[1682] | 1 | !> @file lpm_advec.f90 |
---|
[2000] | 2 | !------------------------------------------------------------------------------! |
---|
[1036] | 3 | ! This file is part of PALM. |
---|
| 4 | ! |
---|
[2000] | 5 | ! PALM is free software: you can redistribute it and/or modify it under the |
---|
| 6 | ! terms of the GNU General Public License as published by the Free Software |
---|
| 7 | ! Foundation, either version 3 of the License, or (at your option) any later |
---|
| 8 | ! version. |
---|
[1036] | 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
[2101] | 17 | ! Copyright 1997-2017 Leibniz Universitaet Hannover |
---|
[2000] | 18 | !------------------------------------------------------------------------------! |
---|
[1036] | 19 | ! |
---|
[849] | 20 | ! Current revisions: |
---|
| 21 | ! ------------------ |
---|
[1930] | 22 | ! |
---|
[2233] | 23 | ! |
---|
[1930] | 24 | ! Former revisions: |
---|
| 25 | ! ----------------- |
---|
| 26 | ! $Id: lpm_advec.f90 2233 2017-05-30 18:08:54Z sward $ |
---|
| 27 | ! |
---|
[2233] | 28 | ! 2232 2017-05-30 17:47:52Z suehring |
---|
| 29 | ! Adjustments to new topography and surface concept |
---|
| 30 | ! |
---|
[2101] | 31 | ! 2100 2017-01-05 16:40:16Z suehring |
---|
| 32 | ! Prevent extremely large SGS-velocities in regions where TKE is zero, e.g. |
---|
| 33 | ! at the begin of simulations and/or in non-turbulent regions. |
---|
| 34 | ! |
---|
[2001] | 35 | ! 2000 2016-08-20 18:09:15Z knoop |
---|
| 36 | ! Forced header and separation lines into 80 columns |
---|
| 37 | ! |
---|
[1937] | 38 | ! 1936 2016-06-13 13:37:44Z suehring |
---|
| 39 | ! Formatting adjustments |
---|
| 40 | ! |
---|
[1930] | 41 | ! 1929 2016-06-09 16:25:25Z suehring |
---|
[1929] | 42 | ! Put stochastic equation in an extra subroutine. |
---|
| 43 | ! Set flag for stochastic equation to communicate whether a particle is near |
---|
| 44 | ! topography. This case, memory and drift term are disabled in the Weil equation. |
---|
[1889] | 45 | ! |
---|
[1929] | 46 | ! Enable vertical logarithmic interpolation also above topography. This case, |
---|
| 47 | ! set a lower limit for the friction velocity, as it can become very small |
---|
[1930] | 48 | ! in narrow street canyons, leading to too large particle speeds. |
---|
[1823] | 49 | ! |
---|
[1889] | 50 | ! 1888 2016-04-21 12:20:49Z suehring |
---|
| 51 | ! Bugfix concerning logarithmic interpolation of particle speed |
---|
| 52 | ! |
---|
[1823] | 53 | ! 1822 2016-04-07 07:49:42Z hoffmann |
---|
[1822] | 54 | ! Random velocity fluctuations for particles added. Terminal fall velocity |
---|
| 55 | ! for droplets is calculated from a parameterization (which is better than |
---|
| 56 | ! the previous, physically correct calculation, which demands a very short |
---|
| 57 | ! time step that is not used in the model). |
---|
| 58 | ! |
---|
| 59 | ! Unused variables deleted. |
---|
[1321] | 60 | ! |
---|
[1692] | 61 | ! 1691 2015-10-26 16:17:44Z maronga |
---|
| 62 | ! Renamed prandtl_layer to constant_flux_layer. |
---|
| 63 | ! |
---|
[1686] | 64 | ! 1685 2015-10-08 07:32:13Z raasch |
---|
| 65 | ! TKE check for negative values (so far, only zero value was checked) |
---|
| 66 | ! offset_ocean_nzt_m1 removed |
---|
| 67 | ! |
---|
[1683] | 68 | ! 1682 2015-10-07 23:56:08Z knoop |
---|
| 69 | ! Code annotations made doxygen readable |
---|
| 70 | ! |
---|
[1584] | 71 | ! 1583 2015-04-15 12:16:27Z suehring |
---|
| 72 | ! Bugfix: particle advection within Prandtl-layer in case of Galilei |
---|
| 73 | ! transformation. |
---|
| 74 | ! |
---|
[1370] | 75 | ! 1369 2014-04-24 05:57:38Z raasch |
---|
| 76 | ! usage of module interfaces removed |
---|
| 77 | ! |
---|
[1360] | 78 | ! 1359 2014-04-11 17:15:14Z hoffmann |
---|
| 79 | ! New particle structure integrated. |
---|
| 80 | ! Kind definition added to all floating point numbers. |
---|
| 81 | ! |
---|
[1323] | 82 | ! 1322 2014-03-20 16:38:49Z raasch |
---|
| 83 | ! REAL constants defined as wp_kind |
---|
| 84 | ! |
---|
[1321] | 85 | ! 1320 2014-03-20 08:40:49Z raasch |
---|
[1320] | 86 | ! ONLY-attribute added to USE-statements, |
---|
| 87 | ! kind-parameters added to all INTEGER and REAL declaration statements, |
---|
| 88 | ! kinds are defined in new module kinds, |
---|
| 89 | ! revision history before 2012 removed, |
---|
| 90 | ! comment fields (!:) to be used for variable explanations added to |
---|
| 91 | ! all variable declaration statements |
---|
[849] | 92 | ! |
---|
[1315] | 93 | ! 1314 2014-03-14 18:25:17Z suehring |
---|
| 94 | ! Vertical logarithmic interpolation of horizontal particle speed for particles |
---|
| 95 | ! between roughness height and first vertical grid level. |
---|
| 96 | ! |
---|
[1037] | 97 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
| 98 | ! code put under GPL (PALM 3.9) |
---|
| 99 | ! |
---|
[850] | 100 | ! 849 2012-03-15 10:35:09Z raasch |
---|
| 101 | ! initial revision (former part of advec_particles) |
---|
[849] | 102 | ! |
---|
[850] | 103 | ! |
---|
[849] | 104 | ! Description: |
---|
| 105 | ! ------------ |
---|
[1682] | 106 | !> Calculation of new particle positions due to advection using a simple Euler |
---|
| 107 | !> scheme. Particles may feel inertia effects. SGS transport can be included |
---|
| 108 | !> using the stochastic model of Weil et al. (2004, JAS, 61, 2877-2887). |
---|
[849] | 109 | !------------------------------------------------------------------------------! |
---|
[1682] | 110 | SUBROUTINE lpm_advec (ip,jp,kp) |
---|
| 111 | |
---|
[849] | 112 | |
---|
[1320] | 113 | USE arrays_3d, & |
---|
[2232] | 114 | ONLY: de_dx, de_dy, de_dz, diss, e, km, u, v, w, zu, zw |
---|
[849] | 115 | |
---|
[1359] | 116 | USE cpulog |
---|
| 117 | |
---|
| 118 | USE pegrid |
---|
| 119 | |
---|
[1320] | 120 | USE control_parameters, & |
---|
[1691] | 121 | ONLY: atmos_ocean_sign, cloud_droplets, constant_flux_layer, dt_3d, & |
---|
[1822] | 122 | dt_3d_reached_l, dz, g, kappa, topography, u_gtrans, v_gtrans |
---|
[849] | 123 | |
---|
[1320] | 124 | USE grid_variables, & |
---|
| 125 | ONLY: ddx, dx, ddy, dy |
---|
| 126 | |
---|
| 127 | USE indices, & |
---|
[2232] | 128 | ONLY: nzb, nzb_max, nzt, wall_flags_0 |
---|
[1320] | 129 | |
---|
| 130 | USE kinds |
---|
| 131 | |
---|
| 132 | USE particle_attributes, & |
---|
[1822] | 133 | ONLY: block_offset, c_0, dt_min_part, grid_particles, & |
---|
[1359] | 134 | iran_part, log_z_z0, number_of_particles, number_of_sublayers, & |
---|
[1929] | 135 | particles, particle_groups, offset_ocean_nzt, sgs_wf_part, & |
---|
| 136 | use_sgs_for_particles, vertical_particle_advection, z0_av_global |
---|
[1320] | 137 | |
---|
| 138 | USE statistics, & |
---|
| 139 | ONLY: hom |
---|
[849] | 140 | |
---|
[2232] | 141 | USE surface_mod, & |
---|
| 142 | ONLY: surf_def_h, surf_lsm_h, surf_usm_h |
---|
| 143 | |
---|
[1320] | 144 | IMPLICIT NONE |
---|
[849] | 145 | |
---|
[1929] | 146 | INTEGER(iwp) :: agp !< loop variable |
---|
| 147 | INTEGER(iwp) :: gp_outside_of_building(1:8) !< number of grid points used for particle interpolation in case of topography |
---|
| 148 | INTEGER(iwp) :: i !< index variable along x |
---|
| 149 | INTEGER(iwp) :: ip !< index variable along x |
---|
| 150 | INTEGER(iwp) :: ilog !< index variable along x |
---|
| 151 | INTEGER(iwp) :: j !< index variable along y |
---|
| 152 | INTEGER(iwp) :: jp !< index variable along y |
---|
| 153 | INTEGER(iwp) :: jlog !< index variable along y |
---|
| 154 | INTEGER(iwp) :: k !< index variable along z |
---|
[2232] | 155 | INTEGER(iwp) :: k_wall !< vertical index of topography top |
---|
[1929] | 156 | INTEGER(iwp) :: kp !< index variable along z |
---|
| 157 | INTEGER(iwp) :: kw !< index variable along z |
---|
| 158 | INTEGER(iwp) :: n !< loop variable over all particles in a grid box |
---|
| 159 | INTEGER(iwp) :: nb !< block number particles are sorted in |
---|
| 160 | INTEGER(iwp) :: num_gp !< number of adjacent grid points inside topography |
---|
[2232] | 161 | INTEGER(iwp) :: surf_start !< Index on surface data-type for current grid box |
---|
[849] | 162 | |
---|
[1929] | 163 | INTEGER(iwp), DIMENSION(0:7) :: start_index !< start particle index for current block |
---|
| 164 | INTEGER(iwp), DIMENSION(0:7) :: end_index !< start particle index for current block |
---|
[1359] | 165 | |
---|
[1929] | 166 | REAL(wp) :: aa !< dummy argument for horizontal particle interpolation |
---|
| 167 | REAL(wp) :: bb !< dummy argument for horizontal particle interpolation |
---|
| 168 | REAL(wp) :: cc !< dummy argument for horizontal particle interpolation |
---|
| 169 | REAL(wp) :: d_sum !< dummy argument for horizontal particle interpolation in case of topography |
---|
| 170 | REAL(wp) :: d_z_p_z0 !< inverse of interpolation length for logarithmic interpolation |
---|
| 171 | REAL(wp) :: dd !< dummy argument for horizontal particle interpolation |
---|
| 172 | REAL(wp) :: de_dx_int_l !< x/y-interpolated TKE gradient (x) at particle position at lower vertical level |
---|
| 173 | REAL(wp) :: de_dx_int_u !< x/y-interpolated TKE gradient (x) at particle position at upper vertical level |
---|
| 174 | REAL(wp) :: de_dy_int_l !< x/y-interpolated TKE gradient (y) at particle position at lower vertical level |
---|
| 175 | REAL(wp) :: de_dy_int_u !< x/y-interpolated TKE gradient (y) at particle position at upper vertical level |
---|
| 176 | REAL(wp) :: de_dt !< temporal derivative of TKE experienced by the particle |
---|
| 177 | REAL(wp) :: de_dt_min !< lower level for temporal TKE derivative |
---|
| 178 | REAL(wp) :: de_dz_int_l !< x/y-interpolated TKE gradient (z) at particle position at lower vertical level |
---|
| 179 | REAL(wp) :: de_dz_int_u !< x/y-interpolated TKE gradient (z) at particle position at upper vertical level |
---|
[1822] | 180 | REAL(wp) :: diameter !< diamter of droplet |
---|
[1929] | 181 | REAL(wp) :: diss_int_l !< x/y-interpolated dissipation at particle position at lower vertical level |
---|
| 182 | REAL(wp) :: diss_int_u !< x/y-interpolated dissipation at particle position at upper vertical level |
---|
| 183 | REAL(wp) :: dt_gap !< remaining time until particle time integration reaches LES time |
---|
| 184 | REAL(wp) :: dt_particle_m !< previous particle time step |
---|
| 185 | REAL(wp) :: e_int_l !< x/y-interpolated TKE at particle position at lower vertical level |
---|
| 186 | REAL(wp) :: e_int_u !< x/y-interpolated TKE at particle position at upper vertical level |
---|
| 187 | REAL(wp) :: e_mean_int !< horizontal mean TKE at particle height |
---|
[1682] | 188 | REAL(wp) :: exp_arg !< |
---|
| 189 | REAL(wp) :: exp_term !< |
