j,i) |
---|
[1359] | 1057 | de_dxi(num_gp) = 0.0_wp |
---|
[849] | 1058 | de_dyi(num_gp) = de_dy(k+1,j,i) |
---|
| 1059 | de_dzi(num_gp) = de_dz(k+1,j,i) |
---|
| 1060 | ENDIF |
---|
| 1061 | |
---|
| 1062 | IF ( gp_outside_of_building(7) == 1 .AND. & |
---|
| 1063 | gp_outside_of_building(3) == 0 ) THEN |
---|
| 1064 | num_gp = num_gp + 1 |
---|
[1359] | 1065 | location(num_gp,1) = i * dx + 0.5_wp * dx |
---|
[849] | 1066 | location(num_gp,2) = j * dy |
---|
[1359] | 1067 | location(num_gp,3) = k * dz + 0.5_wp * dz |
---|
[849] | 1068 | ei(num_gp) = e(k+1,j,i+1) |
---|
| 1069 | dissi(num_gp) = diss(k+1,j,i+1) |
---|
[1359] | 1070 | de_dxi(num_gp) = 0.0_wp |
---|
[849] | 1071 | de_dyi(num_gp) = de_dy(k+1,j,i+1) |
---|
| 1072 | de_dzi(num_gp) = de_dz(k+1,j,i+1) |
---|
| 1073 | ENDIF |
---|
| 1074 | |
---|
| 1075 | ! |
---|
| 1076 | !-- If wall between gridpoint 7 and gridpoint 8, then |
---|
| 1077 | !-- Neumann boundary condition has to be applied |
---|
| 1078 | IF ( gp_outside_of_building(7) == 1 .AND. & |
---|
| 1079 | gp_outside_of_building(8) == 0 ) THEN |
---|
| 1080 | num_gp = num_gp + 1 |
---|
| 1081 | location(num_gp,1) = (i+1) * dx |
---|
[1359] | 1082 | location(num_gp,2) = j * dy + 0.5_wp * dy |
---|
| 1083 | location(num_gp,3) = k * dz + 0.5_wp * dz |
---|
[849] | 1084 | ei(num_gp) = e(k+1,j,i+1) |
---|
| 1085 | dissi(num_gp) = diss(k+1,j,i+1) |
---|
| 1086 | de_dxi(num_gp) = de_dx(k+1,j,i+1) |
---|
[1359] | 1087 | de_dyi(num_gp) = 0.0_wp |
---|
[849] | 1088 | de_dzi(num_gp) = de_dz(k+1,j,i+1) |
---|
| 1089 | ENDIF |
---|
| 1090 | |
---|
| 1091 | IF ( gp_outside_of_building(8) == 1 .AND. & |
---|
| 1092 | gp_outside_of_building(7) == 0 ) THEN |
---|
| 1093 | num_gp = num_gp + 1 |
---|
| 1094 | location(num_gp,1) = (i+1) * dx |
---|
[1359] | 1095 | location(num_gp,2) = j * dy + 0.5_wp * dy |
---|
| 1096 | location(num_gp,3) = k * dz + 0.5_wp * dz |
---|
[849] | 1097 | ei(num_gp) = e(k+1,j+1,i+1) |
---|
| 1098 | dissi(num_gp) = diss(k+1,j+1,i+1) |
---|
| 1099 | de_dxi(num_gp) = de_dx(k+1,j+1,i+1) |
---|
[1359] | 1100 | de_dyi(num_gp) = 0.0_wp |
---|
[849] | 1101 | de_dzi(num_gp) = de_dz(k+1,j+1,i+1) |
---|
| 1102 | ENDIF |
---|
| 1103 | |
---|
| 1104 | ! |
---|
| 1105 | !-- If wall between gridpoint 4 and gridpoint 8, then |
---|
| 1106 | !-- Neumann boundary condition has to be applied |
---|
| 1107 | IF ( gp_outside_of_building(4) == 1 .AND. & |
---|
| 1108 | gp_outside_of_building(8) == 0 ) THEN |
---|
| 1109 | num_gp = num_gp + 1 |
---|
[1359] | 1110 | location(num_gp,1) = i * dx + 0.5_wp * dx |
---|
[849] | 1111 | location(num_gp,2) = (j+1) * dy |
---|
[1359] | 1112 | location(num_gp,3) = k * dz + 0.5_wp * dz |
---|
[849] | 1113 | ei(num_gp) = e(k+1,j+1,i) |
---|
| 1114 | dissi(num_gp) = diss(k+1,j+1,i) |
---|
[1359] | 1115 | de_dxi(num_gp) = 0.0_wp |
---|
[849] | 1116 | de_dyi(num_gp) = de_dy(k+1,j+1,i) |
---|
| 1117 | de_dzi(num_gp) = de_dz(k+1,j+1,i) |
---|
| 1118 | ENDIF |
---|
| 1119 | |
---|
| 1120 | IF ( gp_outside_of_building(8) == 1 .AND. & |
---|
| 1121 | gp_outside_of_building(4) == 0 ) THEN |
---|
| 1122 | num_gp = num_gp + 1 |
---|
[1359] | 1123 | location(num_gp,1) = i * dx + 0.5_wp * dx |
---|
[849] | 1124 | location(num_gp,2) = (j+1) * dy |
---|
[1359] | 1125 | location(num_gp,3) = k * dz + 0.5_wp * dz |
---|
[849] | 1126 | ei(num_gp) = e(k+1,j+1,i+1) |
---|
| 1127 | dissi(num_gp) = diss(k+1,j+1,i+1) |
---|
[1359] | 1128 | de_dxi(num_gp) = 0.0_wp |
---|
[849] | 1129 | de_dyi(num_gp) = de_dy(k+1,j+1,i+1) |
---|
| 1130 | de_dzi(num_gp) = de_dz(k+1,j+1,i+1) |
---|
| 1131 | ENDIF |
---|
| 1132 | |
---|
| 1133 | ! |
---|
| 1134 | !-- If wall between gridpoint 3 and gridpoint 4, then |
---|
| 1135 | !-- Neumann boundary condition has to be applied |
---|
| 1136 | IF ( gp_outside_of_building(3) == 1 .AND. & |
---|
| 1137 | gp_outside_of_building(4) == 0 ) THEN |
---|
| 1138 | num_gp = num_gp + 1 |
---|
| 1139 | location(num_gp,1) = i * dx |
