[1682] | 1 | !> @file lpm_advec.f90 |
---|
[2000] | 2 | !------------------------------------------------------------------------------! |
---|
[1036] | 3 | ! This file is part of PALM. |
---|
| 4 | ! |
---|
[2000] | 5 | ! PALM is free software: you can redistribute it and/or modify it under the |
---|
| 6 | ! terms of the GNU General Public License as published by the Free Software |
---|
| 7 | ! Foundation, either version 3 of the License, or (at your option) any later |
---|
| 8 | ! version. |
---|
[1036] | 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
[1818] | 17 | ! Copyright 1997-2016 Leibniz Universitaet Hannover |
---|
[2000] | 18 | !------------------------------------------------------------------------------! |
---|
[1036] | 19 | ! |
---|
[849] | 20 | ! Current revisions: |
---|
| 21 | ! ------------------ |
---|
[1930] | 22 | ! |
---|
[2001] | 23 | ! |
---|
[1930] | 24 | ! Former revisions: |
---|
| 25 | ! ----------------- |
---|
| 26 | ! $Id: lpm_advec.f90 2001 2016-08-20 18:41:22Z gronemeier $ |
---|
| 27 | ! |
---|
[2001] | 28 | ! 2000 2016-08-20 18:09:15Z knoop |
---|
| 29 | ! Forced header and separation lines into 80 columns |
---|
| 30 | ! |
---|
[1937] | 31 | ! 1936 2016-06-13 13:37:44Z suehring |
---|
| 32 | ! Formatting adjustments |
---|
| 33 | ! |
---|
[1930] | 34 | ! 1929 2016-06-09 16:25:25Z suehring |
---|
[1929] | 35 | ! Put stochastic equation in an extra subroutine. |
---|
| 36 | ! Set flag for stochastic equation to communicate whether a particle is near |
---|
| 37 | ! topography. This case, memory and drift term are disabled in the Weil equation. |
---|
[1889] | 38 | ! |
---|
[1929] | 39 | ! Enable vertical logarithmic interpolation also above topography. This case, |
---|
| 40 | ! set a lower limit for the friction velocity, as it can become very small |
---|
[1930] | 41 | ! in narrow street canyons, leading to too large particle speeds. |
---|
[1823] | 42 | ! |
---|
[1889] | 43 | ! 1888 2016-04-21 12:20:49Z suehring |
---|
| 44 | ! Bugfix concerning logarithmic interpolation of particle speed |
---|
| 45 | ! |
---|
[1823] | 46 | ! 1822 2016-04-07 07:49:42Z hoffmann |
---|
[1822] | 47 | ! Random velocity fluctuations for particles added. Terminal fall velocity |
---|
| 48 | ! for droplets is calculated from a parameterization (which is better than |
---|
| 49 | ! the previous, physically correct calculation, which demands a very short |
---|
| 50 | ! time step that is not used in the model). |
---|
| 51 | ! |
---|
| 52 | ! Unused variables deleted. |
---|
[1321] | 53 | ! |
---|
[1692] | 54 | ! 1691 2015-10-26 16:17:44Z maronga |
---|
| 55 | ! Renamed prandtl_layer to constant_flux_layer. |
---|
| 56 | ! |
---|
[1686] | 57 | ! 1685 2015-10-08 07:32:13Z raasch |
---|
| 58 | ! TKE check for negative values (so far, only zero value was checked) |
---|
| 59 | ! offset_ocean_nzt_m1 removed |
---|
| 60 | ! |
---|
[1683] | 61 | ! 1682 2015-10-07 23:56:08Z knoop |
---|
| 62 | ! Code annotations made doxygen readable |
---|
| 63 | ! |
---|
[1584] | 64 | ! 1583 2015-04-15 12:16:27Z suehring |
---|
| 65 | ! Bugfix: particle advection within Prandtl-layer in case of Galilei |
---|
| 66 | ! transformation. |
---|
| 67 | ! |
---|
[1370] | 68 | ! 1369 2014-04-24 05:57:38Z raasch |
---|
| 69 | ! usage of module interfaces removed |
---|
| 70 | ! |
---|
[1360] | 71 | ! 1359 2014-04-11 17:15:14Z hoffmann |
---|
| 72 | ! New particle structure integrated. |
---|
| 73 | ! Kind definition added to all floating point numbers. |
---|
| 74 | ! |
---|
[1323] | 75 | ! 1322 2014-03-20 16:38:49Z raasch |
---|
| 76 | ! REAL constants defined as wp_kind |
---|
| 77 | ! |
---|
[1321] | 78 | ! 1320 2014-03-20 08:40:49Z raasch |
---|
[1320] | 79 | ! ONLY-attribute added to USE-statements, |
---|
| 80 | ! kind-parameters added to all INTEGER and REAL declaration statements, |
---|
| 81 | ! kinds are defined in new module kinds, |
---|
| 82 | ! revision history before 2012 removed, |
---|
| 83 | ! comment fields (!:) to be used for variable explanations added to |
---|
| 84 | ! all variable declaration statements |
---|
[849] | 85 | ! |
---|
[1315] | 86 | ! 1314 2014-03-14 18:25:17Z suehring |
---|
| 87 | ! Vertical logarithmic interpolation of horizontal particle speed for particles |
---|
| 88 | ! between roughness height and first vertical grid level. |
---|
| 89 | ! |
---|
[1037] | 90 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
| 91 | ! code put under GPL (PALM 3.9) |
---|
| 92 | ! |
---|
[850] | 93 | ! 849 2012-03-15 10:35:09Z raasch |
---|
| 94 | ! initial revision (former part of advec_particles) |
---|
[849] | 95 | ! |
---|
[850] | 96 | ! |
---|
[849] | 97 | ! Description: |
---|
| 98 | ! ------------ |
---|
[1682] | 99 | !> Calculation of new particle positions due to advection using a simple Euler |
---|
| 100 | !> scheme. Particles may feel inertia effects. SGS transport can be included |
---|
| 101 | !> using the stochastic model of Weil et al. (2004, JAS, 61, 2877-2887). |
---|
[849] | 102 | !------------------------------------------------------------------------------! |
---|
[1682] | 103 | SUBROUTINE lpm_advec (ip,jp,kp) |
---|
| 104 | |
---|
[849] | 105 | |
---|
[1320] | 106 | USE arrays_3d, & |
---|
[1822] | 107 | ONLY: de_dx, de_dy, de_dz, diss, e, km, u, us, usws, v, vsws, w, zu, zw |
---|
[849] | 108 | |
---|
[1359] | 109 | USE cpulog |
---|
| 110 | |
---|
| 111 | USE pegrid |
---|
| 112 | |
---|
[1320] | 113 | USE control_parameters, & |
---|
[1691] | 114 | ONLY: atmos_ocean_sign, cloud_droplets, constant_flux_layer, dt_3d, & |
---|
[1822] | 115 | dt_3d_reached_l, dz, g, kappa, topography, u_gtrans, v_gtrans |
---|
[849] | 116 | |
---|
[1320] | 117 | USE grid_variables, & |
---|
| 118 | ONLY: ddx, dx, ddy, dy |
---|
| 119 | |
---|
| 120 | USE indices, & |
---|
| 121 | ONLY: nzb, nzb_s_inner, nzt |
---|
| 122 | |
---|
| 123 | USE kinds |
---|
| 124 | |
---|
| 125 | USE particle_attributes, & |
---|
[1822] | 126 | ONLY: block_offset, c_0, dt_min_part, grid_particles, & |
---|
[1359] | 127 | iran_part, log_z_z0, number_of_particles, number_of_sublayers, & |
---|
[1929] | 128 | particles, particle_groups, offset_ocean_nzt, sgs_wf_part, & |
---|
| 129 | use_sgs_for_particles, vertical_particle_advection, z0_av_global |
---|
[1320] | 130 | |
---|
| 131 | USE statistics, & |
---|
| 132 | ONLY: hom |
---|
[849] | 133 | |
---|
[1320] | 134 | IMPLICIT NONE |
---|
[849] | 135 | |
---|
[1929] | 136 | INTEGER(iwp) :: agp !< loop variable |
---|
| 137 | INTEGER(iwp) :: gp_outside_of_building(1:8) !< number of grid points used for particle interpolation in case of topography |
---|
| 138 | INTEGER(iwp) :: i !< index variable along x |
---|
| 139 | INTEGER(iwp) :: ip !< index variable along x |
---|
| 140 | INTEGER(iwp) :: ilog !< index variable along x |
---|
| 141 | INTEGER(iwp) :: j !< index variable along y |
---|
| 142 | INTEGER(iwp) :: jp !< index variable along y |
---|
| 143 | INTEGER(iwp) :: jlog !< index variable along y |
---|
| 144 | INTEGER(iwp) :: k !< index variable along z |
---|
| 145 | INTEGER(iwp) :: kp !< index variable along z |
---|
| 146 | INTEGER(iwp) :: kw !< index variable along z |
---|
| 147 | INTEGER(iwp) :: n !< loop variable over all particles in a grid box |
---|
| 148 | INTEGER(iwp) :: nb !< block number particles are sorted in |
---|
| 149 | INTEGER(iwp) :: num_gp !< number of adjacent grid points inside topography |
---|
[849] | 150 | |
---|
[1929] | 151 | INTEGER(iwp), DIMENSION(0:7) :: start_index !< start particle index for current block |
---|
| 152 | INTEGER(iwp), DIMENSION(0:7) :: end_index !< start particle index for current block |
---|
[1359] | 153 | |
---|
[1929] | 154 | REAL(wp) :: aa !< dummy argument for horizontal particle interpolation |
---|
| 155 | REAL(wp) :: bb !< dummy argument for horizontal particle interpolation |
---|
| 156 | REAL(wp) :: cc !< dummy argument for horizontal particle interpolation |
---|
| 157 | REAL(wp) :: d_sum !< dummy argument for horizontal particle interpolation in case of topography |
---|
| 158 | REAL(wp) :: d_z_p_z0 !< inverse of interpolation length for logarithmic interpolation |
---|
| 159 | REAL(wp) :: dd !< dummy argument for horizontal particle interpolation |
---|
| 160 | REAL(wp) :: de_dx_int_l !< x/y-interpolated TKE gradient (x) at particle position at lower vertical level |
---|
| 161 | REAL(wp) :: de_dx_int_u !< x/y-interpolated TKE gradient (x) at particle position at upper vertical level |
---|
| 162 | REAL(wp) :: de_dy_int_l !< x/y-interpolated TKE gradient (y) at particle position at lower vertical level |
---|
| 163 | REAL(wp) :: de_dy_int_u !< x/y-interpolated TKE gradient (y) at particle position at upper vertical level |
---|
| 164 | REAL(wp) :: de_dt !< temporal derivative of TKE experienced by the particle |
---|
| 165 | REAL(wp) :: de_dt_min !< lower level for temporal TKE derivative |
---|
| 166 | REAL(wp) :: de_dz_int_l !< x/y-interpolated TKE gradient (z) at particle position at lower vertical level |
---|
| 167 | REAL(wp) :: de_dz_int_u !< x/y-interpolated TKE gradient (z) at particle position at upper vertical level |
---|
[1822] | 168 | REAL(wp) :: diameter !< diamter of droplet |
---|
[1929] | 169 | REAL(wp) :: diss_int_l !< x/y-interpolated dissipation at particle position at lower vertical level |
---|
| 170 | REAL(wp) :: diss_int_u !< x/y-interpolated dissipation at particle position at upper vertical level |
---|
| 171 | REAL(wp) :: dt_gap !< remaining time until particle time integration reaches LES time |
---|
| 172 | REAL(wp) :: dt_particle_m !< previous particle time step |
---|
| 173 | REAL(wp) :: e_int_l !< x/y-interpolated TKE at particle position at lower vertical level |
---|
| 174 | REAL(wp) :: e_int_u !< x/y-interpolated TKE at particle position at upper vertical level |
---|
| 175 | REAL(wp) :: e_mean_int !< horizontal mean TKE at particle height |
---|
[1682] | 176 | REAL(wp) :: exp_arg !< |
---|