---|
[1929] | 190 | REAL(wp) :: gg !< dummy argument for horizontal particle interpolation |
---|
| 191 | REAL(wp) :: height_p !< dummy argument for logarithmic interpolation |
---|
[1822] | 192 | REAL(wp) :: lagr_timescale !< Lagrangian timescale |
---|
[1929] | 193 | REAL(wp) :: location(1:30,1:3) !< wall locations |
---|
| 194 | REAL(wp) :: log_z_z0_int !< logarithmus used for surface_layer interpolation |
---|
[1682] | 195 | REAL(wp) :: random_gauss !< |
---|
[1822] | 196 | REAL(wp) :: RL !< Lagrangian autocorrelation coefficient |
---|
| 197 | REAL(wp) :: rg1 !< Gaussian distributed random number |
---|
| 198 | REAL(wp) :: rg2 !< Gaussian distributed random number |
---|
| 199 | REAL(wp) :: rg3 !< Gaussian distributed random number |
---|
| 200 | REAL(wp) :: sigma !< velocity standard deviation |
---|
[1929] | 201 | REAL(wp) :: u_int_l !< x/y-interpolated u-component at particle position at lower vertical level |
---|
| 202 | REAL(wp) :: u_int_u !< x/y-interpolated u-component at particle position at upper vertical level |
---|
| 203 | REAL(wp) :: us_int !< friction velocity at particle grid box |
---|
[2232] | 204 | REAL(wp) :: usws_int !< surface momentum flux (u component) at particle grid box |
---|
[1929] | 205 | REAL(wp) :: v_int_l !< x/y-interpolated v-component at particle position at lower vertical level |
---|
| 206 | REAL(wp) :: v_int_u !< x/y-interpolated v-component at particle position at upper vertical level |
---|
[2232] | 207 | REAL(wp) :: vsws_int !< surface momentum flux (u component) at particle grid box |
---|
[1682] | 208 | REAL(wp) :: vv_int !< |
---|
[1929] | 209 | REAL(wp) :: w_int_l !< x/y-interpolated w-component at particle position at lower vertical level |
---|
| 210 | REAL(wp) :: w_int_u !< x/y-interpolated w-component at particle position at upper vertical level |
---|
[1822] | 211 | REAL(wp) :: w_s !< terminal velocity of droplets |
---|
[1929] | 212 | REAL(wp) :: x !< dummy argument for horizontal particle interpolation |
---|
| 213 | REAL(wp) :: y !< dummy argument for horizontal particle interpolation |
---|
| 214 | REAL(wp) :: z_p !< surface layer height (0.5 dz) |
---|
[849] | 215 | |
---|
[1822] | 216 | REAL(wp), PARAMETER :: a_rog = 9.65_wp !< parameter for fall velocity |
---|
| 217 | REAL(wp), PARAMETER :: b_rog = 10.43_wp !< parameter for fall velocity |
---|
| 218 | REAL(wp), PARAMETER :: c_rog = 0.6_wp !< parameter for fall velocity |
---|
| 219 | REAL(wp), PARAMETER :: k_cap_rog = 4.0_wp !< parameter for fall velocity |
---|
| 220 | REAL(wp), PARAMETER :: k_low_rog = 12.0_wp !< parameter for fall velocity |
---|
| 221 | REAL(wp), PARAMETER :: d0_rog = 0.745_wp !< separation diameter |
---|
| 222 | |
---|
[1929] | 223 | REAL(wp), DIMENSION(1:30) :: d_gp_pl !< dummy argument for particle interpolation scheme in case of topography |
---|
| 224 | REAL(wp), DIMENSION(1:30) :: de_dxi !< horizontal TKE gradient along x at adjacent wall |
---|
| 225 | REAL(wp), DIMENSION(1:30) :: de_dyi !< horizontal TKE gradient along y at adjacent wall |
---|
| 226 | REAL(wp), DIMENSION(1:30) :: de_dzi !< horizontal TKE gradient along z at adjacent wall |
---|
| 227 | REAL(wp), DIMENSION(1:30) :: dissi !< dissipation at adjacent wall |
---|
| 228 | REAL(wp), DIMENSION(1:30) :: ei !< TKE at adjacent wall |
---|
[849] | 229 | |
---|
[1929] | 230 | REAL(wp), DIMENSION(number_of_particles) :: term_1_2 !< flag to communicate whether a particle is near topography or not |
---|
[1682] | 231 | REAL(wp), DIMENSION(number_of_particles) :: dens_ratio !< |
---|
[1929] | 232 | REAL(wp), DIMENSION(number_of_particles) :: de_dx_int !< horizontal TKE gradient along x at particle position |
---|
| 233 | REAL(wp), DIMENSION(number_of_particles) :: de_dy_int !< horizontal TKE gradient along y at particle position |
---|
| 234 | REAL(wp), DIMENSION(number_of_particles) :: de_dz_int !< horizontal TKE gradient along z at particle position |
---|
| 235 | REAL(wp), DIMENSION(number_of_particles) :: diss_int !< dissipation at particle position |
---|
| 236 | REAL(wp), DIMENSION(number_of_particles) :: dt_particle !< particle time step |
---|
| 237 | REAL(wp), DIMENSION(number_of_particles) :: e_int !< TKE at particle position |
---|
| 238 | REAL(wp), DIMENSION(number_of_particles) :: fs_int !< weighting factor for subgrid-scale particle speed |
---|
| 239 | REAL(wp), DIMENSION(number_of_particles) :: u_int !< u-component of particle speed |
---|
| 240 | REAL(wp), DIMENSION(number_of_particles) :: v_int !< v-component of particle speed |
---|
| 241 | REAL(wp), DIMENSION(number_of_particles) :: w_int !< w-component of particle speed |
---|
| 242 | REAL(wp), DIMENSION(number_of_particles) :: xv !< x-position |
---|
| 243 | REAL(wp), DIMENSION(number_of_particles) :: yv !< y-position |
---|
| 244 | REAL(wp), DIMENSION(number_of_particles) :: zv !< z-position |
---|
[1359] | 245 | |
---|
[1929] | 246 | REAL(wp), DIMENSION(number_of_particles, 3) :: rg !< vector of Gaussian distributed random numbers |
---|
[1359] | 247 | |
---|
| 248 | CALL cpu_log( log_point_s(44), 'lpm_advec', 'continue' ) |
---|
| 249 | |
---|
[1314] | 250 | ! |
---|
| 251 | !-- Determine height of Prandtl layer and distance between Prandtl-layer |
---|
| 252 | !-- height and horizontal mean roughness height, which are required for |
---|
| 253 | !-- vertical logarithmic interpolation of horizontal particle speeds |
---|
| 254 | !-- (for particles below first vertical grid level). |
---|
| 255 | z_p = zu(nzb+1) - zw(nzb) |
---|
[1359] | 256 | d_z_p_z0 = 1.0_wp / ( z_p - z0_av_global ) |
---|
[849] | 257 | |
---|
[1359] | 258 | start_index = grid_particles(kp,jp,ip)%start_index |
---|
| 259 | end_index = grid_particles(kp,jp,ip)%end_index |
---|
[849] | 260 | |
---|
[1359] | 261 | xv = particles(1:number_of_particles)%x |
---|
| 262 | yv = particles(1:number_of_particles)%y |
---|
| 263 | zv = particles(1:number_of_particles)%z |
---|
[849] | 264 | |
---|
[1359] | 265 | DO nb = 0, 7 |
---|
[1314] | 266 | |
---|
[1359] | 267 | i = ip |
---|
| 268 | j = jp + block_offset(nb)%j_off |
---|
| 269 | k = kp + block_offset(nb)%k_off |
---|
[849] | 270 | ! |
---|
[1359] | 271 | !-- Interpolate u velocity-component |
---|
| 272 | DO n = start_index(nb), end_index(nb) |
---|
[1314] | 273 | ! |
---|
[1359] | 274 | !-- Interpolation of the u velocity component onto particle position. |
---|
| 275 | !-- Particles are interpolation bi-linearly in the horizontal and a |
---|
| 276 | !-- linearly in the vertical. An exception is made for particles below |
---|
| 277 | !-- the first vertical grid level in case of a prandtl layer. In this |
---|
| 278 | !-- case the horizontal particle velocity components are determined using |
---|
| 279 | !-- Monin-Obukhov relations (if branch). |
---|
| 280 | !-- First, check if particle is located below first vertical grid level |
---|
[2232] | 281 | !-- above topography (Prandtl-layer height) |
---|
[1929] | 282 | ilog = ( particles(n)%x + 0.5_wp * dx ) * ddx |
---|
| 283 | jlog = ( particles(n)%y + 0.5_wp * dy ) * ddy |
---|
[2232] | 284 | ! |
---|
| 285 | !-- Determine vertical index of topography top |
---|
| 286 | k_wall = MAXLOC( & |
---|
| 287 | MERGE( 1, 0, & |
---|
| 288 | BTEST( wall_flags_0(nzb:nzb_max,jlog,ilog), 12 ) & |
---|
| 289 | ), DIM = 1 & |
---|
| 290 | ) - 1 |
---|
[1929] | 291 | |
---|
[2232] | 292 | IF ( constant_flux_layer .AND. zv(n) - zw(k_wall) < z_p ) THEN |
---|
[1314] | 293 | ! |
---|
[1359] | 294 | !-- Resolved-scale horizontal particle velocity is zero below z0. |
---|
[2232] | 295 | IF ( zv(n) - zw(k_wall) < z0_av_global ) THEN |
---|
[1359] | 296 | u_int(n) = 0.0_wp |
---|
| 297 | ELSE |
---|
[1314] | 298 | ! |
---|
[1359] | 299 | !-- Determine the sublayer. Further used as index. |
---|
[2232] | 300 | height_p = ( zv(n) - zw(k_wall) - z0_av_global ) & |
---|
[1936] | 301 | * REAL( number_of_sublayers, KIND=wp ) & |
---|
[1359] | 302 | * d_z_p_z0 |
---|
[1314] | 303 | ! |
---|
[1359] | 304 | !-- Calculate LOG(z/z0) for exact particle height. Therefore, |
---|
| 305 | !-- interpolate linearly between precalculated logarithm. |
---|
[1929] | 306 | log_z_z0_int = log_z_z0(INT(height_p)) & |
---|
[1359] | 307 | + ( height_p - INT(height_p) ) & |
---|
| 308 | * ( log_z_z0(INT(height_p)+1) & |
---|
| 309 | - log_z_z0(INT(height_p)) & |
---|
| 310 | ) |
---|
[1314] | 311 | ! |
---|
[2232] | 312 | !-- Get friction velocity and momentum flux from new surface data |
---|
| 313 | !-- types. |
---|
| 314 | IF ( surf_def_h(0)%start_index(jlog,ilog) <= & |
---|
| 315 | surf_def_h(0)%end_index(jlog,ilog) ) THEN |
---|
| 316 | surf_start = surf_def_h(0)%start_index(jlog,ilog) |
---|
| 317 | !-- Limit friction velocity. In narrow canyons or holes the |
---|
| 318 | !-- friction velocity can become very small, resulting in a too |
---|
| 319 | !-- large particle speed. |
---|
| 320 | us_int = MAX( surf_def_h(0)%us(surf_start), 0.01_wp ) |
---|
| 321 | usws_int = surf_def_h(0)%usws(surf_start) |
---|
| 322 | ELSEIF ( surf_lsm_h%start_index(jlog,ilog) <= & |
---|
| 323 | surf_lsm_h%end_index(jlog,ilog) ) THEN |
---|
| 324 | surf_start = surf_lsm_h%start_index(jlog,ilog) |
---|
| 325 | us_int = MAX( surf_lsm_h%us(surf_start), 0.01_wp ) |
---|
| 326 | usws_int = surf_lsm_h%usws(surf_start) |
---|
| 327 | ELSEIF ( surf_usm_h%start_index(jlog,ilog) <= & |
---|
| 328 | surf_usm_h%end_index(jlog,ilog) ) THEN |
---|
| 329 | surf_start = surf_usm_h%start_index(jlog,ilog) |
---|
| 330 | us_int = MAX( surf_usm_h%us(surf_start), 0.01_wp ) |
---|
| 331 | usws_int = surf_usm_h%usws(surf_start) |
---|
| 332 | ENDIF |
---|
| 333 | |
---|
[1929] | 334 | ! |
---|
[1359] | 335 | !-- Neutral solution is applied for all situations, e.g. also for |
---|
| 336 | !-- unstable and stable situations. Even though this is not exact |
---|
| 337 | !-- this saves a lot of CPU time since several calls of intrinsic |
---|
| 338 | !-- FORTRAN procedures (LOG, ATAN) are avoided, This is justified |
---|
| 339 | !-- as sensitivity studies revealed no significant effect of |
---|
| 340 | !-- using the neutral solution also for un/stable situations. |
---|
[2232] | 341 | u_int(n) = -usws_int / ( us_int * kappa + 1E-10_wp ) & |
---|
[1929] | 342 | * log_z_z0_int - u_gtrans |
---|
| 343 | |
---|
[1359] | 344 | ENDIF |
---|
| 345 | ! |
---|
| 346 | !-- Particle above the first grid level. Bi-linear interpolation in the |
---|
| 347 | !-- horizontal and linear interpolation in the vertical direction. |
---|
[1314] | 348 | ELSE |
---|
| 349 | |
---|
[1359] | 350 | x = xv(n) + ( 0.5_wp - i ) * dx |
---|
| 351 | y = yv(n) - j * dy |
---|
| 352 | aa = x**2 + y**2 |
---|