---|
[1359] | 1140 | location(num_gp,2) = j * dy + 0.5_wp * dy |
---|
| 1141 | location(num_gp,3) = k * dz + 0.5_wp * dz |
---|
[849] | 1142 | ei(num_gp) = e(k+1,j,i) |
---|
| 1143 | dissi(num_gp) = diss(k+1,j,i) |
---|
| 1144 | de_dxi(num_gp) = de_dx(k+1,j,i) |
---|
[1359] | 1145 | de_dyi(num_gp) = 0.0_wp |
---|
[849] | 1146 | de_dzi(num_gp) = de_dz(k+1,j,i) |
---|
| 1147 | ENDIF |
---|
| 1148 | |
---|
| 1149 | IF ( gp_outside_of_building(4) == 1 .AND. & |
---|
| 1150 | gp_outside_of_building(3) == 0 ) THEN |
---|
| 1151 | num_gp = num_gp + 1 |
---|
| 1152 | location(num_gp,1) = i * dx |
---|
[1359] | 1153 | location(num_gp,2) = j * dy + 0.5_wp * dy |
---|
| 1154 | location(num_gp,3) = k * dz + 0.5_wp * dz |
---|
[849] | 1155 | ei(num_gp) = e(k+1,j+1,i) |
---|
| 1156 | dissi(num_gp) = diss(k+1,j+1,i) |
---|
| 1157 | de_dxi(num_gp) = de_dx(k+1,j+1,i) |
---|
[1359] | 1158 | de_dyi(num_gp) = 0.0_wp |
---|
[849] | 1159 | de_dzi(num_gp) = de_dz(k+1,j+1,i) |
---|
| 1160 | ENDIF |
---|
| 1161 | |
---|
| 1162 | ! |
---|
| 1163 | !-- If wall between gridpoint 1 and gridpoint 3, then |
---|
| 1164 | !-- Neumann boundary condition has to be applied |
---|
| 1165 | !-- (only one case as only building beneath is possible) |
---|
| 1166 | IF ( gp_outside_of_building(1) == 0 .AND. & |
---|
| 1167 | gp_outside_of_building(3) == 1 ) THEN |
---|
| 1168 | num_gp = num_gp + 1 |
---|
| 1169 | location(num_gp,1) = i * dx |
---|
| 1170 | location(num_gp,2) = j * dy |
---|
| 1171 | location(num_gp,3) = k * dz |
---|
| 1172 | ei(num_gp) = e(k+1,j,i) |
---|
| 1173 | dissi(num_gp) = diss(k+1,j,i) |
---|
| 1174 | de_dxi(num_gp) = de_dx(k+1,j,i) |
---|
| 1175 | de_dyi(num_gp) = de_dy(k+1,j,i) |
---|
[1359] | 1176 | de_dzi(num_gp) = 0.0_wp |
---|
[849] | 1177 | ENDIF |
---|
| 1178 | |
---|
| 1179 | ! |
---|
| 1180 | !-- If wall between gridpoint 5 and gridpoint 7, then |
---|
| 1181 | !-- Neumann boundary condition has to be applied |
---|
| 1182 | !-- (only one case as only building beneath is possible) |
---|
| 1183 | IF ( gp_outside_of_building(5) == 0 .AND. & |
---|
| 1184 | gp_outside_of_building(7) == 1 ) THEN |
---|
| 1185 | num_gp = num_gp + 1 |
---|
| 1186 | location(num_gp,1) = (i+1) * dx |
---|
| 1187 | location(num_gp,2) = j * dy |
---|
| 1188 | location(num_gp,3) = k * dz |
---|
| 1189 | ei(num_gp) = e(k+1,j,i+1) |
---|
| 1190 | dissi(num_gp) = diss(k+1,j,i+1) |
---|
| 1191 | de_dxi(num_gp) = de_dx(k+1,j,i+1) |
---|
| 1192 | de_dyi(num_gp) = de_dy(k+1,j,i+1) |
---|
[1359] | 1193 | de_dzi(num_gp) = 0.0_wp |
---|
[849] | 1194 | ENDIF |
---|
| 1195 | |
---|
| 1196 | ! |
---|
| 1197 | !-- If wall between gridpoint 2 and gridpoint 4, then |
---|
| 1198 | !-- Neumann boundary condition has to be applied |
---|
| 1199 | !-- (only one case as only building beneath is possible) |
---|
| 1200 | IF ( gp_outside_of_building(2) == 0 .AND. & |
---|
| 1201 | gp_outside_of_building(4) == 1 ) THEN |
---|
| 1202 | num_gp = num_gp + 1 |
---|
| 1203 | location(num_gp,1) = i * dx |
---|
| 1204 | location(num_gp,2) = (j+1) * dy |
---|
| 1205 | location(num_gp,3) = k * dz |
---|
| 1206 | ei(num_gp) = e(k+1,j+1,i) |
---|
| 1207 | dissi(num_gp) = diss(k+1,j+1,i) |
---|
| 1208 | de_dxi(num_gp) = de_dx(k+1,j+1,i) |
---|
| 1209 | de_dyi(num_gp) = de_dy(k+1,j+1,i) |
---|
[1359] | 1210 | de_dzi(num_gp) = 0.0_wp |
---|
[849] | 1211 | ENDIF |
---|
| 1212 | |
---|
[1929] | 1213 | ! |
---|
[849] | 1214 | !-- If wall between gridpoint 6 and gridpoint 8, then |
---|
| 1215 | !-- Neumann boundary condition has to be applied |
---|
| 1216 | !-- (only one case as only building beneath is possible) |
---|
| 1217 | IF ( gp_outside_of_building(6) == 0 .AND. & |
---|
| 1218 | gp_outside_of_building(8) == 1 ) THEN |
---|
| 1219 | num_gp = num_gp + 1 |
---|
| 1220 | location(num_gp,1) = (i+1) * dx |
---|
| 1221 | location(num_gp,2) = (j+1) * dy |
---|
| 1222 | location(num_gp,3) = k * dz |