| 177 | REAL(wp) :: exp_term !< |
---|
[1929] | 178 | REAL(wp) :: gg !< dummy argument for horizontal particle interpolation |
---|
| 179 | REAL(wp) :: height_p !< dummy argument for logarithmic interpolation |
---|
[1822] | 180 | REAL(wp) :: lagr_timescale !< Lagrangian timescale |
---|
[1929] | 181 | REAL(wp) :: location(1:30,1:3) !< wall locations |
---|
| 182 | REAL(wp) :: log_z_z0_int !< logarithmus used for surface_layer interpolation |
---|
[1682] | 183 | REAL(wp) :: random_gauss !< |
---|
[1822] | 184 | REAL(wp) :: RL !< Lagrangian autocorrelation coefficient |
---|
| 185 | REAL(wp) :: rg1 !< Gaussian distributed random number |
---|
| 186 | REAL(wp) :: rg2 !< Gaussian distributed random number |
---|
| 187 | REAL(wp) :: rg3 !< Gaussian distributed random number |
---|
| 188 | REAL(wp) :: sigma !< velocity standard deviation |
---|
[1929] | 189 | REAL(wp) :: u_int_l !< x/y-interpolated u-component at particle position at lower vertical level |
---|
| 190 | REAL(wp) :: u_int_u !< x/y-interpolated u-component at particle position at upper vertical level |
---|
| 191 | REAL(wp) :: us_int !< friction velocity at particle grid box |
---|
| 192 | REAL(wp) :: v_int_l !< x/y-interpolated v-component at particle position at lower vertical level |
---|
| 193 | REAL(wp) :: v_int_u !< x/y-interpolated v-component at particle position at upper vertical level |
---|
[1682] | 194 | REAL(wp) :: vv_int !< |
---|
[1929] | 195 | REAL(wp) :: w_int_l !< x/y-interpolated w-component at particle position at lower vertical level |
---|
| 196 | REAL(wp) :: w_int_u !< x/y-interpolated w-component at particle position at upper vertical level |
---|
[1822] | 197 | REAL(wp) :: w_s !< terminal velocity of droplets |
---|
[1929] | 198 | REAL(wp) :: x !< dummy argument for horizontal particle interpolation |
---|
| 199 | REAL(wp) :: y !< dummy argument for horizontal particle interpolation |
---|
| 200 | REAL(wp) :: z_p !< surface layer height (0.5 dz) |
---|
[849] | 201 | |
---|
[1822] | 202 | REAL(wp), PARAMETER :: a_rog = 9.65_wp !< parameter for fall velocity |
---|
| 203 | REAL(wp), PARAMETER :: b_rog = 10.43_wp !< parameter for fall velocity |
---|
| 204 | REAL(wp), PARAMETER :: c_rog = 0.6_wp !< parameter for fall velocity |
---|
| 205 | REAL(wp), PARAMETER :: k_cap_rog = 4.0_wp !< parameter for fall velocity |
---|
| 206 | REAL(wp), PARAMETER :: k_low_rog = 12.0_wp !< parameter for fall velocity |
---|
| 207 | REAL(wp), PARAMETER :: d0_rog = 0.745_wp !< separation diameter |
---|
| 208 | |
---|
[1929] | 209 | REAL(wp), DIMENSION(1:30) :: d_gp_pl !< dummy argument for particle interpolation scheme in case of topography |
---|
| 210 | REAL(wp), DIMENSION(1:30) :: de_dxi !< horizontal TKE gradient along x at adjacent wall |
---|
| 211 | REAL(wp), DIMENSION(1:30) :: de_dyi !< horizontal TKE gradient along y at adjacent wall |
---|
| 212 | REAL(wp), DIMENSION(1:30) :: de_dzi !< horizontal TKE gradient along z at adjacent wall |
---|
| 213 | REAL(wp), DIMENSION(1:30) :: dissi !< dissipation at adjacent wall |
---|
| 214 | REAL(wp), DIMENSION(1:30) :: ei !< TKE at adjacent wall |
---|
[849] | 215 | |
---|
[1929] | 216 | REAL(wp), DIMENSION(number_of_particles) :: term_1_2 !< flag to communicate whether a particle is near topography or not |
---|
[1682] | 217 | REAL(wp), DIMENSION(number_of_particles) :: dens_ratio !< |
---|
[1929] | 218 | REAL(wp), DIMENSION(number_of_particles) :: de_dx_int !< horizontal TKE gradient along x at particle position |
---|
| 219 | REAL(wp), DIMENSION(number_of_particles) :: de_dy_int !< horizontal TKE gradient along y at particle position |
---|
| 220 | REAL(wp), DIMENSION(number_of_particles) :: de_dz_int !< horizontal TKE gradient along z at particle position |
---|
| 221 | REAL(wp), DIMENSION(number_of_particles) :: diss_int !< dissipation at particle position |
---|
| 222 | REAL(wp), DIMENSION(number_of_particles) :: dt_particle !< particle time step |
---|
| 223 | REAL(wp), DIMENSION(number_of_particles) :: e_int !< TKE at particle position |
---|
| 224 | REAL(wp), DIMENSION(number_of_particles) :: fs_int !< weighting factor for subgrid-scale particle speed |
---|
| 225 | REAL(wp), DIMENSION(number_of_particles) :: u_int !< u-component of particle speed |
---|
| 226 | REAL(wp), DIMENSION(number_of_particles) :: v_int !< v-component of particle speed |
---|
| 227 | REAL(wp), DIMENSION(number_of_particles) :: w_int !< w-component of particle speed |
---|
| 228 | REAL(wp), DIMENSION(number_of_particles) :: xv !< x-position |
---|
| 229 | REAL(wp), DIMENSION(number_of_particles) :: yv !< y-position |
---|
| 230 | REAL(wp), DIMENSION(number_of_particles) :: zv !< z-position |
---|
[1359] | 231 | |
---|
[1929] | 232 | REAL(wp), DIMENSION(number_of_particles, 3) :: rg !< vector of Gaussian distributed random numbers |
---|
[1359] | 233 | |
---|
| 234 | CALL cpu_log( log_point_s(44), 'lpm_advec', 'continue' ) |
---|
| 235 | |
---|
[1314] | 236 | ! |
---|
| 237 | !-- Determine height of Prandtl layer and distance between Prandtl-layer |
---|
| 238 | !-- height and horizontal mean roughness height, which are required for |
---|
| 239 | !-- vertical logarithmic interpolation of horizontal particle speeds |
---|
| 240 | !-- (for particles below first vertical grid level). |
---|
| 241 | z_p = zu(nzb+1) - zw(nzb) |
---|
[1359] | 242 | d_z_p_z0 = 1.0_wp / ( z_p - z0_av_global ) |
---|
[849] | 243 | |
---|
[1359] | 244 | start_index = grid_particles(kp,jp,ip)%start_index |
---|
| 245 | end_index = grid_particles(kp,jp,ip)%end_index |
---|
[849] | 246 | |
---|
[1359] | 247 | xv = particles(1:number_of_particles)%x |
---|
| 248 | yv = particles(1:number_of_particles)%y |
---|
| 249 | zv = particles(1:number_of_particles)%z |
---|
[849] | 250 | |
---|
[1359] | 251 | DO nb = 0, 7 |
---|
[1314] | 252 | |
---|
[1359] | 253 | i = ip |
---|
| 254 | j = jp + block_offset(nb)%j_off |
---|
| 255 | k = kp + block_offset(nb)%k_off |
---|
| 256 | |
---|
[1929] | 257 | |
---|
[849] | 258 | ! |
---|
[1359] | 259 | !-- Interpolate u velocity-component |
---|
| 260 | DO n = start_index(nb), end_index(nb) |
---|
[1314] | 261 | ! |
---|
[1359] | 262 | !-- Interpolation of the u velocity component onto particle position. |
---|
| 263 | !-- Particles are interpolation bi-linearly in the horizontal and a |
---|
| 264 | !-- linearly in the vertical. An exception is made for particles below |
---|
| 265 | !-- the first vertical grid level in case of a prandtl layer. In this |
---|
| 266 | !-- case the horizontal particle velocity components are determined using |
---|
| 267 | !-- Monin-Obukhov relations (if branch). |
---|
| 268 | !-- First, check if particle is located below first vertical grid level |
---|
| 269 | !-- (Prandtl-layer height) |
---|
[1929] | 270 | ilog = ( particles(n)%x + 0.5_wp * dx ) * ddx |
---|
| 271 | jlog = ( particles(n)%y + 0.5_wp * dy ) * ddy |
---|
| 272 | |
---|
[1936] | 273 | IF ( constant_flux_layer .AND. & |
---|
| 274 | zv(n) - zw(nzb_s_inner(jlog,ilog)) < z_p ) THEN |
---|
[1314] | 275 | ! |
---|
[1359] | 276 | !-- Resolved-scale horizontal particle velocity is zero below z0. |
---|
[1929] | 277 | IF ( zv(n) - zw(nzb_s_inner(jlog,ilog)) < z0_av_global ) THEN |
---|
[1359] | 278 | u_int(n) = 0.0_wp |
---|
| 279 | ELSE |
---|
[1314] | 280 | ! |
---|
[1359] | 281 | !-- Determine the sublayer. Further used as index. |
---|
[1936] | 282 | height_p = ( zv(n) - zw(nzb_s_inner(jlog,ilog)) - z0_av_global ) & |
---|
| 283 | * REAL( number_of_sublayers, KIND=wp ) & |
---|
[1359] | 284 | * d_z_p_z0 |
---|
[1314] | 285 | ! |
---|
[1359] | 286 | !-- Calculate LOG(z/z0) for exact particle height. Therefore, |
---|
| 287 | !-- interpolate linearly between precalculated logarithm. |
---|
[1929] | 288 | log_z_z0_int = log_z_z0(INT(height_p)) & |
---|
[1359] | 289 | + ( height_p - INT(height_p) ) & |
---|
| 290 | * ( log_z_z0(INT(height_p)+1) & |
---|
| 291 | - log_z_z0(INT(height_p)) & |
---|
| 292 | ) |
---|
[1314] | 293 | ! |
---|
[1929] | 294 | !-- Limit friction velocity. In narrow canyons or holes the |
---|
| 295 | !-- friction velocity can become very small, resulting in a too |
---|
| 296 | !-- large particle speed. |
---|
| 297 | us_int = MAX( 0.5_wp * ( us(jlog,ilog) + us(jlog,ilog-1) ), & |
---|
| 298 | 0.01_wp ) |
---|
| 299 | ! |
---|
[1359] | 300 | !-- Neutral solution is applied for all situations, e.g. also for |
---|
| 301 | !-- unstable and stable situations. Even though this is not exact |
---|
| 302 | !-- this saves a lot of CPU time since several calls of intrinsic |
---|
| 303 | !-- FORTRAN procedures (LOG, ATAN) are avoided, This is justified |
---|
| 304 | !-- as sensitivity studies revealed no significant effect of |
---|
| 305 | !-- using the neutral solution also for un/stable situations. |
---|
[1929] | 306 | u_int(n) = -usws(jlog,ilog) / ( us_int * kappa + 1E-10_wp ) & |
---|
| 307 | * log_z_z0_int - u_gtrans |
---|
| 308 | |
---|
[1359] | 309 | ENDIF |
---|
| 310 | ! |
---|
| 311 | !-- Particle above the first grid level. Bi-linear interpolation in the |
---|
| 312 | !-- horizontal and linear interpolation in the vertical direction. |
---|
[1314] | 313 | ELSE |
---|
| 314 | |
---|
[1359] | 315 | x = xv(n) + ( 0.5_wp - i ) * dx |
---|
| 316 | y = yv(n) - j * dy |
---|
| 317 | aa = x**2 + y**2 |
---|
| 318 | bb = ( dx - x )**2 + y**2 |
---|
| 319 | cc = x**2 + ( dy - y )**2 |
---|
| 320 | dd = ( dx - x )**2 + ( dy - y )**2 |
---|
| 321 | gg = aa + bb + cc + dd |
---|
[1314] | 322 | |
---|
[1359] | 323 | u_int_l = ( ( gg - aa ) * u(k,j,i) + ( gg - bb ) * u(k,j,i+1) & |
---|
| 324 | + ( gg - cc ) * u(k,j+1,i) + ( gg - dd ) * & |
---|
| 325 | u(k,j+1,i+1) ) / ( 3.0_wp * gg ) - u_gtrans |
---|
[1314] | 326 | |
---|
[1359] | 327 | IF ( k == nzt ) THEN |
---|
| 328 | u_int(n) = u_int_l |
---|
| 329 | ELSE |
---|
| 330 | u_int_u = ( ( gg-aa ) * u(k+1,j,i) + ( gg-bb ) * u(k+1,j,i+1) & |
---|
| 331 | + ( gg-cc ) * u(k+1,j+1,i) + ( gg-dd ) * & |
