[1682] | 1 | !> @file lpm_advec.f90 |
---|
[1036] | 2 | !--------------------------------------------------------------------------------! |
---|
| 3 | ! This file is part of PALM. |
---|
| 4 | ! |
---|
| 5 | ! PALM is free software: you can redistribute it and/or modify it under the terms |
---|
| 6 | ! of the GNU General Public License as published by the Free Software Foundation, |
---|
| 7 | ! either version 3 of the License, or (at your option) any later version. |
---|
| 8 | ! |
---|
| 9 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 10 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 11 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 12 | ! |
---|
| 13 | ! You should have received a copy of the GNU General Public License along with |
---|
| 14 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 15 | ! |
---|
[1818] | 16 | ! Copyright 1997-2016 Leibniz Universitaet Hannover |
---|
[1036] | 17 | !--------------------------------------------------------------------------------! |
---|
| 18 | ! |
---|
[849] | 19 | ! Current revisions: |
---|
| 20 | ! ------------------ |
---|
[1930] | 21 | ! |
---|
[1937] | 22 | ! |
---|
[1930] | 23 | ! Former revisions: |
---|
| 24 | ! ----------------- |
---|
| 25 | ! $Id: lpm_advec.f90 1937 2016-06-13 13:40:04Z raasch $ |
---|
| 26 | ! |
---|
[1937] | 27 | ! 1936 2016-06-13 13:37:44Z suehring |
---|
| 28 | ! Formatting adjustments |
---|
| 29 | ! |
---|
[1930] | 30 | ! 1929 2016-06-09 16:25:25Z suehring |
---|
[1929] | 31 | ! Put stochastic equation in an extra subroutine. |
---|
| 32 | ! Set flag for stochastic equation to communicate whether a particle is near |
---|
| 33 | ! topography. This case, memory and drift term are disabled in the Weil equation. |
---|
[1889] | 34 | ! |
---|
[1929] | 35 | ! Enable vertical logarithmic interpolation also above topography. This case, |
---|
| 36 | ! set a lower limit for the friction velocity, as it can become very small |
---|
[1930] | 37 | ! in narrow street canyons, leading to too large particle speeds. |
---|
[1823] | 38 | ! |
---|
[1889] | 39 | ! 1888 2016-04-21 12:20:49Z suehring |
---|
| 40 | ! Bugfix concerning logarithmic interpolation of particle speed |
---|
| 41 | ! |
---|
[1823] | 42 | ! 1822 2016-04-07 07:49:42Z hoffmann |
---|
[1822] | 43 | ! Random velocity fluctuations for particles added. Terminal fall velocity |
---|
| 44 | ! for droplets is calculated from a parameterization (which is better than |
---|
| 45 | ! the previous, physically correct calculation, which demands a very short |
---|
| 46 | ! time step that is not used in the model). |
---|
| 47 | ! |
---|
| 48 | ! Unused variables deleted. |
---|
[1321] | 49 | ! |
---|
[1692] | 50 | ! 1691 2015-10-26 16:17:44Z maronga |
---|
| 51 | ! Renamed prandtl_layer to constant_flux_layer. |
---|
| 52 | ! |
---|
[1686] | 53 | ! 1685 2015-10-08 07:32:13Z raasch |
---|
| 54 | ! TKE check for negative values (so far, only zero value was checked) |
---|
| 55 | ! offset_ocean_nzt_m1 removed |
---|
| 56 | ! |
---|
[1683] | 57 | ! 1682 2015-10-07 23:56:08Z knoop |
---|
| 58 | ! Code annotations made doxygen readable |
---|
| 59 | ! |
---|
[1584] | 60 | ! 1583 2015-04-15 12:16:27Z suehring |
---|
| 61 | ! Bugfix: particle advection within Prandtl-layer in case of Galilei |
---|
| 62 | ! transformation. |
---|
| 63 | ! |
---|
[1370] | 64 | ! 1369 2014-04-24 05:57:38Z raasch |
---|
| 65 | ! usage of module interfaces removed |
---|
| 66 | ! |
---|
[1360] | 67 | ! 1359 2014-04-11 17:15:14Z hoffmann |
---|
| 68 | ! New particle structure integrated. |
---|
| 69 | ! Kind definition added to all floating point numbers. |
---|
| 70 | ! |
---|
[1323] | 71 | ! 1322 2014-03-20 16:38:49Z raasch |
---|
| 72 | ! REAL constants defined as wp_kind |
---|
| 73 | ! |
---|
[1321] | 74 | ! 1320 2014-03-20 08:40:49Z raasch |
---|
[1320] | 75 | ! ONLY-attribute added to USE-statements, |
---|
| 76 | ! kind-parameters added to all INTEGER and REAL declaration statements, |
---|
| 77 | ! kinds are defined in new module kinds, |
---|
| 78 | ! revision history before 2012 removed, |
---|
| 79 | ! comment fields (!:) to be used for variable explanations added to |
---|
| 80 | ! all variable declaration statements |
---|
[849] | 81 | ! |
---|
[1315] | 82 | ! 1314 2014-03-14 18:25:17Z suehring |
---|
| 83 | ! Vertical logarithmic interpolation of horizontal particle speed for particles |
---|
| 84 | ! between roughness height and first vertical grid level. |
---|
| 85 | ! |
---|
[1037] | 86 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
| 87 | ! code put under GPL (PALM 3.9) |
---|
| 88 | ! |
---|
[850] | 89 | ! 849 2012-03-15 10:35:09Z raasch |
---|
| 90 | ! initial revision (former part of advec_particles) |
---|
[849] | 91 | ! |
---|
[850] | 92 | ! |
---|
[849] | 93 | ! Description: |
---|
| 94 | ! ------------ |
---|
[1682] | 95 | !> Calculation of new particle positions due to advection using a simple Euler |
---|
| 96 | !> scheme. Particles may feel inertia effects. SGS transport can be included |
---|
| 97 | !> using the stochastic model of Weil et al. (2004, JAS, 61, 2877-2887). |
---|
[849] | 98 | !------------------------------------------------------------------------------! |
---|
[1682] | 99 | SUBROUTINE lpm_advec (ip,jp,kp) |
---|
| 100 | |
---|
[849] | 101 | |
---|
[1320] | 102 | USE arrays_3d, & |
---|
[1822] | 103 | ONLY: de_dx, de_dy, de_dz, diss, e, km, u, us, usws, v, vsws, w, zu, zw |
---|
[849] | 104 | |
---|
[1359] | 105 | USE cpulog |
---|
| 106 | |
---|
| 107 | USE pegrid |
---|
| 108 | |
---|
[1320] | 109 | USE control_parameters, & |
---|
[1691] | 110 | ONLY: atmos_ocean_sign, cloud_droplets, constant_flux_layer, dt_3d, & |
---|
[1822] | 111 | dt_3d_reached_l, dz, g, kappa, topography, u_gtrans, v_gtrans |
---|
[849] | 112 | |
---|
[1320] | 113 | USE grid_variables, & |
---|
| 114 | ONLY: ddx, dx, ddy, dy |
---|
| 115 | |
---|
| 116 | USE indices, & |
---|
| 117 | ONLY: nzb, nzb_s_inner, nzt |
---|
| 118 | |
---|
| 119 | USE kinds |
---|
| 120 | |
---|
| 121 | USE particle_attributes, & |
---|
[1822] | 122 | ONLY: block_offset, c_0, dt_min_part, grid_particles, & |
---|
[1359] | 123 | iran_part, log_z_z0, number_of_particles, number_of_sublayers, & |
---|
[1929] | 124 | particles, particle_groups, offset_ocean_nzt, sgs_wf_part, & |
---|
| 125 | use_sgs_for_particles, vertical_particle_advection, z0_av_global |
---|
[1320] | 126 | |
---|
| 127 | USE statistics, & |
---|
| 128 | ONLY: hom |
---|
[849] | 129 | |
---|
[1320] | 130 | IMPLICIT NONE |
---|
[849] | 131 | |
---|
[1929] | 132 | INTEGER(iwp) :: agp !< loop variable |
---|
| 133 | INTEGER(iwp) :: gp_outside_of_building(1:8) !< number of grid points used for particle interpolation in case of topography |
---|
| 134 | INTEGER(iwp) :: i !< index variable along x |
---|
| 135 | INTEGER(iwp) :: ip !< index variable along x |
---|
| 136 | INTEGER(iwp) :: ilog !< index variable along x |
---|
| 137 | INTEGER(iwp) :: j !< index variable along y |
---|
| 138 | INTEGER(iwp) :: jp !< index variable along y |
---|
| 139 | INTEGER(iwp) :: jlog !< index variable along y |
---|
| 140 | INTEGER(iwp) :: k !< index variable along z |
---|
| 141 | INTEGER(iwp) :: kp !< index variable along z |
---|
| 142 | INTEGER(iwp) :: kw !< index variable along z |
---|
| 143 | INTEGER(iwp) :: n !< loop variable over all particles in a grid box |
---|
| 144 | INTEGER(iwp) :: nb !< block number particles are sorted in |
---|
| 145 | INTEGER(iwp) :: num_gp !< number of adjacent grid points inside topography |
---|
[849] | 146 | |
---|
[1929] | 147 | INTEGER(iwp), DIMENSION(0:7) :: start_index !< start particle index for current block |
---|
| 148 | INTEGER(iwp), DIMENSION(0:7) :: end_index !< start particle index for current block |
---|
[1359] | 149 | |
---|
[1929] | 150 | REAL(wp) :: aa !< dummy argument for horizontal particle interpolation |
---|
| 151 | REAL(wp) :: bb !< dummy argument for horizontal particle interpolation |
---|
| 152 | REAL(wp) :: cc !< dummy argument for horizontal particle interpolation |
---|
| 153 | REAL(wp) :: d_sum !< dummy argument for horizontal particle interpolation in case of topography |
---|
| 154 | REAL(wp) :: d_z_p_z0 !< inverse of interpolation length for logarithmic interpolation |
---|
| 155 | REAL(wp) :: dd !< dummy argument for horizontal particle interpolation |
---|
| 156 | REAL(wp) :: de_dx_int_l !< x/y-interpolated TKE gradient (x) at particle position at lower vertical level |
---|
| 157 | REAL(wp) :: de_dx_int_u !< x/y-interpolated TKE gradient (x) at particle position at upper vertical level |
---|
| 158 | REAL(wp) :: de_dy_int_l !< x/y-interpolated TKE gradient (y) at particle position at lower vertical level |
---|
| 159 | REAL(wp) :: de_dy_int_u !< x/y-interpolated TKE gradient (y) at particle position at upper vertical level |
---|
| 160 | REAL(wp) :: de_dt !< temporal derivative of TKE experienced by the particle |
---|
| 161 | REAL(wp) :: de_dt_min !< lower level for temporal TKE derivative |
---|
| 162 | REAL(wp) :: de_dz_int_l !< x/y-interpolated TKE gradient (z) at particle position at lower vertical level |
---|
| 163 | REAL(wp) :: de_dz_int_u !< x/y-interpolated TKE gradient (z) at particle position at upper vertical level |
---|
[1822] | 164 | REAL(wp) :: diameter !< diamter of droplet |
---|