---|
| 1223 | ei(num_gp) = e(k+1,j+1,i+1) |
---|
| 1224 | dissi(num_gp) = diss(k+1,j+1,i+1) |
---|
| 1225 | de_dxi(num_gp) = de_dx(k+1,j+1,i+1) |
---|
| 1226 | de_dyi(num_gp) = de_dy(k+1,j+1,i+1) |
---|
[1359] | 1227 | de_dzi(num_gp) = 0.0_wp |
---|
[849] | 1228 | ENDIF |
---|
[1929] | 1229 | |
---|
[849] | 1230 | ! |
---|
| 1231 | !-- Carry out the interpolation |
---|
| 1232 | IF ( num_gp == 1 ) THEN |
---|
[1929] | 1233 | ! |
---|
[849] | 1234 | !-- If only one of the gridpoints is situated outside of the |
---|
| 1235 | !-- building, it follows that the values at the particle |
---|
| 1236 | !-- location are the same as the gridpoint values |
---|
[1929] | 1237 | e_int(n) = ei(num_gp) |
---|
| 1238 | diss_int(n) = dissi(num_gp) |
---|
[1359] | 1239 | de_dx_int(n) = de_dxi(num_gp) |
---|
| 1240 | de_dy_int(n) = de_dyi(num_gp) |
---|
| 1241 | de_dz_int(n) = de_dzi(num_gp) |
---|
[1929] | 1242 | ! |
---|
| 1243 | !-- Set flag for stochastic equation which disables calculation |
---|
| 1244 | !-- of drift and memory term near topography. |
---|
| 1245 | term_1_2(n) = 0.0_wp |
---|
[849] | 1246 | ELSE IF ( num_gp > 1 ) THEN |
---|
[1929] | 1247 | |
---|
[1359] | 1248 | d_sum = 0.0_wp |
---|
[1929] | 1249 | ! |
---|
[849] | 1250 | !-- Evaluation of the distances between the gridpoints |
---|
| 1251 | !-- contributing to the interpolated values, and the particle |
---|
| 1252 | !-- location |
---|
| 1253 | DO agp = 1, num_gp |
---|
| 1254 | d_gp_pl(agp) = ( particles(n)%x-location(agp,1) )**2 & |
---|
| 1255 | + ( particles(n)%y-location(agp,2) )**2 & |
---|
[1359] | 1256 | + ( zv(n)-location(agp,3) )**2 |
---|
[849] | 1257 | d_sum = d_sum + d_gp_pl(agp) |
---|
| 1258 | ENDDO |
---|
[1929] | 1259 | |
---|
[849] | 1260 | ! |
---|
| 1261 | !-- Finally the interpolation can be carried out |
---|
[1359] | 1262 | e_int(n) = 0.0_wp |
---|
| 1263 | diss_int(n) = 0.0_wp |
---|
[1929] | 1264 | de_dx_int(n) = 0.0_wp |
---|
| 1265 | de_dy_int(n) = 0.0_wp |
---|
| 1266 | de_dz_int(n) = 0.0_wp |
---|
[849] | 1267 | DO agp = 1, num_gp |
---|
[1359] | 1268 | e_int(n) = e_int(n) + ( d_sum - d_gp_pl(agp) ) * & |
---|
[849] | 1269 | ei(agp) / ( (num_gp-1) * d_sum ) |
---|
[1359] | 1270 | diss_int(n) = diss_int(n) + ( d_sum - d_gp_pl(agp) ) * & |
---|
[849] | 1271 | dissi(agp) / ( (num_gp-1) * d_sum ) |
---|
[1359] | 1272 | de_dx_int(n) = de_dx_int(n) + ( d_sum - d_gp_pl(agp) ) * & |
---|
[849] | 1273 | de_dxi(agp) / ( (num_gp-1) * d_sum ) |
---|
[1359] | 1274 | de_dy_int(n) = de_dy_int(n) + ( d_sum - d_gp_pl(agp) ) * & |
---|
[849] | 1275 | de_dyi(agp) / ( (num_gp-1) * d_sum ) |
---|
[1359] | 1276 | de_dz_int(n) = de_dz_int(n) + ( d_sum - d_gp_pl(agp) ) * & |
---|
[849] | 1277 | de_dzi(agp) / ( (num_gp-1) * d_sum ) |
---|
| 1278 | ENDDO |
---|
[1929] | 1279 | |
---|
[849] | 1280 | ENDIF |
---|
[1929] | 1281 | e_int(n) = MAX( 1E-20_wp, e_int(n) ) |
---|
| 1282 | diss_int(n) = MAX( 1E-20_wp, diss_int(n) ) |
---|
| 1283 | de_dx_int(n) = MAX( 1E-20_wp, de_dx_int(n) ) |
---|
| 1284 | de_dy_int(n) = MAX( 1E-20_wp, de_dy_int(n) ) |
---|
| 1285 | de_dz_int(n) = MAX( 1E-20_wp, de_dz_int(n) ) |
---|
| 1286 | ! |
---|
| 1287 | !-- Set flag for stochastic equation which disables calculation |
---|
| 1288 | !-- of drift and memory term near topography. |
---|
| 1289 | term_1_2(n) = 0.0_wp |
---|
[849] | 1290 | ENDIF |
---|
[1359] | 1291 | ENDDO |
---|
| 1292 | ENDIF |
---|
[849] | 1293 | |
---|
[1359] | 1294 | DO nb = 0,7 |
---|
| 1295 | i = ip + block_offset(nb)%i_off |
---|
| 1296 | j = jp + block_offset(nb)%j_off |
---|
| 1297 | k = kp + block_offset(nb)%k_off |
---|
[849] | 1298 | |
---|
[1359] | 1299 | DO n = start_index(nb), end_index(nb) |
---|
[849] | 1300 | ! |
---|
[1359] | 1301 | !-- Vertical interpolation of the horizontally averaged SGS TKE and |
---|
| 1302 | !-- resolved-scale velocity variances and use the interpolated values |
---|