| 353 | bb = ( dx - x )**2 + y**2 |
---|
| 354 | cc = x**2 + ( dy - y )**2 |
---|
| 355 | dd = ( dx - x )**2 + ( dy - y )**2 |
---|
| 356 | gg = aa + bb + cc + dd |
---|
[1314] | 357 | |
---|
[1359] | 358 | u_int_l = ( ( gg - aa ) * u(k,j,i) + ( gg - bb ) * u(k,j,i+1) & |
---|
| 359 | + ( gg - cc ) * u(k,j+1,i) + ( gg - dd ) * & |
---|
| 360 | u(k,j+1,i+1) ) / ( 3.0_wp * gg ) - u_gtrans |
---|
[1314] | 361 | |
---|
[1359] | 362 | IF ( k == nzt ) THEN |
---|
| 363 | u_int(n) = u_int_l |
---|
| 364 | ELSE |
---|
| 365 | u_int_u = ( ( gg-aa ) * u(k+1,j,i) + ( gg-bb ) * u(k+1,j,i+1) & |
---|
| 366 | + ( gg-cc ) * u(k+1,j+1,i) + ( gg-dd ) * & |
---|
| 367 | u(k+1,j+1,i+1) ) / ( 3.0_wp * gg ) - u_gtrans |
---|
| 368 | u_int(n) = u_int_l + ( zv(n) - zu(k) ) / dz * & |
---|
| 369 | ( u_int_u - u_int_l ) |
---|
| 370 | ENDIF |
---|
[1929] | 371 | |
---|
[1314] | 372 | ENDIF |
---|
| 373 | |
---|
[1359] | 374 | ENDDO |
---|
[849] | 375 | |
---|
[1359] | 376 | i = ip + block_offset(nb)%i_off |
---|
| 377 | j = jp |
---|
| 378 | k = kp + block_offset(nb)%k_off |
---|
[849] | 379 | ! |
---|
[1359] | 380 | !-- Same procedure for interpolation of the v velocity-component |
---|
| 381 | DO n = start_index(nb), end_index(nb) |
---|
[1685] | 382 | |
---|
[1929] | 383 | ilog = ( particles(n)%x + 0.5_wp * dx ) * ddx |
---|
| 384 | jlog = ( particles(n)%y + 0.5_wp * dy ) * ddy |
---|
[2232] | 385 | ! |
---|
| 386 | !-- Determine vertical index of topography top |
---|
| 387 | k_wall = MAXLOC( & |
---|
| 388 | MERGE( 1, 0, & |
---|
| 389 | BTEST( wall_flags_0(nzb:nzb_max,jlog,ilog), 12 ) & |
---|
| 390 | ), DIM = 1 & |
---|
| 391 | ) - 1 |
---|
[849] | 392 | |
---|
[2232] | 393 | IF ( constant_flux_layer .AND. zv(n) - zw(k_wall) < z_p ) THEN |
---|
| 394 | IF ( zv(n) - zw(k_wall) < z0_av_global ) THEN |
---|
[1314] | 395 | ! |
---|
[1359] | 396 | !-- Resolved-scale horizontal particle velocity is zero below z0. |
---|
| 397 | v_int(n) = 0.0_wp |
---|
| 398 | ELSE |
---|
| 399 | ! |
---|
[1929] | 400 | !-- Determine the sublayer. Further used as index. Please note, |
---|
| 401 | !-- logarithmus can not be reused from above, as in in case of |
---|
| 402 | !-- topography particle on u-grid can be above surface-layer height, |
---|
| 403 | !-- whereas it can be below on v-grid. |
---|
[2232] | 404 | height_p = ( zv(n) - zw(k_wall) - z0_av_global ) & |
---|
[1936] | 405 | * REAL( number_of_sublayers, KIND=wp ) & |
---|
[1929] | 406 | * d_z_p_z0 |
---|
| 407 | ! |
---|
| 408 | !-- Calculate LOG(z/z0) for exact particle height. Therefore, |
---|
| 409 | !-- interpolate linearly between precalculated logarithm. |
---|
| 410 | log_z_z0_int = log_z_z0(INT(height_p)) & |
---|
| 411 | + ( height_p - INT(height_p) ) & |
---|
| 412 | * ( log_z_z0(INT(height_p)+1) & |
---|
| 413 | - log_z_z0(INT(height_p)) & |
---|
| 414 | ) |
---|
| 415 | ! |
---|
[2232] | 416 | !-- Get friction velocity and momentum flux from new surface data |
---|
| 417 | !-- types. |
---|
| 418 | IF ( surf_def_h(0)%start_index(jlog,ilog) <= & |
---|
| 419 | surf_def_h(0)%end_index(jlog,ilog) ) THEN |
---|
| 420 | surf_start = surf_def_h(0)%start_index(jlog,ilog) |
---|
| 421 | !-- Limit friction velocity. In narrow canyons or holes the |
---|
| 422 | !-- friction velocity can become very small, resulting in a too |
---|
| 423 | !-- large particle speed. |
---|
| 424 | us_int = MAX( surf_def_h(0)%us(surf_start), 0.01_wp ) |
---|
| 425 | vsws_int = surf_def_h(0)%usws(surf_start) |
---|
| 426 | ELSEIF ( surf_lsm_h%start_index(jlog,ilog) <= & |
---|
| 427 | surf_lsm_h%end_index(jlog,ilog) ) THEN |
---|
| 428 | surf_start = surf_lsm_h%start_index(jlog,ilog) |
---|
| 429 | us_int = MAX( surf_lsm_h%us(surf_start), 0.01_wp ) |
---|
| 430 | vsws_int = surf_lsm_h%usws(surf_start) |
---|
| 431 | ELSEIF ( surf_usm_h%start_index(jlog,ilog) <= & |
---|
| 432 | surf_usm_h%end_index(jlog,ilog) ) THEN |
---|
| 433 | surf_start = surf_usm_h%start_index(jlog,ilog) |
---|
| 434 | us_int = MAX( surf_usm_h%us(surf_start), 0.01_wp ) |
---|
| 435 | vsws_int = surf_usm_h%usws(surf_start) |
---|
| 436 | ENDIF |
---|
[1929] | 437 | ! |
---|
[1359] | 438 | !-- Neutral solution is applied for all situations, e.g. also for |
---|
| 439 | !-- unstable and stable situations. Even though this is not exact |
---|
| 440 | !-- this saves a lot of CPU time since several calls of intrinsic |
---|
| 441 | !-- FORTRAN procedures (LOG, ATAN) are avoided, This is justified |
---|
| 442 | !-- as sensitivity studies revealed no significant effect of |
---|
| 443 | !-- using the neutral solution also for un/stable situations. |
---|
[2232] | 444 | v_int(n) = -vsws_int / ( us_int * kappa + 1E-10_wp ) & |
---|
[1929] | 445 | * log_z_z0_int - v_gtrans |
---|
[1314] | 446 | |
---|
[1359] | 447 | ENDIF |
---|
[1929] | 448 | |
---|
[1359] | 449 | ELSE |
---|
| 450 | x = xv(n) - i * dx |
---|
| 451 | y = yv(n) + ( 0.5_wp - j ) * dy |
---|
| 452 | aa = x**2 + y**2 |
---|
| 453 | bb = ( dx - x )**2 + y**2 |
---|
| 454 | cc = x**2 + ( dy - y )**2 |
---|
| 455 | dd = ( dx - x )**2 + ( dy - y )**2 |
---|
| 456 | gg = aa + bb + cc + dd |
---|
[1314] | 457 | |
---|
[1359] | 458 | v_int_l = ( ( gg - aa ) * v(k,j,i) + ( gg - bb ) * v(k,j,i+1) & |
---|
| 459 | + ( gg - cc ) * v(k,j+1,i) + ( gg - dd ) * v(k,j+1,i+1) & |
---|
| 460 | ) / ( 3.0_wp * gg ) - v_gtrans |
---|
[1314] | 461 | |
---|
[1359] | 462 | IF ( k == nzt ) THEN |
---|
| 463 | v_int(n) = v_int_l |
---|
| 464 | ELSE |
---|
| 465 | v_int_u = ( ( gg-aa ) * v(k+1,j,i) + ( gg-bb ) * v(k+1,j,i+1) & |
---|
| 466 | + ( gg-cc ) * v(k+1,j+1,i) + ( gg-dd ) * v(k+1,j+1,i+1) & |
---|
| 467 | ) / ( 3.0_wp * gg ) - v_gtrans |
---|
| 468 | v_int(n) = v_int_l + ( zv(n) - zu(k) ) / dz * & |
---|
| 469 | ( v_int_u - v_int_l ) |
---|
| 470 | ENDIF |
---|
[1929] | 471 | |
---|
[1314] | 472 | ENDIF |
---|
| 473 | |
---|
[1359] | 474 | ENDDO |
---|
[1314] | 475 | |
---|
[1359] | 476 | i = ip + block_offset(nb)%i_off |
---|
| 477 | j = jp + block_offset(nb)%j_off |
---|
[1929] | 478 | k = kp - 1 |
---|
[849] | 479 | ! |
---|
[1314] | 480 | !-- Same procedure for interpolation of the w velocity-component |
---|
[1359] | 481 | DO n = start_index(nb), end_index(nb) |
---|
[849] | 482 | |
---|
[1359] | 483 | IF ( vertical_particle_advection(particles(n)%group) ) THEN |
---|
[849] | 484 | |
---|
[1359] | 485 | x = xv(n) - i * dx |
---|
| 486 | y = yv(n) - j * dy |
---|
[849] | 487 | aa = x**2 + y**2 |
---|
| 488 | bb = ( dx - x )**2 + y**2 |
---|
| 489 | cc = x**2 + ( dy - y )**2 |
---|
| 490 | dd = ( dx - x )**2 + ( dy - y )**2 |
---|
| 491 | gg = aa + bb + cc + dd |
---|
| 492 | |
---|
[1359] | 493 | w_int_l = ( ( gg - aa ) * w(k,j,i) + ( gg - bb ) * w(k,j,i+1) & |
---|
| 494 | + ( gg - cc ) * w(k,j+1,i) + ( gg - dd ) * w(k,j+1,i+1) & |
---|
| 495 | ) / ( 3.0_wp * gg ) |
---|
[849] | 496 | |
---|
[1359] | 497 | IF ( k == nzt ) THEN |
---|
| 498 | w_int(n) = w_int_l |
---|
[849] | 499 | ELSE |
---|
[1359] | 500 | w_int_u = ( ( gg-aa ) * w(k+1,j,i) + & |
---|
| 501 | ( gg-bb ) * w(k+1,j,i+1) + & |
---|
| 502 | ( gg-cc ) * w(k+1,j+1,i) + & |
---|
| 503 | ( gg-dd ) * w(k+1,j+1,i+1) & |
---|
| 504 | ) / ( 3.0_wp * gg ) |
---|
| 505 | w_int(n) = w_int_l + ( zv(n) - zw(k) ) / dz * & |
---|
| 506 | ( w_int_u - w_int_l ) |
---|
[849] | 507 | ENDIF |
---|
| 508 | |
---|
[1359] | 509 | ELSE |
---|
[849] | 510 | |
---|
[1359] | 511 | w_int(n) = 0.0_wp |
---|
[849] | 512 | |
---|
[1359] | 513 | ENDIF |
---|
| 514 | |
---|
| 515 | ENDDO |
---|
| 516 | |
---|
| 517 | ENDDO |
---|
| 518 | |
---|
| 519 | !-- Interpolate and calculate quantities needed for calculating the SGS |
---|
| 520 | !-- velocities |
---|
[1822] | 521 | IF ( use_sgs_for_particles .AND. .NOT. cloud_droplets ) THEN |
---|
[1359] | 522 | |
---|
| 523 | IF ( topography == 'flat' ) THEN |
---|
| 524 | |
---|
| 525 | DO nb = 0,7 |
---|
| 526 | |
---|
| 527 | i = ip + block_offset(nb)%i_off |
---|
| 528 | j = jp + block_offset(nb)%j_off |
---|
| 529 | k = kp + block_offset(nb)%k_off |
---|
| 530 | |
---|
| 531 | DO n = start_index(nb), end_index(nb) |
---|
[849] | 532 | ! |
---|
[1359] | 533 | !-- Interpolate TKE |
---|
| 534 | x = xv(n) - i * dx |
---|
| 535 | y = yv(n) - j * dy |
---|
| 536 | aa = x**2 + y**2 |
---|
| 537 | bb = ( dx - x )**2 + y**2 |
---|
| 538 | cc = x**2 + ( dy - y )**2 |
---|
| 539 | dd = ( dx - x )**2 + ( dy - y )**2 |
---|
| 540 | gg = aa + bb + cc + dd |
---|
[849] | 541 | |
---|
[1359] | 542 | e_int_l = ( ( gg-aa ) * e(k,j,i) + ( gg-bb ) * e(k,j,i+1) & |
---|
| 543 | + ( gg-cc ) * e(k,j+1,i) + ( gg-dd ) * e(k,j+1,i+1) & |
---|
| 544 | ) / ( 3.0_wp * gg ) |
---|
| 545 | |
---|
| 546 | IF ( k+1 == nzt+1 ) THEN |
---|
| 547 | e_int(n) = e_int_l |
---|
| 548 | ELSE |
---|
| 549 | e_int_u = ( ( gg - aa ) * e(k+1,j,i) + & |
---|
| 550 | ( gg - bb ) * e(k+1,j,i+1) + & |
---|
| 551 | ( gg - cc ) * e(k+1,j+1,i) + & |
---|
| 552 | ( gg - dd ) * e(k+1,j+1,i+1) & |
---|
| 553 | ) / ( 3.0_wp * gg ) |
---|
| 554 | e_int(n) = e_int_l + ( zv(n) - zu(k) ) / dz * & |
---|
| 555 | ( e_int_u - e_int_l ) |
---|
| 556 | ENDIF |
---|
[849] | 557 | ! |
---|
[1685] | 558 | !-- Needed to avoid NaN particle velocities (this might not be |
---|
| 559 | !-- required any more) |
---|
| 560 | IF ( e_int(n) <= 0.0_wp ) THEN |
---|
[1359] | 561 | e_int(n) = 1.0E-20_wp |
---|
| 562 | ENDIF |
---|
| 563 | ! |
---|
| 564 | !-- Interpolate the TKE gradient along x (adopt incides i,j,k and |
---|
| 565 | !-- all position variables from above (TKE)) |
---|
| 566 | de_dx_int_l = ( ( gg - aa ) * de_dx(k,j,i) + & |
---|
| 567 | ( gg - bb ) * de_dx(k,j,i+1) + & |
---|
| 568 | ( gg - cc ) * de_dx(k,j+1,i) + & |
---|
| 569 | ( gg - dd ) * de_dx(k,j+1,i+1) & |
---|
| 570 | ) / ( 3.0_wp * gg ) |
---|
[849] | 571 | |
---|
| 572 | IF ( ( k+1 == nzt+1 ) .OR. ( k == nzb ) ) THEN |
---|
[1359] | 573 | de_dx_int(n) = de_dx_int_l |
---|
[849] | 574 | ELSE |
---|
[1359] | 575 | de_dx_int_u = ( ( gg - aa ) * de_dx(k+1,j,i) + & |
---|
| 576 | ( gg - bb ) * de_dx(k+1,j,i+1) + & |
---|
| 577 | ( gg - cc ) * de_dx(k+1,j+1,i) + & |
---|
| 578 | ( gg - dd ) * de_dx(k+1,j+1,i+1) & |
---|
| 579 | ) / ( 3.0_wp * gg ) |
---|
| 580 | de_dx_int(n) = de_dx_int_l + ( zv(n) - zu(k) ) / dz * & |
---|
| 581 | ( de_dx_int_u - de_dx_int_l ) |
---|
[849] | 582 | ENDIF |
---|
[1359] | 583 | ! |
---|
| 584 | !-- Interpolate the TKE gradient along y |
---|
| 585 | de_dy_int_l = ( ( gg - aa ) * de_dy(k,j,i) + & |
---|
| 586 | ( gg - bb ) * de_dy(k,j,i+1) + & |
---|
| 587 | ( gg - cc ) * de_dy(k,j+1,i) + & |
---|
| 588 | ( gg - dd ) * de_dy(k,j+1,i+1) & |
---|
| 589 | ) / ( 3.0_wp * gg ) |
---|
| 590 | IF ( ( k+1 == nzt+1 ) .OR. ( k == nzb ) ) THEN |
---|