[1929] | 165 | REAL(wp) :: diss_int_l !< x/y-interpolated dissipation at particle position at lower vertical level |
---|
| 166 | REAL(wp) :: diss_int_u !< x/y-interpolated dissipation at particle position at upper vertical level |
---|
| 167 | REAL(wp) :: dt_gap !< remaining time until particle time integration reaches LES time |
---|
| 168 | REAL(wp) :: dt_particle_m !< previous particle time step |
---|
| 169 | REAL(wp) :: e_int_l !< x/y-interpolated TKE at particle position at lower vertical level |
---|
| 170 | REAL(wp) :: e_int_u !< x/y-interpolated TKE at particle position at upper vertical level |
---|
| 171 | REAL(wp) :: e_mean_int !< horizontal mean TKE at particle height |
---|
[1682] | 172 | REAL(wp) :: exp_arg !< |
---|
| 173 | REAL(wp) :: exp_term !< |
---|
[1929] | 174 | REAL(wp) :: gg !< dummy argument for horizontal particle interpolation |
---|
| 175 | REAL(wp) :: height_p !< dummy argument for logarithmic interpolation |
---|
[1822] | 176 | REAL(wp) :: lagr_timescale !< Lagrangian timescale |
---|
[1929] | 177 | REAL(wp) :: location(1:30,1:3) !< wall locations |
---|
| 178 | REAL(wp) :: log_z_z0_int !< logarithmus used for surface_layer interpolation |
---|
[1682] | 179 | REAL(wp) :: random_gauss !< |
---|
[1822] | 180 | REAL(wp) :: RL !< Lagrangian autocorrelation coefficient |
---|
| 181 | REAL(wp) :: rg1 !< Gaussian distributed random number |
---|
| 182 | REAL(wp) :: rg2 !< Gaussian distributed random number |
---|
| 183 | REAL(wp) :: rg3 !< Gaussian distributed random number |
---|
| 184 | REAL(wp) :: sigma !< velocity standard deviation |
---|
[1929] | 185 | REAL(wp) :: u_int_l !< x/y-interpolated u-component at particle position at lower vertical level |
---|
| 186 | REAL(wp) :: u_int_u !< x/y-interpolated u-component at particle position at upper vertical level |
---|
| 187 | REAL(wp) :: us_int !< friction velocity at particle grid box |
---|
| 188 | REAL(wp) :: v_int_l !< x/y-interpolated v-component at particle position at lower vertical level |
---|
| 189 | REAL(wp) :: v_int_u !< x/y-interpolated v-component at particle position at upper vertical level |
---|
[1682] | 190 | REAL(wp) :: vv_int !< |
---|
[1929] | 191 | REAL(wp) :: w_int_l !< x/y-interpolated w-component at particle position at lower vertical level |
---|
| 192 | REAL(wp) :: w_int_u !< x/y-interpolated w-component at particle position at upper vertical level |
---|
[1822] | 193 | REAL(wp) :: w_s !< terminal velocity of droplets |
---|
[1929] | 194 | REAL(wp) :: x !< dummy argument for horizontal particle interpolation |
---|
| 195 | REAL(wp) :: y !< dummy argument for horizontal particle interpolation |
---|
| 196 | REAL(wp) :: z_p !< surface layer height (0.5 dz) |
---|
[849] | 197 | |
---|
[1822] | 198 | REAL(wp), PARAMETER :: a_rog = 9.65_wp !< parameter for fall velocity |
---|
| 199 | REAL(wp), PARAMETER :: b_rog = 10.43_wp !< parameter for fall velocity |
---|
| 200 | REAL(wp), PARAMETER :: c_rog = 0.6_wp !< parameter for fall velocity |
---|
| 201 | REAL(wp), PARAMETER :: k_cap_rog = 4.0_wp !< parameter for fall velocity |
---|
| 202 | REAL(wp), PARAMETER :: k_low_rog = 12.0_wp !< parameter for fall velocity |
---|
| 203 | REAL(wp), PARAMETER :: d0_rog = 0.745_wp !< separation diameter |
---|
| 204 | |
---|
[1929] | 205 | REAL(wp), DIMENSION(1:30) :: d_gp_pl !< dummy argument for particle interpolation scheme in case of topography |
---|
| 206 | REAL(wp), DIMENSION(1:30) :: de_dxi !< horizontal TKE gradient along x at adjacent wall |
---|
| 207 | REAL(wp), DIMENSION(1:30) :: de_dyi !< horizontal TKE gradient along y at adjacent wall |
---|
| 208 | REAL(wp), DIMENSION(1:30) :: de_dzi !< horizontal TKE gradient along z at adjacent wall |
---|
| 209 | REAL(wp), DIMENSION(1:30) :: dissi !< dissipation at adjacent wall |
---|
| 210 | REAL(wp), DIMENSION(1:30) :: ei !< TKE at adjacent wall |
---|
[849] | 211 | |
---|
[1929] | 212 | REAL(wp), DIMENSION(number_of_particles) :: term_1_2 !< flag to communicate whether a particle is near topography or not |
---|
[1682] | 213 | REAL(wp), DIMENSION(number_of_particles) :: dens_ratio !< |
---|
[1929] | 214 | REAL(wp), DIMENSION(number_of_particles) :: de_dx_int !< horizontal TKE gradient along x at particle position |
---|
| 215 | REAL(wp), DIMENSION(number_of_particles) :: de_dy_int !< horizontal TKE gradient along y at particle position |
---|
| 216 | REAL(wp), DIMENSION(number_of_particles) :: de_dz_int !< horizontal TKE gradient along z at particle position |
---|
| 217 | REAL(wp), DIMENSION(number_of_particles) :: diss_int !< dissipation at particle position |
---|
| 218 | REAL(wp), DIMENSION(number_of_particles) :: dt_particle !< particle time step |
---|
| 219 | REAL(wp), DIMENSION(number_of_particles) :: e_int !< TKE at particle position |
---|
| 220 | REAL(wp), DIMENSION(number_of_particles) :: fs_int !< weighting factor for subgrid-scale particle speed |
---|
| 221 | REAL(wp), DIMENSION(number_of_particles) :: u_int !< u-component of particle speed |
---|
| 222 | REAL(wp), DIMENSION(number_of_particles) :: v_int !< v-component of particle speed |
---|
| 223 | REAL(wp), DIMENSION(number_of_particles) :: w_int !< w-component of particle speed |
---|
| 224 | REAL(wp), DIMENSION(number_of_particles) :: xv !< x-position |
---|
| 225 | REAL(wp), DIMENSION(number_of_particles) :: yv !< y-position |
---|
| 226 | REAL(wp), DIMENSION(number_of_particles) :: zv !< z-position |
---|
[1359] | 227 | |
---|
[1929] | 228 | REAL(wp), DIMENSION(number_of_particles, 3) :: rg !< vector of Gaussian distributed random numbers |
---|
[1359] | 229 | |
---|
| 230 | CALL cpu_log( log_point_s(44), 'lpm_advec', 'continue' ) |
---|
| 231 | |
---|
[1314] | 232 | ! |
---|
| 233 | !-- Determine height of Prandtl layer and distance between Prandtl-layer |
---|
| 234 | !-- height and horizontal mean roughness height, which are required for |
---|
| 235 | !-- vertical logarithmic interpolation of horizontal particle speeds |
---|
| 236 | !-- (for particles below first vertical grid level). |
---|
| 237 | z_p = zu(nzb+1) - zw(nzb) |
---|
[1359] | 238 | d_z_p_z0 = 1.0_wp / ( z_p - z0_av_global ) |
---|
[849] | 239 | |
---|
[1359] | 240 | start_index = grid_particles(kp,jp,ip)%start_index |
---|
| 241 | end_index = grid_particles(kp,jp,ip)%end_index |
---|
[849] | 242 | |
---|
[1359] | 243 | xv = particles(1:number_of_particles)%x |
---|
| 244 | yv = particles(1:number_of_particles)%y |
---|
| 245 | zv = particles(1:number_of_particles)%z |
---|
[849] | 246 | |
---|
[1359] | 247 | DO nb = 0, 7 |
---|
[1314] | 248 | |
---|
[1359] | 249 | i = ip |
---|
| 250 | j = jp + block_offset(nb)%j_off |
---|
| 251 | k = kp + block_offset(nb)%k_off |
---|
| 252 | |
---|
[1929] | 253 | |
---|
[849] | 254 | ! |
---|
[1359] | 255 | !-- Interpolate u velocity-component |
---|
| 256 | DO n = start_index(nb), end_index(nb) |
---|
[1314] | 257 | ! |
---|
[1359] | 258 | !-- Interpolation of the u velocity component onto particle position. |
---|
| 259 | !-- Particles are interpolation bi-linearly in the horizontal and a |
---|
| 260 | !-- linearly in the vertical. An exception is made for particles below |
---|
| 261 | !-- the first vertical grid level in case of a prandtl layer. In this |
---|
| 262 | !-- case the horizontal particle velocity components are determined using |
---|
| 263 | !-- Monin-Obukhov relations (if branch). |
---|
| 264 | !-- First, check if particle is located below first vertical grid level |
---|
| 265 | !-- (Prandtl-layer height) |
---|
[1929] | 266 | ilog = ( particles(n)%x + 0.5_wp * dx ) * ddx |
---|
| 267 | jlog = ( particles(n)%y + 0.5_wp * dy ) * ddy |
---|
| 268 | |
---|
[1936] | 269 | IF ( constant_flux_layer .AND. & |
---|
| 270 | zv(n) - zw(nzb_s_inner(jlog,ilog)) < z_p ) THEN |
---|
[1314] | 271 | ! |
---|
[1359] | 272 | !-- Resolved-scale horizontal particle velocity is zero below z0. |
---|
[1929] | 273 | IF ( zv(n) - zw(nzb_s_inner(jlog,ilog)) < z0_av_global ) THEN |
---|
[1359] | 274 | u_int(n) = 0.0_wp |
---|
| 275 | ELSE |
---|
[1314] | 276 | ! |
---|
[1359] | 277 | !-- Determine the sublayer. Further used as index. |
---|
[1936] | 278 | height_p = ( zv(n) - zw(nzb_s_inner(jlog,ilog)) - z0_av_global ) & |
---|
| 279 | * REAL( number_of_sublayers, KIND=wp ) & |
---|
[1359] | 280 | * d_z_p_z0 |
---|
[1314] | 281 | ! |
---|
[1359] | 282 | !-- Calculate LOG(z/z0) for exact particle height. Therefore, |
---|
| 283 | !-- interpolate linearly between precalculated logarithm. |
---|
[1929] | 284 | log_z_z0_int = log_z_z0(INT(height_p)) & |
---|
[1359] | 285 | + ( height_p - INT(height_p) ) & |
---|
| 286 | * ( log_z_z0(INT(height_p)+1) & |
---|
| 287 | - log_z_z0(INT(height_p)) & |
---|
| 288 | ) |
---|
[1314] | 289 | ! |
---|
[1929] | 290 | !-- Limit friction velocity. In narrow canyons or holes the |
---|
| 291 | !-- friction velocity can become very small, resulting in a too |
---|
| 292 | !-- large particle speed. |
---|
| 293 | us_int = MAX( 0.5_wp * ( us(jlog,ilog) + us(jlog,ilog-1) ), & |
---|
| 294 | 0.01_wp ) |
---|
| 295 | ! |
---|
[1359] | 296 | !-- Neutral solution is applied for all situations, e.g. also for |
---|
| 297 | !-- unstable and stable situations. Even though this is not exact |
---|
| 298 | !-- this saves a lot of CPU time since several calls of intrinsic |
---|
| 299 | !-- FORTRAN procedures (LOG, ATAN) are avoided, This is justified |
---|
| 300 | !-- as sensitivity studies revealed no significant effect of |