| 1303 | !-- to calculate the coefficient fs, which is a measure of the ratio |
---|
| 1304 | !-- of the subgrid-scale turbulent kinetic energy to the total amount |
---|
| 1305 | !-- of turbulent kinetic energy. |
---|
| 1306 | IF ( k == 0 ) THEN |
---|
| 1307 | e_mean_int = hom(0,1,8,0) |
---|
| 1308 | ELSE |
---|
| 1309 | e_mean_int = hom(k,1,8,0) + & |
---|
| 1310 | ( hom(k+1,1,8,0) - hom(k,1,8,0) ) / & |
---|
| 1311 | ( zu(k+1) - zu(k) ) * & |
---|
| 1312 | ( zv(n) - zu(k) ) |
---|
| 1313 | ENDIF |
---|
[849] | 1314 | |
---|
[1685] | 1315 | kw = kp - 1 |
---|
[849] | 1316 | |
---|
[1359] | 1317 | IF ( k == 0 ) THEN |
---|
| 1318 | aa = hom(k+1,1,30,0) * ( zv(n) / & |
---|
| 1319 | ( 0.5_wp * ( zu(k+1) - zu(k) ) ) ) |
---|
| 1320 | bb = hom(k+1,1,31,0) * ( zv(n) / & |
---|
| 1321 | ( 0.5_wp * ( zu(k+1) - zu(k) ) ) ) |
---|
| 1322 | cc = hom(kw+1,1,32,0) * ( zv(n) / & |
---|
| 1323 | ( 1.0_wp * ( zw(kw+1) - zw(kw) ) ) ) |
---|
| 1324 | ELSE |
---|
| 1325 | aa = hom(k,1,30,0) + ( hom(k+1,1,30,0) - hom(k,1,30,0) ) * & |
---|
| 1326 | ( ( zv(n) - zu(k) ) / ( zu(k+1) - zu(k) ) ) |
---|
| 1327 | bb = hom(k,1,31,0) + ( hom(k+1,1,31,0) - hom(k,1,31,0) ) * & |
---|
| 1328 | ( ( zv(n) - zu(k) ) / ( zu(k+1) - zu(k) ) ) |
---|
| 1329 | cc = hom(kw,1,32,0) + ( hom(kw+1,1,32,0)-hom(kw,1,32,0) ) * & |
---|
| 1330 | ( ( zv(n) - zw(kw) ) / ( zw(kw+1)-zw(kw) ) ) |
---|
| 1331 | ENDIF |
---|
[849] | 1332 | |
---|
[1359] | 1333 | vv_int = ( 1.0_wp / 3.0_wp ) * ( aa + bb + cc ) |
---|
| 1334 | ! |
---|
| 1335 | !-- Needed to avoid NaN particle velocities. The value of 1.0 is just |
---|
| 1336 | !-- an educated guess for the given case. |
---|
| 1337 | IF ( vv_int + ( 2.0_wp / 3.0_wp ) * e_mean_int == 0.0_wp ) THEN |
---|
| 1338 | fs_int(n) = 1.0_wp |
---|
| 1339 | ELSE |
---|
| 1340 | fs_int(n) = ( 2.0_wp / 3.0_wp ) * e_mean_int / & |
---|
| 1341 | ( vv_int + ( 2.0_wp / 3.0_wp ) * e_mean_int ) |
---|
| 1342 | ENDIF |
---|
[849] | 1343 | |
---|
[1359] | 1344 | ENDDO |
---|
| 1345 | ENDDO |
---|
[849] | 1346 | |
---|
[1359] | 1347 | DO n = 1, number_of_particles |
---|
| 1348 | |
---|
| 1349 | rg(n,1) = random_gauss( iran_part, 5.0_wp ) |
---|
| 1350 | rg(n,2) = random_gauss( iran_part, 5.0_wp ) |
---|
| 1351 | rg(n,3) = random_gauss( iran_part, 5.0_wp ) |
---|
| 1352 | |
---|
| 1353 | ENDDO |
---|
| 1354 | |
---|
| 1355 | DO n = 1, number_of_particles |
---|
[849] | 1356 | ! |
---|
| 1357 | !-- Calculate the Lagrangian timescale according to Weil et al. (2004). |
---|
[1929] | 1358 | lagr_timescale = ( 4.0_wp * e_int(n) + 1E-20_wp ) / & |
---|
| 1359 | ( 3.0_wp * fs_int(n) * c_0 * diss_int(n) + 1E-20_wp ) |
---|
[849] | 1360 | |
---|
| 1361 | ! |
---|
| 1362 | !-- Calculate the next particle timestep. dt_gap is the time needed to |
---|
| 1363 | !-- complete the current LES timestep. |
---|
| 1364 | dt_gap = dt_3d - particles(n)%dt_sum |
---|
[1359] | 1365 | dt_particle(n) = MIN( dt_3d, 0.025_wp * lagr_timescale, dt_gap ) |
---|
[849] | 1366 | |
---|
| 1367 | ! |
---|
| 1368 | !-- The particle timestep should not be too small in order to prevent |
---|
| 1369 | !-- the number of particle timesteps of getting too large |
---|
[1359] | 1370 | IF ( dt_particle(n) < dt_min_part .AND. dt_min_part < dt_gap ) THEN |
---|
| 1371 | dt_particle(n) = dt_min_part |
---|
[849] | 1372 | ENDIF |
---|
| 1373 | |
---|
| 1374 | ! |
---|
| 1375 | !-- Calculate the SGS velocity components |
---|
[1359] | 1376 | IF ( particles(n)%age == 0.0_wp ) THEN |
---|
[849] | 1377 | ! |
---|
| 1378 | !-- For new particles the SGS components are derived from the SGS |
---|
| 1379 | !-- TKE. Limit the Gaussian random number to the interval |
---|
| 1380 | !-- [-5.0*sigma, 5.0*sigma] in order to prevent the SGS velocities |
---|
| 1381 | !-- from becoming unrealistically large. |
---|
[1929] | 1382 | particles(n)%rvar1 = SQRT( 2.0_wp * sgs_wf_part * e_int(n) + 1E-20_wp ) * & |
---|
[1359] | 1383 | ( rg(n,1) - 1.0_wp ) |
---|