| 591 | de_dy_int(n) = de_dy_int_l |
---|
| 592 | ELSE |
---|
| 593 | de_dy_int_u = ( ( gg - aa ) * de_dy(k+1,j,i) + & |
---|
| 594 | ( gg - bb ) * de_dy(k+1,j,i+1) + & |
---|
| 595 | ( gg - cc ) * de_dy(k+1,j+1,i) + & |
---|
| 596 | ( gg - dd ) * de_dy(k+1,j+1,i+1) & |
---|
| 597 | ) / ( 3.0_wp * gg ) |
---|
| 598 | de_dy_int(n) = de_dy_int_l + ( zv(n) - zu(k) ) / dz * & |
---|
| 599 | ( de_dy_int_u - de_dy_int_l ) |
---|
| 600 | ENDIF |
---|
[849] | 601 | |
---|
| 602 | ! |
---|
[1359] | 603 | !-- Interpolate the TKE gradient along z |
---|
| 604 | IF ( zv(n) < 0.5_wp * dz ) THEN |
---|
| 605 | de_dz_int(n) = 0.0_wp |
---|
| 606 | ELSE |
---|
| 607 | de_dz_int_l = ( ( gg - aa ) * de_dz(k,j,i) + & |
---|
| 608 | ( gg - bb ) * de_dz(k,j,i+1) + & |
---|
| 609 | ( gg - cc ) * de_dz(k,j+1,i) + & |
---|
| 610 | ( gg - dd ) * de_dz(k,j+1,i+1) & |
---|
| 611 | ) / ( 3.0_wp * gg ) |
---|
[849] | 612 | |
---|
[1359] | 613 | IF ( ( k+1 == nzt+1 ) .OR. ( k == nzb ) ) THEN |
---|
| 614 | de_dz_int(n) = de_dz_int_l |
---|
| 615 | ELSE |
---|
| 616 | de_dz_int_u = ( ( gg - aa ) * de_dz(k+1,j,i) + & |
---|
| 617 | ( gg - bb ) * de_dz(k+1,j,i+1) + & |
---|
| 618 | ( gg - cc ) * de_dz(k+1,j+1,i) + & |
---|
| 619 | ( gg - dd ) * de_dz(k+1,j+1,i+1) & |
---|
| 620 | ) / ( 3.0_wp * gg ) |
---|
| 621 | de_dz_int(n) = de_dz_int_l + ( zv(n) - zu(k) ) / dz * & |
---|
| 622 | ( de_dz_int_u - de_dz_int_l ) |
---|
| 623 | ENDIF |
---|
| 624 | ENDIF |
---|
[849] | 625 | |
---|
[1359] | 626 | ! |
---|
| 627 | !-- Interpolate the dissipation of TKE |
---|
| 628 | diss_int_l = ( ( gg - aa ) * diss(k,j,i) + & |
---|
| 629 | ( gg - bb ) * diss(k,j,i+1) + & |
---|
| 630 | ( gg - cc ) * diss(k,j+1,i) + & |
---|
| 631 | ( gg - dd ) * diss(k,j+1,i+1) & |
---|
| 632 | ) / ( 3.0_wp * gg ) |
---|
[849] | 633 | |
---|
[1359] | 634 | IF ( k == nzt ) THEN |
---|
| 635 | diss_int(n) = diss_int_l |
---|
| 636 | ELSE |
---|
| 637 | diss_int_u = ( ( gg - aa ) * diss(k+1,j,i) + & |
---|
| 638 | ( gg - bb ) * diss(k+1,j,i+1) + & |
---|
| 639 | ( gg - cc ) * diss(k+1,j+1,i) + & |
---|
| 640 | ( gg - dd ) * diss(k+1,j+1,i+1) & |
---|
| 641 | ) / ( 3.0_wp * gg ) |
---|
| 642 | diss_int(n) = diss_int_l + ( zv(n) - zu(k) ) / dz * & |
---|
| 643 | ( diss_int_u - diss_int_l ) |
---|
| 644 | ENDIF |
---|
| 645 | |
---|
[1929] | 646 | ! |
---|
| 647 | !-- Set flag for stochastic equation. |
---|
| 648 | term_1_2(n) = 1.0_wp |
---|
| 649 | |
---|
[1359] | 650 | ENDDO |
---|
| 651 | ENDDO |
---|
| 652 | |
---|
| 653 | ELSE ! non-flat topography, e.g., buildings |
---|
| 654 | |
---|
| 655 | DO n = 1, number_of_particles |
---|
| 656 | i = particles(n)%x * ddx |
---|
| 657 | j = particles(n)%y * ddy |
---|
| 658 | k = ( zv(n) + 0.5_wp * dz * atmos_ocean_sign ) / dz & |
---|
| 659 | + offset_ocean_nzt ! only exact if eq.dist |
---|
[849] | 660 | ! |
---|
| 661 | !-- In case that there are buildings it has to be determined |
---|
| 662 | !-- how many of the gridpoints defining the particle box are |
---|
| 663 | !-- situated within a building |
---|
| 664 | !-- gp_outside_of_building(1): i,j,k |
---|
| 665 | !-- gp_outside_of_building(2): i,j+1,k |
---|
| 666 | !-- gp_outside_of_building(3): i,j,k+1 |
---|
| 667 | !-- gp_outside_of_building(4): i,j+1,k+1 |
---|
| 668 | !-- gp_outside_of_building(5): i+1,j,k |
---|
| 669 | !-- gp_outside_of_building(6): i+1,j+1,k |
---|
| 670 | !-- gp_outside_of_building(7): i+1,j,k+1 |
---|
| 671 | !-- gp_outside_of_building(8): i+1,j+1,k+1 |
---|
| 672 | |
---|
| 673 | gp_outside_of_building = 0 |
---|
[1359] | 674 | location = 0.0_wp |
---|
[849] | 675 | num_gp = 0 |
---|
| 676 | |
---|
[2232] | 677 | ! |
---|
| 678 | !-- Determine vertical index of topography top at (j,i) |
---|
| 679 | k_wall = MAXLOC( & |
---|
| 680 | MERGE( 1, 0, & |
---|
| 681 | BTEST( wall_flags_0(nzb:nzb_max,j,i), 12 ) & |
---|
| 682 | ), DIM = 1 & |
---|
| 683 | ) - 1 |
---|
| 684 | ! |
---|
| 685 | !-- To do: Reconsider order of computations in order to avoid |
---|
| 686 | !-- unnecessary index calculations. |
---|
| 687 | IF ( k > k_wall .OR. k_wall == 0 ) THEN |
---|
[849] | 688 | num_gp = num_gp + 1 |
---|
| 689 | gp_outside_of_building(1) = 1 |
---|
| 690 | location(num_gp,1) = i * dx |
---|
| 691 | location(num_gp,2) = j * dy |
---|
[1359] | 692 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
[849] | 693 | ei(num_gp) = e(k,j,i) |
---|
| 694 | dissi(num_gp) = diss(k,j,i) |
---|
| 695 | de_dxi(num_gp) = de_dx(k,j,i) |
---|
| 696 | de_dyi(num_gp) = de_dy(k,j,i) |
---|
| 697 | de_dzi(num_gp) = de_dz(k,j,i) |
---|
| 698 | ENDIF |
---|
[2232] | 699 | |
---|
| 700 | ! |
---|
| 701 | !-- Determine vertical index of topography top at (j+1,i) |
---|
| 702 | k_wall = MAXLOC( & |
---|
| 703 | MERGE( 1, 0, & |
---|
| 704 | BTEST( wall_flags_0(nzb:nzb_max,j+1,i), 12 ) & |
---|
| 705 | ), DIM = 1 & |
---|
| 706 | ) - 1 |
---|
| 707 | IF ( k > k_wall .OR. k_wall == 0 ) THEN |
---|
[849] | 708 | num_gp = num_gp + 1 |
---|
| 709 | gp_outside_of_building(2) = 1 |
---|
| 710 | location(num_gp,1) = i * dx |
---|
| 711 | location(num_gp,2) = (j+1) * dy |
---|
[1359] | 712 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
[849] | 713 | ei(num_gp) = e(k,j+1,i) |
---|
| 714 | dissi(num_gp) = diss(k,j+1,i) |
---|
| 715 | de_dxi(num_gp) = de_dx(k,j+1,i) |
---|
| 716 | de_dyi(num_gp) = de_dy(k,j+1,i) |
---|
| 717 | de_dzi(num_gp) = de_dz(k,j+1,i) |
---|
| 718 | ENDIF |
---|
| 719 | |
---|
[2232] | 720 | ! |
---|
| 721 | !-- Determine vertical index of topography top at (j,i) |
---|
| 722 | k_wall = MAXLOC( & |
---|
| 723 | MERGE( 1, 0, & |
---|
| 724 | BTEST( wall_flags_0(nzb:nzb_max,j,i), 12 ) & |
---|
| 725 | ), DIM = 1 & |
---|
| 726 | ) - 1 |
---|
| 727 | IF ( k+1 > k_wall .OR. k_wall == 0 ) THEN |
---|
[849] | 728 | num_gp = num_gp + 1 |
---|
| 729 | gp_outside_of_building(3) = 1 |
---|
| 730 | location(num_gp,1) = i * dx |
---|
| 731 | location(num_gp,2) = j * dy |
---|
[1359] | 732 | location(num_gp,3) = (k+1) * dz - 0.5_wp * dz |
---|
[849] | 733 | ei(num_gp) = e(k+1,j,i) |
---|
| 734 | dissi(num_gp) = diss(k+1,j,i) |
---|
| 735 | de_dxi(num_gp) = de_dx(k+1,j,i) |
---|
| 736 | de_dyi(num_gp) = de_dy(k+1,j,i) |
---|
| 737 | de_dzi(num_gp) = de_dz(k+1,j,i) |
---|
| 738 | ENDIF |
---|
| 739 | |
---|
[2232] | 740 | ! |
---|
| 741 | !-- Determine vertical index of topography top at (j+1,i) |
---|
| 742 | k_wall = MAXLOC( & |
---|
| 743 | MERGE( 1, 0, & |
---|
| 744 | BTEST( wall_flags_0(nzb:nzb_max,j+1,i), 12 ) & |
---|
| 745 | ), DIM = 1 & |
---|
| 746 | ) - 1 |
---|
| 747 | IF ( k+1 > k_wall .OR. k_wall == 0 ) THEN |
---|
[849] | 748 | num_gp = num_gp + 1 |
---|
| 749 | gp_outside_of_building(4) = 1 |
---|
| 750 | location(num_gp,1) = i * dx |
---|
| 751 | location(num_gp,2) = (j+1) * dy |
---|
[1359] | 752 | location(num_gp,3) = (k+1) * dz - 0.5_wp * dz |
---|
[849] | 753 | ei(num_gp) = e(k+1,j+1,i) |
---|
| 754 | dissi(num_gp) = diss(k+1,j+1,i) |
---|
| 755 | de_dxi(num_gp) = de_dx(k+1,j+1,i) |
---|
| 756 | de_dyi(num_gp) = de_dy(k+1,j+1,i) |
---|
| 757 | de_dzi(num_gp) = de_dz(k+1,j+1,i) |
---|
| 758 | ENDIF |
---|
| 759 | |
---|
[2232] | 760 | ! |
---|
| 761 | !-- Determine vertical index of topography top at (j,i+1) |
---|
| 762 | k_wall = MAXLOC( & |
---|
| 763 | MERGE( 1, 0, & |
---|
| 764 | BTEST( wall_flags_0(nzb:nzb_max,j,i+1), 12 ) & |
---|
| 765 | ), DIM = 1 & |
---|
| 766 | ) - 1 |
---|
| 767 | IF ( k > k_wall .OR. k_wall == 0 ) THEN |
---|
[849] | 768 | num_gp = num_gp + 1 |
---|
| 769 | gp_outside_of_building(5) = 1 |
---|
| 770 | location(num_gp,1) = (i+1) * dx |
---|
| 771 | location(num_gp,2) = j * dy |
---|
[1359] | 772 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
[849] | 773 | ei(num_gp) = e(k,j,i+1) |
---|
| 774 | dissi(num_gp) = diss(k,j,i+1) |
---|
| 775 | de_dxi(num_gp) = de_dx(k,j,i+1) |
---|
| 776 | de_dyi(num_gp) = de_dy(k,j,i+1) |
---|
| 777 | de_dzi(num_gp) = de_dz(k,j,i+1) |
---|
| 778 | ENDIF |
---|
| 779 | |
---|
[2232] | 780 | ! |
---|
| 781 | !-- Determine vertical index of topography top at (j+1,i+1) |
---|
| 782 | k_wall = MAXLOC( & |
---|
| 783 | MERGE( 1, 0, & |
---|
| 784 | BTEST( wall_flags_0(nzb:nzb_max,j+1,i+1), 12 )& |
---|
| 785 | ), DIM = 1 & |
---|
| 786 | ) - 1 |
---|
| 787 | IF ( k > k_wall .OR. k_wall == 0 ) THEN |
---|
[849] | 788 | num_gp = num_gp + 1 |
---|
| 789 | gp_outside_of_building(6) = 1 |
---|
| 790 | location(num_gp,1) = (i+1) * dx |
---|
| 791 | location(num_gp,2) = (j+1) * dy |
---|
[1359] | 792 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
[849] | 793 | ei(num_gp) = e(k,j+1,i+1) |
---|
| 794 | dissi(num_gp) = diss(k,j+1,i+1) |
---|
| 795 | de_dxi(num_gp) = de_dx(k,j+1,i+1) |
---|
| 796 | de_dyi(num_gp) = de_dy(k,j+1,i+1) |
---|
| 797 | de_dzi(num_gp) = de_dz(k,j+1,i+1) |
---|
| 798 | ENDIF |
---|
| 799 | |
---|
[2232] | 800 | ! |
---|
| 801 | !-- Determine vertical index of topography top at (j,i+1) |
---|
| 802 | k_wall = MAXLOC( & |
---|
| 803 | MERGE( 1, 0, & |
---|
| 804 | BTEST( wall_flags_0(nzb:nzb_max,j,i+1), 12 ) & |
---|
| 805 | ), DIM = 1 & |
---|
| 806 | ) - 1 |
---|
| 807 | IF ( k+1 > k_wall .OR. k_wall == 0 ) THEN |
---|
[849] | 808 | num_gp = num_gp + 1 |
---|
| 809 | gp_outside_of_building(7) = 1 |
---|
| 810 | location(num_gp,1) = (i+1) * dx |
---|
| 811 | location(num_gp,2) = j * dy |
---|
[1359] | 812 | location(num_gp,3) = (k+1) * dz - 0.5_wp * dz |
---|
[849] | 813 | ei(num_gp) = e(k+1,j,i+1) |
---|
| 814 | dissi(num_gp) = diss(k+1,j,i+1) |
---|
| 815 | de_dxi(num_gp) = de_dx(k+1,j,i+1) |
---|
| 816 | de_dyi(num_gp) = de_dy(k+1,j,i+1) |
---|
| 817 | de_dzi(num_gp) = de_dz(k+1,j,i+1) |
---|
| 818 | ENDIF |
---|
| 819 | |
---|
[2232] | 820 | ! |
---|
| 821 | !-- Determine vertical index of topography top at (j+1,i+1) |
---|
| 822 | k_wall = MAXLOC( & |
---|
| 823 | MERGE( 1, 0, & |
---|
| 824 | BTEST( wall_flags_0(nzb:nzb_max,j+1,i+1), 12 )& |
---|
| 825 | ), DIM = 1 & |
---|
| 826 | ) - 1 |
---|
| 827 | IF ( k+1 > k_wall .OR. k_wall == 0) THEN |
---|
[849] | 828 | num_gp = num_gp + 1 |
---|
| 829 | gp_outside_of_building(8) = 1 |
---|
| 830 | location(num_gp,1) = (i+1) * dx |
---|
| 831 | location(num_gp,2) = (j+1) * dy |
---|
[1359] | 832 | location(num_gp,3) = (k+1) * dz - 0.5_wp * dz |
---|
[849] | 833 | ei(num_gp) = e(k+1,j+1,i+1) |
---|
| 834 | dissi(num_gp) = diss(k+1,j+1,i+1) |
---|
| 835 | de_dxi(num_gp) = de_dx(k+1,j+1,i+1) |
---|
| 836 | de_dyi(num_gp) = de_dy(k+1,j+1,i+1) |
---|
| 837 | de_dzi(num_gp) = de_dz(k+1,j+1,i+1) |
---|
| 838 | ENDIF |
---|
| 839 | ! |
---|
| 840 | !-- If all gridpoints are situated outside of a building, then the |
---|
| 841 | !-- ordinary interpolation scheme can be used. |