---|
| 301 | !-- using the neutral solution also for un/stable situations. |
---|
[1929] | 302 | u_int(n) = -usws(jlog,ilog) / ( us_int * kappa + 1E-10_wp ) & |
---|
| 303 | * log_z_z0_int - u_gtrans |
---|
| 304 | |
---|
[1359] | 305 | ENDIF |
---|
| 306 | ! |
---|
| 307 | !-- Particle above the first grid level. Bi-linear interpolation in the |
---|
| 308 | !-- horizontal and linear interpolation in the vertical direction. |
---|
[1314] | 309 | ELSE |
---|
| 310 | |
---|
[1359] | 311 | x = xv(n) + ( 0.5_wp - i ) * dx |
---|
| 312 | y = yv(n) - j * dy |
---|
| 313 | aa = x**2 + y**2 |
---|
| 314 | bb = ( dx - x )**2 + y**2 |
---|
| 315 | cc = x**2 + ( dy - y )**2 |
---|
| 316 | dd = ( dx - x )**2 + ( dy - y )**2 |
---|
| 317 | gg = aa + bb + cc + dd |
---|
[1314] | 318 | |
---|
[1359] | 319 | u_int_l = ( ( gg - aa ) * u(k,j,i) + ( gg - bb ) * u(k,j,i+1) & |
---|
| 320 | + ( gg - cc ) * u(k,j+1,i) + ( gg - dd ) * & |
---|
| 321 | u(k,j+1,i+1) ) / ( 3.0_wp * gg ) - u_gtrans |
---|
[1314] | 322 | |
---|
[1359] | 323 | IF ( k == nzt ) THEN |
---|
| 324 | u_int(n) = u_int_l |
---|
| 325 | ELSE |
---|
| 326 | u_int_u = ( ( gg-aa ) * u(k+1,j,i) + ( gg-bb ) * u(k+1,j,i+1) & |
---|
| 327 | + ( gg-cc ) * u(k+1,j+1,i) + ( gg-dd ) * & |
---|
| 328 | u(k+1,j+1,i+1) ) / ( 3.0_wp * gg ) - u_gtrans |
---|
| 329 | u_int(n) = u_int_l + ( zv(n) - zu(k) ) / dz * & |
---|
| 330 | ( u_int_u - u_int_l ) |
---|
| 331 | ENDIF |
---|
[1929] | 332 | |
---|
[1314] | 333 | ENDIF |
---|
| 334 | |
---|
[1359] | 335 | ENDDO |
---|
[849] | 336 | |
---|
[1359] | 337 | i = ip + block_offset(nb)%i_off |
---|
| 338 | j = jp |
---|
| 339 | k = kp + block_offset(nb)%k_off |
---|
[849] | 340 | ! |
---|
[1359] | 341 | !-- Same procedure for interpolation of the v velocity-component |
---|
| 342 | DO n = start_index(nb), end_index(nb) |
---|
[1685] | 343 | |
---|
[1929] | 344 | ilog = ( particles(n)%x + 0.5_wp * dx ) * ddx |
---|
| 345 | jlog = ( particles(n)%y + 0.5_wp * dy ) * ddy |
---|
[1936] | 346 | IF ( constant_flux_layer .AND. & |
---|
| 347 | zv(n) - zw(nzb_s_inner(jlog,ilog)) < z_p ) THEN |
---|
[849] | 348 | |
---|
[1929] | 349 | IF ( zv(n) - zw(nzb_s_inner(jlog,ilog)) < z0_av_global ) THEN |
---|
[1314] | 350 | ! |
---|
[1359] | 351 | !-- Resolved-scale horizontal particle velocity is zero below z0. |
---|
| 352 | v_int(n) = 0.0_wp |
---|
| 353 | ELSE |
---|
| 354 | ! |
---|
[1929] | 355 | !-- Determine the sublayer. Further used as index. Please note, |
---|
| 356 | !-- logarithmus can not be reused from above, as in in case of |
---|
| 357 | !-- topography particle on u-grid can be above surface-layer height, |
---|
| 358 | !-- whereas it can be below on v-grid. |
---|
[1936] | 359 | height_p = ( zv(n) - zw(nzb_s_inner(jlog,ilog)) - z0_av_global ) & |
---|
| 360 | * REAL( number_of_sublayers, KIND=wp ) & |
---|
[1929] | 361 | * d_z_p_z0 |
---|
| 362 | ! |
---|
| 363 | !-- Calculate LOG(z/z0) for exact particle height. Therefore, |
---|
| 364 | !-- interpolate linearly between precalculated logarithm. |
---|
| 365 | log_z_z0_int = log_z_z0(INT(height_p)) & |
---|
| 366 | + ( height_p - INT(height_p) ) & |
---|
| 367 | * ( log_z_z0(INT(height_p)+1) & |
---|
| 368 | - log_z_z0(INT(height_p)) & |
---|
| 369 | ) |
---|
| 370 | ! |
---|
| 371 | !-- Limit friction velocity. In narrow canyons or holes the |
---|
| 372 | !-- friction velocity can become very small, resulting in a too |
---|
| 373 | !-- large particle speed. |
---|
[1936] | 374 | us_int = MAX( 0.5_wp * ( us(jlog,ilog) + us(jlog-1,ilog) ), & |
---|
[1929] | 375 | 0.01_wp ) |
---|
| 376 | ! |
---|
[1359] | 377 | !-- Neutral solution is applied for all situations, e.g. also for |
---|
| 378 | !-- unstable and stable situations. Even though this is not exact |
---|
| 379 | !-- this saves a lot of CPU time since several calls of intrinsic |
---|
| 380 | !-- FORTRAN procedures (LOG, ATAN) are avoided, This is justified |
---|
| 381 | !-- as sensitivity studies revealed no significant effect of |
---|
| 382 | !-- using the neutral solution also for un/stable situations. |
---|
[1936] | 383 | v_int(n) = -vsws(jlog,ilog) / ( us_int * kappa + 1E-10_wp ) & |
---|
[1929] | 384 | * log_z_z0_int - v_gtrans |
---|
[1314] | 385 | |
---|
[1359] | 386 | ENDIF |
---|
[1929] | 387 | |
---|
[1359] | 388 | ELSE |
---|
| 389 | x = xv(n) - i * dx |
---|
| 390 | y = yv(n) + ( 0.5_wp - j ) * dy |
---|
| 391 | aa = x**2 + y**2 |
---|
| 392 | bb = ( dx - x )**2 + y**2 |
---|
| 393 | cc = x**2 + ( dy - y )**2 |
---|
| 394 | dd = ( dx - x )**2 + ( dy - y )**2 |
---|
| 395 | gg = aa + bb + cc + dd |
---|
[1314] | 396 | |
---|
[1359] | 397 | v_int_l = ( ( gg - aa ) * v(k,j,i) + ( gg - bb ) * v(k,j,i+1) & |
---|
| 398 | + ( gg - cc ) * v(k,j+1,i) + ( gg - dd ) * v(k,j+1,i+1) & |
---|
| 399 | ) / ( 3.0_wp * gg ) - v_gtrans |
---|
[1314] | 400 | |
---|
[1359] | 401 | IF ( k == nzt ) THEN |
---|
| 402 | v_int(n) = v_int_l |
---|
| 403 | ELSE |
---|
| 404 | v_int_u = ( ( gg-aa ) * v(k+1,j,i) + ( gg-bb ) * v(k+1,j,i+1) & |
---|
| 405 | + ( gg-cc ) * v(k+1,j+1,i) + ( gg-dd ) * v(k+1,j+1,i+1) & |
---|
| 406 | ) / ( 3.0_wp * gg ) - v_gtrans |
---|
| 407 | v_int(n) = v_int_l + ( zv(n) - zu(k) ) / dz * & |
---|
| 408 | ( v_int_u - v_int_l ) |
---|
| 409 | ENDIF |
---|
[1929] | 410 | |
---|
[1314] | 411 | ENDIF |
---|
| 412 | |
---|
[1359] | 413 | ENDDO |
---|
[1314] | 414 | |
---|
[1359] | 415 | i = ip + block_offset(nb)%i_off |
---|
| 416 | j = jp + block_offset(nb)%j_off |
---|
[1929] | 417 | k = kp - 1 |
---|
[849] | 418 | ! |
---|
[1314] | 419 | !-- Same procedure for interpolation of the w velocity-component |
---|
[1359] | 420 | DO n = start_index(nb), end_index(nb) |
---|
[849] | 421 | |
---|
[1359] | 422 | IF ( vertical_particle_advection(particles(n)%group) ) THEN |
---|
[849] | 423 | |
---|
[1359] | 424 | x = xv(n) - i * dx |
---|
| 425 | y = yv(n) - j * dy |
---|
[849] | 426 | aa = x**2 + y**2 |
---|
| 427 | bb = ( dx - x )**2 + y**2 |
---|
| 428 | cc = x**2 + ( dy - y )**2 |
---|
| 429 | dd = ( dx - x )**2 + ( dy - y )**2 |
---|
| 430 | gg = aa + bb + cc + dd |
---|
| 431 | |
---|
[1359] | 432 | w_int_l = ( ( gg - aa ) * w(k,j,i) + ( gg - bb ) * w(k,j,i+1) & |
---|
| 433 | + ( gg - cc ) * w(k,j+1,i) + ( gg - dd ) * w(k,j+1,i+1) & |
---|
| 434 | ) / ( 3.0_wp * gg ) |
---|
[849] | 435 | |
---|
[1359] | 436 | IF ( k == nzt ) THEN |
---|
| 437 | w_int(n) = w_int_l |
---|
[849] | 438 | ELSE |
---|
[1359] | 439 | w_int_u = ( ( gg-aa ) * w(k+1,j,i) + & |
---|
| 440 | ( gg-bb ) * w(k+1,j,i+1) + & |
---|
| 441 | ( gg-cc ) * w(k+1,j+1,i) + & |
---|
| 442 | ( gg-dd ) * w(k+1,j+1,i+1) & |
---|
| 443 | ) / ( 3.0_wp * gg ) |
---|
| 444 | w_int(n) = w_int_l + ( zv(n) - zw(k) ) / dz * & |
---|
| 445 | ( w_int_u - w_int_l ) |
---|
[849] | 446 | ENDIF |
---|
| 447 | |
---|
[1359] | 448 | ELSE |
---|
[849] | 449 | |
---|
[1359] | 450 | w_int(n) = 0.0_wp |
---|
[849] | 451 | |
---|
[1359] | 452 | ENDIF |
---|
| 453 | |
---|
| 454 | ENDDO |
---|
| 455 | |
---|
| 456 | ENDDO |
---|
| 457 | |
---|
| 458 | !-- Interpolate and calculate quantities needed for calculating the SGS |
---|
| 459 | !-- velocities |
---|
[1822] | 460 | IF ( use_sgs_for_particles .AND. .NOT. cloud_droplets ) THEN |
---|
[1359] | 461 | |
---|
| 462 | IF ( topography == 'flat' ) THEN |
---|
| 463 | |
---|
| 464 | DO nb = 0,7 |
---|
| 465 | |
---|
| 466 | i = ip + block_offset(nb)%i_off |
---|
| 467 | j = jp + block_offset(nb)%j_off |
---|
| 468 | k = kp + block_offset(nb)%k_off |
---|
| 469 | |
---|
| 470 | DO n = start_index(nb), end_index(nb) |
---|
[849] | 471 | ! |
---|
[1359] | 472 | !-- Interpolate TKE |
---|
| 473 | x = xv(n) - i * dx |
---|
| 474 | y = yv(n) - j * dy |
---|
| 475 | aa = x**2 + y**2 |
---|
| 476 | bb = ( dx - x )**2 + y**2 |
---|
| 477 | cc = x**2 + ( dy - y )**2 |
---|
| 478 | dd = ( dx - x )**2 + ( dy - y )**2 |
---|
| 479 | gg = aa + bb + cc + dd |
---|
[849] | 480 | |
---|
[1359] | 481 | e_int_l = ( ( gg-aa ) * e(k,j,i) + ( gg-bb ) * e(k,j,i+1) & |
---|
| 482 | + ( gg-cc ) * e(k,j+1,i) + ( gg-dd ) * e(k,j+1,i+1) & |
---|
| 483 | ) / ( 3.0_wp * gg ) |
---|
| 484 | |
---|
| 485 | IF ( k+1 == nzt+1 ) THEN |
---|
| 486 | e_int(n) = e_int_l |
---|
| 487 | ELSE |
---|
| 488 | e_int_u = ( ( gg - aa ) * e(k+1,j,i) + & |
---|
| 489 | ( gg - bb ) * e(k+1,j,i+1) + & |
---|
| 490 | ( gg - cc ) * e(k+1,j+1,i) + & |
---|
| 491 | ( gg - dd ) * e(k+1,j+1,i+1) & |
---|
| 492 | ) / ( 3.0_wp * gg ) |
---|
| 493 | e_int(n) = e_int_l + ( zv(n) - zu(k) ) / dz * & |
---|
| 494 | ( e_int_u - e_int_l ) |
---|
| 495 | ENDIF |
---|
[849] | 496 | ! |
---|
[1685] | 497 | !-- Needed to avoid NaN particle velocities (this might not be |
---|
| 498 | !-- required any more) |
---|
| 499 | IF ( e_int(n) <= 0.0_wp ) THEN |
---|
[1359] | 500 | e_int(n) = 1.0E-20_wp |
---|
| 501 | ENDIF |
---|
| 502 | ! |
---|
| 503 | !-- Interpolate the TKE gradient along x (adopt incides i,j,k and |
---|
| 504 | !-- all position variables from above (TKE)) |
---|
| 505 | de_dx_int_l = ( ( gg - aa ) * de_dx(k,j,i) + & |
---|
| 506 | ( gg - bb ) * de_dx(k,j,i+1) + & |
---|
| 507 | ( gg - cc ) * de_dx(k,j+1,i) + & |
---|
| 508 | ( gg - dd ) * de_dx(k,j+1,i+1) & |
---|
| 509 | ) / ( 3.0_wp * gg ) |
---|
[849] | 510 | |
---|
| 511 | IF ( ( k+1 == nzt+1 ) .OR. ( k == nzb ) ) THEN |
---|
[1359] | 512 | de_dx_int(n) = de_dx_int_l |
---|
[849] | 513 | ELSE |
---|