[1929] | 1384 | particles(n)%rvar2 = SQRT( 2.0_wp * sgs_wf_part * e_int(n) + 1E-20_wp ) * & |
---|
[1359] | 1385 | ( rg(n,2) - 1.0_wp ) |
---|
[1929] | 1386 | particles(n)%rvar3 = SQRT( 2.0_wp * sgs_wf_part * e_int(n) + 1E-20_wp ) * & |
---|
[1359] | 1387 | ( rg(n,3) - 1.0_wp ) |
---|
[849] | 1388 | |
---|
| 1389 | ELSE |
---|
| 1390 | ! |
---|
| 1391 | !-- Restriction of the size of the new timestep: compared to the |
---|
| 1392 | !-- previous timestep the increase must not exceed 200% |
---|
| 1393 | |
---|
| 1394 | dt_particle_m = particles(n)%age - particles(n)%age_m |
---|
[1359] | 1395 | IF ( dt_particle(n) > 2.0_wp * dt_particle_m ) THEN |
---|
| 1396 | dt_particle(n) = 2.0_wp * dt_particle_m |
---|
[849] | 1397 | ENDIF |
---|
| 1398 | |
---|
| 1399 | ! |
---|
| 1400 | !-- For old particles the SGS components are correlated with the |
---|
| 1401 | !-- values from the previous timestep. Random numbers have also to |
---|
| 1402 | !-- be limited (see above). |
---|
| 1403 | !-- As negative values for the subgrid TKE are not allowed, the |
---|
| 1404 | !-- change of the subgrid TKE with time cannot be smaller than |
---|
[1359] | 1405 | !-- -e_int(n)/dt_particle. This value is used as a lower boundary |
---|
[849] | 1406 | !-- value for the change of TKE |
---|
| 1407 | |
---|
[1359] | 1408 | de_dt_min = - e_int(n) / dt_particle(n) |
---|
[849] | 1409 | |
---|
[1359] | 1410 | de_dt = ( e_int(n) - particles(n)%e_m ) / dt_particle_m |
---|
[849] | 1411 | |
---|
| 1412 | IF ( de_dt < de_dt_min ) THEN |
---|
| 1413 | de_dt = de_dt_min |
---|
| 1414 | ENDIF |
---|
| 1415 | |
---|
[1929] | 1416 | CALL weil_stochastic_eq(particles(n)%rvar1, fs_int(n), e_int(n), & |
---|
| 1417 | de_dx_int(n), de_dt, diss_int(n), & |
---|
| 1418 | dt_particle(n), rg(n,1), term_1_2(n) ) |
---|
[849] | 1419 | |
---|
[1929] | 1420 | CALL weil_stochastic_eq(particles(n)%rvar2, fs_int(n), e_int(n), & |
---|
| 1421 | de_dy_int(n), de_dt, diss_int(n), & |
---|
| 1422 | dt_particle(n), rg(n,2), term_1_2(n) ) |
---|
[849] | 1423 | |
---|
[1929] | 1424 | CALL weil_stochastic_eq(particles(n)%rvar3, fs_int(n), e_int(n), & |
---|
| 1425 | de_dz_int(n), de_dt, diss_int(n), & |
---|
| 1426 | dt_particle(n), rg(n,3), term_1_2(n) ) |
---|
[849] | 1427 | |
---|
| 1428 | ENDIF |
---|
[1929] | 1429 | |
---|
[1359] | 1430 | u_int(n) = u_int(n) + particles(n)%rvar1 |
---|
| 1431 | v_int(n) = v_int(n) + particles(n)%rvar2 |
---|
| 1432 | w_int(n) = w_int(n) + particles(n)%rvar3 |
---|
[849] | 1433 | ! |
---|
| 1434 | !-- Store the SGS TKE of the current timelevel which is needed for |
---|
| 1435 | !-- for calculating the SGS particle velocities at the next timestep |
---|
[1359] | 1436 | particles(n)%e_m = e_int(n) |
---|
| 1437 | ENDDO |
---|
[849] | 1438 | |
---|
[1359] | 1439 | ELSE |
---|
[849] | 1440 | ! |
---|
[1359] | 1441 | !-- If no SGS velocities are used, only the particle timestep has to |
---|
| 1442 | !-- be set |
---|
| 1443 | dt_particle = dt_3d |
---|
[849] | 1444 | |
---|
[1359] | 1445 | ENDIF |
---|
[849] | 1446 | ! |
---|
[1359] | 1447 | !-- Store the old age of the particle ( needed to prevent that a |
---|
| 1448 | !-- particle crosses several PEs during one timestep, and for the |
---|
| 1449 | !-- evaluation of the subgrid particle velocity fluctuations ) |
---|
| 1450 | particles(1:number_of_particles)%age_m = particles(1:number_of_particles)%age |
---|
[849] | 1451 | |
---|
[1359] | 1452 | dens_ratio = particle_groups(particles(1:number_of_particles)%group)%density_ratio |
---|
[849] | 1453 | |
---|
[1359] | 1454 | IF ( ANY( dens_ratio == 0.0_wp ) ) THEN |
---|
| 1455 | DO n = 1, number_of_particles |
---|
| 1456 | |
---|
[849] | 1457 | ! |
---|
[1359] | 1458 | !-- Particle advection |
---|
| 1459 | IF ( dens_ratio(n) == 0.0_wp ) THEN |
---|
[849] | 1460 | ! |
---|
[1359] | 1461 | !-- Pure passive transport (without particle inertia) |
---|