---|
| 842 | IF ( num_gp == 8 ) THEN |
---|
| 843 | |
---|
| 844 | x = particles(n)%x - i * dx |
---|
| 845 | y = particles(n)%y - j * dy |
---|
| 846 | aa = x**2 + y**2 |
---|
| 847 | bb = ( dx - x )**2 + y**2 |
---|
| 848 | cc = x**2 + ( dy - y )**2 |
---|
| 849 | dd = ( dx - x )**2 + ( dy - y )**2 |
---|
| 850 | gg = aa + bb + cc + dd |
---|
[1929] | 851 | |
---|
[1359] | 852 | e_int_l = ( ( gg - aa ) * e(k,j,i) + ( gg - bb ) * e(k,j,i+1) & |
---|
| 853 | + ( gg - cc ) * e(k,j+1,i) + ( gg - dd ) * e(k,j+1,i+1) & |
---|
| 854 | ) / ( 3.0_wp * gg ) |
---|
[1929] | 855 | |
---|
[1359] | 856 | IF ( k == nzt ) THEN |
---|
| 857 | e_int(n) = e_int_l |
---|
[849] | 858 | ELSE |
---|
| 859 | e_int_u = ( ( gg - aa ) * e(k+1,j,i) + & |
---|
| 860 | ( gg - bb ) * e(k+1,j,i+1) + & |
---|
| 861 | ( gg - cc ) * e(k+1,j+1,i) + & |
---|
| 862 | ( gg - dd ) * e(k+1,j+1,i+1) & |
---|
[1359] | 863 | ) / ( 3.0_wp * gg ) |
---|
| 864 | e_int(n) = e_int_l + ( zv(n) - zu(k) ) / dz * & |
---|
[1929] | 865 | ( e_int_u - e_int_l ) |
---|
[849] | 866 | ENDIF |
---|
[1929] | 867 | ! |
---|
[1685] | 868 | !-- Needed to avoid NaN particle velocities (this might not be |
---|
| 869 | !-- required any more) |
---|
| 870 | IF ( e_int(n) <= 0.0_wp ) THEN |
---|
[1359] | 871 | e_int(n) = 1.0E-20_wp |
---|
| 872 | ENDIF |
---|
| 873 | ! |
---|
[849] | 874 | !-- Interpolate the TKE gradient along x (adopt incides i,j,k |
---|
| 875 | !-- and all position variables from above (TKE)) |
---|
| 876 | de_dx_int_l = ( ( gg - aa ) * de_dx(k,j,i) + & |
---|
| 877 | ( gg - bb ) * de_dx(k,j,i+1) + & |
---|
| 878 | ( gg - cc ) * de_dx(k,j+1,i) + & |
---|
| 879 | ( gg - dd ) * de_dx(k,j+1,i+1) & |
---|
[1359] | 880 | ) / ( 3.0_wp * gg ) |
---|
[849] | 881 | |
---|
[1359] | 882 | IF ( ( k == nzt ) .OR. ( k == nzb ) ) THEN |
---|
| 883 | de_dx_int(n) = de_dx_int_l |
---|
[849] | 884 | ELSE |
---|
| 885 | de_dx_int_u = ( ( gg - aa ) * de_dx(k+1,j,i) + & |
---|
| 886 | ( gg - bb ) * de_dx(k+1,j,i+1) + & |
---|
| 887 | ( gg - cc ) * de_dx(k+1,j+1,i) + & |
---|
| 888 | ( gg - dd ) * de_dx(k+1,j+1,i+1) & |
---|
[1359] | 889 | ) / ( 3.0_wp * gg ) |
---|
| 890 | de_dx_int(n) = de_dx_int_l + ( zv(n) - zu(k) ) / & |
---|
[849] | 891 | dz * ( de_dx_int_u - de_dx_int_l ) |
---|
| 892 | ENDIF |
---|
| 893 | |
---|
| 894 | ! |
---|
| 895 | !-- Interpolate the TKE gradient along y |
---|
| 896 | de_dy_int_l = ( ( gg - aa ) * de_dy(k,j,i) + & |
---|
| 897 | ( gg - bb ) * de_dy(k,j,i+1) + & |
---|
| 898 | ( gg - cc ) * de_dy(k,j+1,i) + & |
---|
| 899 | ( gg - dd ) * de_dy(k,j+1,i+1) & |
---|
[1359] | 900 | ) / ( 3.0_wp * gg ) |
---|
[849] | 901 | IF ( ( k+1 == nzt+1 ) .OR. ( k == nzb ) ) THEN |
---|
[1359] | 902 | de_dy_int(n) = de_dy_int_l |
---|
[849] | 903 | ELSE |
---|
| 904 | de_dy_int_u = ( ( gg - aa ) * de_dy(k+1,j,i) + & |
---|
| 905 | ( gg - bb ) * de_dy(k+1,j,i+1) + & |
---|
| 906 | ( gg - cc ) * de_dy(k+1,j+1,i) + & |
---|
| 907 | ( gg - dd ) * de_dy(k+1,j+1,i+1) & |
---|
[1359] | 908 | ) / ( 3.0_wp * gg ) |
---|
| 909 | de_dy_int(n) = de_dy_int_l + ( zv(n) - zu(k) ) / & |
---|
[849] | 910 | dz * ( de_dy_int_u - de_dy_int_l ) |
---|
| 911 | ENDIF |
---|
| 912 | |
---|
| 913 | ! |
---|
| 914 | !-- Interpolate the TKE gradient along z |
---|
[1359] | 915 | IF ( zv(n) < 0.5_wp * dz ) THEN |
---|
| 916 | de_dz_int(n) = 0.0_wp |
---|
[849] | 917 | ELSE |
---|
| 918 | de_dz_int_l = ( ( gg - aa ) * de_dz(k,j,i) + & |
---|
| 919 | ( gg - bb ) * de_dz(k,j,i+1) + & |
---|
| 920 | ( gg - cc ) * de_dz(k,j+1,i) + & |
---|
| 921 | ( gg - dd ) * de_dz(k,j+1,i+1) & |
---|
[1359] | 922 | ) / ( 3.0_wp * gg ) |
---|
[1929] | 923 | |
---|
[849] | 924 | IF ( ( k+1 == nzt+1 ) .OR. ( k == nzb ) ) THEN |
---|
[1359] | 925 | de_dz_int(n) = de_dz_int_l |
---|
[849] | 926 | ELSE |
---|
| 927 | de_dz_int_u = ( ( gg - aa ) * de_dz(k+1,j,i) + & |
---|
| 928 | ( gg - bb ) * de_dz(k+1,j,i+1) + & |
---|
| 929 | ( gg - cc ) * de_dz(k+1,j+1,i) + & |
---|
| 930 | ( gg - dd ) * de_dz(k+1,j+1,i+1) & |
---|
[1359] | 931 | ) / ( 3.0_wp * gg ) |
---|
| 932 | de_dz_int(n) = de_dz_int_l + ( zv(n) - zu(k) ) /& |
---|
[849] | 933 | dz * ( de_dz_int_u - de_dz_int_l ) |
---|
| 934 | ENDIF |
---|
| 935 | ENDIF |
---|
| 936 | |
---|
| 937 | ! |
---|
| 938 | !-- Interpolate the dissipation of TKE |
---|
| 939 | diss_int_l = ( ( gg - aa ) * diss(k,j,i) + & |
---|
| 940 | ( gg - bb ) * diss(k,j,i+1) + & |
---|
| 941 | ( gg - cc ) * diss(k,j+1,i) + & |
---|
| 942 | ( gg - dd ) * diss(k,j+1,i+1) & |
---|
[1359] | 943 | ) / ( 3.0_wp * gg ) |
---|
[1929] | 944 | |
---|
[1359] | 945 | IF ( k == nzt ) THEN |
---|
| 946 | diss_int(n) = diss_int_l |
---|
[849] | 947 | ELSE |
---|
| 948 | diss_int_u = ( ( gg - aa ) * diss(k+1,j,i) + & |
---|
| 949 | ( gg - bb ) * diss(k+1,j,i+1) + & |
---|
| 950 | ( gg - cc ) * diss(k+1,j+1,i) + & |
---|
| 951 | ( gg - dd ) * diss(k+1,j+1,i+1) & |
---|
[1359] | 952 | ) / ( 3.0_wp * gg ) |
---|
| 953 | diss_int(n) = diss_int_l + ( zv(n) - zu(k) ) / dz *& |
---|
[849] | 954 | ( diss_int_u - diss_int_l ) |
---|
| 955 | ENDIF |
---|
[1929] | 956 | ! |
---|
| 957 | !-- Set flag for stochastic equation. |
---|
| 958 | term_1_2(n) = 1.0_wp |
---|
| 959 | |
---|
[849] | 960 | ELSE |
---|
[1929] | 961 | |
---|
[849] | 962 | ! |
---|
| 963 | !-- If wall between gridpoint 1 and gridpoint 5, then |
---|
| 964 | !-- Neumann boundary condition has to be applied |
---|
| 965 | IF ( gp_outside_of_building(1) == 1 .AND. & |
---|
| 966 | gp_outside_of_building(5) == 0 ) THEN |
---|
| 967 | num_gp = num_gp + 1 |
---|
[1359] | 968 | location(num_gp,1) = i * dx + 0.5_wp * dx |
---|
[849] | 969 | location(num_gp,2) = j * dy |
---|
[1359] | 970 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
[849] | 971 | ei(num_gp) = e(k,j,i) |
---|
| 972 | dissi(num_gp) = diss(k,j,i) |
---|
[1359] | 973 | de_dxi(num_gp) = 0.0_wp |
---|
[849] | 974 | de_dyi(num_gp) = de_dy(k,j,i) |
---|
| 975 | de_dzi(num_gp) = de_dz(k,j,i) |
---|
| 976 | ENDIF |
---|
| 977 | |
---|
| 978 | IF ( gp_outside_of_building(5) == 1 .AND. & |
---|
[1929] | 979 | gp_outside_of_building(1) == 0 ) THEN |
---|
[849] | 980 | num_gp = num_gp + 1 |
---|
[1359] | 981 | location(num_gp,1) = i * dx + 0.5_wp * dx |
---|
[849] | 982 | location(num_gp,2) = j * dy |
---|
[1359] | 983 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
[849] | 984 | ei(num_gp) = e(k,j,i+1) |
---|
| 985 | dissi(num_gp) = diss(k,j,i+1) |
---|
[1359] | 986 | de_dxi(num_gp) = 0.0_wp |
---|
[849] | 987 | de_dyi(num_gp) = de_dy(k,j,i+1) |
---|
| 988 | de_dzi(num_gp) = de_dz(k,j,i+1) |
---|
| 989 | ENDIF |
---|
| 990 | |
---|
| 991 | ! |
---|
| 992 | !-- If wall between gridpoint 5 and gridpoint 6, then |
---|
| 993 | !-- then Neumann boundary condition has to be applied |
---|
| 994 | IF ( gp_outside_of_building(5) == 1 .AND. & |
---|
| 995 | gp_outside_of_building(6) == 0 ) THEN |
---|
| 996 | num_gp = num_gp + 1 |
---|
| 997 | location(num_gp,1) = (i+1) * dx |
---|
[1359] | 998 | location(num_gp,2) = j * dy + 0.5_wp * dy |
---|
| 999 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
[849] | 1000 | ei(num_gp) = e(k,j,i+1) |
---|
| 1001 | dissi(num_gp) = diss(k,j,i+1) |
---|
| 1002 | de_dxi(num_gp) = de_dx(k,j,i+1) |
---|
[1359] | 1003 | de_dyi(num_gp) = 0.0_wp |
---|
[849] | 1004 | de_dzi(num_gp) = de_dz(k,j,i+1) |
---|
| 1005 | ENDIF |
---|
| 1006 | |
---|
| 1007 | IF ( gp_outside_of_building(6) == 1 .AND. & |
---|
| 1008 | gp_outside_of_building(5) == 0 ) THEN |
---|
| 1009 | num_gp = num_gp + 1 |
---|
| 1010 | location(num_gp,1) = (i+1) * dx |
---|
[1359] | 1011 | location(num_gp,2) = j * dy + 0.5_wp * dy |
---|
| 1012 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
[849] | 1013 | ei(num_gp) = e(k,j+1,i+1) |
---|
| 1014 | dissi(num_gp) = diss(k,j+1,i+1) |
---|
| 1015 | de_dxi(num_gp) = de_dx(k,j+1,i+1) |
---|
[1359] | 1016 | de_dyi(num_gp) = 0.0_wp |
---|
[849] | 1017 | de_dzi(num_gp) = de_dz(k,j+1,i+1) |
---|
| 1018 | ENDIF |
---|
| 1019 | |
---|
| 1020 | ! |
---|
| 1021 | !-- If wall between gridpoint 2 and gridpoint 6, then |
---|
| 1022 | !-- Neumann boundary condition has to be applied |
---|
| 1023 | IF ( gp_outside_of_building(2) == 1 .AND. & |
---|
| 1024 | gp_outside_of_building(6) == 0 ) THEN |
---|
| 1025 | num_gp = num_gp + 1 |
---|
[1359] | 1026 | location(num_gp,1) = i * dx + 0.5_wp * dx |
---|
[849] | 1027 | location(num_gp,2) = (j+1) * dy |
---|
[1359] | 1028 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
[849] | 1029 | ei(num_gp) = e(k,j+1,i) |
---|
| 1030 | dissi(num_gp) = diss(k,j+1,i) |
---|
[1359] | 1031 | de_dxi(num_gp) = 0.0_wp |
---|
[849] | 1032 | de_dyi(num_gp) = de_dy(k,j+1,i) |
---|
| 1033 | de_dzi(num_gp) = de_dz(k,j+1,i) |
---|
| 1034 | ENDIF |
---|
| 1035 | |
---|
| 1036 | IF ( gp_outside_of_building(6) == 1 .AND. & |
---|
| 1037 | gp_outside_of_building(2) == 0 ) THEN |
---|
| 1038 | num_gp = num_gp + 1 |
---|
[1359] | 1039 | location(num_gp,1) = i * dx + 0.5_wp * dx |
---|
[849] | 1040 | location(num_gp,2) = (j+1) * dy |
---|
[1359] | 1041 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
[849] | 1042 | ei(num_gp) = e(k,j+1,i+1) |
---|
| 1043 | dissi(num_gp) = diss(k,j+1,i+1) |
---|
[1359] | 1044 | de_dxi(num_gp) = 0.0_wp |
---|
[849] | 1045 | de_dyi(num_gp) = de_dy(k,j+1,i+1) |
---|
| 1046 | de_dzi(num_gp) = de_dz(k,j+1,i+1) |
---|
| 1047 | ENDIF |
---|
| 1048 | |
---|
| 1049 | ! |
---|
| 1050 | !-- If wall between gridpoint 1 and gridpoint 2, then |
---|
| 1051 | !-- Neumann boundary condition has to be applied |
---|
| 1052 | IF ( gp_outside_of_building(1) == 1 .AND. & |
---|
| 1053 | gp_outside_of_building(2) == 0 ) THEN |
---|
| 1054 | num_gp = num_gp + 1 |
---|
| 1055 | location(num_gp,1) = i * dx |
---|
[1359] | 1056 | location(num_gp,2) = j * dy + 0.5_wp * dy |
---|
| 1057 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
[849] | 1058 | ei(num_gp) = e(k,j,i) |
---|
| 1059 | dissi(num_gp) = diss(k,j,i) |
---|
| 1060 | de_dxi(num_gp) = de_dx(k,j,i) |
---|
[1359] | 1061 | de_dyi(num_gp) = 0.0_wp |
---|
[1929] | 1062 | de_dzi(num_gp) = de_dz(k,j,i) |
---|
[849] | 1063 | ENDIF |
---|
| 1064 | |
---|
| 1065 | IF ( gp_outside_of_building(2) == 1 .AND. & |
---|
| 1066 | gp_outside_of_building(1) == 0 ) THEN |
---|
| 1067 | num_gp = num_gp + 1 |
---|
| 1068 | location(num_gp,1) = i * dx |
---|
[1359] | 1069 | location(num_gp,2) = j * dy + 0.5_wp * dy |
---|
| 1070 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
[849] | 1071 | ei(num_gp) = e(k,j+1,i) |
---|
| 1072 | dissi(num_gp) = diss(k,j+1,i) |
---|
| 1073 | de_dxi(num_gp) = de_dx(k,j+1,i) |
---|
[1359] | 1074 | de_dyi(num_gp) = 0.0_wp |
---|
[849] | 1075 | de_dzi(num_gp) = de_dz(k,j+1,i) |
---|