---|
| 332 | u(k+1,j+1,i+1) ) / ( 3.0_wp * gg ) - u_gtrans |
---|
| 333 | u_int(n) = u_int_l + ( zv(n) - zu(k) ) / dz * & |
---|
| 334 | ( u_int_u - u_int_l ) |
---|
| 335 | ENDIF |
---|
[1929] | 336 | |
---|
[1314] | 337 | ENDIF |
---|
| 338 | |
---|
[1359] | 339 | ENDDO |
---|
[849] | 340 | |
---|
[1359] | 341 | i = ip + block_offset(nb)%i_off |
---|
| 342 | j = jp |
---|
| 343 | k = kp + block_offset(nb)%k_off |
---|
[849] | 344 | ! |
---|
[1359] | 345 | !-- Same procedure for interpolation of the v velocity-component |
---|
| 346 | DO n = start_index(nb), end_index(nb) |
---|
[1685] | 347 | |
---|
[1929] | 348 | ilog = ( particles(n)%x + 0.5_wp * dx ) * ddx |
---|
| 349 | jlog = ( particles(n)%y + 0.5_wp * dy ) * ddy |
---|
[1936] | 350 | IF ( constant_flux_layer .AND. & |
---|
| 351 | zv(n) - zw(nzb_s_inner(jlog,ilog)) < z_p ) THEN |
---|
[849] | 352 | |
---|
[1929] | 353 | IF ( zv(n) - zw(nzb_s_inner(jlog,ilog)) < z0_av_global ) THEN |
---|
[1314] | 354 | ! |
---|
[1359] | 355 | !-- Resolved-scale horizontal particle velocity is zero below z0. |
---|
| 356 | v_int(n) = 0.0_wp |
---|
| 357 | ELSE |
---|
| 358 | ! |
---|
[1929] | 359 | !-- Determine the sublayer. Further used as index. Please note, |
---|
| 360 | !-- logarithmus can not be reused from above, as in in case of |
---|
| 361 | !-- topography particle on u-grid can be above surface-layer height, |
---|
| 362 | !-- whereas it can be below on v-grid. |
---|
[1936] | 363 | height_p = ( zv(n) - zw(nzb_s_inner(jlog,ilog)) - z0_av_global ) & |
---|
| 364 | * REAL( number_of_sublayers, KIND=wp ) & |
---|
[1929] | 365 | * d_z_p_z0 |
---|
| 366 | ! |
---|
| 367 | !-- Calculate LOG(z/z0) for exact particle height. Therefore, |
---|
| 368 | !-- interpolate linearly between precalculated logarithm. |
---|
| 369 | log_z_z0_int = log_z_z0(INT(height_p)) & |
---|
| 370 | + ( height_p - INT(height_p) ) & |
---|
| 371 | * ( log_z_z0(INT(height_p)+1) & |
---|
| 372 | - log_z_z0(INT(height_p)) & |
---|
| 373 | ) |
---|
| 374 | ! |
---|
| 375 | !-- Limit friction velocity. In narrow canyons or holes the |
---|
| 376 | !-- friction velocity can become very small, resulting in a too |
---|
| 377 | !-- large particle speed. |
---|
[1936] | 378 | us_int = MAX( 0.5_wp * ( us(jlog,ilog) + us(jlog-1,ilog) ), & |
---|
[1929] | 379 | 0.01_wp ) |
---|
| 380 | ! |
---|
[1359] | 381 | !-- Neutral solution is applied for all situations, e.g. also for |
---|
| 382 | !-- unstable and stable situations. Even though this is not exact |
---|
| 383 | !-- this saves a lot of CPU time since several calls of intrinsic |
---|
| 384 | !-- FORTRAN procedures (LOG, ATAN) are avoided, This is justified |
---|
| 385 | !-- as sensitivity studies revealed no significant effect of |
---|
| 386 | !-- using the neutral solution also for un/stable situations. |
---|
[1936] | 387 | v_int(n) = -vsws(jlog,ilog) / ( us_int * kappa + 1E-10_wp ) & |
---|
[1929] | 388 | * log_z_z0_int - v_gtrans |
---|
[1314] | 389 | |
---|
[1359] | 390 | ENDIF |
---|
[1929] | 391 | |
---|
[1359] | 392 | ELSE |
---|
| 393 | x = xv(n) - i * dx |
---|
| 394 | y = yv(n) + ( 0.5_wp - j ) * dy |
---|
| 395 | aa = x**2 + y**2 |
---|
| 396 | bb = ( dx - x )**2 + y**2 |
---|
| 397 | cc = x**2 + ( dy - y )**2 |
---|
| 398 | dd = ( dx - x )**2 + ( dy - y )**2 |
---|
| 399 | gg = aa + bb + cc + dd |
---|
[1314] | 400 | |
---|
[1359] | 401 | v_int_l = ( ( gg - aa ) * v(k,j,i) + ( gg - bb ) * v(k,j,i+1) & |
---|
| 402 | + ( gg - cc ) * v(k,j+1,i) + ( gg - dd ) * v(k,j+1,i+1) & |
---|
| 403 | ) / ( 3.0_wp * gg ) - v_gtrans |
---|
[1314] | 404 | |
---|
[1359] | 405 | IF ( k == nzt ) THEN |
---|
| 406 | v_int(n) = v_int_l |
---|
| 407 | ELSE |
---|
| 408 | v_int_u = ( ( gg-aa ) * v(k+1,j,i) + ( gg-bb ) * v(k+1,j,i+1) & |
---|
| 409 | + ( gg-cc ) * v(k+1,j+1,i) + ( gg-dd ) * v(k+1,j+1,i+1) & |
---|
| 410 | ) / ( 3.0_wp * gg ) - v_gtrans |
---|
| 411 | v_int(n) = v_int_l + ( zv(n) - zu(k) ) / dz * & |
---|
| 412 | ( v_int_u - v_int_l ) |
---|
| 413 | ENDIF |
---|
[1929] | 414 | |
---|
[1314] | 415 | ENDIF |
---|
| 416 | |
---|
[1359] | 417 | ENDDO |
---|
[1314] | 418 | |
---|
[1359] | 419 | i = ip + block_offset(nb)%i_off |
---|
| 420 | j = jp + block_offset(nb)%j_off |
---|
[1929] | 421 | k = kp - 1 |
---|
[849] | 422 | ! |
---|
[1314] | 423 | !-- Same procedure for interpolation of the w velocity-component |
---|
[1359] | 424 | DO n = start_index(nb), end_index(nb) |
---|
[849] | 425 | |
---|
[1359] | 426 | IF ( vertical_particle_advection(particles(n)%group) ) THEN |
---|
[849] | 427 | |
---|
[1359] | 428 | x = xv(n) - i * dx |
---|
| 429 | y = yv(n) - j * dy |
---|
[849] | 430 | aa = x**2 + y**2 |
---|
| 431 | bb = ( dx - x )**2 + y**2 |
---|
| 432 | cc = x**2 + ( dy - y )**2 |
---|
| 433 | dd = ( dx - x )**2 + ( dy - y )**2 |
---|
| 434 | gg = aa + bb + cc + dd |
---|
| 435 | |
---|
[1359] | 436 | w_int_l = ( ( gg - aa ) * w(k,j,i) + ( gg - bb ) * w(k,j,i+1) & |
---|
| 437 | + ( gg - cc ) * w(k,j+1,i) + ( gg - dd ) * w(k,j+1,i+1) & |
---|
| 438 | ) / ( 3.0_wp * gg ) |
---|
[849] | 439 | |
---|
[1359] | 440 | IF ( k == nzt ) THEN |
---|
| 441 | w_int(n) = w_int_l |
---|
[849] | 442 | ELSE |
---|
[1359] | 443 | w_int_u = ( ( gg-aa ) * w(k+1,j,i) + & |
---|
| 444 | ( gg-bb ) * w(k+1,j,i+1) + & |
---|
| 445 | ( gg-cc ) * w(k+1,j+1,i) + & |
---|
| 446 | ( gg-dd ) * w(k+1,j+1,i+1) & |
---|
| 447 | ) / ( 3.0_wp * gg ) |
---|
| 448 | w_int(n) = w_int_l + ( zv(n) - zw(k) ) / dz * & |
---|
| 449 | ( w_int_u - w_int_l ) |
---|
[849] | 450 | ENDIF |
---|
| 451 | |
---|
[1359] | 452 | ELSE |
---|
[849] | 453 | |
---|
[1359] | 454 | w_int(n) = 0.0_wp |
---|
[849] | 455 | |
---|
[1359] | 456 | ENDIF |
---|
| 457 | |
---|
| 458 | ENDDO |
---|
| 459 | |
---|
| 460 | ENDDO |
---|
| 461 | |
---|
| 462 | !-- Interpolate and calculate quantities needed for calculating the SGS |
---|
| 463 | !-- velocities |
---|
[1822] | 464 | IF ( use_sgs_for_particles .AND. .NOT. cloud_droplets ) THEN |
---|
[1359] | 465 | |
---|
| 466 | IF ( topography == 'flat' ) THEN |
---|
| 467 | |
---|
| 468 | DO nb = 0,7 |
---|
| 469 | |
---|
| 470 | i = ip + block_offset(nb)%i_off |
---|
| 471 | j = jp + block_offset(nb)%j_off |
---|
| 472 | k = kp + block_offset(nb)%k_off |
---|
| 473 | |
---|
| 474 | DO n = start_index(nb), end_index(nb) |
---|
[849] | 475 | ! |
---|
[1359] | 476 | !-- Interpolate TKE |
---|
| 477 | x = xv(n) - i * dx |
---|
| 478 | y = yv(n) - j * dy |
---|
| 479 | aa = x**2 + y**2 |
---|
| 480 | bb = ( dx - x )**2 + y**2 |
---|
| 481 | cc = x**2 + ( dy - y )**2 |
---|
| 482 | dd = ( dx - x )**2 + ( dy - y )**2 |
---|
| 483 | gg = aa + bb + cc + dd |
---|
[849] | 484 | |
---|
[1359] | 485 | e_int_l = ( ( gg-aa ) * e(k,j,i) + ( gg-bb ) * e(k,j,i+1) & |
---|
| 486 | + ( gg-cc ) * e(k,j+1,i) + ( gg-dd ) * e(k,j+1,i+1) & |
---|
| 487 | ) / ( 3.0_wp * gg ) |
---|
| 488 | |
---|
| 489 | IF ( k+1 == nzt+1 ) THEN |
---|
| 490 | e_int(n) = e_int_l |
---|
| 491 | ELSE |
---|
| 492 | e_int_u = ( ( gg - aa ) * e(k+1,j,i) + & |
---|
| 493 | ( gg - bb ) * e(k+1,j,i+1) + & |
---|
| 494 | ( gg - cc ) * e(k+1,j+1,i) + & |
---|
| 495 | ( gg - dd ) * e(k+1,j+1,i+1) & |
---|
| 496 | ) / ( 3.0_wp * gg ) |
---|
| 497 | e_int(n) = e_int_l + ( zv(n) - zu(k) ) / dz * & |
---|
| 498 | ( e_int_u - e_int_l ) |
---|
| 499 | ENDIF |
---|
[849] | 500 | ! |
---|
[1685] | 501 | !-- Needed to avoid NaN particle velocities (this might not be |
---|
| 502 | !-- required any more) |
---|
| 503 | IF ( e_int(n) <= 0.0_wp ) THEN |
---|
[1359] | 504 | e_int(n) = 1.0E-20_wp |
---|
| 505 | ENDIF |
---|
| 506 | ! |
---|
| 507 | !-- Interpolate the TKE gradient along x (adopt incides i,j,k and |
---|
| 508 | !-- all position variables from above (TKE)) |
---|
| 509 | de_dx_int_l = ( ( gg - aa ) * de_dx(k,j,i) + & |
---|
| 510 | ( gg - bb ) * de_dx(k,j,i+1) + & |
---|
| 511 | ( gg - cc ) * de_dx(k,j+1,i) + & |
---|
| 512 | ( gg - dd ) * de_dx(k,j+1,i+1) & |
---|
| 513 | ) / ( 3.0_wp * gg ) |
---|
[849] | 514 | |
---|
| 515 | IF ( ( k+1 == nzt+1 ) .OR. ( k == nzb ) ) THEN |
---|
[1359] | 516 | de_dx_int(n) = de_dx_int_l |
---|
[849] | 517 | ELSE |
---|
[1359] | 518 | de_dx_int_u = ( ( gg - aa ) * de_dx(k+1,j,i) + & |
---|
| 519 | ( gg - bb ) * de_dx(k+1,j,i+1) + & |
---|
| 520 | ( gg - cc ) * de_dx(k+1,j+1,i) + & |
---|
| 521 | ( gg - dd ) * de_dx(k+1,j+1,i+1) & |
---|
| 522 | ) / ( 3.0_wp * gg ) |
---|
| 523 | de_dx_int(n) = de_dx_int_l + ( zv(n) - zu(k) ) / dz * & |
---|
| 524 | ( de_dx_int_u - de_dx_int_l ) |
---|
[849] | 525 | ENDIF |
---|
[1359] | 526 | ! |
---|
| 527 | !-- Interpolate the TKE gradient along y |
---|
| 528 | de_dy_int_l = ( ( gg - aa ) * de_dy(k,j,i) + & |
---|
| 529 | ( gg - bb ) * de_dy(k,j,i+1) + & |
---|
| 530 | ( gg - cc ) * de_dy(k,j+1,i) + & |
---|
| 531 | ( gg - dd ) * de_dy(k,j+1,i+1) & |
---|
| 532 | ) / ( 3.0_wp * gg ) |
---|
| 533 | IF ( ( k+1 == nzt+1 ) .OR. ( k == nzb ) ) THEN |
---|
| 534 | de_dy_int(n) = de_dy_int_l |
---|
| 535 | ELSE |
---|
| 536 | de_dy_int_u = ( ( gg - aa ) * de_dy(k+1,j,i) + & |
---|
| 537 | ( gg - bb ) * de_dy(k+1,j,i+1) + & |
---|
| 538 | ( gg - cc ) * de_dy(k+1,j+1,i) + & |
---|
| 539 | ( gg - dd ) * de_dy(k+1,j+1,i+1) & |
---|
| 540 | ) / ( 3.0_wp * gg ) |
---|
| 541 | de_dy_int(n) = de_dy_int_l + ( zv(n) - zu(k) ) / dz * & |
---|
| 542 | ( de_dy_int_u - de_dy_int_l ) |
---|
| 543 | ENDIF |
---|
[849] | 544 | |
---|
| 545 | ! |
---|
[1359] | 546 | !-- Interpolate the TKE gradient along z |
---|
| 547 | IF ( zv(n) < 0.5_wp * dz ) THEN |
---|
| 548 | de_dz_int(n) = 0.0_wp |
---|
| 549 | ELSE |
---|
| 550 | de_dz_int_l = ( ( gg - aa ) * de_dz(k,j,i) + & |
---|
| 551 | ( gg - bb ) * de_dz(k,j,i+1) + & |
---|
| 552 | ( gg - cc ) * de_dz(k,j+1,i) + & |
---|
| 553 | ( gg - dd ) * de_dz(k,j+1,i+1) & |
---|
| 554 | ) / ( 3.0_wp * gg ) |
---|
[849] | 555 | |
---|
[1359] | 556 | IF ( ( k+1 == nzt+1 ) .OR. ( k == nzb ) ) THEN |
---|
| 557 | de_dz_int(n) = de_dz_int_l |
---|
| 558 | ELSE |
---|