[1359] | 514 | de_dx_int_u = ( ( gg - aa ) * de_dx(k+1,j,i) + & |
---|
| 515 | ( gg - bb ) * de_dx(k+1,j,i+1) + & |
---|
| 516 | ( gg - cc ) * de_dx(k+1,j+1,i) + & |
---|
| 517 | ( gg - dd ) * de_dx(k+1,j+1,i+1) & |
---|
| 518 | ) / ( 3.0_wp * gg ) |
---|
| 519 | de_dx_int(n) = de_dx_int_l + ( zv(n) - zu(k) ) / dz * & |
---|
| 520 | ( de_dx_int_u - de_dx_int_l ) |
---|
[849] | 521 | ENDIF |
---|
[1359] | 522 | ! |
---|
| 523 | !-- Interpolate the TKE gradient along y |
---|
| 524 | de_dy_int_l = ( ( gg - aa ) * de_dy(k,j,i) + & |
---|
| 525 | ( gg - bb ) * de_dy(k,j,i+1) + & |
---|
| 526 | ( gg - cc ) * de_dy(k,j+1,i) + & |
---|
| 527 | ( gg - dd ) * de_dy(k,j+1,i+1) & |
---|
| 528 | ) / ( 3.0_wp * gg ) |
---|
| 529 | IF ( ( k+1 == nzt+1 ) .OR. ( k == nzb ) ) THEN |
---|
| 530 | de_dy_int(n) = de_dy_int_l |
---|
| 531 | ELSE |
---|
| 532 | de_dy_int_u = ( ( gg - aa ) * de_dy(k+1,j,i) + & |
---|
| 533 | ( gg - bb ) * de_dy(k+1,j,i+1) + & |
---|
| 534 | ( gg - cc ) * de_dy(k+1,j+1,i) + & |
---|
| 535 | ( gg - dd ) * de_dy(k+1,j+1,i+1) & |
---|
| 536 | ) / ( 3.0_wp * gg ) |
---|
| 537 | de_dy_int(n) = de_dy_int_l + ( zv(n) - zu(k) ) / dz * & |
---|
| 538 | ( de_dy_int_u - de_dy_int_l ) |
---|
| 539 | ENDIF |
---|
[849] | 540 | |
---|
| 541 | ! |
---|
[1359] | 542 | !-- Interpolate the TKE gradient along z |
---|
| 543 | IF ( zv(n) < 0.5_wp * dz ) THEN |
---|
| 544 | de_dz_int(n) = 0.0_wp |
---|
| 545 | ELSE |
---|
| 546 | de_dz_int_l = ( ( gg - aa ) * de_dz(k,j,i) + & |
---|
| 547 | ( gg - bb ) * de_dz(k,j,i+1) + & |
---|
| 548 | ( gg - cc ) * de_dz(k,j+1,i) + & |
---|
| 549 | ( gg - dd ) * de_dz(k,j+1,i+1) & |
---|
| 550 | ) / ( 3.0_wp * gg ) |
---|
[849] | 551 | |
---|
[1359] | 552 | IF ( ( k+1 == nzt+1 ) .OR. ( k == nzb ) ) THEN |
---|
| 553 | de_dz_int(n) = de_dz_int_l |
---|
| 554 | ELSE |
---|
| 555 | de_dz_int_u = ( ( gg - aa ) * de_dz(k+1,j,i) + & |
---|
| 556 | ( gg - bb ) * de_dz(k+1,j,i+1) + & |
---|
| 557 | ( gg - cc ) * de_dz(k+1,j+1,i) + & |
---|
| 558 | ( gg - dd ) * de_dz(k+1,j+1,i+1) & |
---|
| 559 | ) / ( 3.0_wp * gg ) |
---|
| 560 | de_dz_int(n) = de_dz_int_l + ( zv(n) - zu(k) ) / dz * & |
---|
| 561 | ( de_dz_int_u - de_dz_int_l ) |
---|
| 562 | ENDIF |
---|
| 563 | ENDIF |
---|
[849] | 564 | |
---|
[1359] | 565 | ! |
---|
| 566 | !-- Interpolate the dissipation of TKE |
---|
| 567 | diss_int_l = ( ( gg - aa ) * diss(k,j,i) + & |
---|
| 568 | ( gg - bb ) * diss(k,j,i+1) + & |
---|
| 569 | ( gg - cc ) * diss(k,j+1,i) + & |
---|
| 570 | ( gg - dd ) * diss(k,j+1,i+1) & |
---|
| 571 | ) / ( 3.0_wp * gg ) |
---|
[849] | 572 | |
---|
[1359] | 573 | IF ( k == nzt ) THEN |
---|
| 574 | diss_int(n) = diss_int_l |
---|
| 575 | ELSE |
---|
| 576 | diss_int_u = ( ( gg - aa ) * diss(k+1,j,i) + & |
---|
| 577 | ( gg - bb ) * diss(k+1,j,i+1) + & |
---|
| 578 | ( gg - cc ) * diss(k+1,j+1,i) + & |
---|
| 579 | ( gg - dd ) * diss(k+1,j+1,i+1) & |
---|
| 580 | ) / ( 3.0_wp * gg ) |
---|
| 581 | diss_int(n) = diss_int_l + ( zv(n) - zu(k) ) / dz * & |
---|
| 582 | ( diss_int_u - diss_int_l ) |
---|
| 583 | ENDIF |
---|
| 584 | |
---|
[1929] | 585 | ! |
---|
| 586 | !-- Set flag for stochastic equation. |
---|
| 587 | term_1_2(n) = 1.0_wp |
---|
| 588 | |
---|
[1359] | 589 | ENDDO |
---|
| 590 | ENDDO |
---|
| 591 | |
---|
| 592 | ELSE ! non-flat topography, e.g., buildings |
---|
| 593 | |
---|
| 594 | DO n = 1, number_of_particles |
---|
| 595 | i = particles(n)%x * ddx |
---|
| 596 | j = particles(n)%y * ddy |
---|
| 597 | k = ( zv(n) + 0.5_wp * dz * atmos_ocean_sign ) / dz & |
---|
| 598 | + offset_ocean_nzt ! only exact if eq.dist |
---|
[849] | 599 | ! |
---|
| 600 | !-- In case that there are buildings it has to be determined |
---|
| 601 | !-- how many of the gridpoints defining the particle box are |
---|
| 602 | !-- situated within a building |
---|
| 603 | !-- gp_outside_of_building(1): i,j,k |
---|
| 604 | !-- gp_outside_of_building(2): i,j+1,k |
---|
| 605 | !-- gp_outside_of_building(3): i,j,k+1 |
---|
| 606 | !-- gp_outside_of_building(4): i,j+1,k+1 |
---|
| 607 | !-- gp_outside_of_building(5): i+1,j,k |
---|
| 608 | !-- gp_outside_of_building(6): i+1,j+1,k |
---|
| 609 | !-- gp_outside_of_building(7): i+1,j,k+1 |
---|
| 610 | !-- gp_outside_of_building(8): i+1,j+1,k+1 |
---|
| 611 | |
---|
| 612 | gp_outside_of_building = 0 |
---|
[1359] | 613 | location = 0.0_wp |
---|
[849] | 614 | num_gp = 0 |
---|
| 615 | |
---|
| 616 | IF ( k > nzb_s_inner(j,i) .OR. nzb_s_inner(j,i) == 0 ) THEN |
---|
| 617 | num_gp = num_gp + 1 |
---|
| 618 | gp_outside_of_building(1) = 1 |
---|
| 619 | location(num_gp,1) = i * dx |
---|
| 620 | location(num_gp,2) = j * dy |
---|
[1359] | 621 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
[849] | 622 | ei(num_gp) = e(k,j,i) |
---|
| 623 | dissi(num_gp) = diss(k,j,i) |
---|
| 624 | de_dxi(num_gp) = de_dx(k,j,i) |
---|
| 625 | de_dyi(num_gp) = de_dy(k,j,i) |
---|
| 626 | de_dzi(num_gp) = de_dz(k,j,i) |
---|
| 627 | ENDIF |
---|
[1929] | 628 | IF ( k > nzb_s_inner(j+1,i) .OR. nzb_s_inner(j+1,i) == 0 ) THEN |
---|
[849] | 629 | num_gp = num_gp + 1 |
---|
| 630 | gp_outside_of_building(2) = 1 |
---|
| 631 | location(num_gp,1) = i * dx |
---|
| 632 | location(num_gp,2) = (j+1) * dy |
---|
[1359] | 633 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
[849] | 634 | ei(num_gp) = e(k,j+1,i) |
---|
| 635 | dissi(num_gp) = diss(k,j+1,i) |
---|
| 636 | de_dxi(num_gp) = de_dx(k,j+1,i) |
---|
| 637 | de_dyi(num_gp) = de_dy(k,j+1,i) |
---|
| 638 | de_dzi(num_gp) = de_dz(k,j+1,i) |
---|
| 639 | ENDIF |
---|
| 640 | |
---|
| 641 | IF ( k+1 > nzb_s_inner(j,i) .OR. nzb_s_inner(j,i) == 0 ) THEN |
---|
| 642 | num_gp = num_gp + 1 |
---|
| 643 | gp_outside_of_building(3) = 1 |
---|
| 644 | location(num_gp,1) = i * dx |
---|
| 645 | location(num_gp,2) = j * dy |
---|
[1359] | 646 | location(num_gp,3) = (k+1) * dz - 0.5_wp * dz |
---|
[849] | 647 | ei(num_gp) = e(k+1,j,i) |
---|
| 648 | dissi(num_gp) = diss(k+1,j,i) |
---|
| 649 | de_dxi(num_gp) = de_dx(k+1,j,i) |
---|
| 650 | de_dyi(num_gp) = de_dy(k+1,j,i) |
---|
| 651 | de_dzi(num_gp) = de_dz(k+1,j,i) |
---|
| 652 | ENDIF |
---|
| 653 | |
---|
[1929] | 654 | IF ( k+1 > nzb_s_inner(j+1,i) .OR. nzb_s_inner(j+1,i) == 0 ) THEN |
---|
[849] | 655 | num_gp = num_gp + 1 |
---|
| 656 | gp_outside_of_building(4) = 1 |
---|
| 657 | location(num_gp,1) = i * dx |
---|
| 658 | location(num_gp,2) = (j+1) * dy |
---|
[1359] | 659 | location(num_gp,3) = (k+1) * dz - 0.5_wp * dz |
---|
[849] | 660 | ei(num_gp) = e(k+1,j+1,i) |
---|
| 661 | dissi(num_gp) = diss(k+1,j+1,i) |
---|
| 662 | de_dxi(num_gp) = de_dx(k+1,j+1,i) |
---|
| 663 | de_dyi(num_gp) = de_dy(k+1,j+1,i) |
---|
| 664 | de_dzi(num_gp) = de_dz(k+1,j+1,i) |
---|
| 665 | ENDIF |
---|
| 666 | |
---|
[1929] | 667 | IF ( k > nzb_s_inner(j,i+1) .OR. nzb_s_inner(j,i+1) == 0 ) THEN |
---|
[849] | 668 | num_gp = num_gp + 1 |
---|
| 669 | gp_outside_of_building(5) = 1 |
---|
| 670 | location(num_gp,1) = (i+1) * dx |
---|
| 671 | location(num_gp,2) = j * dy |
---|
[1359] | 672 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
[849] | 673 | ei(num_gp) = e(k,j,i+1) |
---|
| 674 | dissi(num_gp) = diss(k,j,i+1) |
---|
| 675 | de_dxi(num_gp) = de_dx(k,j,i+1) |
---|
| 676 | de_dyi(num_gp) = de_dy(k,j,i+1) |
---|
| 677 | de_dzi(num_gp) = de_dz(k,j,i+1) |
---|
| 678 | ENDIF |
---|
| 679 | |
---|
[1929] | 680 | IF ( k > nzb_s_inner(j+1,i+1) .OR. nzb_s_inner(j+1,i+1) == 0 ) THEN |
---|
[849] | 681 | num_gp = num_gp + 1 |
---|
| 682 | gp_outside_of_building(6) = 1 |
---|
| 683 | location(num_gp,1) = (i+1) * dx |
---|
| 684 | location(num_gp,2) = (j+1) * dy |
---|
[1359] | 685 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
[849] | 686 | ei(num_gp) = e(k,j+1,i+1) |
---|
| 687 | dissi(num_gp) = diss(k,j+1,i+1) |
---|
| 688 | de_dxi(num_gp) = de_dx(k,j+1,i+1) |
---|
| 689 | de_dyi(num_gp) = de_dy(k,j+1,i+1) |
---|
| 690 | de_dzi(num_gp) = de_dz(k,j+1,i+1) |
---|
| 691 | ENDIF |
---|
| 692 | |
---|
[1929] | 693 | IF ( k+1 > nzb_s_inner(j,i+1) .OR. nzb_s_inner(j,i+1) == 0 ) THEN |
---|
[849] | 694 | num_gp = num_gp + 1 |
---|
| 695 | gp_outside_of_building(7) = 1 |
---|
| 696 | location(num_gp,1) = (i+1) * dx |
---|
| 697 | location(num_gp,2) = j * dy |
---|
[1359] | 698 | location(num_gp,3) = (k+1) * dz - 0.5_wp * dz |
---|
[849] | 699 | ei(num_gp) = e(k+1,j,i+1) |
---|
| 700 | dissi(num_gp) = diss(k+1,j,i+1) |
---|
| 701 | de_dxi(num_gp) = de_dx(k+1,j,i+1) |
---|
| 702 | de_dyi(num_gp) = de_dy(k+1,j,i+1) |
---|
| 703 | de_dzi(num_gp) = de_dz(k+1,j,i+1) |
---|
| 704 | ENDIF |
---|
| 705 | |
---|
[1929] | 706 | IF ( k+1 > nzb_s_inner(j+1,i+1) .OR. nzb_s_inner(j+1,i+1) == 0) THEN |
---|
[849] | 707 | num_gp = num_gp + 1 |
---|
| 708 | gp_outside_of_building(8) = 1 |
---|
| 709 | location(num_gp,1) = (i+1) * dx |
---|
| 710 | location(num_gp,2) = (j+1) * dy |
---|
[1359] | 711 | location(num_gp,3) = (k+1) * dz - 0.5_wp * dz |
---|
[849] | 712 | ei(num_gp) = e(k+1,j+1,i+1) |
---|
| 713 | dissi(num_gp) = diss(k+1,j+1,i+1) |
---|
| 714 | de_dxi(num_gp) = de_dx(k+1,j+1,i+1) |
---|
| 715 | de_dyi(num_gp) = de_dy(k+1,j+1,i+1) |
---|
| 716 | de_dzi(num_gp) = de_dz(k+1,j+1,i+1) |
---|
| 717 | ENDIF |
---|
| 718 | ! |
---|
| 719 | !-- If all gridpoints are situated outside of a building, then the |
---|
| 720 | !-- ordinary interpolation scheme can be used. |
---|
| 721 | IF ( num_gp == 8 ) THEN |
---|
| 722 | |
---|