| 1076 | ENDIF |
---|
| 1077 | |
---|
| 1078 | ! |
---|
| 1079 | !-- If wall between gridpoint 3 and gridpoint 7, then |
---|
| 1080 | !-- Neumann boundary condition has to be applied |
---|
| 1081 | IF ( gp_outside_of_building(3) == 1 .AND. & |
---|
| 1082 | gp_outside_of_building(7) == 0 ) THEN |
---|
| 1083 | num_gp = num_gp + 1 |
---|
[1359] | 1084 | location(num_gp,1) = i * dx + 0.5_wp * dx |
---|
[849] | 1085 | location(num_gp,2) = j * dy |
---|
[1359] | 1086 | location(num_gp,3) = k * dz + 0.5_wp * dz |
---|
[849] | 1087 | ei(num_gp) = e(k+1,j,i) |
---|
| 1088 | dissi(num_gp) = diss(k+1,j,i) |
---|
[1359] | 1089 | de_dxi(num_gp) = 0.0_wp |
---|
[849] | 1090 | de_dyi(num_gp) = de_dy(k+1,j,i) |
---|
| 1091 | de_dzi(num_gp) = de_dz(k+1,j,i) |
---|
| 1092 | ENDIF |
---|
| 1093 | |
---|
| 1094 | IF ( gp_outside_of_building(7) == 1 .AND. & |
---|
| 1095 | gp_outside_of_building(3) == 0 ) THEN |
---|
| 1096 | num_gp = num_gp + 1 |
---|
[1359] | 1097 | location(num_gp,1) = i * dx + 0.5_wp * dx |
---|
[849] | 1098 | location(num_gp,2) = j * dy |
---|
[1359] | 1099 | location(num_gp,3) = k * dz + 0.5_wp * dz |
---|
[849] | 1100 | ei(num_gp) = e(k+1,j,i+1) |
---|
| 1101 | dissi(num_gp) = diss(k+1,j,i+1) |
---|
[1359] | 1102 | de_dxi(num_gp) = 0.0_wp |
---|
[849] | 1103 | de_dyi(num_gp) = de_dy(k+1,j,i+1) |
---|
| 1104 | de_dzi(num_gp) = de_dz(k+1,j,i+1) |
---|
| 1105 | ENDIF |
---|
| 1106 | |
---|
| 1107 | ! |
---|
| 1108 | !-- If wall between gridpoint 7 and gridpoint 8, then |
---|
| 1109 | !-- Neumann boundary condition has to be applied |
---|
| 1110 | IF ( gp_outside_of_building(7) == 1 .AND. & |
---|
| 1111 | gp_outside_of_building(8) == 0 ) THEN |
---|
| 1112 | num_gp = num_gp + 1 |
---|
| 1113 | location(num_gp,1) = (i+1) * dx |
---|
[1359] | 1114 | location(num_gp,2) = j * dy + 0.5_wp * dy |
---|
| 1115 | location(num_gp,3) = k * dz + 0.5_wp * dz |
---|
[849] | 1116 | ei(num_gp) = e(k+1,j,i+1) |
---|
| 1117 | dissi(num_gp) = diss(k+1,j,i+1) |
---|
| 1118 | de_dxi(num_gp) = de_dx(k+1,j,i+1) |
---|
[1359] | 1119 | de_dyi(num_gp) = 0.0_wp |
---|
[849] | 1120 | de_dzi(num_gp) = de_dz(k+1,j,i+1) |
---|
| 1121 | ENDIF |
---|
| 1122 | |
---|
| 1123 | IF ( gp_outside_of_building(8) == 1 .AND. & |
---|
| 1124 | gp_outside_of_building(7) == 0 ) THEN |
---|
| 1125 | num_gp = num_gp + 1 |
---|
| 1126 | location(num_gp,1) = (i+1) * dx |
---|
[1359] | 1127 | location(num_gp,2) = j * dy + 0.5_wp * dy |
---|
| 1128 | location(num_gp,3) = k * dz + 0.5_wp * dz |
---|
[849] | 1129 | ei(num_gp) = e(k+1,j+1,i+1) |
---|
| 1130 | dissi(num_gp) = diss(k+1,j+1,i+1) |
---|
| 1131 | de_dxi(num_gp) = de_dx(k+1,j+1,i+1) |
---|
[1359] | 1132 | de_dyi(num_gp) = 0.0_wp |
---|
[849] | 1133 | de_dzi(num_gp) = de_dz(k+1,j+1,i+1) |
---|
| 1134 | ENDIF |
---|
| 1135 | |
---|
| 1136 | ! |
---|
| 1137 | !-- If wall between gridpoint 4 and gridpoint 8, then |
---|
| 1138 | !-- Neumann boundary condition has to be applied |
---|
| 1139 | IF ( gp_outside_of_building(4) == 1 .AND. & |
---|
| 1140 | gp_outside_of_building(8) == 0 ) THEN |
---|
| 1141 | num_gp = num_gp + 1 |
---|
[1359] | 1142 | location(num_gp,1) = i * dx + 0.5_wp * dx |
---|
[849] | 1143 | location(num_gp,2) = (j+1) * dy |
---|
[1359] | 1144 | location(num_gp,3) = k * dz + 0.5_wp * dz |
---|
[849] | 1145 | ei(num_gp) = e(k+1,j+1,i) |
---|
| 1146 | dissi(num_gp) = diss(k+1,j+1,i) |
---|
[1359] | 1147 | de_dxi(num_gp) = 0.0_wp |
---|
[849] | 1148 | de_dyi(num_gp) = de_dy(k+1,j+1,i) |
---|
| 1149 | de_dzi(num_gp) = de_dz(k+1,j+1,i) |
---|
| 1150 | ENDIF |
---|
| 1151 | |
---|
| 1152 | IF ( gp_outside_of_building(8) == 1 .AND. & |
---|
| 1153 | gp_outside_of_building(4) == 0 ) THEN |
---|
| 1154 | num_gp = num_gp + 1 |
---|
[1359] | 1155 | location(num_gp,1) = i * dx + 0.5_wp * dx |
---|
[849] | 1156 | location(num_gp,2) = (j+1) * dy |
---|
[1359] | 1157 | location(num_gp,3) = k * dz + 0.5_wp * dz |
---|
[849] | 1158 | ei(num_gp) = e(k+1,j+1,i+1) |
---|
| 1159 | dissi(num_gp) = diss(k+1,j+1,i+1) |
---|
[1359] | 1160 | de_dxi(num_gp) = 0.0_wp |
---|
[849] | 1161 | de_dyi(num_gp) = de_dy(k+1,j+1,i+1) |
---|
| 1162 | de_dzi(num_gp) = de_dz(k+1,j+1,i+1) |
---|
| 1163 | ENDIF |
---|
| 1164 | |
---|
| 1165 | ! |
---|
| 1166 | !-- If wall between gridpoint 3 and gridpoint 4, then |
---|
| 1167 | !-- Neumann boundary condition has to be applied |
---|
| 1168 | IF ( gp_outside_of_building(3) == 1 .AND. & |
---|
| 1169 | gp_outside_of_building(4) == 0 ) THEN |
---|
| 1170 | num_gp = num_gp + 1 |
---|
| 1171 | location(num_gp,1) = i * dx |
---|
[1359] | 1172 | location(num_gp,2) = j * dy + 0.5_wp * dy |
---|
| 1173 | location(num_gp,3) = k * dz + 0.5_wp * dz |
---|
[849] | 1174 | ei(num_gp) = e(k+1,j,i) |
---|
| 1175 | dissi(num_gp) = diss(k+1,j,i) |
---|
| 1176 | de_dxi(num_gp) = de_dx(k+1,j,i) |
---|
[1359] | 1177 | de_dyi(num_gp) = 0.0_wp |
---|
[849] | 1178 | de_dzi(num_gp) = de_dz(k+1,j,i) |
---|
| 1179 | ENDIF |
---|
| 1180 | |
---|
| 1181 | IF ( gp_outside_of_building(4) == 1 .AND. & |
---|
| 1182 | gp_outside_of_building(3) == 0 ) THEN |
---|
| 1183 | num_gp = num_gp + 1 |
---|
| 1184 | location(num_gp,1) = i * dx |
---|
[1359] | 1185 | location(num_gp,2) = j * dy + 0.5_wp * dy |
---|
| 1186 | location(num_gp,3) = k * dz + 0.5_wp * dz |
---|
[849] | 1187 | ei(num_gp) = e(k+1,j+1,i) |
---|
| 1188 | dissi(num_gp) = diss(k+1,j+1,i) |
---|
| 1189 | de_dxi(num_gp) = de_dx(k+1,j+1,i) |
---|
[1359] | 1190 | de_dyi(num_gp) = 0.0_wp |
---|
[849] | 1191 | de_dzi(num_gp) = de_dz(k+1,j+1,i) |
---|
| 1192 | ENDIF |
---|
| 1193 | |
---|
| 1194 | ! |
---|
| 1195 | !-- If wall between gridpoint 1 and gridpoint 3, then |
---|
| 1196 | !-- Neumann boundary condition has to be applied |
---|
| 1197 | !-- (only one case as only building beneath is possible) |
---|
| 1198 | IF ( gp_outside_of_building(1) == 0 .AND. & |
---|
| 1199 | gp_outside_of_building(3) == 1 ) THEN |
---|
| 1200 | num_gp = num_gp + 1 |
---|
| 1201 | location(num_gp,1) = i * dx |
---|
| 1202 | location(num_gp,2) = j * dy |
---|
| 1203 | location(num_gp,3) = k * dz |
---|
| 1204 | ei(num_gp) = e(k+1,j,i) |
---|
| 1205 | dissi(num_gp) = diss(k+1,j,i) |
---|
| 1206 | de_dxi(num_gp) = de_dx(k+1,j,i) |
---|
| 1207 | de_dyi(num_gp) = de_dy(k+1,j,i) |
---|
[1359] | 1208 | de_dzi(num_gp) = 0.0_wp |
---|
[849] | 1209 | ENDIF |
---|
| 1210 | |
---|
| 1211 | ! |
---|
| 1212 | !-- If wall between gridpoint 5 and gridpoint 7, then |
---|
| 1213 | !-- Neumann boundary condition has to be applied |
---|
| 1214 | !-- (only one case as only building beneath is possible) |
---|
| 1215 | IF ( gp_outside_of_building(5) == 0 .AND. & |
---|
| 1216 | gp_outside_of_building(7) == 1 ) THEN |
---|
| 1217 | num_gp = num_gp + 1 |
---|
| 1218 | location(num_gp,1) = (i+1) * dx |
---|
| 1219 | location(num_gp,2) = j * dy |
---|
| 1220 | location(num_gp,3) = k * dz |
---|
| 1221 | ei(num_gp) = e(k+1,j,i+1) |
---|
| 1222 | dissi(num_gp) = diss(k+1,j,i+1) |
---|
| 1223 | de_dxi(num_gp) = de_dx(k+1,j,i+1) |
---|
| 1224 | de_dyi(num_gp) = de_dy(k+1,j,i+1) |
---|
[1359] | 1225 | de_dzi(num_gp) = 0.0_wp |
---|
[849] | 1226 | ENDIF |
---|
| 1227 | |
---|
| 1228 | ! |
---|
| 1229 | !-- If wall between gridpoint 2 and gridpoint 4, then |
---|
| 1230 | !-- Neumann boundary condition has to be applied |
---|
| 1231 | !-- (only one case as only building beneath is possible) |
---|
| 1232 | IF ( gp_outside_of_building(2) == 0 .AND. & |
---|
| 1233 | gp_outside_of_building(4) == 1 ) THEN |
---|
| 1234 | num_gp = num_gp + 1 |
---|
| 1235 | location(num_gp,1) = i * dx |
---|
| 1236 | location(num_gp,2) = (j+1) * dy |
---|
| 1237 | location(num_gp,3) = k * dz |
---|
| 1238 | ei(num_gp) = e(k+1,j+1,i) |
---|
| 1239 | dissi(num_gp) = diss(k+1,j+1,i) |
---|
| 1240 | de_dxi(num_gp) = de_dx(k+1,j+1,i) |
---|
| 1241 | de_dyi(num_gp) = de_dy(k+1,j+1,i) |
---|
[1359] | 1242 | de_dzi(num_gp) = 0.0_wp |
---|
[849] | 1243 | ENDIF |
---|
| 1244 | |
---|
[1929] | 1245 | ! |
---|
[849] | 1246 | !-- If wall between gridpoint 6 and gridpoint 8, then |
---|
| 1247 | !-- Neumann boundary condition has to be applied |
---|
| 1248 | !-- (only one case as only building beneath is possible) |
---|
| 1249 | IF ( gp_outside_of_building(6) == 0 .AND. & |
---|
| 1250 | gp_outside_of_building(8) == 1 ) THEN |
---|
| 1251 | num_gp = num_gp + 1 |
---|
| 1252 | location(num_gp,1) = (i+1) * dx |
---|
| 1253 | location(num_gp,2) = (j+1) * dy |
---|
| 1254 | location(num_gp,3) = k * dz |
---|
| 1255 | ei(num_gp) = e(k+1,j+1,i+1) |
---|
| 1256 | dissi(num_gp) = diss(k+1,j+1,i+1) |
---|
| 1257 | de_dxi(num_gp) = de_dx(k+1,j+1,i+1) |
---|
| 1258 | de_dyi(num_gp) = de_dy(k+1,j+1,i+1) |
---|
[1359] | 1259 | de_dzi(num_gp) = 0.0_wp |
---|
[849] | 1260 | ENDIF |
---|
[1929] | 1261 | |
---|
[849] | 1262 | ! |
---|
| 1263 | !-- Carry out the interpolation |
---|
| 1264 | IF ( num_gp == 1 ) THEN |
---|
[1929] | 1265 | ! |
---|
[849] | 1266 | !-- If only one of the gridpoints is situated outside of the |
---|
| 1267 | !-- building, it follows that the values at the particle |
---|
| 1268 | !-- location are the same as the gridpoint values |
---|
[1929] | 1269 | e_int(n) = ei(num_gp) |
---|
| 1270 | diss_int(n) = dissi(num_gp) |
---|
[1359] | 1271 | de_dx_int(n) = de_dxi(num_gp) |
---|
| 1272 | de_dy_int(n) = de_dyi(num_gp) |
---|
| 1273 | de_dz_int(n) = de_dzi(num_gp) |
---|
[1929] | 1274 | ! |
---|
| 1275 | !-- Set flag for stochastic equation which disables calculation |
---|
| 1276 | !-- of drift and memory term near topography. |
---|
| 1277 | term_1_2(n) = 0.0_wp |
---|
[849] | 1278 | ELSE IF ( num_gp > 1 ) THEN |
---|
[1929] | 1279 | |
---|
[1359] | 1280 | d_sum = 0.0_wp |
---|
[1929] | 1281 | ! |
---|
[849] | 1282 | !-- Evaluation of the distances between the gridpoints |
---|
| 1283 | !-- contributing to the interpolated values, and the particle |
---|
| 1284 | !-- location |
---|
| 1285 | DO agp = 1, num_gp |
---|
| 1286 | d_gp_pl(agp) = ( particles(n)%x-location(agp,1) )**2 & |
---|
| 1287 | + ( particles(n)%y-location(agp,2) )**2 & |
---|
[1359] | 1288 | + ( zv(n)-location(agp,3) )**2 |
---|
[849] | 1289 | d_sum = d_sum + d_gp_pl(agp) |
---|
| 1290 | ENDDO |
---|
[1929] | 1291 | |
---|
[849] | 1292 | ! |
---|
| 1293 | !-- Finally the interpolation can be carried out |
---|
[1359] | 1294 | e_int(n) = 0.0_wp |
---|
| 1295 | diss_int(n) = 0.0_wp |
---|
[1929] | 1296 | de_dx_int(n) = 0.0_wp |
---|
| 1297 | de_dy_int(n) = 0.0_wp |
---|
| 1298 | de_dz_int(n) = 0.0_wp |
---|
[849] | 1299 | DO agp = 1, num_gp |
---|
[1359] | 1300 | e_int(n) = e_int(n) + ( d_sum - d_gp_pl(agp) ) * & |
---|
[849] | 1301 | ei(agp) / ( (num_gp-1) * d_sum ) |
---|