| 559 | de_dz_int_u = ( ( gg - aa ) * de_dz(k+1,j,i) + & |
---|
| 560 | ( gg - bb ) * de_dz(k+1,j,i+1) + & |
---|
| 561 | ( gg - cc ) * de_dz(k+1,j+1,i) + & |
---|
| 562 | ( gg - dd ) * de_dz(k+1,j+1,i+1) & |
---|
| 563 | ) / ( 3.0_wp * gg ) |
---|
| 564 | de_dz_int(n) = de_dz_int_l + ( zv(n) - zu(k) ) / dz * & |
---|
| 565 | ( de_dz_int_u - de_dz_int_l ) |
---|
| 566 | ENDIF |
---|
| 567 | ENDIF |
---|
[849] | 568 | |
---|
[1359] | 569 | ! |
---|
| 570 | !-- Interpolate the dissipation of TKE |
---|
| 571 | diss_int_l = ( ( gg - aa ) * diss(k,j,i) + & |
---|
| 572 | ( gg - bb ) * diss(k,j,i+1) + & |
---|
| 573 | ( gg - cc ) * diss(k,j+1,i) + & |
---|
| 574 | ( gg - dd ) * diss(k,j+1,i+1) & |
---|
| 575 | ) / ( 3.0_wp * gg ) |
---|
[849] | 576 | |
---|
[1359] | 577 | IF ( k == nzt ) THEN |
---|
| 578 | diss_int(n) = diss_int_l |
---|
| 579 | ELSE |
---|
| 580 | diss_int_u = ( ( gg - aa ) * diss(k+1,j,i) + & |
---|
| 581 | ( gg - bb ) * diss(k+1,j,i+1) + & |
---|
| 582 | ( gg - cc ) * diss(k+1,j+1,i) + & |
---|
| 583 | ( gg - dd ) * diss(k+1,j+1,i+1) & |
---|
| 584 | ) / ( 3.0_wp * gg ) |
---|
| 585 | diss_int(n) = diss_int_l + ( zv(n) - zu(k) ) / dz * & |
---|
| 586 | ( diss_int_u - diss_int_l ) |
---|
| 587 | ENDIF |
---|
| 588 | |
---|
[1929] | 589 | ! |
---|
| 590 | !-- Set flag for stochastic equation. |
---|
| 591 | term_1_2(n) = 1.0_wp |
---|
| 592 | |
---|
[1359] | 593 | ENDDO |
---|
| 594 | ENDDO |
---|
| 595 | |
---|
| 596 | ELSE ! non-flat topography, e.g., buildings |
---|
| 597 | |
---|
| 598 | DO n = 1, number_of_particles |
---|
| 599 | i = particles(n)%x * ddx |
---|
| 600 | j = particles(n)%y * ddy |
---|
| 601 | k = ( zv(n) + 0.5_wp * dz * atmos_ocean_sign ) / dz & |
---|
| 602 | + offset_ocean_nzt ! only exact if eq.dist |
---|
[849] | 603 | ! |
---|
| 604 | !-- In case that there are buildings it has to be determined |
---|
| 605 | !-- how many of the gridpoints defining the particle box are |
---|
| 606 | !-- situated within a building |
---|
| 607 | !-- gp_outside_of_building(1): i,j,k |
---|
| 608 | !-- gp_outside_of_building(2): i,j+1,k |
---|
| 609 | !-- gp_outside_of_building(3): i,j,k+1 |
---|
| 610 | !-- gp_outside_of_building(4): i,j+1,k+1 |
---|
| 611 | !-- gp_outside_of_building(5): i+1,j,k |
---|
| 612 | !-- gp_outside_of_building(6): i+1,j+1,k |
---|
| 613 | !-- gp_outside_of_building(7): i+1,j,k+1 |
---|
| 614 | !-- gp_outside_of_building(8): i+1,j+1,k+1 |
---|
| 615 | |
---|
| 616 | gp_outside_of_building = 0 |
---|
[1359] | 617 | location = 0.0_wp |
---|
[849] | 618 | num_gp = 0 |
---|
| 619 | |
---|
| 620 | IF ( k > nzb_s_inner(j,i) .OR. nzb_s_inner(j,i) == 0 ) THEN |
---|
| 621 | num_gp = num_gp + 1 |
---|
| 622 | gp_outside_of_building(1) = 1 |
---|
| 623 | location(num_gp,1) = i * dx |
---|
| 624 | location(num_gp,2) = j * dy |
---|
[1359] | 625 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
[849] | 626 | ei(num_gp) = e(k,j,i) |
---|
| 627 | dissi(num_gp) = diss(k,j,i) |
---|
| 628 | de_dxi(num_gp) = de_dx(k,j,i) |
---|
| 629 | de_dyi(num_gp) = de_dy(k,j,i) |
---|
| 630 | de_dzi(num_gp) = de_dz(k,j,i) |
---|
| 631 | ENDIF |
---|
[1929] | 632 | IF ( k > nzb_s_inner(j+1,i) .OR. nzb_s_inner(j+1,i) == 0 ) THEN |
---|
[849] | 633 | num_gp = num_gp + 1 |
---|
| 634 | gp_outside_of_building(2) = 1 |
---|
| 635 | location(num_gp,1) = i * dx |
---|
| 636 | location(num_gp,2) = (j+1) * dy |
---|
[1359] | 637 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
[849] | 638 | ei(num_gp) = e(k,j+1,i) |
---|
| 639 | dissi(num_gp) = diss(k,j+1,i) |
---|
| 640 | de_dxi(num_gp) = de_dx(k,j+1,i) |
---|
| 641 | de_dyi(num_gp) = de_dy(k,j+1,i) |
---|
| 642 | de_dzi(num_gp) = de_dz(k,j+1,i) |
---|
| 643 | ENDIF |
---|
| 644 | |
---|
| 645 | IF ( k+1 > nzb_s_inner(j,i) .OR. nzb_s_inner(j,i) == 0 ) THEN |
---|
| 646 | num_gp = num_gp + 1 |
---|
| 647 | gp_outside_of_building(3) = 1 |
---|
| 648 | location(num_gp,1) = i * dx |
---|
| 649 | location(num_gp,2) = j * dy |
---|
[1359] | 650 | location(num_gp,3) = (k+1) * dz - 0.5_wp * dz |
---|
[849] | 651 | ei(num_gp) = e(k+1,j,i) |
---|
| 652 | dissi(num_gp) = diss(k+1,j,i) |
---|
| 653 | de_dxi(num_gp) = de_dx(k+1,j,i) |
---|
| 654 | de_dyi(num_gp) = de_dy(k+1,j,i) |
---|
| 655 | de_dzi(num_gp) = de_dz(k+1,j,i) |
---|
| 656 | ENDIF |
---|
| 657 | |
---|
[1929] | 658 | IF ( k+1 > nzb_s_inner(j+1,i) .OR. nzb_s_inner(j+1,i) == 0 ) THEN |
---|
[849] | 659 | num_gp = num_gp + 1 |
---|
| 660 | gp_outside_of_building(4) = 1 |
---|
| 661 | location(num_gp,1) = i * dx |
---|
| 662 | location(num_gp,2) = (j+1) * dy |
---|
[1359] | 663 | location(num_gp,3) = (k+1) * dz - 0.5_wp * dz |
---|
[849] | 664 | ei(num_gp) = e(k+1,j+1,i) |
---|
| 665 | dissi(num_gp) = diss(k+1,j+1,i) |
---|
| 666 | de_dxi(num_gp) = de_dx(k+1,j+1,i) |
---|
| 667 | de_dyi(num_gp) = de_dy(k+1,j+1,i) |
---|
| 668 | de_dzi(num_gp) = de_dz(k+1,j+1,i) |
---|
| 669 | ENDIF |
---|
| 670 | |
---|
[1929] | 671 | IF ( k > nzb_s_inner(j,i+1) .OR. nzb_s_inner(j,i+1) == 0 ) THEN |
---|
[849] | 672 | num_gp = num_gp + 1 |
---|
| 673 | gp_outside_of_building(5) = 1 |
---|
| 674 | location(num_gp,1) = (i+1) * dx |
---|
| 675 | location(num_gp,2) = j * dy |
---|
[1359] | 676 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
[849] | 677 | ei(num_gp) = e(k,j,i+1) |
---|
| 678 | dissi(num_gp) = diss(k,j,i+1) |
---|
| 679 | de_dxi(num_gp) = de_dx(k,j,i+1) |
---|
| 680 | de_dyi(num_gp) = de_dy(k,j,i+1) |
---|
| 681 | de_dzi(num_gp) = de_dz(k,j,i+1) |
---|
| 682 | ENDIF |
---|
| 683 | |
---|
[1929] | 684 | IF ( k > nzb_s_inner(j+1,i+1) .OR. nzb_s_inner(j+1,i+1) == 0 ) THEN |
---|
[849] | 685 | num_gp = num_gp + 1 |
---|
| 686 | gp_outside_of_building(6) = 1 |
---|
| 687 | location(num_gp,1) = (i+1) * dx |
---|
| 688 | location(num_gp,2) = (j+1) * dy |
---|
[1359] | 689 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
[849] | 690 | ei(num_gp) = e(k,j+1,i+1) |
---|
| 691 | dissi(num_gp) = diss(k,j+1,i+1) |
---|
| 692 | de_dxi(num_gp) = de_dx(k,j+1,i+1) |
---|
| 693 | de_dyi(num_gp) = de_dy(k,j+1,i+1) |
---|
| 694 | de_dzi(num_gp) = de_dz(k,j+1,i+1) |
---|
| 695 | ENDIF |
---|
| 696 | |
---|
[1929] | 697 | IF ( k+1 > nzb_s_inner(j,i+1) .OR. nzb_s_inner(j,i+1) == 0 ) THEN |
---|
[849] | 698 | num_gp = num_gp + 1 |
---|
| 699 | gp_outside_of_building(7) = 1 |
---|
| 700 | location(num_gp,1) = (i+1) * dx |
---|
| 701 | location(num_gp,2) = j * dy |
---|
[1359] | 702 | location(num_gp,3) = (k+1) * dz - 0.5_wp * dz |
---|
[849] | 703 | ei(num_gp) = e(k+1,j,i+1) |
---|
| 704 | dissi(num_gp) = diss(k+1,j,i+1) |
---|
| 705 | de_dxi(num_gp) = de_dx(k+1,j,i+1) |
---|
| 706 | de_dyi(num_gp) = de_dy(k+1,j,i+1) |
---|
| 707 | de_dzi(num_gp) = de_dz(k+1,j,i+1) |
---|
| 708 | ENDIF |
---|
| 709 | |
---|
[1929] | 710 | IF ( k+1 > nzb_s_inner(j+1,i+1) .OR. nzb_s_inner(j+1,i+1) == 0) THEN |
---|
[849] | 711 | num_gp = num_gp + 1 |
---|
| 712 | gp_outside_of_building(8) = 1 |
---|
| 713 | location(num_gp,1) = (i+1) * dx |
---|
| 714 | location(num_gp,2) = (j+1) * dy |
---|
[1359] | 715 | location(num_gp,3) = (k+1) * dz - 0.5_wp * dz |
---|
[849] | 716 | ei(num_gp) = e(k+1,j+1,i+1) |
---|
| 717 | dissi(num_gp) = diss(k+1,j+1,i+1) |
---|
| 718 | de_dxi(num_gp) = de_dx(k+1,j+1,i+1) |
---|
| 719 | de_dyi(num_gp) = de_dy(k+1,j+1,i+1) |
---|
| 720 | de_dzi(num_gp) = de_dz(k+1,j+1,i+1) |
---|
| 721 | ENDIF |
---|
| 722 | ! |
---|
| 723 | !-- If all gridpoints are situated outside of a building, then the |
---|
| 724 | !-- ordinary interpolation scheme can be used. |
---|
| 725 | IF ( num_gp == 8 ) THEN |
---|
| 726 | |
---|
| 727 | x = particles(n)%x - i * dx |
---|
| 728 | y = particles(n)%y - j * dy |
---|
| 729 | aa = x**2 + y**2 |
---|
| 730 | bb = ( dx - x )**2 + y**2 |
---|
| 731 | cc = x**2 + ( dy - y )**2 |
---|
| 732 | dd = ( dx - x )**2 + ( dy - y )**2 |
---|
| 733 | gg = aa + bb + cc + dd |
---|
[1929] | 734 | |
---|
[1359] | 735 | e_int_l = ( ( gg - aa ) * e(k,j,i) + ( gg - bb ) * e(k,j,i+1) & |
---|
| 736 | + ( gg - cc ) * e(k,j+1,i) + ( gg - dd ) * e(k,j+1,i+1) & |
---|
| 737 | ) / ( 3.0_wp * gg ) |
---|
[1929] | 738 | |
---|
[1359] | 739 | IF ( k == nzt ) THEN |
---|
| 740 | e_int(n) = e_int_l |
---|
[849] | 741 | ELSE |
---|
| 742 | e_int_u = ( ( gg - aa ) * e(k+1,j,i) + & |
---|
| 743 | ( gg - bb ) * e(k+1,j,i+1) + & |
---|
| 744 | ( gg - cc ) * e(k+1,j+1,i) + & |
---|
| 745 | ( gg - dd ) * e(k+1,j+1,i+1) & |
---|
[1359] | 746 | ) / ( 3.0_wp * gg ) |
---|
| 747 | e_int(n) = e_int_l + ( zv(n) - zu(k) ) / dz * & |
---|
[1929] | 748 | ( e_int_u - e_int_l ) |
---|
[849] | 749 | ENDIF |
---|
[1929] | 750 | ! |
---|
[1685] | 751 | !-- Needed to avoid NaN particle velocities (this might not be |
---|
| 752 | !-- required any more) |
---|
| 753 | IF ( e_int(n) <= 0.0_wp ) THEN |
---|
[1359] | 754 | e_int(n) = 1.0E-20_wp |
---|
| 755 | ENDIF |
---|
| 756 | ! |
---|
[849] | 757 | !-- Interpolate the TKE gradient along x (adopt incides i,j,k |
---|
| 758 | !-- and all position variables from above (TKE)) |
---|
| 759 | de_dx_int_l = ( ( gg - aa ) * de_dx(k,j,i) + & |
---|
| 760 | ( gg - bb ) * de_dx(k,j,i+1) + & |
---|
| 761 | ( gg - cc ) * de_dx(k,j+1,i) + & |
---|
| 762 | ( gg - dd ) * de_dx(k,j+1,i+1) & |
---|
[1359] | 763 | ) / ( 3.0_wp * gg ) |
---|
[849] | 764 | |
---|
[1359] | 765 | IF ( ( k == nzt ) .OR. ( k == nzb ) ) THEN |
---|
| 766 | de_dx_int(n) = de_dx_int_l |
---|
[849] | 767 | ELSE |
---|
| 768 | de_dx_int_u = ( ( gg - aa ) * de_dx(k+1,j,i) + & |
---|
| 769 | ( gg - bb ) * de_dx(k+1,j,i+1) + & |
---|
| 770 | ( gg - cc ) * de_dx(k+1,j+1,i) + & |
---|
| 771 | ( gg - dd ) * de_dx(k+1,j+1,i+1) & |
---|
[1359] | 772 | ) / ( 3.0_wp * gg ) |
---|
| 773 | de_dx_int(n) = de_dx_int_l + ( zv(n) - zu(k) ) / & |
---|
[849] | 774 | dz * ( de_dx_int_u - de_dx_int_l ) |
---|
| 775 | ENDIF |
---|
| 776 | |
---|
| 777 | ! |
---|
| 778 | !-- Interpolate the TKE gradient along y |
---|
| 779 | de_dy_int_l = ( ( gg - aa ) * de_dy(k,j,i) + & |
---|