| 723 | x = particles(n)%x - i * dx |
---|
| 724 | y = particles(n)%y - j * dy |
---|
| 725 | aa = x**2 + y**2 |
---|
| 726 | bb = ( dx - x )**2 + y**2 |
---|
| 727 | cc = x**2 + ( dy - y )**2 |
---|
| 728 | dd = ( dx - x )**2 + ( dy - y )**2 |
---|
| 729 | gg = aa + bb + cc + dd |
---|
[1929] | 730 | |
---|
[1359] | 731 | e_int_l = ( ( gg - aa ) * e(k,j,i) + ( gg - bb ) * e(k,j,i+1) & |
---|
| 732 | + ( gg - cc ) * e(k,j+1,i) + ( gg - dd ) * e(k,j+1,i+1) & |
---|
| 733 | ) / ( 3.0_wp * gg ) |
---|
[1929] | 734 | |
---|
[1359] | 735 | IF ( k == nzt ) THEN |
---|
| 736 | e_int(n) = e_int_l |
---|
[849] | 737 | ELSE |
---|
| 738 | e_int_u = ( ( gg - aa ) * e(k+1,j,i) + & |
---|
| 739 | ( gg - bb ) * e(k+1,j,i+1) + & |
---|
| 740 | ( gg - cc ) * e(k+1,j+1,i) + & |
---|
| 741 | ( gg - dd ) * e(k+1,j+1,i+1) & |
---|
[1359] | 742 | ) / ( 3.0_wp * gg ) |
---|
| 743 | e_int(n) = e_int_l + ( zv(n) - zu(k) ) / dz * & |
---|
[1929] | 744 | ( e_int_u - e_int_l ) |
---|
[849] | 745 | ENDIF |
---|
[1929] | 746 | ! |
---|
[1685] | 747 | !-- Needed to avoid NaN particle velocities (this might not be |
---|
| 748 | !-- required any more) |
---|
| 749 | IF ( e_int(n) <= 0.0_wp ) THEN |
---|
[1359] | 750 | e_int(n) = 1.0E-20_wp |
---|
| 751 | ENDIF |
---|
| 752 | ! |
---|
[849] | 753 | !-- Interpolate the TKE gradient along x (adopt incides i,j,k |
---|
| 754 | !-- and all position variables from above (TKE)) |
---|
| 755 | de_dx_int_l = ( ( gg - aa ) * de_dx(k,j,i) + & |
---|
| 756 | ( gg - bb ) * de_dx(k,j,i+1) + & |
---|
| 757 | ( gg - cc ) * de_dx(k,j+1,i) + & |
---|
| 758 | ( gg - dd ) * de_dx(k,j+1,i+1) & |
---|
[1359] | 759 | ) / ( 3.0_wp * gg ) |
---|
[849] | 760 | |
---|
[1359] | 761 | IF ( ( k == nzt ) .OR. ( k == nzb ) ) THEN |
---|
| 762 | de_dx_int(n) = de_dx_int_l |
---|
[849] | 763 | ELSE |
---|
| 764 | de_dx_int_u = ( ( gg - aa ) * de_dx(k+1,j,i) + & |
---|
| 765 | ( gg - bb ) * de_dx(k+1,j,i+1) + & |
---|
| 766 | ( gg - cc ) * de_dx(k+1,j+1,i) + & |
---|
| 767 | ( gg - dd ) * de_dx(k+1,j+1,i+1) & |
---|
[1359] | 768 | ) / ( 3.0_wp * gg ) |
---|
| 769 | de_dx_int(n) = de_dx_int_l + ( zv(n) - zu(k) ) / & |
---|
[849] | 770 | dz * ( de_dx_int_u - de_dx_int_l ) |
---|
| 771 | ENDIF |
---|
| 772 | |
---|
| 773 | ! |
---|
| 774 | !-- Interpolate the TKE gradient along y |
---|
| 775 | de_dy_int_l = ( ( gg - aa ) * de_dy(k,j,i) + & |
---|
| 776 | ( gg - bb ) * de_dy(k,j,i+1) + & |
---|
| 777 | ( gg - cc ) * de_dy(k,j+1,i) + & |
---|
| 778 | ( gg - dd ) * de_dy(k,j+1,i+1) & |
---|
[1359] | 779 | ) / ( 3.0_wp * gg ) |
---|
[849] | 780 | IF ( ( k+1 == nzt+1 ) .OR. ( k == nzb ) ) THEN |
---|
[1359] | 781 | de_dy_int(n) = de_dy_int_l |
---|
[849] | 782 | ELSE |
---|
| 783 | de_dy_int_u = ( ( gg - aa ) * de_dy(k+1,j,i) + & |
---|
| 784 | ( gg - bb ) * de_dy(k+1,j,i+1) + & |
---|
| 785 | ( gg - cc ) * de_dy(k+1,j+1,i) + & |
---|
| 786 | ( gg - dd ) * de_dy(k+1,j+1,i+1) & |
---|
[1359] | 787 | ) / ( 3.0_wp * gg ) |
---|
| 788 | de_dy_int(n) = de_dy_int_l + ( zv(n) - zu(k) ) / & |
---|
[849] | 789 | dz * ( de_dy_int_u - de_dy_int_l ) |
---|
| 790 | ENDIF |
---|
| 791 | |
---|
| 792 | ! |
---|
| 793 | !-- Interpolate the TKE gradient along z |
---|
[1359] | 794 | IF ( zv(n) < 0.5_wp * dz ) THEN |
---|
| 795 | de_dz_int(n) = 0.0_wp |
---|
[849] | 796 | ELSE |
---|
| 797 | de_dz_int_l = ( ( gg - aa ) * de_dz(k,j,i) + & |
---|
| 798 | ( gg - bb ) * de_dz(k,j,i+1) + & |
---|
| 799 | ( gg - cc ) * de_dz(k,j+1,i) + & |
---|
| 800 | ( gg - dd ) * de_dz(k,j+1,i+1) & |
---|
[1359] | 801 | ) / ( 3.0_wp * gg ) |
---|
[1929] | 802 | |
---|
[849] | 803 | IF ( ( k+1 == nzt+1 ) .OR. ( k == nzb ) ) THEN |
---|
[1359] | 804 | de_dz_int(n) = de_dz_int_l |
---|
[849] | 805 | ELSE |
---|
| 806 | de_dz_int_u = ( ( gg - aa ) * de_dz(k+1,j,i) + & |
---|
| 807 | ( gg - bb ) * de_dz(k+1,j,i+1) + & |
---|
| 808 | ( gg - cc ) * de_dz(k+1,j+1,i) + & |
---|
| 809 | ( gg - dd ) * de_dz(k+1,j+1,i+1) & |
---|
[1359] | 810 | ) / ( 3.0_wp * gg ) |
---|
| 811 | de_dz_int(n) = de_dz_int_l + ( zv(n) - zu(k) ) /& |
---|
[849] | 812 | dz * ( de_dz_int_u - de_dz_int_l ) |
---|
| 813 | ENDIF |
---|
| 814 | ENDIF |
---|
| 815 | |
---|
| 816 | ! |
---|
| 817 | !-- Interpolate the dissipation of TKE |
---|
| 818 | diss_int_l = ( ( gg - aa ) * diss(k,j,i) + & |
---|
| 819 | ( gg - bb ) * diss(k,j,i+1) + & |
---|
| 820 | ( gg - cc ) * diss(k,j+1,i) + & |
---|
| 821 | ( gg - dd ) * diss(k,j+1,i+1) & |
---|
[1359] | 822 | ) / ( 3.0_wp * gg ) |
---|
[1929] | 823 | |
---|
[1359] | 824 | IF ( k == nzt ) THEN |
---|
| 825 | diss_int(n) = diss_int_l |
---|
[849] | 826 | ELSE |
---|
| 827 | diss_int_u = ( ( gg - aa ) * diss(k+1,j,i) + & |
---|
| 828 | ( gg - bb ) * diss(k+1,j,i+1) + & |
---|
| 829 | ( gg - cc ) * diss(k+1,j+1,i) + & |
---|
| 830 | ( gg - dd ) * diss(k+1,j+1,i+1) & |
---|
[1359] | 831 | ) / ( 3.0_wp * gg ) |
---|
| 832 | diss_int(n) = diss_int_l + ( zv(n) - zu(k) ) / dz *& |
---|
[849] | 833 | ( diss_int_u - diss_int_l ) |
---|
| 834 | ENDIF |
---|
[1929] | 835 | ! |
---|
| 836 | !-- Set flag for stochastic equation. |
---|
| 837 | term_1_2(n) = 1.0_wp |
---|
| 838 | |
---|
[849] | 839 | ELSE |
---|
[1929] | 840 | |
---|
[849] | 841 | ! |
---|
| 842 | !-- If wall between gridpoint 1 and gridpoint 5, then |
---|
| 843 | !-- Neumann boundary condition has to be applied |
---|
| 844 | IF ( gp_outside_of_building(1) == 1 .AND. & |
---|
| 845 | gp_outside_of_building(5) == 0 ) THEN |
---|
| 846 | num_gp = num_gp + 1 |
---|
[1359] | 847 | location(num_gp,1) = i * dx + 0.5_wp * dx |
---|
[849] | 848 | location(num_gp,2) = j * dy |
---|
[1359] | 849 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
[849] | 850 | ei(num_gp) = e(k,j,i) |
---|
| 851 | dissi(num_gp) = diss(k,j,i) |
---|
[1359] | 852 | de_dxi(num_gp) = 0.0_wp |
---|
[849] | 853 | de_dyi(num_gp) = de_dy(k,j,i) |
---|
| 854 | de_dzi(num_gp) = de_dz(k,j,i) |
---|
| 855 | ENDIF |
---|
| 856 | |
---|
| 857 | IF ( gp_outside_of_building(5) == 1 .AND. & |
---|
[1929] | 858 | gp_outside_of_building(1) == 0 ) THEN |
---|
[849] | 859 | num_gp = num_gp + 1 |
---|
[1359] | 860 | location(num_gp,1) = i * dx + 0.5_wp * dx |
---|
[849] | 861 | location(num_gp,2) = j * dy |
---|
[1359] | 862 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
[849] | 863 | ei(num_gp) = e(k,j,i+1) |
---|
| 864 | dissi(num_gp) = diss(k,j,i+1) |
---|
[1359] | 865 | de_dxi(num_gp) = 0.0_wp |
---|
[849] | 866 | de_dyi(num_gp) = de_dy(k,j,i+1) |
---|
| 867 | de_dzi(num_gp) = de_dz(k,j,i+1) |
---|
| 868 | ENDIF |
---|
| 869 | |
---|
| 870 | ! |
---|
| 871 | !-- If wall between gridpoint 5 and gridpoint 6, then |
---|
| 872 | !-- then Neumann boundary condition has to be applied |
---|
| 873 | IF ( gp_outside_of_building(5) == 1 .AND. & |
---|
| 874 | gp_outside_of_building(6) == 0 ) THEN |
---|
| 875 | num_gp = num_gp + 1 |
---|
| 876 | location(num_gp,1) = (i+1) * dx |
---|
[1359] | 877 | location(num_gp,2) = j * dy + 0.5_wp * dy |
---|
| 878 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
[849] | 879 | ei(num_gp) = e(k,j,i+1) |
---|
| 880 | dissi(num_gp) = diss(k,j,i+1) |
---|
| 881 | de_dxi(num_gp) = de_dx(k,j,i+1) |
---|
[1359] | 882 | de_dyi(num_gp) = 0.0_wp |
---|
[849] | 883 | de_dzi(num_gp) = de_dz(k,j,i+1) |
---|
| 884 | ENDIF |
---|
| 885 | |
---|
| 886 | IF ( gp_outside_of_building(6) == 1 .AND. & |
---|
| 887 | gp_outside_of_building(5) == 0 ) THEN |
---|
| 888 | num_gp = num_gp + 1 |
---|
| 889 | location(num_gp,1) = (i+1) * dx |
---|
[1359] | 890 | location(num_gp,2) = j * dy + 0.5_wp * dy |
---|
| 891 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
[849] | 892 | ei(num_gp) = e(k,j+1,i+1) |
---|
| 893 | dissi(num_gp) = diss(k,j+1,i+1) |
---|
| 894 | de_dxi(num_gp) = de_dx(k,j+1,i+1) |
---|
[1359] | 895 | de_dyi(num_gp) = 0.0_wp |
---|
[849] | 896 | de_dzi(num_gp) = de_dz(k,j+1,i+1) |
---|
| 897 | ENDIF |
---|
| 898 | |
---|
| 899 | ! |
---|
| 900 | !-- If wall between gridpoint 2 and gridpoint 6, then |
---|
| 901 | !-- Neumann boundary condition has to be applied |
---|
| 902 | IF ( gp_outside_of_building(2) == 1 .AND. & |
---|
| 903 | gp_outside_of_building(6) == 0 ) THEN |
---|
| 904 | num_gp = num_gp + 1 |
---|
[1359] | 905 | location(num_gp,1) = i * dx + 0.5_wp * dx |
---|
[849] | 906 | location(num_gp,2) = (j+1) * dy |
---|
[1359] | 907 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
[849] | 908 | ei(num_gp) = e(k,j+1,i) |
---|
| 909 | dissi(num_gp) = diss(k,j+1,i) |
---|
[1359] | 910 | de_dxi(num_gp) = 0.0_wp |
---|
[849] | 911 | de_dyi(num_gp) = de_dy(k,j+1,i) |
---|
| 912 | de_dzi(num_gp) = de_dz(k,j+1,i) |
---|
| 913 | ENDIF |
---|
| 914 | |
---|
| 915 | IF ( gp_outside_of_building(6) == 1 .AND. & |
---|
| 916 | gp_outside_of_building(2) == 0 ) THEN |
---|
| 917 | num_gp = num_gp + 1 |
---|
[1359] | 918 | location(num_gp,1) = i * dx + 0.5_wp * dx |
---|
[849] | 919 | location(num_gp,2) = (j+1) * dy |
---|
[1359] | 920 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
[849] | 921 | ei(num_gp) = e(k,j+1,i+1) |
---|
| 922 | dissi(num_gp) = diss(k,j+1,i+1) |
---|
[1359] | 923 | de_dxi(num_gp) = 0.0_wp |
---|
[849] | 924 | de_dyi(num_gp) = de_dy(k,j+1,i+1) |
---|
| 925 | de_dzi(num_gp) = de_dz(k,j+1,i+1) |
---|
| 926 | ENDIF |
---|
| 927 | |
---|
| 928 | ! |
---|
| 929 | !-- If wall between gridpoint 1 and gridpoint 2, then |
---|
| 930 | !-- Neumann boundary condition has to be applied |
---|