[1359] | 1302 | diss_int(n) = diss_int(n) + ( d_sum - d_gp_pl(agp) ) * & |
---|
[849] | 1303 | dissi(agp) / ( (num_gp-1) * d_sum ) |
---|
[1359] | 1304 | de_dx_int(n) = de_dx_int(n) + ( d_sum - d_gp_pl(agp) ) * & |
---|
[849] | 1305 | de_dxi(agp) / ( (num_gp-1) * d_sum ) |
---|
[1359] | 1306 | de_dy_int(n) = de_dy_int(n) + ( d_sum - d_gp_pl(agp) ) * & |
---|
[849] | 1307 | de_dyi(agp) / ( (num_gp-1) * d_sum ) |
---|
[1359] | 1308 | de_dz_int(n) = de_dz_int(n) + ( d_sum - d_gp_pl(agp) ) * & |
---|
[849] | 1309 | de_dzi(agp) / ( (num_gp-1) * d_sum ) |
---|
| 1310 | ENDDO |
---|
[1929] | 1311 | |
---|
[849] | 1312 | ENDIF |
---|
[1929] | 1313 | e_int(n) = MAX( 1E-20_wp, e_int(n) ) |
---|
| 1314 | diss_int(n) = MAX( 1E-20_wp, diss_int(n) ) |
---|
| 1315 | de_dx_int(n) = MAX( 1E-20_wp, de_dx_int(n) ) |
---|
| 1316 | de_dy_int(n) = MAX( 1E-20_wp, de_dy_int(n) ) |
---|
| 1317 | de_dz_int(n) = MAX( 1E-20_wp, de_dz_int(n) ) |
---|
| 1318 | ! |
---|
| 1319 | !-- Set flag for stochastic equation which disables calculation |
---|
| 1320 | !-- of drift and memory term near topography. |
---|
| 1321 | term_1_2(n) = 0.0_wp |
---|
[849] | 1322 | ENDIF |
---|
[1359] | 1323 | ENDDO |
---|
| 1324 | ENDIF |
---|
[849] | 1325 | |
---|
[1359] | 1326 | DO nb = 0,7 |
---|
| 1327 | i = ip + block_offset(nb)%i_off |
---|
| 1328 | j = jp + block_offset(nb)%j_off |
---|
| 1329 | k = kp + block_offset(nb)%k_off |
---|
[849] | 1330 | |
---|
[1359] | 1331 | DO n = start_index(nb), end_index(nb) |
---|
[849] | 1332 | ! |
---|
[1359] | 1333 | !-- Vertical interpolation of the horizontally averaged SGS TKE and |
---|
| 1334 | !-- resolved-scale velocity variances and use the interpolated values |
---|
| 1335 | !-- to calculate the coefficient fs, which is a measure of the ratio |
---|
| 1336 | !-- of the subgrid-scale turbulent kinetic energy to the total amount |
---|
| 1337 | !-- of turbulent kinetic energy. |
---|
| 1338 | IF ( k == 0 ) THEN |
---|
| 1339 | e_mean_int = hom(0,1,8,0) |
---|
| 1340 | ELSE |
---|
| 1341 | e_mean_int = hom(k,1,8,0) + & |
---|
| 1342 | ( hom(k+1,1,8,0) - hom(k,1,8,0) ) / & |
---|
| 1343 | ( zu(k+1) - zu(k) ) * & |
---|
| 1344 | ( zv(n) - zu(k) ) |
---|
| 1345 | ENDIF |
---|
[849] | 1346 | |
---|
[1685] | 1347 | kw = kp - 1 |
---|
[849] | 1348 | |
---|
[1359] | 1349 | IF ( k == 0 ) THEN |
---|
| 1350 | aa = hom(k+1,1,30,0) * ( zv(n) / & |
---|
| 1351 | ( 0.5_wp * ( zu(k+1) - zu(k) ) ) ) |
---|
| 1352 | bb = hom(k+1,1,31,0) * ( zv(n) / & |
---|
| 1353 | ( 0.5_wp * ( zu(k+1) - zu(k) ) ) ) |
---|
| 1354 | cc = hom(kw+1,1,32,0) * ( zv(n) / & |
---|
| 1355 | ( 1.0_wp * ( zw(kw+1) - zw(kw) ) ) ) |
---|
| 1356 | ELSE |
---|
| 1357 | aa = hom(k,1,30,0) + ( hom(k+1,1,30,0) - hom(k,1,30,0) ) * & |
---|
| 1358 | ( ( zv(n) - zu(k) ) / ( zu(k+1) - zu(k) ) ) |
---|
| 1359 | bb = hom(k,1,31,0) + ( hom(k+1,1,31,0) - hom(k,1,31,0) ) * & |
---|
| 1360 | ( ( zv(n) - zu(k) ) / ( zu(k+1) - zu(k) ) ) |
---|
| 1361 | cc = hom(kw,1,32,0) + ( hom(kw+1,1,32,0)-hom(kw,1,32,0) ) * & |
---|
| 1362 | ( ( zv(n) - zw(kw) ) / ( zw(kw+1)-zw(kw) ) ) |
---|
| 1363 | ENDIF |
---|
[849] | 1364 | |
---|
[1359] | 1365 | vv_int = ( 1.0_wp / 3.0_wp ) * ( aa + bb + cc ) |
---|
| 1366 | ! |
---|
| 1367 | !-- Needed to avoid NaN particle velocities. The value of 1.0 is just |
---|
| 1368 | !-- an educated guess for the given case. |
---|
| 1369 | IF ( vv_int + ( 2.0_wp / 3.0_wp ) * e_mean_int == 0.0_wp ) THEN |
---|
| 1370 | fs_int(n) = 1.0_wp |
---|
| 1371 | ELSE |
---|
| 1372 | fs_int(n) = ( 2.0_wp / 3.0_wp ) * e_mean_int / & |
---|
| 1373 | ( vv_int + ( 2.0_wp / 3.0_wp ) * e_mean_int ) |
---|
| 1374 | ENDIF |
---|
[849] | 1375 | |
---|
[1359] | 1376 | ENDDO |
---|
| 1377 | ENDDO |
---|
[849] | 1378 | |
---|
[1359] | 1379 | DO n = 1, number_of_particles |
---|
| 1380 | |
---|
| 1381 | rg(n,1) = random_gauss( iran_part, 5.0_wp ) |
---|
| 1382 | rg(n,2) = random_gauss( iran_part, 5.0_wp ) |
---|
| 1383 | rg(n,3) = random_gauss( iran_part, 5.0_wp ) |
---|
| 1384 | |
---|
| 1385 | ENDDO |
---|
| 1386 | |
---|
| 1387 | DO n = 1, number_of_particles |
---|
[849] | 1388 | ! |
---|
| 1389 | !-- Calculate the Lagrangian timescale according to Weil et al. (2004). |
---|
[1929] | 1390 | lagr_timescale = ( 4.0_wp * e_int(n) + 1E-20_wp ) / & |
---|
| 1391 | ( 3.0_wp * fs_int(n) * c_0 * diss_int(n) + 1E-20_wp ) |
---|
[849] | 1392 | |
---|
| 1393 | ! |
---|
| 1394 | !-- Calculate the next particle timestep. dt_gap is the time needed to |
---|
| 1395 | !-- complete the current LES timestep. |
---|
| 1396 | dt_gap = dt_3d - particles(n)%dt_sum |
---|
[1359] | 1397 | dt_particle(n) = MIN( dt_3d, 0.025_wp * lagr_timescale, dt_gap ) |
---|
[849] | 1398 | |
---|
| 1399 | ! |
---|
| 1400 | !-- The particle timestep should not be too small in order to prevent |
---|
| 1401 | !-- the number of particle timesteps of getting too large |
---|
[1359] | 1402 | IF ( dt_particle(n) < dt_min_part .AND. dt_min_part < dt_gap ) THEN |
---|
| 1403 | dt_particle(n) = dt_min_part |
---|
[849] | 1404 | ENDIF |
---|
| 1405 | |
---|
| 1406 | ! |
---|
| 1407 | !-- Calculate the SGS velocity components |
---|
[1359] | 1408 | IF ( particles(n)%age == 0.0_wp ) THEN |
---|
[849] | 1409 | ! |
---|
| 1410 | !-- For new particles the SGS components are derived from the SGS |
---|
| 1411 | !-- TKE. Limit the Gaussian random number to the interval |
---|
| 1412 | !-- [-5.0*sigma, 5.0*sigma] in order to prevent the SGS velocities |
---|
| 1413 | !-- from becoming unrealistically large. |
---|
[1929] | 1414 | particles(n)%rvar1 = SQRT( 2.0_wp * sgs_wf_part * e_int(n) + 1E-20_wp ) * & |
---|
[1359] | 1415 | ( rg(n,1) - 1.0_wp ) |
---|
[1929] | 1416 | particles(n)%rvar2 = SQRT( 2.0_wp * sgs_wf_part * e_int(n) + 1E-20_wp ) * & |
---|
[1359] | 1417 | ( rg(n,2) - 1.0_wp ) |
---|
[1929] | 1418 | particles(n)%rvar3 = SQRT( 2.0_wp * sgs_wf_part * e_int(n) + 1E-20_wp ) * & |
---|
[1359] | 1419 | ( rg(n,3) - 1.0_wp ) |
---|
[849] | 1420 | |
---|
| 1421 | ELSE |
---|
| 1422 | ! |
---|
| 1423 | !-- Restriction of the size of the new timestep: compared to the |
---|
| 1424 | !-- previous timestep the increase must not exceed 200% |
---|
| 1425 | |
---|
| 1426 | dt_particle_m = particles(n)%age - particles(n)%age_m |
---|
[1359] | 1427 | IF ( dt_particle(n) > 2.0_wp * dt_particle_m ) THEN |
---|
| 1428 | dt_particle(n) = 2.0_wp * dt_particle_m |
---|
[849] | 1429 | ENDIF |
---|
| 1430 | |
---|
| 1431 | ! |
---|
| 1432 | !-- For old particles the SGS components are correlated with the |
---|
| 1433 | !-- values from the previous timestep. Random numbers have also to |
---|
| 1434 | !-- be limited (see above). |
---|
| 1435 | !-- As negative values for the subgrid TKE are not allowed, the |
---|
| 1436 | !-- change of the subgrid TKE with time cannot be smaller than |
---|
[1359] | 1437 | !-- -e_int(n)/dt_particle. This value is used as a lower boundary |
---|
[849] | 1438 | !-- value for the change of TKE |
---|
| 1439 | |
---|
[1359] | 1440 | de_dt_min = - e_int(n) / dt_particle(n) |
---|
[849] | 1441 | |
---|
[1359] | 1442 | de_dt = ( e_int(n) - particles(n)%e_m ) / dt_particle_m |
---|
[849] | 1443 | |
---|
| 1444 | IF ( de_dt < de_dt_min ) THEN |
---|
| 1445 | de_dt = de_dt_min |
---|
| 1446 | ENDIF |
---|
| 1447 | |
---|
[1929] | 1448 | CALL weil_stochastic_eq(particles(n)%rvar1, fs_int(n), e_int(n), & |
---|
| 1449 | de_dx_int(n), de_dt, diss_int(n), & |
---|
| 1450 | dt_particle(n), rg(n,1), term_1_2(n) ) |
---|
[849] | 1451 | |
---|
[1929] | 1452 | CALL weil_stochastic_eq(particles(n)%rvar2, fs_int(n), e_int(n), & |
---|
| 1453 | de_dy_int(n), de_dt, diss_int(n), & |
---|
| 1454 | dt_particle(n), rg(n,2), term_1_2(n) ) |
---|
[849] | 1455 | |
---|
[1929] | 1456 | CALL weil_stochastic_eq(particles(n)%rvar3, fs_int(n), e_int(n), & |
---|
| 1457 | de_dz_int(n), de_dt, diss_int(n), & |
---|
| 1458 | dt_particle(n), rg(n,3), term_1_2(n) ) |
---|
[849] | 1459 | |
---|
| 1460 | ENDIF |
---|
[1929] | 1461 | |
---|
[1359] | 1462 | u_int(n) = u_int(n) + particles(n)%rvar1 |
---|
| 1463 | v_int(n) = v_int(n) + particles(n)%rvar2 |
---|
| 1464 | w_int(n) = w_int(n) + particles(n)%rvar3 |
---|
[849] | 1465 | ! |
---|
| 1466 | !-- Store the SGS TKE of the current timelevel which is needed for |
---|
| 1467 | !-- for calculating the SGS particle velocities at the next timestep |
---|
[1359] | 1468 | particles(n)%e_m = e_int(n) |
---|
| 1469 | ENDDO |
---|
[849] | 1470 | |
---|
[1359] | 1471 | ELSE |
---|
[849] | 1472 | ! |
---|
[1359] | 1473 | !-- If no SGS velocities are used, only the particle timestep has to |
---|
| 1474 | !-- be set |
---|
| 1475 | dt_particle = dt_3d |
---|
[849] | 1476 | |
---|
[1359] | 1477 | ENDIF |
---|
[849] | 1478 | ! |
---|
[1359] | 1479 | !-- Store the old age of the particle ( needed to prevent that a |
---|
| 1480 | !-- particle crosses several PEs during one timestep, and for the |
---|
| 1481 | !-- evaluation of the subgrid particle velocity fluctuations ) |
---|
| 1482 | particles(1:number_of_particles)%age_m = particles(1:number_of_particles)%age |
---|
[849] | 1483 | |
---|
[1359] | 1484 | dens_ratio = particle_groups(particles(1:number_of_particles)%group)%density_ratio |
---|
[849] | 1485 | |
---|
[1359] | 1486 | IF ( ANY( dens_ratio == 0.0_wp ) ) THEN |
---|
| 1487 | DO n = 1, number_of_particles |
---|
| 1488 | |
---|
[849] | 1489 | ! |
---|
[1359] | 1490 | !-- Particle advection |
---|
| 1491 | IF ( dens_ratio(n) == 0.0_wp ) THEN |
---|
[849] | 1492 | ! |
---|
[1359] | 1493 | !-- Pure passive transport (without particle inertia) |
---|
| 1494 | particles(n)%x = xv(n) + u_int(n) * dt_particle(n) |
---|
| 1495 | particles(n)%y = yv(n) + v_int(n) * dt_particle(n) |
---|
| 1496 | particles(n)%z = zv(n) + w_int(n) * dt_particle(n) |
---|
[849] | 1497 | |
---|
[1359] | 1498 | particles(n)%speed_x = u_int(n) |
---|
| 1499 | particles(n)%speed_y = v_int(n) |
---|
| 1500 | particles(n)%speed_z = w_int(n) |
---|
[849] | 1501 | |
---|
[1359] | 1502 | ELSE |
---|
[849] | 1503 | ! |
---|
[1359] | 1504 | !-- Transport of particles with inertia |
---|
| 1505 | particles(n)%x = particles(n)%x + particles(n)%speed_x * & |
---|
| 1506 | dt_particle(n) |
---|
| 1507 | particles(n)%y = particles(n)%y + particles(n)%speed_y * & |
---|
| 1508 | dt_particle(n) |
---|
| 1509 | particles(n)%z = particles(n)%z + particles(n)%speed_z * & |
---|
| 1510 | dt_particle(n) |
---|
[849] | 1511 | |
---|
| 1512 | ! |
---|
[1359] | 1513 | !-- Update of the particle velocity |
---|
| 1514 | IF ( cloud_droplets ) THEN |
---|
[1822] | 1515 | ! |
---|
| 1516 | !-- Terminal velocity is computed for vertical direction (Rogers et |
---|
| 1517 | !-- al., 1993, J. Appl. Meteorol.) |
---|