| 780 | ( gg - bb ) * de_dy(k,j,i+1) + & |
---|
| 781 | ( gg - cc ) * de_dy(k,j+1,i) + & |
---|
| 782 | ( gg - dd ) * de_dy(k,j+1,i+1) & |
---|
[1359] | 783 | ) / ( 3.0_wp * gg ) |
---|
[849] | 784 | IF ( ( k+1 == nzt+1 ) .OR. ( k == nzb ) ) THEN |
---|
[1359] | 785 | de_dy_int(n) = de_dy_int_l |
---|
[849] | 786 | ELSE |
---|
| 787 | de_dy_int_u = ( ( gg - aa ) * de_dy(k+1,j,i) + & |
---|
| 788 | ( gg - bb ) * de_dy(k+1,j,i+1) + & |
---|
| 789 | ( gg - cc ) * de_dy(k+1,j+1,i) + & |
---|
| 790 | ( gg - dd ) * de_dy(k+1,j+1,i+1) & |
---|
[1359] | 791 | ) / ( 3.0_wp * gg ) |
---|
| 792 | de_dy_int(n) = de_dy_int_l + ( zv(n) - zu(k) ) / & |
---|
[849] | 793 | dz * ( de_dy_int_u - de_dy_int_l ) |
---|
| 794 | ENDIF |
---|
| 795 | |
---|
| 796 | ! |
---|
| 797 | !-- Interpolate the TKE gradient along z |
---|
[1359] | 798 | IF ( zv(n) < 0.5_wp * dz ) THEN |
---|
| 799 | de_dz_int(n) = 0.0_wp |
---|
[849] | 800 | ELSE |
---|
| 801 | de_dz_int_l = ( ( gg - aa ) * de_dz(k,j,i) + & |
---|
| 802 | ( gg - bb ) * de_dz(k,j,i+1) + & |
---|
| 803 | ( gg - cc ) * de_dz(k,j+1,i) + & |
---|
| 804 | ( gg - dd ) * de_dz(k,j+1,i+1) & |
---|
[1359] | 805 | ) / ( 3.0_wp * gg ) |
---|
[1929] | 806 | |
---|
[849] | 807 | IF ( ( k+1 == nzt+1 ) .OR. ( k == nzb ) ) THEN |
---|
[1359] | 808 | de_dz_int(n) = de_dz_int_l |
---|
[849] | 809 | ELSE |
---|
| 810 | de_dz_int_u = ( ( gg - aa ) * de_dz(k+1,j,i) + & |
---|
| 811 | ( gg - bb ) * de_dz(k+1,j,i+1) + & |
---|
| 812 | ( gg - cc ) * de_dz(k+1,j+1,i) + & |
---|
| 813 | ( gg - dd ) * de_dz(k+1,j+1,i+1) & |
---|
[1359] | 814 | ) / ( 3.0_wp * gg ) |
---|
| 815 | de_dz_int(n) = de_dz_int_l + ( zv(n) - zu(k) ) /& |
---|
[849] | 816 | dz * ( de_dz_int_u - de_dz_int_l ) |
---|
| 817 | ENDIF |
---|
| 818 | ENDIF |
---|
| 819 | |
---|
| 820 | ! |
---|
| 821 | !-- Interpolate the dissipation of TKE |
---|
| 822 | diss_int_l = ( ( gg - aa ) * diss(k,j,i) + & |
---|
| 823 | ( gg - bb ) * diss(k,j,i+1) + & |
---|
| 824 | ( gg - cc ) * diss(k,j+1,i) + & |
---|
| 825 | ( gg - dd ) * diss(k,j+1,i+1) & |
---|
[1359] | 826 | ) / ( 3.0_wp * gg ) |
---|
[1929] | 827 | |
---|
[1359] | 828 | IF ( k == nzt ) THEN |
---|
| 829 | diss_int(n) = diss_int_l |
---|
[849] | 830 | ELSE |
---|
| 831 | diss_int_u = ( ( gg - aa ) * diss(k+1,j,i) + & |
---|
| 832 | ( gg - bb ) * diss(k+1,j,i+1) + & |
---|
| 833 | ( gg - cc ) * diss(k+1,j+1,i) + & |
---|
| 834 | ( gg - dd ) * diss(k+1,j+1,i+1) & |
---|
[1359] | 835 | ) / ( 3.0_wp * gg ) |
---|
| 836 | diss_int(n) = diss_int_l + ( zv(n) - zu(k) ) / dz *& |
---|
[849] | 837 | ( diss_int_u - diss_int_l ) |
---|
| 838 | ENDIF |
---|
[1929] | 839 | ! |
---|
| 840 | !-- Set flag for stochastic equation. |
---|
| 841 | term_1_2(n) = 1.0_wp |
---|
| 842 | |
---|
[849] | 843 | ELSE |
---|
[1929] | 844 | |
---|
[849] | 845 | ! |
---|
| 846 | !-- If wall between gridpoint 1 and gridpoint 5, then |
---|
| 847 | !-- Neumann boundary condition has to be applied |
---|
| 848 | IF ( gp_outside_of_building(1) == 1 .AND. & |
---|
| 849 | gp_outside_of_building(5) == 0 ) THEN |
---|
| 850 | num_gp = num_gp + 1 |
---|
[1359] | 851 | location(num_gp,1) = i * dx + 0.5_wp * dx |
---|
[849] | 852 | location(num_gp,2) = j * dy |
---|
[1359] | 853 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
[849] | 854 | ei(num_gp) = e(k,j,i) |
---|
| 855 | dissi(num_gp) = diss(k,j,i) |
---|
[1359] | 856 | de_dxi(num_gp) = 0.0_wp |
---|
[849] | 857 | de_dyi(num_gp) = de_dy(k,j,i) |
---|
| 858 | de_dzi(num_gp) = de_dz(k,j,i) |
---|
| 859 | ENDIF |
---|
| 860 | |
---|
| 861 | IF ( gp_outside_of_building(5) == 1 .AND. & |
---|
[1929] | 862 | gp_outside_of_building(1) == 0 ) THEN |
---|
[849] | 863 | num_gp = num_gp + 1 |
---|
[1359] | 864 | location(num_gp,1) = i * dx + 0.5_wp * dx |
---|
[849] | 865 | location(num_gp,2) = j * dy |
---|
[1359] | 866 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
[849] | 867 | ei(num_gp) = e(k,j,i+1) |
---|
| 868 | dissi(num_gp) = diss(k,j,i+1) |
---|
[1359] | 869 | de_dxi(num_gp) = 0.0_wp |
---|
[849] | 870 | de_dyi(num_gp) = de_dy(k,j,i+1) |
---|
| 871 | de_dzi(num_gp) = de_dz(k,j,i+1) |
---|
| 872 | ENDIF |
---|
| 873 | |
---|
| 874 | ! |
---|
| 875 | !-- If wall between gridpoint 5 and gridpoint 6, then |
---|
| 876 | !-- then Neumann boundary condition has to be applied |
---|
| 877 | IF ( gp_outside_of_building(5) == 1 .AND. & |
---|
| 878 | gp_outside_of_building(6) == 0 ) THEN |
---|
| 879 | num_gp = num_gp + 1 |
---|
| 880 | location(num_gp,1) = (i+1) * dx |
---|
[1359] | 881 | location(num_gp,2) = j * dy + 0.5_wp * dy |
---|
| 882 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
[849] | 883 | ei(num_gp) = e(k,j,i+1) |
---|
| 884 | dissi(num_gp) = diss(k,j,i+1) |
---|
| 885 | de_dxi(num_gp) = de_dx(k,j,i+1) |
---|
[1359] | 886 | de_dyi(num_gp) = 0.0_wp |
---|
[849] | 887 | de_dzi(num_gp) = de_dz(k,j,i+1) |
---|
| 888 | ENDIF |
---|
| 889 | |
---|
| 890 | IF ( gp_outside_of_building(6) == 1 .AND. & |
---|
| 891 | gp_outside_of_building(5) == 0 ) THEN |
---|
| 892 | num_gp = num_gp + 1 |
---|
| 893 | location(num_gp,1) = (i+1) * dx |
---|
[1359] | 894 | location(num_gp,2) = j * dy + 0.5_wp * dy |
---|
| 895 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
[849] | 896 | ei(num_gp) = e(k,j+1,i+1) |
---|
| 897 | dissi(num_gp) = diss(k,j+1,i+1) |
---|
| 898 | de_dxi(num_gp) = de_dx(k,j+1,i+1) |
---|
[1359] | 899 | de_dyi(num_gp) = 0.0_wp |
---|
[849] | 900 | de_dzi(num_gp) = de_dz(k,j+1,i+1) |
---|
| 901 | ENDIF |
---|
| 902 | |
---|
| 903 | ! |
---|
| 904 | !-- If wall between gridpoint 2 and gridpoint 6, then |
---|
| 905 | !-- Neumann boundary condition has to be applied |
---|
| 906 | IF ( gp_outside_of_building(2) == 1 .AND. & |
---|
| 907 | gp_outside_of_building(6) == 0 ) THEN |
---|
| 908 | num_gp = num_gp + 1 |
---|
[1359] | 909 | location(num_gp,1) = i * dx + 0.5_wp * dx |
---|
[849] | 910 | location(num_gp,2) = (j+1) * dy |
---|
[1359] | 911 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
[849] | 912 | ei(num_gp) = e(k,j+1,i) |
---|
| 913 | dissi(num_gp) = diss(k,j+1,i) |
---|
[1359] | 914 | de_dxi(num_gp) = 0.0_wp |
---|
[849] | 915 | de_dyi(num_gp) = de_dy(k,j+1,i) |
---|
| 916 | de_dzi(num_gp) = de_dz(k,j+1,i) |
---|
| 917 | ENDIF |
---|
| 918 | |
---|
| 919 | IF ( gp_outside_of_building(6) == 1 .AND. & |
---|
| 920 | gp_outside_of_building(2) == 0 ) THEN |
---|
| 921 | num_gp = num_gp + 1 |
---|
[1359] | 922 | location(num_gp,1) = i * dx + 0.5_wp * dx |
---|
[849] | 923 | location(num_gp,2) = (j+1) * dy |
---|
[1359] | 924 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
[849] | 925 | ei(num_gp) = e(k,j+1,i+1) |
---|
| 926 | dissi(num_gp) = diss(k,j+1,i+1) |
---|
[1359] | 927 | de_dxi(num_gp) = 0.0_wp |
---|
[849] | 928 | de_dyi(num_gp) = de_dy(k,j+1,i+1) |
---|
| 929 | de_dzi(num_gp) = de_dz(k,j+1,i+1) |
---|
| 930 | ENDIF |
---|
| 931 | |
---|
| 932 | ! |
---|
| 933 | !-- If wall between gridpoint 1 and gridpoint 2, then |
---|
| 934 | !-- Neumann boundary condition has to be applied |
---|
| 935 | IF ( gp_outside_of_building(1) == 1 .AND. & |
---|
| 936 | gp_outside_of_building(2) == 0 ) THEN |
---|
| 937 | num_gp = num_gp + 1 |
---|
| 938 | location(num_gp,1) = i * dx |
---|
[1359] | 939 | location(num_gp,2) = j * dy + 0.5_wp * dy |
---|
| 940 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
[849] | 941 | ei(num_gp) = e(k,j,i) |
---|
| 942 | dissi(num_gp) = diss(k,j,i) |
---|
| 943 | de_dxi(num_gp) = de_dx(k,j,i) |
---|
[1359] | 944 | de_dyi(num_gp) = 0.0_wp |
---|
[1929] | 945 | de_dzi(num_gp) = de_dz(k,j,i) |
---|
[849] | 946 | ENDIF |
---|
| 947 | |
---|
| 948 | IF ( gp_outside_of_building(2) == 1 .AND. & |
---|
| 949 | gp_outside_of_building(1) == 0 ) THEN |
---|
| 950 | num_gp = num_gp + 1 |
---|
| 951 | location(num_gp,1) = i * dx |
---|
[1359] | 952 | location(num_gp,2) = j * dy + 0.5_wp * dy |
---|
| 953 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
[849] | 954 | ei(num_gp) = e(k,j+1,i) |
---|
| 955 | dissi(num_gp) = diss(k,j+1,i) |
---|
| 956 | de_dxi(num_gp) = de_dx(k,j+1,i) |
---|
[1359] | 957 | de_dyi(num_gp) = 0.0_wp |
---|
[849] | 958 | de_dzi(num_gp) = de_dz(k,j+1,i) |
---|
| 959 | ENDIF |
---|
| 960 | |
---|
| 961 | ! |
---|
| 962 | !-- If wall between gridpoint 3 and gridpoint 7, then |
---|
| 963 | !-- Neumann boundary condition has to be applied |
---|
| 964 | IF ( gp_outside_of_building(3) == 1 .AND. & |
---|
| 965 | gp_outside_of_building(7) == 0 ) THEN |
---|
| 966 | num_gp = num_gp + 1 |
---|
[1359] | 967 | location(num_gp,1) = i * dx + 0.5_wp * dx |
---|
[849] | 968 | location(num_gp,2) = j * dy |
---|
[1359] | 969 | location(num_gp,3) = k * dz + 0.5_wp * dz |
---|
[849] | 970 | ei(num_gp) = e(k+1,j,i) |
---|
| 971 | dissi(num_gp) = diss(k+1,j,i) |
---|
[1359] | 972 | de_dxi(num_gp) = 0.0_wp |
---|
[849] | 973 | de_dyi(num_gp) = de_dy(k+1,j,i) |
---|
| 974 | de_dzi(num_gp) = de_dz(k+1,j,i) |
---|
| 975 | ENDIF |
---|
| 976 | |
---|
| 977 | IF ( gp_outside_of_building(7) == 1 .AND. & |
---|
| 978 | gp_outside_of_building(3) == 0 ) THEN |
---|
| 979 | num_gp = num_gp + 1 |
---|
[1359] | 980 | location(num_gp,1) = i * dx + 0.5_wp * dx |
---|
[849] | 981 | location(num_gp,2) = j * dy |
---|
[1359] | 982 | location(num_gp,3) = k * dz + 0.5_wp * dz |
---|
[849] | 983 | ei(num_gp) = e(k+1,j,i+1) |
---|
| 984 | dissi(num_gp) = diss(k+1,j,i+1) |
---|
[1359] | 985 | de_dxi(num_gp) = 0.0_wp |
---|
[849] | 986 | de_dyi(num_gp) = de_dy(k+1,j,i+1) |
---|
| 987 | de_dzi(num_gp) = de_dz(k+1,j,i+1) |
---|
| 988 | ENDIF |
---|
| 989 | |
---|
| 990 | ! |
---|
| 991 | !-- If wall between gridpoint 7 and gridpoint 8, then |
---|
| 992 | !-- Neumann boundary condition has to be applied |
---|
| 993 | IF ( gp_outside_of_building(7) == 1 .AND. & |
---|
| 994 | gp_outside_of_building(8) == 0 ) THEN |
---|
| 995 | num_gp = num_gp + 1 |
---|
| 996 | location(num_gp,1) = (i+1) * dx |
---|
[1359] | 997 | location(num_gp,2) = j * dy + 0.5_wp * dy |
---|