| 1462 | particles(n)%x = xv(n) + u_int(n) * dt_particle(n) |
---|
| 1463 | particles(n)%y = yv(n) + v_int(n) * dt_particle(n) |
---|
| 1464 | particles(n)%z = zv(n) + w_int(n) * dt_particle(n) |
---|
[849] | 1465 | |
---|
[1359] | 1466 | particles(n)%speed_x = u_int(n) |
---|
| 1467 | particles(n)%speed_y = v_int(n) |
---|
| 1468 | particles(n)%speed_z = w_int(n) |
---|
[849] | 1469 | |
---|
[1359] | 1470 | ELSE |
---|
[849] | 1471 | ! |
---|
[1359] | 1472 | !-- Transport of particles with inertia |
---|
| 1473 | particles(n)%x = particles(n)%x + particles(n)%speed_x * & |
---|
| 1474 | dt_particle(n) |
---|
| 1475 | particles(n)%y = particles(n)%y + particles(n)%speed_y * & |
---|
| 1476 | dt_particle(n) |
---|
| 1477 | particles(n)%z = particles(n)%z + particles(n)%speed_z * & |
---|
| 1478 | dt_particle(n) |
---|
[849] | 1479 | |
---|
| 1480 | ! |
---|
[1359] | 1481 | !-- Update of the particle velocity |
---|
| 1482 | IF ( cloud_droplets ) THEN |
---|
[1822] | 1483 | ! |
---|
| 1484 | !-- Terminal velocity is computed for vertical direction (Rogers et |
---|
| 1485 | !-- al., 1993, J. Appl. Meteorol.) |
---|
| 1486 | diameter = particles(n)%radius * 2000.0_wp !diameter in mm |
---|
| 1487 | IF ( diameter <= d0_rog ) THEN |
---|
| 1488 | w_s = k_cap_rog * diameter * ( 1.0_wp - EXP( -k_low_rog * diameter ) ) |
---|
| 1489 | ELSE |
---|
| 1490 | w_s = a_rog - b_rog * EXP( -c_rog * diameter ) |
---|
| 1491 | ENDIF |
---|
[1359] | 1492 | |
---|
[1822] | 1493 | ! |
---|
| 1494 | !-- If selected, add random velocities following Soelch and Kaercher |
---|
| 1495 | !-- (2010, Q. J. R. Meteorol. Soc.) |
---|
| 1496 | IF ( use_sgs_for_particles ) THEN |
---|
| 1497 | lagr_timescale = km(kp,jp,ip) / MAX( e(kp,jp,ip), 1.0E-20_wp ) |
---|
| 1498 | RL = EXP( -1.0_wp * dt_3d / lagr_timescale ) |
---|
| 1499 | sigma = SQRT( e(kp,jp,ip) ) |
---|
| 1500 | |
---|
| 1501 | rg1 = random_gauss( iran_part, 5.0_wp ) - 1.0_wp |
---|
| 1502 | rg2 = random_gauss( iran_part, 5.0_wp ) - 1.0_wp |
---|
| 1503 | rg3 = random_gauss( iran_part, 5.0_wp ) - 1.0_wp |
---|
| 1504 | |
---|
| 1505 | particles(n)%rvar1 = RL * particles(n)%rvar1 + & |
---|
| 1506 | SQRT( 1.0_wp - RL**2 ) * sigma * rg1 |
---|
| 1507 | particles(n)%rvar2 = RL * particles(n)%rvar2 + & |
---|
| 1508 | SQRT( 1.0_wp - RL**2 ) * sigma * rg2 |
---|
| 1509 | particles(n)%rvar3 = RL * particles(n)%rvar3 + & |
---|
| 1510 | SQRT( 1.0_wp - RL**2 ) * sigma * rg3 |
---|
| 1511 | |
---|
| 1512 | particles(n)%speed_x = u_int(n) + particles(n)%rvar1 |
---|
| 1513 | particles(n)%speed_y = v_int(n) + particles(n)%rvar2 |
---|
| 1514 | particles(n)%speed_z = w_int(n) + particles(n)%rvar3 - w_s |
---|
| 1515 | ELSE |
---|
| 1516 | particles(n)%speed_x = u_int(n) |
---|
| 1517 | particles(n)%speed_y = v_int(n) |
---|
| 1518 | particles(n)%speed_z = w_int(n) - w_s |
---|
| 1519 | ENDIF |
---|
| 1520 | |
---|
[1359] | 1521 | ELSE |
---|
[1822] | 1522 | |
---|
| 1523 | IF ( use_sgs_for_particles ) THEN |
---|
| 1524 | exp_arg = particle_groups(particles(n)%group)%exp_arg |
---|
| 1525 | exp_term = EXP( -exp_arg * dt_particle(n) ) |
---|
| 1526 | ELSE |
---|
| 1527 | exp_arg = particle_groups(particles(n)%group)%exp_arg |
---|
| 1528 | exp_term = particle_groups(particles(n)%group)%exp_term |
---|
| 1529 | ENDIF |
---|
| 1530 | particles(n)%speed_x = particles(n)%speed_x * exp_term + & |
---|
| 1531 | u_int(n) * ( 1.0_wp - exp_term ) |
---|
| 1532 | particles(n)%speed_y = particles(n)%speed_y * exp_term + & |
---|
| 1533 | v_int(n) * ( 1.0_wp - exp_term ) |
---|
| 1534 | particles(n)%speed_z = particles(n)%speed_z * exp_term + & |
---|
| 1535 | ( w_int(n) - ( 1.0_wp - dens_ratio(n) ) * & |
---|
| 1536 | g / exp_arg ) * ( 1.0_wp - exp_term ) |
---|
[1359] | 1537 | ENDIF |
---|
[1822] | 1538 | |
---|
[1359] | 1539 | ENDIF |
---|
| 1540 | |
---|
| 1541 | ENDDO |
---|
| 1542 | |
---|
| 1543 | ELSE |
---|
| 1544 | |
---|
| 1545 | DO n = 1, number_of_particles |