| 931 | IF ( gp_outside_of_building(1) == 1 .AND. & |
---|
| 932 | gp_outside_of_building(2) == 0 ) THEN |
---|
| 933 | num_gp = num_gp + 1 |
---|
| 934 | location(num_gp,1) = i * dx |
---|
[1359] | 935 | location(num_gp,2) = j * dy + 0.5_wp * dy |
---|
| 936 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
[849] | 937 | ei(num_gp) = e(k,j,i) |
---|
| 938 | dissi(num_gp) = diss(k,j,i) |
---|
| 939 | de_dxi(num_gp) = de_dx(k,j,i) |
---|
[1359] | 940 | de_dyi(num_gp) = 0.0_wp |
---|
[1929] | 941 | de_dzi(num_gp) = de_dz(k,j,i) |
---|
[849] | 942 | ENDIF |
---|
| 943 | |
---|
| 944 | IF ( gp_outside_of_building(2) == 1 .AND. & |
---|
| 945 | gp_outside_of_building(1) == 0 ) THEN |
---|
| 946 | num_gp = num_gp + 1 |
---|
| 947 | location(num_gp,1) = i * dx |
---|
[1359] | 948 | location(num_gp,2) = j * dy + 0.5_wp * dy |
---|
| 949 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
[849] | 950 | ei(num_gp) = e(k,j+1,i) |
---|
| 951 | dissi(num_gp) = diss(k,j+1,i) |
---|
| 952 | de_dxi(num_gp) = de_dx(k,j+1,i) |
---|
[1359] | 953 | de_dyi(num_gp) = 0.0_wp |
---|
[849] | 954 | de_dzi(num_gp) = de_dz(k,j+1,i) |
---|
| 955 | ENDIF |
---|
| 956 | |
---|
| 957 | ! |
---|
| 958 | !-- If wall between gridpoint 3 and gridpoint 7, then |
---|
| 959 | !-- Neumann boundary condition has to be applied |
---|
| 960 | IF ( gp_outside_of_building(3) == 1 .AND. & |
---|
| 961 | gp_outside_of_building(7) == 0 ) THEN |
---|
| 962 | num_gp = num_gp + 1 |
---|
[1359] | 963 | location(num_gp,1) = i * dx + 0.5_wp * dx |
---|
[849] | 964 | location(num_gp,2) = j * dy |
---|
[1359] | 965 | location(num_gp,3) = k * dz + 0.5_wp * dz |
---|
[849] | 966 | ei(num_gp) = e(k+1,j,i) |
---|
| 967 | dissi(num_gp) = diss(k+1,j,i) |
---|
[1359] | 968 | de_dxi(num_gp) = 0.0_wp |
---|
[849] | 969 | de_dyi(num_gp) = de_dy(k+1,j,i) |
---|
| 970 | de_dzi(num_gp) = de_dz(k+1,j,i) |
---|
| 971 | ENDIF |
---|
| 972 | |
---|
| 973 | IF ( gp_outside_of_building(7) == 1 .AND. & |
---|
| 974 | gp_outside_of_building(3) == 0 ) THEN |
---|
| 975 | num_gp = num_gp + 1 |
---|
[1359] | 976 | location(num_gp,1) = i * dx + 0.5_wp * dx |
---|
[849] | 977 | location(num_gp,2) = j * dy |
---|
[1359] | 978 | location(num_gp,3) = k * dz + 0.5_wp * dz |
---|
[849] | 979 | ei(num_gp) = e(k+1,j,i+1) |
---|
| 980 | dissi(num_gp) = diss(k+1,j,i+1) |
---|
[1359] | 981 | de_dxi(num_gp) = 0.0_wp |
---|
[849] | 982 | de_dyi(num_gp) = de_dy(k+1,j,i+1) |
---|
| 983 | de_dzi(num_gp) = de_dz(k+1,j,i+1) |
---|
| 984 | ENDIF |
---|
| 985 | |
---|
| 986 | ! |
---|
| 987 | !-- If wall between gridpoint 7 and gridpoint 8, then |
---|
| 988 | !-- Neumann boundary condition has to be applied |
---|
| 989 | IF ( gp_outside_of_building(7) == 1 .AND. & |
---|
| 990 | gp_outside_of_building(8) == 0 ) THEN |
---|
| 991 | num_gp = num_gp + 1 |
---|
| 992 | location(num_gp,1) = (i+1) * dx |
---|
[1359] | 993 | location(num_gp,2) = j * dy + 0.5_wp * dy |
---|
| 994 | location(num_gp,3) = k * dz + 0.5_wp * dz |
---|
[849] | 995 | ei(num_gp) = e(k+1,j,i+1) |
---|
| 996 | dissi(num_gp) = diss(k+1,j,i+1) |
---|
| 997 | de_dxi(num_gp) = de_dx(k+1,j,i+1) |
---|
[1359] | 998 | de_dyi(num_gp) = 0.0_wp |
---|
[849] | 999 | de_dzi(num_gp) = de_dz(k+1,j,i+1) |
---|
| 1000 | ENDIF |
---|
| 1001 | |
---|
| 1002 | IF ( gp_outside_of_building(8) == 1 .AND. & |
---|
| 1003 | gp_outside_of_building(7) == 0 ) THEN |
---|
| 1004 | num_gp = num_gp + 1 |
---|
| 1005 | location(num_gp,1) = (i+1) * dx |
---|
[1359] | 1006 | location(num_gp,2) = j * dy + 0.5_wp * dy |
---|
| 1007 | location(num_gp,3) = k * dz + 0.5_wp * dz |
---|
[849] | 1008 | ei(num_gp) = e(k+1,j+1,i+1) |
---|
| 1009 | dissi(num_gp) = diss(k+1,j+1,i+1) |
---|
| 1010 | de_dxi(num_gp) = de_dx(k+1,j+1,i+1) |
---|
[1359] | 1011 | de_dyi(num_gp) = 0.0_wp |
---|
[849] | 1012 | de_dzi(num_gp) = de_dz(k+1,j+1,i+1) |
---|
| 1013 | ENDIF |
---|
| 1014 | |
---|
| 1015 | ! |
---|
| 1016 | !-- If wall between gridpoint 4 and gridpoint 8, then |
---|
| 1017 | !-- Neumann boundary condition has to be applied |
---|
| 1018 | IF ( gp_outside_of_building(4) == 1 .AND. & |
---|
| 1019 | gp_outside_of_building(8) == 0 ) THEN |
---|
| 1020 | num_gp = num_gp + 1 |
---|
[1359] | 1021 | location(num_gp,1) = i * dx + 0.5_wp * dx |
---|
[849] | 1022 | location(num_gp,2) = (j+1) * dy |
---|
[1359] | 1023 | location(num_gp,3) = k * dz + 0.5_wp * dz |
---|
[849] | 1024 | ei(num_gp) = e(k+1,j+1,i) |
---|
| 1025 | dissi(num_gp) = diss(k+1,j+1,i) |
---|
[1359] | 1026 | de_dxi(num_gp) = 0.0_wp |
---|
[849] | 1027 | de_dyi(num_gp) = de_dy(k+1,j+1,i) |
---|
| 1028 | de_dzi(num_gp) = de_dz(k+1,j+1,i) |
---|
| 1029 | ENDIF |
---|
| 1030 | |
---|
| 1031 | IF ( gp_outside_of_building(8) == 1 .AND. & |
---|
| 1032 | gp_outside_of_building(4) == 0 ) THEN |
---|
| 1033 | num_gp = num_gp + 1 |
---|
[1359] | 1034 | location(num_gp,1) = i * dx + 0.5_wp * dx |
---|
[849] | 1035 | location(num_gp,2) = (j+1) * dy |
---|
[1359] | 1036 | location(num_gp,3) = k * dz + 0.5_wp * dz |
---|
[849] | 1037 | ei(num_gp) = e(k+1,j+1,i+1) |
---|
| 1038 | dissi(num_gp) = diss(k+1,j+1,i+1) |
---|
[1359] | 1039 | de_dxi(num_gp) = 0.0_wp |
---|
[849] | 1040 | de_dyi(num_gp) = de_dy(k+1,j+1,i+1) |
---|
| 1041 | de_dzi(num_gp) = de_dz(k+1,j+1,i+1) |
---|
| 1042 | ENDIF |
---|
| 1043 | |
---|
| 1044 | ! |
---|
| 1045 | !-- If wall between gridpoint 3 and gridpoint 4, then |
---|
| 1046 | !-- Neumann boundary condition has to be applied |
---|
| 1047 | IF ( gp_outside_of_building(3) == 1 .AND. & |
---|
| 1048 | gp_outside_of_building(4) == 0 ) THEN |
---|
| 1049 | num_gp = num_gp + 1 |
---|
| 1050 | location(num_gp,1) = i * dx |
---|
[1359] | 1051 | location(num_gp,2) = j * dy + 0.5_wp * dy |
---|
| 1052 | location(num_gp,3) = k * dz + 0.5_wp * dz |
---|
[849] | 1053 | ei(num_gp) = e(k+1,j,i) |
---|
| 1054 | dissi(num_gp) = diss(k+1,j,i) |
---|
| 1055 | de_dxi(num_gp) = de_dx(k+1,j,i) |
---|
[1359] | 1056 | de_dyi(num_gp) = 0.0_wp |
---|
[849] | 1057 | de_dzi(num_gp) = de_dz(k+1,j,i) |
---|
| 1058 | ENDIF |
---|
| 1059 | |
---|
| 1060 | IF ( gp_outside_of_building(4) == 1 .AND. & |
---|
| 1061 | gp_outside_of_building(3) == 0 ) THEN |
---|
| 1062 | num_gp = num_gp + 1 |
---|
| 1063 | location(num_gp,1) = i * dx |
---|
[1359] | 1064 | location(num_gp,2) = j * dy + 0.5_wp * dy |
---|
| 1065 | location(num_gp,3) = k * dz + 0.5_wp * dz |
---|
[849] | 1066 | ei(num_gp) = e(k+1,j+1,i) |
---|
| 1067 | dissi(num_gp) = diss(k+1,j+1,i) |
---|
| 1068 | de_dxi(num_gp) = de_dx(k+1,j+1,i) |
---|
[1359] | 1069 | de_dyi(num_gp) = 0.0_wp |
---|
[849] | 1070 | de_dzi(num_gp) = de_dz(k+1,j+1,i) |
---|
| 1071 | ENDIF |
---|
| 1072 | |
---|
| 1073 | ! |
---|
| 1074 | !-- If wall between gridpoint 1 and gridpoint 3, then |
---|
| 1075 | !-- Neumann boundary condition has to be applied |
---|
| 1076 | !-- (only one case as only building beneath is possible) |
---|
| 1077 | IF ( gp_outside_of_building(1) == 0 .AND. & |
---|
| 1078 | gp_outside_of_building(3) == 1 ) THEN |
---|
| 1079 | num_gp = num_gp + 1 |
---|
| 1080 | location(num_gp,1) = i * dx |
---|
| 1081 | location(num_gp,2) = j * dy |
---|
| 1082 | location(num_gp,3) = k * dz |
---|
| 1083 | ei(num_gp) = e(k+1,j,i) |
---|
| 1084 | dissi(num_gp) = diss(k+1,j,i) |
---|
| 1085 | de_dxi(num_gp) = de_dx(k+1,j,i) |
---|
| 1086 | de_dyi(num_gp) = de_dy(k+1,j,i) |
---|
[1359] | 1087 | de_dzi(num_gp) = 0.0_wp |
---|
[849] | 1088 | ENDIF |
---|
| 1089 | |
---|
| 1090 | ! |
---|
| 1091 | !-- If wall between gridpoint 5 and gridpoint 7, then |
---|
| 1092 | !-- Neumann boundary condition has to be applied |
---|
| 1093 | !-- (only one case as only building beneath is possible) |
---|
| 1094 | IF ( gp_outside_of_building(5) == 0 .AND. & |
---|
| 1095 | gp_outside_of_building(7) == 1 ) THEN |
---|
| 1096 | num_gp = num_gp + 1 |
---|
| 1097 | location(num_gp,1) = (i+1) * dx |
---|
| 1098 | location(num_gp,2) = j * dy |
---|
| 1099 | location(num_gp,3) = k * dz |
---|
| 1100 | ei(num_gp) = e(k+1,j,i+1) |
---|
| 1101 | dissi(num_gp) = diss(k+1,j,i+1) |
---|
| 1102 | de_dxi(num_gp) = de_dx(k+1,j,i+1) |
---|
| 1103 | de_dyi(num_gp) = de_dy(k+1,j,i+1) |
---|
[1359] | 1104 | de_dzi(num_gp) = 0.0_wp |
---|
[849] | 1105 | ENDIF |
---|
| 1106 | |
---|
| 1107 | ! |
---|
| 1108 | !-- If wall between gridpoint 2 and gridpoint 4, then |
---|
| 1109 | !-- Neumann boundary condition has to be applied |
---|
| 1110 | !-- (only one case as only building beneath is possible) |
---|
| 1111 | IF ( gp_outside_of_building(2) == 0 .AND. & |
---|
| 1112 | gp_outside_of_building(4) == 1 ) THEN |
---|
| 1113 | num_gp = num_gp + 1 |
---|
| 1114 | location(num_gp,1) = i * dx |
---|
| 1115 | location(num_gp,2) = (j+1) * dy |
---|
| 1116 | location(num_gp,3) = k * dz |
---|
| 1117 | ei(num_gp) = e(k+1,j+1,i) |
---|
| 1118 | dissi(num_gp) = diss(k+1,j+1,i) |
---|
| 1119 | de_dxi(num_gp) = de_dx(k+1,j+1,i) |
---|
| 1120 | de_dyi(num_gp) = de_dy(k+1,j+1,i) |
---|
[1359] | 1121 | de_dzi(num_gp) = 0.0_wp |
---|
[849] | 1122 | ENDIF |
---|
| 1123 | |
---|
[1929] | 1124 | ! |
---|
[849] | 1125 | !-- If wall between gridpoint 6 and gridpoint 8, then |
---|
| 1126 | !-- Neumann boundary condition has to be applied |
---|
| 1127 | !-- (only one case as only building beneath is possible) |
---|
| 1128 | IF ( gp_outside_of_building(6) == 0 .AND. & |
---|
| 1129 | gp_outside_of_building(8) == 1 ) THEN |
---|
| 1130 | num_gp = num_gp + 1 |