| 1518 | diameter = particles(n)%radius * 2000.0_wp !diameter in mm |
---|
| 1519 | IF ( diameter <= d0_rog ) THEN |
---|
| 1520 | w_s = k_cap_rog * diameter * ( 1.0_wp - EXP( -k_low_rog * diameter ) ) |
---|
| 1521 | ELSE |
---|
| 1522 | w_s = a_rog - b_rog * EXP( -c_rog * diameter ) |
---|
| 1523 | ENDIF |
---|
[1359] | 1524 | |
---|
[1822] | 1525 | ! |
---|
| 1526 | !-- If selected, add random velocities following Soelch and Kaercher |
---|
| 1527 | !-- (2010, Q. J. R. Meteorol. Soc.) |
---|
| 1528 | IF ( use_sgs_for_particles ) THEN |
---|
| 1529 | lagr_timescale = km(kp,jp,ip) / MAX( e(kp,jp,ip), 1.0E-20_wp ) |
---|
| 1530 | RL = EXP( -1.0_wp * dt_3d / lagr_timescale ) |
---|
| 1531 | sigma = SQRT( e(kp,jp,ip) ) |
---|
| 1532 | |
---|
| 1533 | rg1 = random_gauss( iran_part, 5.0_wp ) - 1.0_wp |
---|
| 1534 | rg2 = random_gauss( iran_part, 5.0_wp ) - 1.0_wp |
---|
| 1535 | rg3 = random_gauss( iran_part, 5.0_wp ) - 1.0_wp |
---|
| 1536 | |
---|
| 1537 | particles(n)%rvar1 = RL * particles(n)%rvar1 + & |
---|
| 1538 | SQRT( 1.0_wp - RL**2 ) * sigma * rg1 |
---|
| 1539 | particles(n)%rvar2 = RL * particles(n)%rvar2 + & |
---|
| 1540 | SQRT( 1.0_wp - RL**2 ) * sigma * rg2 |
---|
| 1541 | particles(n)%rvar3 = RL * particles(n)%rvar3 + & |
---|
| 1542 | SQRT( 1.0_wp - RL**2 ) * sigma * rg3 |
---|
| 1543 | |
---|
| 1544 | particles(n)%speed_x = u_int(n) + particles(n)%rvar1 |
---|
| 1545 | particles(n)%speed_y = v_int(n) + particles(n)%rvar2 |
---|
| 1546 | particles(n)%speed_z = w_int(n) + particles(n)%rvar3 - w_s |
---|
| 1547 | ELSE |
---|
| 1548 | particles(n)%speed_x = u_int(n) |
---|
| 1549 | particles(n)%speed_y = v_int(n) |
---|
| 1550 | particles(n)%speed_z = w_int(n) - w_s |
---|
| 1551 | ENDIF |
---|
| 1552 | |
---|
[1359] | 1553 | ELSE |
---|
[1822] | 1554 | |
---|
| 1555 | IF ( use_sgs_for_particles ) THEN |
---|
| 1556 | exp_arg = particle_groups(particles(n)%group)%exp_arg |
---|
| 1557 | exp_term = EXP( -exp_arg * dt_particle(n) ) |
---|
| 1558 | ELSE |
---|
| 1559 | exp_arg = particle_groups(particles(n)%group)%exp_arg |
---|
| 1560 | exp_term = particle_groups(particles(n)%group)%exp_term |
---|
| 1561 | ENDIF |
---|
| 1562 | particles(n)%speed_x = particles(n)%speed_x * exp_term + & |
---|
| 1563 | u_int(n) * ( 1.0_wp - exp_term ) |
---|
| 1564 | particles(n)%speed_y = particles(n)%speed_y * exp_term + & |
---|
| 1565 | v_int(n) * ( 1.0_wp - exp_term ) |
---|
| 1566 | particles(n)%speed_z = particles(n)%speed_z * exp_term + & |
---|
| 1567 | ( w_int(n) - ( 1.0_wp - dens_ratio(n) ) * & |
---|
| 1568 | g / exp_arg ) * ( 1.0_wp - exp_term ) |
---|
[1359] | 1569 | ENDIF |
---|
[1822] | 1570 | |
---|
[1359] | 1571 | ENDIF |
---|
| 1572 | |
---|
| 1573 | ENDDO |
---|
| 1574 | |
---|
| 1575 | ELSE |
---|
| 1576 | |
---|
| 1577 | DO n = 1, number_of_particles |
---|
| 1578 | |
---|
| 1579 | !-- Transport of particles with inertia |
---|
| 1580 | particles(n)%x = xv(n) + particles(n)%speed_x * dt_particle(n) |
---|
| 1581 | particles(n)%y = yv(n) + particles(n)%speed_y * dt_particle(n) |
---|
| 1582 | particles(n)%z = zv(n) + particles(n)%speed_z * dt_particle(n) |
---|
| 1583 | ! |
---|
[849] | 1584 | !-- Update of the particle velocity |
---|
| 1585 | IF ( cloud_droplets ) THEN |
---|
[1822] | 1586 | ! |
---|
| 1587 | !-- Terminal velocity is computed for vertical direction (Rogers et al., |
---|
| 1588 | !-- 1993, J. Appl. Meteorol.) |
---|
| 1589 | diameter = particles(n)%radius * 2000.0_wp !diameter in mm |
---|
| 1590 | IF ( diameter <= d0_rog ) THEN |
---|
| 1591 | w_s = k_cap_rog * diameter * ( 1.0_wp - EXP( -k_low_rog * diameter ) ) |
---|
| 1592 | ELSE |
---|
| 1593 | w_s = a_rog - b_rog * EXP( -c_rog * diameter ) |
---|
| 1594 | ENDIF |
---|
[1359] | 1595 | |
---|
[1822] | 1596 | ! |
---|
| 1597 | !-- If selected, add random velocities following Soelch and Kaercher |
---|
| 1598 | !-- (2010, Q. J. R. Meteorol. Soc.) |
---|
| 1599 | IF ( use_sgs_for_particles ) THEN |
---|
| 1600 | lagr_timescale = km(kp,jp,ip) / MAX( e(kp,jp,ip), 1.0E-20_wp ) |
---|
| 1601 | RL = EXP( -1.0_wp * dt_3d / lagr_timescale ) |
---|
| 1602 | sigma = SQRT( e(kp,jp,ip) ) |
---|
[1359] | 1603 | |
---|
[1822] | 1604 | rg1 = random_gauss( iran_part, 5.0_wp ) - 1.0_wp |
---|
| 1605 | rg2 = random_gauss( iran_part, 5.0_wp ) - 1.0_wp |
---|
| 1606 | rg3 = random_gauss( iran_part, 5.0_wp ) - 1.0_wp |
---|
| 1607 | |
---|
| 1608 | particles(n)%rvar1 = RL * particles(n)%rvar1 + & |
---|
| 1609 | SQRT( 1.0_wp - RL**2 ) * sigma * rg1 |
---|
| 1610 | particles(n)%rvar2 = RL * particles(n)%rvar2 + & |
---|
| 1611 | SQRT( 1.0_wp - RL**2 ) * sigma * rg2 |
---|
| 1612 | particles(n)%rvar3 = RL * particles(n)%rvar3 + & |
---|
| 1613 | SQRT( 1.0_wp - RL**2 ) * sigma * rg3 |
---|
| 1614 | |
---|
| 1615 | particles(n)%speed_x = u_int(n) + particles(n)%rvar1 |
---|
| 1616 | particles(n)%speed_y = v_int(n) + particles(n)%rvar2 |
---|
| 1617 | particles(n)%speed_z = w_int(n) + particles(n)%rvar3 - w_s |
---|
| 1618 | ELSE |
---|
| 1619 | particles(n)%speed_x = u_int(n) |
---|
| 1620 | particles(n)%speed_y = v_int(n) |
---|
| 1621 | particles(n)%speed_z = w_int(n) - w_s |
---|
| 1622 | ENDIF |
---|
| 1623 | |
---|
[849] | 1624 | ELSE |
---|
[1822] | 1625 | |
---|
| 1626 | IF ( use_sgs_for_particles ) THEN |
---|
| 1627 | exp_arg = particle_groups(particles(n)%group)%exp_arg |
---|
| 1628 | exp_term = EXP( -exp_arg * dt_particle(n) ) |
---|
| 1629 | ELSE |
---|
| 1630 | exp_arg = particle_groups(particles(n)%group)%exp_arg |
---|
| 1631 | exp_term = particle_groups(particles(n)%group)%exp_term |
---|
| 1632 | ENDIF |
---|
| 1633 | particles(n)%speed_x = particles(n)%speed_x * exp_term + & |
---|
| 1634 | u_int(n) * ( 1.0_wp - exp_term ) |
---|
| 1635 | particles(n)%speed_y = particles(n)%speed_y * exp_term + & |
---|
| 1636 | v_int(n) * ( 1.0_wp - exp_term ) |
---|
| 1637 | particles(n)%speed_z = particles(n)%speed_z * exp_term + & |
---|
| 1638 | ( w_int(n) - ( 1.0_wp - dens_ratio(n) ) * g / & |
---|
| 1639 | exp_arg ) * ( 1.0_wp - exp_term ) |
---|
[849] | 1640 | ENDIF |
---|
[1822] | 1641 | |
---|
[1359] | 1642 | ENDDO |
---|
[849] | 1643 | |
---|
[1359] | 1644 | ENDIF |
---|
| 1645 | |
---|
| 1646 | DO n = 1, number_of_particles |
---|
[849] | 1647 | ! |
---|
| 1648 | !-- Increment the particle age and the total time that the particle |
---|
| 1649 | !-- has advanced within the particle timestep procedure |
---|
[1359] | 1650 | particles(n)%age = particles(n)%age + dt_particle(n) |
---|
| 1651 | particles(n)%dt_sum = particles(n)%dt_sum + dt_particle(n) |
---|
[849] | 1652 | |
---|
| 1653 | ! |
---|
| 1654 | !-- Check whether there is still a particle that has not yet completed |
---|
| 1655 | !-- the total LES timestep |
---|
[1359] | 1656 | IF ( ( dt_3d - particles(n)%dt_sum ) > 1E-8_wp ) THEN |
---|
[849] | 1657 | dt_3d_reached_l = .FALSE. |
---|
| 1658 | ENDIF |
---|
| 1659 | |
---|
| 1660 | ENDDO |
---|
| 1661 | |
---|
[1359] | 1662 | CALL cpu_log( log_point_s(44), 'lpm_advec', 'pause' ) |
---|
[849] | 1663 | |
---|
[1929] | 1664 | |
---|
[849] | 1665 | END SUBROUTINE lpm_advec |
---|
[1929] | 1666 | |
---|
| 1667 | ! Description: |
---|
| 1668 | ! ------------ |
---|
| 1669 | !> Calculation of subgrid-scale particle speed using the stochastic model |
---|
| 1670 | !> of Weil et al. (2004, JAS, 61, 2877-2887). |
---|
| 1671 | !------------------------------------------------------------------------------! |
---|
| 1672 | SUBROUTINE weil_stochastic_eq( v_sgs, fs_n, e_n, dedxi_n, dedt_n, diss_n, & |
---|
| 1673 | dt_n, rg_n, fac ) |
---|
| 1674 | |
---|
| 1675 | USE kinds |
---|
| 1676 | |
---|
| 1677 | USE particle_attributes, & |
---|
| 1678 | ONLY: c_0, sgs_wf_part |
---|
| 1679 | |
---|
| 1680 | IMPLICIT NONE |
---|
| 1681 | |
---|
| 1682 | REAL(wp) :: a1 !< dummy argument |
---|
| 1683 | REAL(wp) :: dedt_n !< time derivative of TKE at particle position |
---|
| 1684 | REAL(wp) :: dedxi_n !< horizontal derivative of TKE at particle position |
---|
| 1685 | REAL(wp) :: diss_n !< dissipation at particle position |
---|
| 1686 | REAL(wp) :: dt_n !< particle timestep |
---|
| 1687 | REAL(wp) :: e_n !< TKE at particle position |
---|
| 1688 | REAL(wp) :: fac !< flag to identify adjacent topography |
---|
| 1689 | REAL(wp) :: fs_n !< weighting factor to prevent that subgrid-scale particle speed becomes too large |
---|
| 1690 | REAL(wp) :: sgs_w !< constant (1/3) |
---|
| 1691 | REAL(wp) :: rg_n !< random number |
---|
| 1692 | REAL(wp) :: term1 !< memory term |
---|
| 1693 | REAL(wp) :: term2 !< drift correction term |
---|
| 1694 | REAL(wp) :: term3 !< random term |
---|
| 1695 | REAL(wp) :: v_sgs !< subgrid-scale velocity component |
---|
| 1696 | |
---|
[2100] | 1697 | !-- At first, limit TKE to a small non-zero number, in order to prevent |
---|
| 1698 | !-- the occurrence of extremely large SGS-velocities in case TKE is zero, |
---|
| 1699 | !-- (could occur at the simulation begin). |
---|
| 1700 | e_n = MAX( e_n, 1E-20_wp ) |
---|
[1929] | 1701 | ! |
---|
| 1702 | !-- Please note, terms 1 and 2 (drift and memory term, respectively) are |
---|
| 1703 | !-- multiplied by a flag to switch of both terms near topography. |
---|
| 1704 | !-- This is necessary, as both terms may cause a subgrid-scale velocity build up |
---|
| 1705 | !-- if particles are trapped in regions with very small TKE, e.g. in narrow street |
---|
| 1706 | !-- canyons resolved by only a few grid points. Hence, term 1 and term 2 are |
---|
| 1707 | !-- disabled if one of the adjacent grid points belongs to topography. |
---|
| 1708 | !-- Moreover, in this case, the previous subgrid-scale component is also set |
---|
| 1709 | !-- to zero. |
---|
| 1710 | |
---|
| 1711 | a1 = fs_n * c_0 * diss_n |
---|
| 1712 | ! |
---|
| 1713 | !-- Memory term |
---|
| 1714 | term1 = - a1 * v_sgs * dt_n / ( 4.0_wp * sgs_wf_part * e_n + 1E-20_wp ) & |
---|
| 1715 | * fac |
---|
| 1716 | ! |
---|
| 1717 | !-- Drift correction term |
---|
| 1718 | term2 = ( ( dedt_n * v_sgs / e_n ) + dedxi_n ) * 0.5_wp * dt_n & |
---|
| 1719 | * fac |
---|
| 1720 | ! |
---|
| 1721 | !-- Random term |
---|
| 1722 | term3 = SQRT( MAX( a1, 1E-20 ) ) * ( rg_n - 1.0_wp ) * SQRT( dt_n ) |
---|
| 1723 | ! |
---|
| 1724 | !-- In cese one of the adjacent grid-boxes belongs to topograhy, the previous |
---|
| 1725 | !-- subgrid-scale velocity component is set to zero, in order to prevent a |
---|
| 1726 | !-- velocity build-up. |
---|
| 1727 | |
---|
| 1728 | !-- This case, set also previous subgrid-scale component to zero. |
---|
| 1729 | v_sgs = v_sgs * fac + term1 + term2 + term3 |
---|
| 1730 | |
---|
| 1731 | END SUBROUTINE weil_stochastic_eq |
---|