| 998 | location(num_gp,3) = k * dz + 0.5_wp * dz |
---|
[849] | 999 | ei(num_gp) = e(k+1,j,i+1) |
---|
| 1000 | dissi(num_gp) = diss(k+1,j,i+1) |
---|
| 1001 | de_dxi(num_gp) = de_dx(k+1,j,i+1) |
---|
[1359] | 1002 | de_dyi(num_gp) = 0.0_wp |
---|
[849] | 1003 | de_dzi(num_gp) = de_dz(k+1,j,i+1) |
---|
| 1004 | ENDIF |
---|
| 1005 | |
---|
| 1006 | IF ( gp_outside_of_building(8) == 1 .AND. & |
---|
| 1007 | gp_outside_of_building(7) == 0 ) THEN |
---|
| 1008 | num_gp = num_gp + 1 |
---|
| 1009 | location(num_gp,1) = (i+1) * dx |
---|
[1359] | 1010 | location(num_gp,2) = j * dy + 0.5_wp * dy |
---|
| 1011 | location(num_gp,3) = k * dz + 0.5_wp * dz |
---|
[849] | 1012 | ei(num_gp) = e(k+1,j+1,i+1) |
---|
| 1013 | dissi(num_gp) = diss(k+1,j+1,i+1) |
---|
| 1014 | de_dxi(num_gp) = de_dx(k+1,j+1,i+1) |
---|
[1359] | 1015 | de_dyi(num_gp) = 0.0_wp |
---|
[849] | 1016 | de_dzi(num_gp) = de_dz(k+1,j+1,i+1) |
---|
| 1017 | ENDIF |
---|
| 1018 | |
---|
| 1019 | ! |
---|
| 1020 | !-- If wall between gridpoint 4 and gridpoint 8, then |
---|
| 1021 | !-- Neumann boundary condition has to be applied |
---|
| 1022 | IF ( gp_outside_of_building(4) == 1 .AND. & |
---|
| 1023 | gp_outside_of_building(8) == 0 ) THEN |
---|
| 1024 | num_gp = num_gp + 1 |
---|
[1359] | 1025 | location(num_gp,1) = i * dx + 0.5_wp * dx |
---|
[849] | 1026 | location(num_gp,2) = (j+1) * dy |
---|
[1359] | 1027 | location(num_gp,3) = k * dz + 0.5_wp * dz |
---|
[849] | 1028 | ei(num_gp) = e(k+1,j+1,i) |
---|
| 1029 | dissi(num_gp) = diss(k+1,j+1,i) |
---|
[1359] | 1030 | de_dxi(num_gp) = 0.0_wp |
---|
[849] | 1031 | de_dyi(num_gp) = de_dy(k+1,j+1,i) |
---|
| 1032 | de_dzi(num_gp) = de_dz(k+1,j+1,i) |
---|
| 1033 | ENDIF |
---|
| 1034 | |
---|
| 1035 | IF ( gp_outside_of_building(8) == 1 .AND. & |
---|
| 1036 | gp_outside_of_building(4) == 0 ) THEN |
---|
| 1037 | num_gp = num_gp + 1 |
---|
[1359] | 1038 | location(num_gp,1) = i * dx + 0.5_wp * dx |
---|
[849] | 1039 | location(num_gp,2) = (j+1) * dy |
---|
[1359] | 1040 | location(num_gp,3) = k * dz + 0.5_wp * dz |
---|
[849] | 1041 | ei(num_gp) = e(k+1,j+1,i+1) |
---|
| 1042 | dissi(num_gp) = diss(k+1,j+1,i+1) |
---|
[1359] | 1043 | de_dxi(num_gp) = 0.0_wp |
---|
[849] | 1044 | de_dyi(num_gp) = de_dy(k+1,j+1,i+1) |
---|
| 1045 | de_dzi(num_gp) = de_dz(k+1,j+1,i+1) |
---|
| 1046 | ENDIF |
---|
| 1047 | |
---|
| 1048 | ! |
---|
| 1049 | !-- If wall between gridpoint 3 and gridpoint 4, then |
---|
| 1050 | !-- Neumann boundary condition has to be applied |
---|
| 1051 | IF ( gp_outside_of_building(3) == 1 .AND. & |
---|
| 1052 | gp_outside_of_building(4) == 0 ) THEN |
---|
| 1053 | num_gp = num_gp + 1 |
---|
| 1054 | location(num_gp,1) = i * dx |
---|
[1359] | 1055 | location(num_gp,2) = j * dy + 0.5_wp * dy |
---|
| 1056 | location(num_gp,3) = k * dz + 0.5_wp * dz |
---|
[849] | 1057 | ei(num_gp) = e(k+1,j,i) |
---|
| 1058 | dissi(num_gp) = diss(k+1,j,i) |
---|
| 1059 | de_dxi(num_gp) = de_dx(k+1,j,i) |
---|
[1359] | 1060 | de_dyi(num_gp) = 0.0_wp |
---|
[849] | 1061 | de_dzi(num_gp) = de_dz(k+1,j,i) |
---|
| 1062 | ENDIF |
---|
| 1063 | |
---|
| 1064 | IF ( gp_outside_of_building(4) == 1 .AND. & |
---|
| 1065 | gp_outside_of_building(3) == 0 ) THEN |
---|
| 1066 | num_gp = num_gp + 1 |
---|
| 1067 | location(num_gp,1) = i * dx |
---|
[1359] | 1068 | location(num_gp,2) = j * dy + 0.5_wp * dy |
---|
| 1069 | location(num_gp,3) = k * dz + 0.5_wp * dz |
---|
[849] | 1070 | ei(num_gp) = e(k+1,j+1,i) |
---|
| 1071 | dissi(num_gp) = diss(k+1,j+1,i) |
---|
| 1072 | de_dxi(num_gp) = de_dx(k+1,j+1,i) |
---|
[1359] | 1073 | de_dyi(num_gp) = 0.0_wp |
---|
[849] | 1074 | de_dzi(num_gp) = de_dz(k+1,j+1,i) |
---|
| 1075 | ENDIF |
---|
| 1076 | |
---|
| 1077 | ! |
---|
| 1078 | !-- If wall between gridpoint 1 and gridpoint 3, then |
---|
| 1079 | !-- Neumann boundary condition has to be applied |
---|
| 1080 | !-- (only one case as only building beneath is possible) |
---|
| 1081 | IF ( gp_outside_of_building(1) == 0 .AND. & |
---|
| 1082 | gp_outside_of_building(3) == 1 ) THEN |
---|
| 1083 | num_gp = num_gp + 1 |
---|
| 1084 | location(num_gp,1) = i * dx |
---|
| 1085 | location(num_gp,2) = j * dy |
---|
| 1086 | location(num_gp,3) = k * dz |
---|
| 1087 | ei(num_gp) = e(k+1,j,i) |
---|
| 1088 | dissi(num_gp) = diss(k+1,j,i) |
---|
| 1089 | de_dxi(num_gp) = de_dx(k+1,j,i) |
---|
| 1090 | de_dyi(num_gp) = de_dy(k+1,j,i) |
---|
[1359] | 1091 | de_dzi(num_gp) = 0.0_wp |
---|
[849] | 1092 | ENDIF |
---|
| 1093 | |
---|
| 1094 | ! |
---|
| 1095 | !-- If wall between gridpoint 5 and gridpoint 7, then |
---|
| 1096 | !-- Neumann boundary condition has to be applied |
---|
| 1097 | !-- (only one case as only building beneath is possible) |
---|
| 1098 | IF ( gp_outside_of_building(5) == 0 .AND. & |
---|
| 1099 | gp_outside_of_building(7) == 1 ) THEN |
---|
| 1100 | num_gp = num_gp + 1 |
---|
| 1101 | location(num_gp,1) = (i+1) * dx |
---|
| 1102 | location(num_gp,2) = j * dy |
---|
| 1103 | location(num_gp,3) = k * dz |
---|
| 1104 | ei(num_gp) = e(k+1,j,i+1) |
---|
| 1105 | dissi(num_gp) = diss(k+1,j,i+1) |
---|
| 1106 | de_dxi(num_gp) = de_dx(k+1,j,i+1) |
---|
| 1107 | de_dyi(num_gp) = de_dy(k+1,j,i+1) |
---|
[1359] | 1108 | de_dzi(num_gp) = 0.0_wp |
---|
[849] | 1109 | ENDIF |
---|
| 1110 | |
---|
| 1111 | ! |
---|
| 1112 | !-- If wall between gridpoint 2 and gridpoint 4, then |
---|
| 1113 | !-- Neumann boundary condition has to be applied |
---|
| 1114 | !-- (only one case as only building beneath is possible) |
---|
| 1115 | IF ( gp_outside_of_building(2) == 0 .AND. & |
---|
| 1116 | gp_outside_of_building(4) == 1 ) THEN |
---|
| 1117 | num_gp = num_gp + 1 |
---|
| 1118 | location(num_gp,1) = i * dx |
---|
| 1119 | location(num_gp,2) = (j+1) * dy |
---|
| 1120 | location(num_gp,3) = k * dz |
---|
| 1121 | ei(num_gp) = e(k+1,j+1,i) |
---|
| 1122 | dissi(num_gp) = diss(k+1,j+1,i) |
---|
| 1123 | de_dxi(num_gp) = de_dx(k+1,j+1,i) |
---|
| 1124 | de_dyi(num_gp) = de_dy(k+1,j+1,i) |
---|
[1359] | 1125 | de_dzi(num_gp) = 0.0_wp |
---|
[849] | 1126 | ENDIF |
---|
| 1127 | |
---|
[1929] | 1128 | ! |
---|
[849] | 1129 | !-- If wall between gridpoint 6 and gridpoint 8, then |
---|
| 1130 | !-- Neumann boundary condition has to be applied |
---|
| 1131 | !-- (only one case as only building beneath is possible) |
---|
| 1132 | IF ( gp_outside_of_building(6) == 0 .AND. & |
---|
| 1133 | gp_outside_of_building(8) == 1 ) THEN |
---|
| 1134 | num_gp = num_gp + 1 |
---|
| 1135 | location(num_gp,1) = (i+1) * dx |
---|
| 1136 | location(num_gp,2) = (j+1) * dy |
---|
| 1137 | location(num_gp,3) = k * dz |
---|
| 1138 | ei(num_gp) = e(k+1,j+1,i+1) |
---|
| 1139 | dissi(num_gp) = diss(k+1,j+1,i+1) |
---|
| 1140 | de_dxi(num_gp) = de_dx(k+1,j+1,i+1) |
---|
| 1141 | de_dyi(num_gp) = de_dy(k+1,j+1,i+1) |
---|
[1359] | 1142 | de_dzi(num_gp) = 0.0_wp |
---|
[849] | 1143 | ENDIF |
---|
[1929] | 1144 | |
---|
[849] | 1145 | ! |
---|
| 1146 | !-- Carry out the interpolation |
---|
| 1147 | IF ( num_gp == 1 ) THEN |
---|
[1929] | 1148 | ! |
---|
[849] | 1149 | !-- If only one of the gridpoints is situated outside of the |
---|
| 1150 | !-- building, it follows that the values at the particle |
---|
| 1151 | !-- location are the same as the gridpoint values |
---|
[1929] | 1152 | e_int(n) = ei(num_gp) |
---|
| 1153 | diss_int(n) = dissi(num_gp) |
---|
[1359] | 1154 | de_dx_int(n) = de_dxi(num_gp) |
---|
| 1155 | de_dy_int(n) = de_dyi(num_gp) |
---|
| 1156 | de_dz_int(n) = de_dzi(num_gp) |
---|
[1929] | 1157 | ! |
---|
| 1158 | !-- Set flag for stochastic equation which disables calculation |
---|
| 1159 | !-- of drift and memory term near topography. |
---|
| 1160 | term_1_2(n) = 0.0_wp |
---|
[849] | 1161 | ELSE IF ( num_gp > 1 ) THEN |
---|
[1929] | 1162 | |
---|
[1359] | 1163 | d_sum = 0.0_wp |
---|
[1929] | 1164 | ! |
---|
[849] | 1165 | !-- Evaluation of the distances between the gridpoints |
---|
| 1166 | !-- contributing to the interpolated values, and the particle |
---|
| 1167 | !-- location |
---|
| 1168 | DO agp = 1, num_gp |
---|
| 1169 | d_gp_pl(agp) = ( particles(n)%x-location(agp,1) )**2 & |
---|
| 1170 | + ( particles(n)%y-location(agp,2) )**2 & |
---|
[1359] | 1171 | + ( zv(n)-location(agp,3) )**2 |
---|
[849] | 1172 | d_sum = d_sum + d_gp_pl(agp) |
---|
| 1173 | ENDDO |
---|
[1929] | 1174 | |
---|
[849] | 1175 | ! |
---|
| 1176 | !-- Finally the interpolation can be carried out |
---|
[1359] | 1177 | e_int(n) = 0.0_wp |
---|
| 1178 | diss_int(n) = 0.0_wp |
---|
[1929] | 1179 | de_dx_int(n) = 0.0_wp |
---|
| 1180 | de_dy_int(n) = 0.0_wp |
---|
| 1181 | de_dz_int(n) = 0.0_wp |
---|
[849] | 1182 | DO agp = 1, num_gp |
---|
[1359] | 1183 | e_int(n) = e_int(n) + ( d_sum - d_gp_pl(agp) ) * & |
---|
[849] | 1184 | ei(agp) / ( (num_gp-1) * d_sum ) |
---|
[1359] | 1185 | diss_int(n) = diss_int(n) + ( d_sum - d_gp_pl(agp) ) * & |
---|
[849] | 1186 | dissi(agp) / ( (num_gp-1) * d_sum ) |
---|
[1359] | 1187 | de_dx_int(n) = de_dx_int(n) + ( d_sum - d_gp_pl(agp) ) * & |
---|
[849] | 1188 | de_dxi(agp) / ( (num_gp-1) * d_sum ) |
---|
[1359] | 1189 | de_dy_int(n) = de_dy_int(n) + ( d_sum - d_gp_pl(agp) ) * & |
---|
[849] | 1190 | de_dyi(agp) / ( (num_gp-1) * d_sum ) |
---|
[1359] | 1191 | de_dz_int(n) = de_dz_int(n) + ( d_sum - d_gp_pl(agp) ) * & |
---|
[849] | 1192 | de_dzi(agp) / ( (num_gp-1) * d_sum ) |
---|
| 1193 | ENDDO |
---|
[1929] | 1194 | |
---|
[849] | 1195 | ENDIF |
---|
[1929] | 1196 | e_int(n) = MAX( 1E-20_wp, e_int(n) ) |
---|
| 1197 | diss_int(n) = MAX( 1E-20_wp, diss_int(n) ) |
---|
| 1198 | de_dx_int(n) = MAX( 1E-20_wp, de_dx_int(n) ) |
---|
| 1199 | de_dy_int(n) = MAX( 1E-20_wp, de_dy_int(n) ) |
---|
| 1200 | de_dz_int(n) = MAX( 1E-20_wp, de_dz_int(n) ) |
---|
| 1201 | ! |
---|
| 1202 | !-- Set flag for stochastic equation which disables calculation |
---|
| 1203 | !-- of drift and memory term near topography. |
---|
| 1204 | term_1_2(n) = 0.0_wp |
---|
[849] | 1205 | ENDIF |