---|
| 1131 | location(num_gp,1) = (i+1) * dx |
---|
| 1132 | location(num_gp,2) = (j+1) * dy |
---|
| 1133 | location(num_gp,3) = k * dz |
---|
| 1134 | ei(num_gp) = e(k+1,j+1,i+1) |
---|
| 1135 | dissi(num_gp) = diss(k+1,j+1,i+1) |
---|
| 1136 | de_dxi(num_gp) = de_dx(k+1,j+1,i+1) |
---|
| 1137 | de_dyi(num_gp) = de_dy(k+1,j+1,i+1) |
---|
[1359] | 1138 | de_dzi(num_gp) = 0.0_wp |
---|
[849] | 1139 | ENDIF |
---|
[1929] | 1140 | |
---|
[849] | 1141 | ! |
---|
| 1142 | !-- Carry out the interpolation |
---|
| 1143 | IF ( num_gp == 1 ) THEN |
---|
[1929] | 1144 | ! |
---|
[849] | 1145 | !-- If only one of the gridpoints is situated outside of the |
---|
| 1146 | !-- building, it follows that the values at the particle |
---|
| 1147 | !-- location are the same as the gridpoint values |
---|
[1929] | 1148 | e_int(n) = ei(num_gp) |
---|
| 1149 | diss_int(n) = dissi(num_gp) |
---|
[1359] | 1150 | de_dx_int(n) = de_dxi(num_gp) |
---|
| 1151 | de_dy_int(n) = de_dyi(num_gp) |
---|
| 1152 | de_dz_int(n) = de_dzi(num_gp) |
---|
[1929] | 1153 | ! |
---|
| 1154 | !-- Set flag for stochastic equation which disables calculation |
---|
| 1155 | !-- of drift and memory term near topography. |
---|
| 1156 | term_1_2(n) = 0.0_wp |
---|
[849] | 1157 | ELSE IF ( num_gp > 1 ) THEN |
---|
[1929] | 1158 | |
---|
[1359] | 1159 | d_sum = 0.0_wp |
---|
[1929] | 1160 | ! |
---|
[849] | 1161 | !-- Evaluation of the distances between the gridpoints |
---|
| 1162 | !-- contributing to the interpolated values, and the particle |
---|
| 1163 | !-- location |
---|
| 1164 | DO agp = 1, num_gp |
---|
| 1165 | d_gp_pl(agp) = ( particles(n)%x-location(agp,1) )**2 & |
---|
| 1166 | + ( particles(n)%y-location(agp,2) )**2 & |
---|
[1359] | 1167 | + ( zv(n)-location(agp,3) )**2 |
---|
[849] | 1168 | d_sum = d_sum + d_gp_pl(agp) |
---|
| 1169 | ENDDO |
---|
[1929] | 1170 | |
---|
[849] | 1171 | ! |
---|
| 1172 | !-- Finally the interpolation can be carried out |
---|
[1359] | 1173 | e_int(n) = 0.0_wp |
---|
| 1174 | diss_int(n) = 0.0_wp |
---|
[1929] | 1175 | de_dx_int(n) = 0.0_wp |
---|
| 1176 | de_dy_int(n) = 0.0_wp |
---|
| 1177 | de_dz_int(n) = 0.0_wp |
---|
[849] | 1178 | DO agp = 1, num_gp |
---|
[1359] | 1179 | e_int(n) = e_int(n) + ( d_sum - d_gp_pl(agp) ) * & |
---|
[849] | 1180 | ei(agp) / ( (num_gp-1) * d_sum ) |
---|
[1359] | 1181 | diss_int(n) = diss_int(n) + ( d_sum - d_gp_pl(agp) ) * & |
---|
[849] | 1182 | dissi(agp) / ( (num_gp-1) * d_sum ) |
---|
[1359] | 1183 | de_dx_int(n) = de_dx_int(n) + ( d_sum - d_gp_pl(agp) ) * & |
---|
[849] | 1184 | de_dxi(agp) / ( (num_gp-1) * d_sum ) |
---|
[1359] | 1185 | de_dy_int(n) = de_dy_int(n) + ( d_sum - d_gp_pl(agp) ) * & |
---|
[849] | 1186 | de_dyi(agp) / ( (num_gp-1) * d_sum ) |
---|
[1359] | 1187 | de_dz_int(n) = de_dz_int(n) + ( d_sum - d_gp_pl(agp) ) * & |
---|
[849] | 1188 | de_dzi(agp) / ( (num_gp-1) * d_sum ) |
---|
| 1189 | ENDDO |
---|
[1929] | 1190 | |
---|
[849] | 1191 | ENDIF |
---|
[1929] | 1192 | e_int(n) = MAX( 1E-20_wp, e_int(n) ) |
---|
| 1193 | diss_int(n) = MAX( 1E-20_wp, diss_int(n) ) |
---|
| 1194 | de_dx_int(n) = MAX( 1E-20_wp, de_dx_int(n) ) |
---|
| 1195 | de_dy_int(n) = MAX( 1E-20_wp, de_dy_int(n) ) |
---|
| 1196 | de_dz_int(n) = MAX( 1E-20_wp, de_dz_int(n) ) |
---|
| 1197 | ! |
---|
| 1198 | !-- Set flag for stochastic equation which disables calculation |
---|
| 1199 | !-- of drift and memory term near topography. |
---|
| 1200 | term_1_2(n) = 0.0_wp |
---|
[849] | 1201 | ENDIF |
---|
[1359] | 1202 | ENDDO |
---|
| 1203 | ENDIF |
---|
[849] | 1204 | |
---|
[1359] | 1205 | DO nb = 0,7 |
---|
| 1206 | i = ip + block_offset(nb)%i_off |
---|
| 1207 | j = jp + block_offset(nb)%j_off |
---|
| 1208 | k = kp + block_offset(nb)%k_off |
---|
[849] | 1209 | |
---|
[1359] | 1210 | DO n = start_index(nb), end_index(nb) |
---|
[849] | 1211 | ! |
---|
[1359] | 1212 | !-- Vertical interpolation of the horizontally averaged SGS TKE and |
---|
| 1213 | !-- resolved-scale velocity variances and use the interpolated values |
---|
| 1214 | !-- to calculate the coefficient fs, which is a measure of the ratio |
---|
| 1215 | !-- of the subgrid-scale turbulent kinetic energy to the total amount |
---|
| 1216 | !-- of turbulent kinetic energy. |
---|
| 1217 | IF ( k == 0 ) THEN |
---|
| 1218 | e_mean_int = hom(0,1,8,0) |
---|
| 1219 | ELSE |
---|
| 1220 | e_mean_int = hom(k,1,8,0) + & |
---|
| 1221 | ( hom(k+1,1,8,0) - hom(k,1,8,0) ) / & |
---|
| 1222 | ( zu(k+1) - zu(k) ) * & |
---|
| 1223 | ( zv(n) - zu(k) ) |
---|
| 1224 | ENDIF |
---|
[849] | 1225 | |
---|
[1685] | 1226 | kw = kp - 1 |
---|
[849] | 1227 | |
---|
[1359] | 1228 | IF ( k == 0 ) THEN |
---|
| 1229 | aa = hom(k+1,1,30,0) * ( zv(n) / & |
---|
| 1230 | ( 0.5_wp * ( zu(k+1) - zu(k) ) ) ) |
---|
| 1231 | bb = hom(k+1,1,31,0) * ( zv(n) / & |
---|
| 1232 | ( 0.5_wp * ( zu(k+1) - zu(k) ) ) ) |
---|
| 1233 | cc = hom(kw+1,1,32,0) * ( zv(n) / & |
---|
| 1234 | ( 1.0_wp * ( zw(kw+1) - zw(kw) ) ) ) |
---|
| 1235 | ELSE |
---|
| 1236 | aa = hom(k,1,30,0) + ( hom(k+1,1,30,0) - hom(k,1,30,0) ) * & |
---|
| 1237 | ( ( zv(n) - zu(k) ) / ( zu(k+1) - zu(k) ) ) |
---|
| 1238 | bb = hom(k,1,31,0) + ( hom(k+1,1,31,0) - hom(k,1,31,0) ) * & |
---|
| 1239 | ( ( zv(n) - zu(k) ) / ( zu(k+1) - zu(k) ) ) |
---|
| 1240 | cc = hom(kw,1,32,0) + ( hom(kw+1,1,32,0)-hom(kw,1,32,0) ) * & |
---|
| 1241 | ( ( zv(n) - zw(kw) ) / ( zw(kw+1)-zw(kw) ) ) |
---|
| 1242 | ENDIF |
---|
[849] | 1243 | |
---|
[1359] | 1244 | vv_int = ( 1.0_wp / 3.0_wp ) * ( aa + bb + cc ) |
---|
| 1245 | ! |
---|
| 1246 | !-- Needed to avoid NaN particle velocities. The value of 1.0 is just |
---|
| 1247 | !-- an educated guess for the given case. |
---|
| 1248 | IF ( vv_int + ( 2.0_wp / 3.0_wp ) * e_mean_int == 0.0_wp ) THEN |
---|
| 1249 | fs_int(n) = 1.0_wp |
---|
| 1250 | ELSE |
---|
| 1251 | fs_int(n) = ( 2.0_wp / 3.0_wp ) * e_mean_int / & |
---|
| 1252 | ( vv_int + ( 2.0_wp / 3.0_wp ) * e_mean_int ) |
---|
| 1253 | ENDIF |
---|
[849] | 1254 | |
---|
[1359] | 1255 | ENDDO |
---|
| 1256 | ENDDO |
---|
[849] | 1257 | |
---|
[1359] | 1258 | DO n = 1, number_of_particles |
---|
| 1259 | |
---|
| 1260 | rg(n,1) = random_gauss( iran_part, 5.0_wp ) |
---|
| 1261 | rg(n,2) = random_gauss( iran_part, 5.0_wp ) |
---|
| 1262 | rg(n,3) = random_gauss( iran_part, 5.0_wp ) |
---|
| 1263 | |
---|
| 1264 | ENDDO |
---|
| 1265 | |
---|
| 1266 | DO n = 1, number_of_particles |
---|
[849] | 1267 | ! |
---|
| 1268 | !-- Calculate the Lagrangian timescale according to Weil et al. (2004). |
---|
[1929] | 1269 | lagr_timescale = ( 4.0_wp * e_int(n) + 1E-20_wp ) / & |
---|
| 1270 | ( 3.0_wp * fs_int(n) * c_0 * diss_int(n) + 1E-20_wp ) |
---|
[849] | 1271 | |
---|
| 1272 | ! |
---|
| 1273 | !-- Calculate the next particle timestep. dt_gap is the time needed to |
---|
| 1274 | !-- complete the current LES timestep. |
---|
| 1275 | dt_gap = dt_3d - particles(n)%dt_sum |
---|
[1359] | 1276 | dt_particle(n) = MIN( dt_3d, 0.025_wp * lagr_timescale, dt_gap ) |
---|
[849] | 1277 | |
---|
| 1278 | ! |
---|
| 1279 | !-- The particle timestep should not be too small in order to prevent |
---|
| 1280 | !-- the number of particle timesteps of getting too large |
---|
[1359] | 1281 | IF ( dt_particle(n) < dt_min_part .AND. dt_min_part < dt_gap ) THEN |
---|
| 1282 | dt_particle(n) = dt_min_part |
---|
[849] | 1283 | ENDIF |
---|
| 1284 | |
---|
| 1285 | ! |
---|
| 1286 | !-- Calculate the SGS velocity components |
---|
[1359] | 1287 | IF ( particles(n)%age == 0.0_wp ) THEN |
---|
[849] | 1288 | ! |
---|
| 1289 | !-- For new particles the SGS components are derived from the SGS |
---|
| 1290 | !-- TKE. Limit the Gaussian random number to the interval |
---|
| 1291 | !-- [-5.0*sigma, 5.0*sigma] in order to prevent the SGS velocities |
---|
| 1292 | !-- from becoming unrealistically large. |
---|
[1929] | 1293 | particles(n)%rvar1 = SQRT( 2.0_wp * sgs_wf_part * e_int(n) + 1E-20_wp ) * & |
---|
[1359] | 1294 | ( rg(n,1) - 1.0_wp ) |
---|
[1929] | 1295 | particles(n)%rvar2 = SQRT( 2.0_wp * sgs_wf_part * e_int(n) + 1E-20_wp ) * & |
---|
[1359] | 1296 | ( rg(n,2) - 1.0_wp ) |
---|
[1929] | 1297 | particles(n)%rvar3 = SQRT( 2.0_wp * sgs_wf_part * e_int(n) + 1E-20_wp ) * & |
---|
[1359] | 1298 | ( rg(n,3) - 1.0_wp ) |
---|
[849] | 1299 | |
---|
| 1300 | ELSE |
---|
| 1301 | ! |
---|
| 1302 | !-- Restriction of the size of the new timestep: compared to the |
---|
| 1303 | !-- previous timestep the increase must not exceed 200% |
---|
| 1304 | |
---|
| 1305 | dt_particle_m = particles(n)%age - particles(n)%age_m |
---|
[1359] | 1306 | IF ( dt_particle(n) > 2.0_wp * dt_particle_m ) THEN |
---|
| 1307 | dt_particle(n) = 2.0_wp * dt_particle_m |
---|
[849] | 1308 | ENDIF |
---|
| 1309 | |
---|
| 1310 | ! |
---|
| 1311 | !-- For old particles the SGS components are correlated with the |
---|
| 1312 | !-- values from the previous timestep. Random numbers have also to |
---|
| 1313 | !-- be limited (see above). |
---|
| 1314 | !-- As negative values for the subgrid TKE are not allowed, the |
---|
| 1315 | !-- change of the subgrid TKE with time cannot be smaller than |
---|
[1359] | 1316 | !-- -e_int(n)/dt_particle. This value is used as a lower boundary |
---|
[849] | 1317 | !-- value for the change of TKE |
---|
| 1318 | |
---|
[1359] | 1319 | de_dt_min = - e_int(n) / dt_particle(n) |
---|
[849] | 1320 | |
---|