---|
| 1546 | |
---|
| 1547 | !-- Transport of particles with inertia |
---|
| 1548 | particles(n)%x = xv(n) + particles(n)%speed_x * dt_particle(n) |
---|
| 1549 | particles(n)%y = yv(n) + particles(n)%speed_y * dt_particle(n) |
---|
| 1550 | particles(n)%z = zv(n) + particles(n)%speed_z * dt_particle(n) |
---|
| 1551 | ! |
---|
[849] | 1552 | !-- Update of the particle velocity |
---|
| 1553 | IF ( cloud_droplets ) THEN |
---|
[1822] | 1554 | ! |
---|
| 1555 | !-- Terminal velocity is computed for vertical direction (Rogers et al., |
---|
| 1556 | !-- 1993, J. Appl. Meteorol.) |
---|
| 1557 | diameter = particles(n)%radius * 2000.0_wp !diameter in mm |
---|
| 1558 | IF ( diameter <= d0_rog ) THEN |
---|
| 1559 | w_s = k_cap_rog * diameter * ( 1.0_wp - EXP( -k_low_rog * diameter ) ) |
---|
| 1560 | ELSE |
---|
| 1561 | w_s = a_rog - b_rog * EXP( -c_rog * diameter ) |
---|
| 1562 | ENDIF |
---|
[1359] | 1563 | |
---|
[1822] | 1564 | ! |
---|
| 1565 | !-- If selected, add random velocities following Soelch and Kaercher |
---|
| 1566 | !-- (2010, Q. J. R. Meteorol. Soc.) |
---|
| 1567 | IF ( use_sgs_for_particles ) THEN |
---|
| 1568 | lagr_timescale = km(kp,jp,ip) / MAX( e(kp,jp,ip), 1.0E-20_wp ) |
---|
| 1569 | RL = EXP( -1.0_wp * dt_3d / lagr_timescale ) |
---|
| 1570 | sigma = SQRT( e(kp,jp,ip) ) |
---|
[1359] | 1571 | |
---|
[1822] | 1572 | rg1 = random_gauss( iran_part, 5.0_wp ) - 1.0_wp |
---|
| 1573 | rg2 = random_gauss( iran_part, 5.0_wp ) - 1.0_wp |
---|
| 1574 | rg3 = random_gauss( iran_part, 5.0_wp ) - 1.0_wp |
---|
| 1575 | |
---|
| 1576 | particles(n)%rvar1 = RL * particles(n)%rvar1 + & |
---|
| 1577 | SQRT( 1.0_wp - RL**2 ) * sigma * rg1 |
---|
| 1578 | particles(n)%rvar2 = RL * particles(n)%rvar2 + & |
---|
| 1579 | SQRT( 1.0_wp - RL**2 ) * sigma * rg2 |
---|
| 1580 | particles(n)%rvar3 = RL * particles(n)%rvar3 + & |
---|
| 1581 | SQRT( 1.0_wp - RL**2 ) * sigma * rg3 |
---|
| 1582 | |
---|
| 1583 | particles(n)%speed_x = u_int(n) + particles(n)%rvar1 |
---|
| 1584 | particles(n)%speed_y = v_int(n) + particles(n)%rvar2 |
---|
| 1585 | particles(n)%speed_z = w_int(n) + particles(n)%rvar3 - w_s |
---|
| 1586 | ELSE |
---|
| 1587 | particles(n)%speed_x = u_int(n) |
---|
| 1588 | particles(n)%speed_y = v_int(n) |
---|
| 1589 | particles(n)%speed_z = w_int(n) - w_s |
---|
| 1590 | ENDIF |
---|
| 1591 | |
---|
[849] | 1592 | ELSE |
---|
[1822] | 1593 | |
---|
| 1594 | IF ( use_sgs_for_particles ) THEN |
---|
| 1595 | exp_arg = particle_groups(particles(n)%group)%exp_arg |
---|
| 1596 | exp_term = EXP( -exp_arg * dt_particle(n) ) |
---|
| 1597 | ELSE |
---|
| 1598 | exp_arg = particle_groups(particles(n)%group)%exp_arg |
---|
| 1599 | exp_term = particle_groups(particles(n)%group)%exp_term |
---|
| 1600 | ENDIF |
---|
| 1601 | particles(n)%speed_x = particles(n)%speed_x * exp_term + & |
---|
| 1602 | u_int(n) * ( 1.0_wp - exp_term ) |
---|
| 1603 | particles(n)%speed_y = particles(n)%speed_y * exp_term + & |
---|
| 1604 | v_int(n) * ( 1.0_wp - exp_term ) |
---|
| 1605 | particles(n)%speed_z = particles(n)%speed_z * exp_term + & |
---|
| 1606 | ( w_int(n) - ( 1.0_wp - dens_ratio(n) ) * g / & |
---|
| 1607 | exp_arg ) * ( 1.0_wp - exp_term ) |
---|
[849] | 1608 | ENDIF |
---|
[1822] | 1609 | |
---|
[1359] | 1610 | ENDDO |
---|
[849] | 1611 | |
---|
[1359] | 1612 | ENDIF |
---|
| 1613 | |
---|
| 1614 | DO n = 1, number_of_particles |
---|
[849] | 1615 | ! |
---|
| 1616 | !-- Increment the particle age and the total time that the particle |
---|
| 1617 | !-- has advanced within the particle timestep procedure |
---|
[1359] | 1618 | particles(n)%age = particles(n)%age + dt_particle(n) |
---|
| 1619 | particles(n)%dt_sum = particles(n)%dt_sum + dt_particle(n) |
---|
[849] | 1620 | |
---|
| 1621 | ! |
---|
| 1622 | !-- Check whether there is still a particle that has not yet completed |
---|
| 1623 | !-- the total LES timestep |
---|