---|
[1359] | 1206 | ENDDO |
---|
| 1207 | ENDIF |
---|
[849] | 1208 | |
---|
[1359] | 1209 | DO nb = 0,7 |
---|
| 1210 | i = ip + block_offset(nb)%i_off |
---|
| 1211 | j = jp + block_offset(nb)%j_off |
---|
| 1212 | k = kp + block_offset(nb)%k_off |
---|
[849] | 1213 | |
---|
[1359] | 1214 | DO n = start_index(nb), end_index(nb) |
---|
[849] | 1215 | ! |
---|
[1359] | 1216 | !-- Vertical interpolation of the horizontally averaged SGS TKE and |
---|
| 1217 | !-- resolved-scale velocity variances and use the interpolated values |
---|
| 1218 | !-- to calculate the coefficient fs, which is a measure of the ratio |
---|
| 1219 | !-- of the subgrid-scale turbulent kinetic energy to the total amount |
---|
| 1220 | !-- of turbulent kinetic energy. |
---|
| 1221 | IF ( k == 0 ) THEN |
---|
| 1222 | e_mean_int = hom(0,1,8,0) |
---|
| 1223 | ELSE |
---|
| 1224 | e_mean_int = hom(k,1,8,0) + & |
---|
| 1225 | ( hom(k+1,1,8,0) - hom(k,1,8,0) ) / & |
---|
| 1226 | ( zu(k+1) - zu(k) ) * & |
---|
| 1227 | ( zv(n) - zu(k) ) |
---|
| 1228 | ENDIF |
---|
[849] | 1229 | |
---|
[1685] | 1230 | kw = kp - 1 |
---|
[849] | 1231 | |
---|
[1359] | 1232 | IF ( k == 0 ) THEN |
---|
| 1233 | aa = hom(k+1,1,30,0) * ( zv(n) / & |
---|
| 1234 | ( 0.5_wp * ( zu(k+1) - zu(k) ) ) ) |
---|
| 1235 | bb = hom(k+1,1,31,0) * ( zv(n) / & |
---|
| 1236 | ( 0.5_wp * ( zu(k+1) - zu(k) ) ) ) |
---|
| 1237 | cc = hom(kw+1,1,32,0) * ( zv(n) / & |
---|
| 1238 | ( 1.0_wp * ( zw(kw+1) - zw(kw) ) ) ) |
---|
| 1239 | ELSE |
---|
| 1240 | aa = hom(k,1,30,0) + ( hom(k+1,1,30,0) - hom(k,1,30,0) ) * & |
---|
| 1241 | ( ( zv(n) - zu(k) ) / ( zu(k+1) - zu(k) ) ) |
---|
| 1242 | bb = hom(k,1,31,0) + ( hom(k+1,1,31,0) - hom(k,1,31,0) ) * & |
---|
| 1243 | ( ( zv(n) - zu(k) ) / ( zu(k+1) - zu(k) ) ) |
---|
| 1244 | cc = hom(kw,1,32,0) + ( hom(kw+1,1,32,0)-hom(kw,1,32,0) ) * & |
---|
| 1245 | ( ( zv(n) - zw(kw) ) / ( zw(kw+1)-zw(kw) ) ) |
---|
| 1246 | ENDIF |
---|
[849] | 1247 | |
---|
[1359] | 1248 | vv_int = ( 1.0_wp / 3.0_wp ) * ( aa + bb + cc ) |
---|
| 1249 | ! |
---|
| 1250 | !-- Needed to avoid NaN particle velocities. The value of 1.0 is just |
---|
| 1251 | !-- an educated guess for the given case. |
---|
| 1252 | IF ( vv_int + ( 2.0_wp / 3.0_wp ) * e_mean_int == 0.0_wp ) THEN |
---|
| 1253 | fs_int(n) = 1.0_wp |
---|
| 1254 | ELSE |
---|
| 1255 | fs_int(n) = ( 2.0_wp / 3.0_wp ) * e_mean_int / & |
---|
| 1256 | ( vv_int + ( 2.0_wp / 3.0_wp ) * e_mean_int ) |
---|
| 1257 | ENDIF |
---|
[849] | 1258 | |
---|
[1359] | 1259 | ENDDO |
---|
| 1260 | ENDDO |
---|
[849] | 1261 | |
---|
[1359] | 1262 | DO n = 1, number_of_particles |
---|
| 1263 | |
---|
| 1264 | rg(n,1) = random_gauss( iran_part, 5.0_wp ) |
---|
| 1265 | rg(n,2) = random_gauss( iran_part, 5.0_wp ) |
---|
| 1266 | rg(n,3) = random_gauss( iran_part, 5.0_wp ) |
---|
| 1267 | |
---|
| 1268 | ENDDO |
---|
| 1269 | |
---|
| 1270 | DO n = 1, number_of_particles |
---|
[849] | 1271 | ! |
---|
| 1272 | !-- Calculate the Lagrangian timescale according to Weil et al. (2004). |
---|
[1929] | 1273 | lagr_timescale = ( 4.0_wp * e_int(n) + 1E-20_wp ) / & |
---|
| 1274 | ( 3.0_wp * fs_int(n) * c_0 * diss_int(n) + 1E-20_wp ) |
---|
[849] | 1275 | |
---|
| 1276 | ! |
---|
| 1277 | !-- Calculate the next particle timestep. dt_gap is the time needed to |
---|
| 1278 | !-- complete the current LES timestep. |
---|
| 1279 | dt_gap = dt_3d - particles(n)%dt_sum |
---|
[1359] | 1280 | dt_particle(n) = MIN( dt_3d, 0.025_wp * lagr_timescale, dt_gap ) |
---|
[849] | 1281 | |
---|
| 1282 | ! |
---|
| 1283 | !-- The particle timestep should not be too small in order to prevent |
---|
| 1284 | !-- the number of particle timesteps of getting too large |
---|
[1359] | 1285 | IF ( dt_particle(n) < dt_min_part .AND. dt_min_part < dt_gap ) THEN |
---|
| 1286 | dt_particle(n) = dt_min_part |
---|
[849] | 1287 | ENDIF |
---|
| 1288 | |
---|
| 1289 | ! |
---|
| 1290 | !-- Calculate the SGS velocity components |
---|
[1359] | 1291 | IF ( particles(n)%age == 0.0_wp ) THEN |
---|
[849] | 1292 | ! |
---|
| 1293 | !-- For new particles the SGS components are derived from the SGS |
---|
| 1294 | !-- TKE. Limit the Gaussian random number to the interval |
---|
| 1295 | !-- [-5.0*sigma, 5.0*sigma] in order to prevent the SGS velocities |
---|
| 1296 | !-- from becoming unrealistically large. |
---|
[1929] | 1297 | particles(n)%rvar1 = SQRT( 2.0_wp * sgs_wf_part * e_int(n) + 1E-20_wp ) * & |
---|
[1359] | 1298 | ( rg(n,1) - 1.0_wp ) |
---|
[1929] | 1299 | particles(n)%rvar2 = SQRT( 2.0_wp * sgs_wf_part * e_int(n) + 1E-20_wp ) * & |
---|
[1359] | 1300 | ( rg(n,2) - 1.0_wp ) |
---|
[1929] | 1301 | particles(n)%rvar3 = SQRT( 2.0_wp * sgs_wf_part * e_int(n) + 1E-20_wp ) * & |
---|
[1359] | 1302 | ( rg(n,3) - 1.0_wp ) |
---|
[849] | 1303 | |
---|
| 1304 | ELSE |
---|
| 1305 | ! |
---|
| 1306 | !-- Restriction of the size of the new timestep: compared to the |
---|
| 1307 | !-- previous timestep the increase must not exceed 200% |
---|
| 1308 | |
---|
| 1309 | dt_particle_m = particles(n)%age - particles(n)%age_m |
---|
[1359] | 1310 | IF ( dt_particle(n) > 2.0_wp * dt_particle_m ) THEN |
---|
| 1311 | dt_particle(n) = 2.0_wp * dt_particle_m |
---|
[849] | 1312 | ENDIF |
---|
| 1313 | |
---|
| 1314 | ! |
---|
| 1315 | !-- For old particles the SGS components are correlated with the |
---|
| 1316 | !-- values from the previous timestep. Random numbers have also to |
---|
| 1317 | !-- be limited (see above). |
---|
| 1318 | !-- As negative values for the subgrid TKE are not allowed, the |
---|
| 1319 | !-- change of the subgrid TKE with time cannot be smaller than |
---|
[1359] | 1320 | !-- -e_int(n)/dt_particle. This value is used as a lower boundary |
---|
[849] | 1321 | !-- value for the change of TKE |
---|
| 1322 | |
---|
[1359] | 1323 | de_dt_min = - e_int(n) / dt_particle(n) |
---|
[849] | 1324 | |
---|
[1359] | 1325 | de_dt = ( e_int(n) - particles(n)%e_m ) / dt_particle_m |
---|
[849] | 1326 | |
---|
| 1327 | IF ( de_dt < de_dt_min ) THEN |
---|
| 1328 | de_dt = de_dt_min |
---|
| 1329 | ENDIF |
---|
| 1330 | |
---|
[1929] | 1331 | CALL weil_stochastic_eq(particles(n)%rvar1, fs_int(n), e_int(n), & |
---|
| 1332 | de_dx_int(n), de_dt, diss_int(n), & |
---|
| 1333 | dt_particle(n), rg(n,1), term_1_2(n) ) |
---|
[849] | 1334 | |
---|
[1929] | 1335 | CALL weil_stochastic_eq(particles(n)%rvar2, fs_int(n), e_int(n), & |
---|
| 1336 | de_dy_int(n), de_dt, diss_int(n), & |
---|
| 1337 | dt_particle(n), rg(n,2), term_1_2(n) ) |
---|
[849] | 1338 | |
---|
[1929] | 1339 | CALL weil_stochastic_eq(particles(n)%rvar3, fs_int(n), e_int(n), & |
---|
| 1340 | de_dz_int(n), de_dt, diss_int(n), & |
---|
| 1341 | dt_particle(n), rg(n,3), term_1_2(n) ) |
---|
[849] | 1342 | |
---|
| 1343 | ENDIF |
---|
[1929] | 1344 | |
---|
[1359] | 1345 | u_int(n) = u_int(n) + particles(n)%rvar1 |
---|
| 1346 | v_int(n) = v_int(n) + particles(n)%rvar2 |
---|
| 1347 | w_int(n) = w_int(n) + particles(n)%rvar3 |
---|
[849] | 1348 | ! |
---|
| 1349 | !-- Store the SGS TKE of the current timelevel which is needed for |
---|
| 1350 | !-- for calculating the SGS particle velocities at the next timestep |
---|
[1359] | 1351 | particles(n)%e_m = e_int(n) |
---|
| 1352 | ENDDO |
---|
[849] | 1353 | |
---|
[1359] | 1354 | ELSE |
---|
[849] | 1355 | ! |
---|
[1359] | 1356 | !-- If no SGS velocities are used, only the particle timestep has to |
---|
| 1357 | !-- be set |
---|
| 1358 | dt_particle = dt_3d |
---|
[849] | 1359 | |
---|
[1359] | 1360 | ENDIF |
---|
[849] | 1361 | ! |
---|
[1359] | 1362 | !-- Store the old age of the particle ( needed to prevent that a |
---|
| 1363 | !-- particle crosses several PEs during one timestep, and for the |
---|
| 1364 | !-- evaluation of the subgrid particle velocity fluctuations ) |
---|
| 1365 | particles(1:number_of_particles)%age_m = particles(1:number_of_particles)%age |
---|
[849] | 1366 | |
---|
[1359] | 1367 | dens_ratio = particle_groups(particles(1:number_of_particles)%group)%density_ratio |
---|
[849] | 1368 | |
---|
[1359] | 1369 | IF ( ANY( dens_ratio == 0.0_wp ) ) THEN |
---|
| 1370 | DO n = 1, number_of_particles |
---|
| 1371 | |
---|
[849] | 1372 | ! |
---|
[1359] | 1373 | !-- Particle advection |
---|
| 1374 | IF ( dens_ratio(n) == 0.0_wp ) THEN |
---|
[849] | 1375 | ! |
---|
[1359] | 1376 | !-- Pure passive transport (without particle inertia) |
---|
| 1377 | particles(n)%x = xv(n) + u_int(n) * dt_particle(n) |
---|
| 1378 | particles(n)%y = yv(n) + v_int(n) * dt_particle(n) |
---|
| 1379 | particles(n)%z = zv(n) + w_int(n) * dt_particle(n) |
---|
[849] | 1380 | |
---|
[1359] | 1381 | particles(n)%speed_x = u_int(n) |
---|
| 1382 | particles(n)%speed_y = v_int(n) |
---|
| 1383 | particles(n)%speed_z = w_int(n) |
---|
[849] | 1384 | |
---|
[1359] | 1385 | ELSE |
---|
[849] | 1386 | ! |
---|
[1359] | 1387 | !-- Transport of particles with inertia |
---|
| 1388 | particles(n)%x = particles(n)%x + particles(n)%speed_x * & |
---|
| 1389 | dt_particle(n) |
---|
| 1390 | particles(n)%y = particles(n)%y + particles(n)%speed_y * & |
---|
| 1391 | dt_particle(n) |
---|
| 1392 | particles(n)%z = particles(n)%z + particles(n)%speed_z * & |
---|
| 1393 | dt_particle(n) |
---|
[849] | 1394 | |
---|
| 1395 | ! |
---|
[1359] | 1396 | !-- Update of the particle velocity |
---|
| 1397 | IF ( cloud_droplets ) THEN |
---|
[1822] | 1398 | ! |
---|
| 1399 | !-- Terminal velocity is computed for vertical direction (Rogers et |
---|
| 1400 | !-- al., 1993, J. Appl. Meteorol.) |
---|
| 1401 | diameter = particles(n)%radius * 2000.0_wp !diameter in mm |
---|
| 1402 | IF ( diameter <= d0_rog ) THEN |
---|
| 1403 | w_s = k_cap_rog * diameter * ( 1.0_wp - EXP( -k_low_rog * diameter ) ) |
---|
| 1404 | ELSE |
---|
| 1405 | w_s = a_rog - b_rog * EXP( -c_rog * diameter ) |
---|
| 1406 | ENDIF |
---|
[1359] | 1407 | |
---|
[1822] | 1408 | ! |
---|
| 1409 | !-- If selected, add random velocities following Soelch and Kaercher |
---|
| 1410 | !-- (2010, Q. J. R. Meteorol. Soc.) |
---|
| 1411 | IF ( use_sgs_for_particles ) THEN |
---|
| 1412 | lagr_timescale = km(kp,jp,ip) / MAX( e(kp,jp,ip), 1.0E-20_wp ) |
---|
| 1413 | RL = EXP( -1.0_wp * dt_3d / lagr_timescale ) |
---|
| 1414 | sigma = SQRT( e(kp,jp,ip) ) |
---|
| 1415 | |
---|
| 1416 | rg1 = random_gauss( iran_part, 5.0_wp ) - 1.0_wp |
---|
| 1417 | rg2 = random_gauss( iran_part, 5.0_wp ) - 1.0_wp |
---|
| 1418 | rg3 = random_gauss( iran_part, 5.0_wp ) - 1.0_wp |
---|
| 1419 | |
---|
| 1420 | particles(n)%rvar1 = RL * particles(n)%rvar1 + & |
---|
| 1421 | SQRT( 1.0_wp - RL**2 ) * sigma * rg1 |
---|
| 1422 | particles(n)%rvar2 = RL * particles(n)%rvar2 + & |
---|
| 1423 | SQRT( 1.0_wp - RL**2 ) * sigma * rg2 |
---|
| 1424 | particles(n)%rvar3 = RL * particles(n)%rvar3 + & |
---|
| 1425 | SQRT( 1.0_wp - RL**2 ) * sigma * rg3 |
---|
| 1426 | |
---|
| 1427 | particles(n)%speed_x = u_int(n) + particles(n)%rvar1 |
---|
| 1428 | particles(n)%speed_y = v_int(n) + particles(n)%rvar2 |
---|
| 1429 | particles(n)%speed_z = w_int(n) + particles(n)%rvar3 - w_s |
---|
| 1430 | ELSE |
---|
| 1431 | particles(n)%speed_x = u_int(n) |
---|
| 1432 | particles(n)%speed_y = v_int(n) |
---|
| 1433 | particles(n)%speed_z = w_int(n) - w_s |
---|
| 1434 | ENDIF |
---|
| 1435 | |
---|
[1359] | 1436 | ELSE |
---|
[1822] | 1437 | |
---|
| 1438 | IF ( use_sgs_for_particles ) THEN |
---|
| 1439 | exp_arg = particle_groups(particles(n)%group)%exp_arg |
---|
| 1440 | exp_term = EXP( -exp_arg * dt_particle(n) ) |
---|
| 1441 | ELSE |
---|
| 1442 | exp_arg = particle_groups(particles(n)%group)%exp_arg |
---|
| 1443 | exp_term = particle_groups(particles(n)%group)%exp_term |
---|
| 1444 | ENDIF |
---|
| 1445 | particles(n)%speed_x = particles(n)%speed_x * exp_term + & |
---|
| 1446 | u_int(n) * ( 1.0_wp - exp_term ) |
---|
| 1447 | particles(n)%speed_y = particles(n)%speed_y * exp_term + & |
---|
| 1448 | v_int(n) * ( 1.0_wp - exp_term ) |
---|
| 1449 | particles(n)%speed_z = particles(n)%speed_z * exp_term + & |
---|
| 1450 | ( w_int(n) - ( 1.0_wp - dens_ratio(n) ) * & |
---|
| 1451 | g / exp_arg ) * ( 1.0_wp - exp_term ) |
---|
[1359] | 1452 | ENDIF |
---|
[1822] | 1453 | |
---|
[1359] | 1454 | ENDIF |
---|
| 1455 | |
---|
| 1456 | ENDDO |
---|
| 1457 | |
---|
| 1458 | ELSE |
---|
| 1459 | |
---|
| 1460 | DO n = 1, number_of_particles |
---|
| 1461 | |
---|
| 1462 | !-- Transport of particles with inertia |
---|
| 1463 | particles(n)%x = xv(n) + particles(n)%speed_x * dt_particle(n) |
---|
| 1464 | particles(n)%y = yv(n) + particles(n)%speed_y * dt_particle(n) |
---|
| 1465 | particles(n)%z = zv(n) + particles(n)%speed_z * dt_particle(n) |
---|
| 1466 | ! |
---|
[849] | 1467 | !-- Update of the particle velocity |
---|
| 1468 | IF ( cloud_droplets ) THEN |
---|
[1822] | 1469 | ! |
---|
| 1470 | !-- Terminal velocity is computed for vertical direction (Rogers et al., |
---|
| 1471 | !-- 1993, J. Appl. Meteorol.) |
---|
| 1472 | diameter = particles(n)%radius * 2000.0_wp !diameter in mm |
---|
| 1473 | IF ( diameter <= d0_rog ) THEN |
---|
| 1474 | w_s = k_cap_rog * diameter * ( 1.0_wp - EXP( -k_low_rog * diameter ) ) |
---|
| 1475 | ELSE |
---|
| 1476 | w_s = a_rog - b_rog * EXP( -c_rog * diameter ) |
---|
| 1477 | ENDIF |
---|
[1359] | 1478 | |
---|
[1822] | 1479 | ! |
---|
| 1480 | !-- If selected, add random velocities following Soelch and Kaercher |
---|
| 1481 | !-- (2010, Q. J. R. Meteorol. Soc.) |
---|
| 1482 | IF ( use_sgs_for_particles ) THEN |
---|
| 1483 | lagr_timescale = km(kp,jp,ip) / MAX( e(kp,jp,ip), 1.0E-20_wp ) |
---|
| 1484 | RL = EXP( -1.0_wp * dt_3d / lagr_timescale ) |
---|
| 1485 | sigma = SQRT( e(kp,jp,ip) ) |
---|
[1359] | 1486 | |
---|
[1822] | 1487 | rg1 = random_gauss( iran_part, 5.0_wp ) - 1.0_wp |
---|
| 1488 | rg2 = random_gauss( iran_part, 5.0_wp ) - 1.0_wp |
---|
| 1489 | rg3 = random_gauss( iran_part, 5.0_wp ) - 1.0_wp |
---|
| 1490 | |
---|
| 1491 | particles(n)%rvar1 = RL * particles(n)%rvar1 + & |
---|
| 1492 | SQRT( 1.0_wp - RL**2 ) * sigma * rg1 |
---|
| 1493 | particles(n)%rvar2 = RL * particles(n)%rvar2 + & |
---|
| 1494 | SQRT( 1.0_wp - RL**2 ) * sigma * rg2 |
---|
| 1495 | particles(n)%rvar3 = RL * particles(n)%rvar3 + & |
---|
| 1496 | SQRT( 1.0_wp - RL**2 ) * sigma * rg3 |
---|
| 1497 | |
---|
| 1498 | particles(n)%speed_x = u_int(n) + particles(n)%rvar1 |
---|
| 1499 | particles(n)%speed_y = v_int(n) + particles(n)%rvar2 |
---|
| 1500 | particles(n)%speed_z = w_int(n) + particles(n)%rvar3 - w_s |
---|
| 1501 | ELSE |
---|
| 1502 | particles(n)%speed_x = u_int(n) |
---|
| 1503 | particles(n)%speed_y = v_int(n) |
---|
| 1504 | particles(n)%speed_z = w_int(n) - w_s |
---|
| 1505 | ENDIF |
---|
| 1506 | |
---|
[849] | 1507 | ELSE |
---|
[1822] | 1508 | |
---|
| 1509 | IF ( use_sgs_for_particles ) THEN |
---|
| 1510 | exp_arg = particle_groups(particles(n)%group)%exp_arg |
---|
| 1511 | exp_term = EXP( -exp_arg * dt_particle(n) ) |
---|
| 1512 | ELSE |
---|
| 1513 | exp_arg = particle_groups(particles(n)%group)%exp_arg |
---|
| 1514 | exp_term = particle_groups(particles(n)%group)%exp_term |
---|
| 1515 | ENDIF |
---|
| 1516 | particles(n)%speed_x = particles(n)%speed_x * exp_term + & |
---|
| 1517 | u_int(n) * ( 1.0_wp - exp_term ) |
---|
| 1518 | particles(n)%speed_y = particles(n)%speed_y * exp_term + & |
---|
| 1519 | v_int(n) * ( 1.0_wp - exp_term ) |
---|
| 1520 | particles(n)%speed_z = particles(n)%speed_z * exp_term + & |
---|
| 1521 | ( w_int(n) - ( 1.0_wp - dens_ratio(n) ) * g / & |
---|
| 1522 | exp_arg ) * ( 1.0_wp - exp_term ) |
---|
[849] | 1523 | ENDIF |
---|
[1822] | 1524 | |
---|
[1359] | 1525 | ENDDO |
---|
[849] | 1526 | |
---|
[1359] | 1527 | ENDIF |
---|
| 1528 | |
---|
| 1529 | DO n = 1, number_of_particles |
---|
[849] | 1530 | ! |
---|
| 1531 | !-- Increment the particle age and the total time that the particle |
---|
| 1532 | !-- has advanced within the particle timestep procedure |
---|
[1359] | 1533 | particles(n)%age = particles(n)%age + dt_particle(n) |
---|
| 1534 | particles(n)%dt_sum = particles(n)%dt_sum + dt_particle(n) |
---|
[849] | 1535 | |
---|
| 1536 | ! |
---|
| 1537 | !-- Check whether there is still a particle that has not yet completed |
---|
| 1538 | !-- the total LES timestep |
---|
[1359] | 1539 | IF ( ( dt_3d - particles(n)%dt_sum ) > 1E-8_wp ) THEN |
---|
[849] | 1540 | dt_3d_reached_l = .FALSE. |
---|
| 1541 | ENDIF |
---|
| 1542 | |
---|
| 1543 | ENDDO |
---|
| 1544 | |
---|
[1359] | 1545 | CALL cpu_log( log_point_s(44), 'lpm_advec', 'pause' ) |
---|
[849] | 1546 | |
---|
[1929] | 1547 | |
---|
[849] | 1548 | END SUBROUTINE lpm_advec |
---|
[1929] | 1549 | |
---|
| 1550 | ! Description: |
---|
| 1551 | ! ------------ |
---|
| 1552 | !> Calculation of subgrid-scale particle speed using the stochastic model |
---|
| 1553 | !> of Weil et al. (2004, JAS, 61, 2877-2887). |
---|
| 1554 | !------------------------------------------------------------------------------! |
---|
| 1555 | SUBROUTINE weil_stochastic_eq( v_sgs, fs_n, e_n, dedxi_n, dedt_n, diss_n, & |
---|
| 1556 | dt_n, rg_n, fac ) |
---|
| 1557 | |
---|
| 1558 | USE kinds |
---|
| 1559 | |
---|
| 1560 | USE particle_attributes, & |
---|
| 1561 | ONLY: c_0, sgs_wf_part |
---|
| 1562 | |
---|
| 1563 | IMPLICIT NONE |
---|
| 1564 | |
---|
| 1565 | REAL(wp) :: a1 !< dummy argument |
---|
| 1566 | REAL(wp) :: dedt_n !< time derivative of TKE at particle position |
---|
| 1567 | REAL(wp) :: dedxi_n !< horizontal derivative of TKE at particle position |
---|
| 1568 | REAL(wp) :: diss_n !< dissipation at particle position |
---|
| 1569 | REAL(wp) :: dt_n !< particle timestep |
---|
| 1570 | REAL(wp) :: e_n !< TKE at particle position |
---|
| 1571 | REAL(wp) :: fac !< flag to identify adjacent topography |
---|
| 1572 | REAL(wp) :: fs_n !< weighting factor to prevent that subgrid-scale particle speed becomes too large |
---|
| 1573 | REAL(wp) :: sgs_w !< constant (1/3) |
---|
| 1574 | REAL(wp) :: rg_n !< random number |
---|
| 1575 | REAL(wp) :: term1 !< memory term |
---|
| 1576 | REAL(wp) :: term2 !< drift correction term |
---|
| 1577 | REAL(wp) :: term3 !< random term |
---|
| 1578 | REAL(wp) :: v_sgs !< subgrid-scale velocity component |
---|
| 1579 | |
---|
| 1580 | ! |
---|
| 1581 | !-- Please note, terms 1 and 2 (drift and memory term, respectively) are |
---|
| 1582 | !-- multiplied by a flag to switch of both terms near topography. |
---|
| 1583 | !-- This is necessary, as both terms may cause a subgrid-scale velocity build up |
---|
| 1584 | !-- if particles are trapped in regions with very small TKE, e.g. in narrow street |
---|
| 1585 | !-- canyons resolved by only a few grid points. Hence, term 1 and term 2 are |
---|
| 1586 | !-- disabled if one of the adjacent grid points belongs to topography. |
---|
| 1587 | !-- Moreover, in this case, the previous subgrid-scale component is also set |
---|
| 1588 | !-- to zero. |
---|
| 1589 | |
---|
| 1590 | a1 = fs_n * c_0 * diss_n |
---|
| 1591 | ! |
---|
| 1592 | !-- Memory term |
---|
| 1593 | term1 = - a1 * v_sgs * dt_n / ( 4.0_wp * sgs_wf_part * e_n + 1E-20_wp ) & |
---|
| 1594 | * fac |
---|
| 1595 | ! |
---|
| 1596 | !-- Drift correction term |
---|
| 1597 | term2 = ( ( dedt_n * v_sgs / e_n ) + dedxi_n ) * 0.5_wp * dt_n & |
---|
| 1598 | * fac |
---|
| 1599 | ! |
---|
| 1600 | !-- Random term |
---|
| 1601 | term3 = SQRT( MAX( a1, 1E-20 ) ) * ( rg_n - 1.0_wp ) * SQRT( dt_n ) |
---|
| 1602 | ! |
---|
| 1603 | !-- In cese one of the adjacent grid-boxes belongs to topograhy, the previous |
---|
| 1604 | !-- subgrid-scale velocity component is set to zero, in order to prevent a |
---|
| 1605 | !-- velocity build-up. |
---|
| 1606 | |
---|
| 1607 | !-- This case, set also previous subgrid-scale component to zero. |
---|
| 1608 | v_sgs = v_sgs * fac + term1 + term2 + term3 |
---|
| 1609 | |
---|
| 1610 | END SUBROUTINE weil_stochastic_eq |
---|