[1359] | 1624 | IF ( ( dt_3d - particles(n)%dt_sum ) > 1E-8_wp ) THEN |
---|
[849] | 1625 | dt_3d_reached_l = .FALSE. |
---|
| 1626 | ENDIF |
---|
| 1627 | |
---|
| 1628 | ENDDO |
---|
| 1629 | |
---|
[1359] | 1630 | CALL cpu_log( log_point_s(44), 'lpm_advec', 'pause' ) |
---|
[849] | 1631 | |
---|
[1929] | 1632 | |
---|
[849] | 1633 | END SUBROUTINE lpm_advec |
---|
[1929] | 1634 | |
---|
| 1635 | ! Description: |
---|
| 1636 | ! ------------ |
---|
| 1637 | !> Calculation of subgrid-scale particle speed using the stochastic model |
---|
| 1638 | !> of Weil et al. (2004, JAS, 61, 2877-2887). |
---|
| 1639 | !------------------------------------------------------------------------------! |
---|
| 1640 | SUBROUTINE weil_stochastic_eq( v_sgs, fs_n, e_n, dedxi_n, dedt_n, diss_n, & |
---|
| 1641 | dt_n, rg_n, fac ) |
---|
| 1642 | |
---|
| 1643 | USE kinds |
---|
| 1644 | |
---|
| 1645 | USE particle_attributes, & |
---|
| 1646 | ONLY: c_0, sgs_wf_part |
---|
| 1647 | |
---|
| 1648 | IMPLICIT NONE |
---|
| 1649 | |
---|
| 1650 | REAL(wp) :: a1 !< dummy argument |
---|
| 1651 | REAL(wp) :: dedt_n !< time derivative of TKE at particle position |
---|
| 1652 | REAL(wp) :: dedxi_n !< horizontal derivative of TKE at particle position |
---|
| 1653 | REAL(wp) :: diss_n !< dissipation at particle position |
---|
| 1654 | REAL(wp) :: dt_n !< particle timestep |
---|
| 1655 | REAL(wp) :: e_n !< TKE at particle position |
---|
| 1656 | REAL(wp) :: fac !< flag to identify adjacent topography |
---|
| 1657 | REAL(wp) :: fs_n !< weighting factor to prevent that subgrid-scale particle speed becomes too large |
---|
| 1658 | REAL(wp) :: sgs_w !< constant (1/3) |
---|
| 1659 | REAL(wp) :: rg_n !< random number |
---|
| 1660 | REAL(wp) :: term1 !< memory term |
---|
| 1661 | REAL(wp) :: term2 !< drift correction term |
---|
| 1662 | REAL(wp) :: term3 !< random term |
---|
| 1663 | REAL(wp) :: v_sgs !< subgrid-scale velocity component |
---|
| 1664 | |
---|
[2100] | 1665 | !-- At first, limit TKE to a small non-zero number, in order to prevent |
---|
| 1666 | !-- the occurrence of extremely large SGS-velocities in case TKE is zero, |
---|
| 1667 | !-- (could occur at the simulation begin). |
---|
| 1668 | e_n = MAX( e_n, 1E-20_wp ) |
---|
[1929] | 1669 | ! |
---|
| 1670 | !-- Please note, terms 1 and 2 (drift and memory term, respectively) are |
---|
| 1671 | !-- multiplied by a flag to switch of both terms near topography. |
---|
| 1672 | !-- This is necessary, as both terms may cause a subgrid-scale velocity build up |
---|
| 1673 | !-- if particles are trapped in regions with very small TKE, e.g. in narrow street |
---|
| 1674 | !-- canyons resolved by only a few grid points. Hence, term 1 and term 2 are |
---|
| 1675 | !-- disabled if one of the adjacent grid points belongs to topography. |
---|
| 1676 | !-- Moreover, in this case, the previous subgrid-scale component is also set |
---|
| 1677 | !-- to zero. |
---|
| 1678 | |
---|
| 1679 | a1 = fs_n * c_0 * diss_n |
---|
| 1680 | ! |
---|
| 1681 | !-- Memory term |
---|
| 1682 | term1 = - a1 * v_sgs * dt_n / ( 4.0_wp * sgs_wf_part * e_n + 1E-20_wp ) & |
---|
| 1683 | * fac |
---|
| 1684 | ! |
---|
| 1685 | !-- Drift correction term |
---|
| 1686 | term2 = ( ( dedt_n * v_sgs / e_n ) + dedxi_n ) * 0.5_wp * dt_n & |
---|
| 1687 | * fac |
---|
| 1688 | ! |
---|
| 1689 | !-- Random term |
---|
| 1690 | term3 = SQRT( MAX( a1, 1E-20 ) ) * ( rg_n - 1.0_wp ) * SQRT( dt_n ) |
---|
| 1691 | ! |
---|
| 1692 | !-- In cese one of the adjacent grid-boxes belongs to topograhy, the previous |
---|
| 1693 | !-- subgrid-scale velocity component is set to zero, in order to prevent a |
---|
| 1694 | !-- velocity build-up. |
---|
| 1695 | |
---|
| 1696 | !-- This case, set also previous subgrid-scale component to zero. |
---|
| 1697 | v_sgs = v_sgs * fac + term1 + term2 + term3 |
---|
| 1698 | |
---|
| 1699 | END SUBROUTINE weil_stochastic_eq |
---|