[1359] | 1321 | de_dt = ( e_int(n) - particles(n)%e_m ) / dt_particle_m |
---|
[849] | 1322 | |
---|
| 1323 | IF ( de_dt < de_dt_min ) THEN |
---|
| 1324 | de_dt = de_dt_min |
---|
| 1325 | ENDIF |
---|
| 1326 | |
---|
[1929] | 1327 | CALL weil_stochastic_eq(particles(n)%rvar1, fs_int(n), e_int(n), & |
---|
| 1328 | de_dx_int(n), de_dt, diss_int(n), & |
---|
| 1329 | dt_particle(n), rg(n,1), term_1_2(n) ) |
---|
[849] | 1330 | |
---|
[1929] | 1331 | CALL weil_stochastic_eq(particles(n)%rvar2, fs_int(n), e_int(n), & |
---|
| 1332 | de_dy_int(n), de_dt, diss_int(n), & |
---|
| 1333 | dt_particle(n), rg(n,2), term_1_2(n) ) |
---|
[849] | 1334 | |
---|
[1929] | 1335 | CALL weil_stochastic_eq(particles(n)%rvar3, fs_int(n), e_int(n), & |
---|
| 1336 | de_dz_int(n), de_dt, diss_int(n), & |
---|
| 1337 | dt_particle(n), rg(n,3), term_1_2(n) ) |
---|
[849] | 1338 | |
---|
| 1339 | ENDIF |
---|
[1929] | 1340 | |
---|
[1359] | 1341 | u_int(n) = u_int(n) + particles(n)%rvar1 |
---|
| 1342 | v_int(n) = v_int(n) + particles(n)%rvar2 |
---|
| 1343 | w_int(n) = w_int(n) + particles(n)%rvar3 |
---|
[849] | 1344 | ! |
---|
| 1345 | !-- Store the SGS TKE of the current timelevel which is needed for |
---|
| 1346 | !-- for calculating the SGS particle velocities at the next timestep |
---|
[1359] | 1347 | particles(n)%e_m = e_int(n) |
---|
| 1348 | ENDDO |
---|
[849] | 1349 | |
---|
[1359] | 1350 | ELSE |
---|
[849] | 1351 | ! |
---|
[1359] | 1352 | !-- If no SGS velocities are used, only the particle timestep has to |
---|
| 1353 | !-- be set |
---|
| 1354 | dt_particle = dt_3d |
---|
[849] | 1355 | |
---|
[1359] | 1356 | ENDIF |
---|
[849] | 1357 | ! |
---|
[1359] | 1358 | !-- Store the old age of the particle ( needed to prevent that a |
---|
| 1359 | !-- particle crosses several PEs during one timestep, and for the |
---|
| 1360 | !-- evaluation of the subgrid particle velocity fluctuations ) |
---|
| 1361 | particles(1:number_of_particles)%age_m = particles(1:number_of_particles)%age |
---|
[849] | 1362 | |
---|
[1359] | 1363 | dens_ratio = particle_groups(particles(1:number_of_particles)%group)%density_ratio |
---|
[849] | 1364 | |
---|
[1359] | 1365 | IF ( ANY( dens_ratio == 0.0_wp ) ) THEN |
---|
| 1366 | DO n = 1, number_of_particles |
---|
| 1367 | |
---|
[849] | 1368 | ! |
---|
[1359] | 1369 | !-- Particle advection |
---|
| 1370 | IF ( dens_ratio(n) == 0.0_wp ) THEN |
---|
[849] | 1371 | ! |
---|
[1359] | 1372 | !-- Pure passive transport (without particle inertia) |
---|
| 1373 | particles(n)%x = xv(n) + u_int(n) * dt_particle(n) |
---|
| 1374 | particles(n)%y = yv(n) + v_int(n) * dt_particle(n) |
---|
| 1375 | particles(n)%z = zv(n) + w_int(n) * dt_particle(n) |
---|
[849] | 1376 | |
---|
[1359] | 1377 | particles(n)%speed_x = u_int(n) |
---|
| 1378 | particles(n)%speed_y = v_int(n) |
---|
| 1379 | particles(n)%speed_z = w_int(n) |
---|
[849] | 1380 | |
---|
[1359] | 1381 | ELSE |
---|
[849] | 1382 | ! |
---|
[1359] | 1383 | !-- Transport of particles with inertia |
---|
| 1384 | particles(n)%x = particles(n)%x + particles(n)%speed_x * & |
---|
| 1385 | dt_particle(n) |
---|
| 1386 | particles(n)%y = particles(n)%y + particles(n)%speed_y * & |
---|
| 1387 | dt_particle(n) |
---|
| 1388 | particles(n)%z = particles(n)%z + particles(n)%speed_z * & |
---|
| 1389 | dt_particle(n) |
---|
[849] | 1390 | |
---|
| 1391 | ! |
---|
[1359] | 1392 | !-- Update of the particle velocity |
---|
| 1393 | IF ( cloud_droplets ) THEN |
---|
[1822] | 1394 | ! |
---|
| 1395 | !-- Terminal velocity is computed for vertical direction (Rogers et |
---|
| 1396 | !-- al., 1993, J. Appl. Meteorol.) |
---|
| 1397 | diameter = particles(n)%radius * 2000.0_wp !diameter in mm |
---|
| 1398 | IF ( diameter <= d0_rog ) THEN |
---|
| 1399 | w_s = k_cap_rog * diameter * ( 1.0_wp - EXP( -k_low_rog * diameter ) ) |
---|
| 1400 | ELSE |
---|
| 1401 | w_s = a_rog - b_rog * EXP( -c_rog * diameter ) |
---|
| 1402 | ENDIF |
---|
[1359] | 1403 | |
---|
[1822] | 1404 | ! |
---|
| 1405 | !-- If selected, add random velocities following Soelch and Kaercher |
---|
| 1406 | !-- (2010, Q. J. R. Meteorol. Soc.) |
---|
| 1407 | IF ( use_sgs_for_particles ) THEN |
---|
| 1408 | lagr_timescale = km(kp,jp,ip) / MAX( e(kp,jp,ip), 1.0E-20_wp ) |
---|
| 1409 | RL = EXP( -1.0_wp * dt_3d / lagr_timescale ) |
---|
| 1410 | sigma = SQRT( e(kp,jp,ip) ) |
---|
| 1411 | |
---|
| 1412 | rg1 = random_gauss( iran_part, 5.0_wp ) - 1.0_wp |
---|
| 1413 | rg2 = random_gauss( iran_part, 5.0_wp ) - 1.0_wp |
---|
| 1414 | rg3 = random_gauss( iran_part, 5.0_wp ) - 1.0_wp |
---|
| 1415 | |
---|
| 1416 | particles(n)%rvar1 = RL * particles(n)%rvar1 + & |
---|
| 1417 | SQRT( 1.0_wp - RL**2 ) * sigma * rg1 |
---|
| 1418 | particles(n)%rvar2 = RL * particles(n)%rvar2 + & |
---|
| 1419 | SQRT( 1.0_wp - RL**2 ) * sigma * rg2 |
---|
| 1420 | particles(n)%rvar3 = RL * particles(n)%rvar3 + & |
---|
| 1421 | SQRT( 1.0_wp - RL**2 ) * sigma * rg3 |
---|
| 1422 | |
---|
| 1423 | particles(n)%speed_x = u_int(n) + particles(n)%rvar1 |
---|
| 1424 | particles(n)%speed_y = v_int(n) + particles(n)%rvar2 |
---|
| 1425 | particles(n)%speed_z = w_int(n) + particles(n)%rvar3 - w_s |
---|
| 1426 | ELSE |
---|
| 1427 | particles(n)%speed_x = u_int(n) |
---|
| 1428 | particles(n)%speed_y = v_int(n) |
---|
| 1429 | particles(n)%speed_z = w_int(n) - w_s |
---|
| 1430 | ENDIF |
---|
| 1431 | |
---|
[1359] | 1432 | ELSE |
---|
[1822] | 1433 | |
---|
| 1434 | IF ( use_sgs_for_particles ) THEN |
---|
| 1435 | exp_arg = particle_groups(particles(n)%group)%exp_arg |
---|
| 1436 | exp_term = EXP( -exp_arg * dt_particle(n) ) |
---|
| 1437 | ELSE |
---|
| 1438 | exp_arg = particle_groups(particles(n)%group)%exp_arg |
---|
| 1439 | exp_term = particle_groups(particles(n)%group)%exp_term |
---|
| 1440 | ENDIF |
---|
| 1441 | particles(n)%speed_x = particles(n)%speed_x * exp_term + & |
---|
| 1442 | u_int(n) * ( 1.0_wp - exp_term ) |
---|
| 1443 | particles(n)%speed_y = particles(n)%speed_y * exp_term + & |
---|
| 1444 | v_int(n) * ( 1.0_wp - exp_term ) |
---|
| 1445 | particles(n)%speed_z = particles(n)%speed_z * exp_term + & |
---|
| 1446 | ( w_int(n) - ( 1.0_wp - dens_ratio(n) ) * & |
---|
| 1447 | g / exp_arg ) * ( 1.0_wp - exp_term ) |
---|
[1359] | 1448 | ENDIF |
---|
[1822] | 1449 | |
---|
[1359] | 1450 | ENDIF |
---|
| 1451 | |
---|
| 1452 | ENDDO |
---|
| 1453 | |
---|
| 1454 | ELSE |
---|
| 1455 | |
---|
| 1456 | DO n = 1, number_of_particles |
---|
| 1457 | |
---|
| 1458 | !-- Transport of particles with inertia |
---|
| 1459 | particles(n)%x = xv(n) + particles(n)%speed_x * dt_particle(n) |
---|
| 1460 | particles(n)%y = yv(n) + particles(n)%speed_y * dt_particle(n) |
---|
| 1461 | particles(n)%z = zv(n) + particles(n)%speed_z * dt_particle(n) |
---|
| 1462 | ! |
---|
[849] | 1463 | !-- Update of the particle velocity |
---|
| 1464 | IF ( cloud_droplets ) THEN |
---|
[1822] | 1465 | ! |
---|
| 1466 | !-- Terminal velocity is computed for vertical direction (Rogers et al., |
---|
| 1467 | !-- 1993, J. Appl. Meteorol.) |
---|
| 1468 | diameter = particles(n)%radius * 2000.0_wp !diameter in mm |
---|
| 1469 | IF ( diameter <= d0_rog ) THEN |
---|
| 1470 | w_s = k_cap_rog * diameter * ( 1.0_wp - EXP( -k_low_rog * diameter ) ) |
---|
| 1471 | ELSE |
---|
| 1472 | w_s = a_rog - b_rog * EXP( -c_rog * diameter ) |
---|
| 1473 | ENDIF |
---|
[1359] | 1474 | |
---|
[1822] | 1475 | ! |
---|
| 1476 | !-- If selected, add random velocities following Soelch and Kaercher |
---|
| 1477 | !-- (2010, Q. J. R. Meteorol. Soc.) |
---|
| 1478 | IF ( use_sgs_for_particles ) THEN |
---|
| 1479 | lagr_timescale = km(kp,jp,ip) / MAX( e(kp,jp,ip), 1.0E-20_wp ) |
---|
| 1480 | RL = EXP( -1.0_wp * dt_3d / lagr_timescale ) |
---|
| 1481 | sigma = SQRT( e(kp,jp,ip) ) |
---|
[1359] | 1482 | |
---|
[1822] | 1483 | rg1 = random_gauss( iran_part, 5.0_wp ) - 1.0_wp |
---|
| 1484 | rg2 = random_gauss( iran_part, 5.0_wp ) - 1.0_wp |
---|
| 1485 | rg3 = random_gauss( iran_part, 5.0_wp ) - 1.0_wp |
---|
| 1486 | |
---|
| 1487 | particles(n)%rvar1 = RL * particles(n)%rvar1 + & |
---|
| 1488 | SQRT( 1.0_wp - RL**2 ) * sigma * rg1 |
---|
| 1489 | particles(n)%rvar2 = RL * particles(n)%rvar2 + & |
---|
| 1490 | SQRT( 1.0_wp - RL**2 ) * sigma * rg2 |
---|
| 1491 | particles(n)%rvar3 = RL * particles(n)%rvar3 + & |
---|
| 1492 | SQRT( 1.0_wp - RL**2 ) * sigma * rg3 |
---|
| 1493 | |
---|
| 1494 | particles(n)%speed_x = u_int(n) + particles(n)%rvar1 |
---|
| 1495 | particles(n)%speed_y = v_int(n) + particles(n)%rvar2 |
---|
| 1496 | particles(n)%speed_z = w_int(n) + particles(n)%rvar3 - w_s |
---|
| 1497 | ELSE |
---|
| 1498 | particles(n)%speed_x = u_int(n) |
---|
| 1499 | particles(n)%speed_y = v_int(n) |
---|
| 1500 | particles(n)%speed_z = w_int(n) - w_s |
---|
| 1501 | ENDIF |
---|
| 1502 | |
---|
[849] | 1503 | ELSE |
---|
[1822] | 1504 | |
---|
| 1505 | IF ( use_sgs_for_particles ) THEN |
---|
| 1506 | exp_arg = particle_groups(particles(n)%group)%exp_arg |
---|
| 1507 | exp_term = EXP( -exp_arg * dt_particle(n) ) |
---|
| 1508 | ELSE |
---|
| 1509 | exp_arg = particle_groups(particles(n)%group)%exp_arg |
---|
| 1510 | exp_term = particle_groups(particles(n)%group)%exp_term |
---|
| 1511 | ENDIF |
---|
| 1512 | particles(n)%speed_x = particles(n)%speed_x * exp_term + & |
---|
| 1513 | u_int(n) * ( 1.0_wp - exp_term ) |
---|
| 1514 | particles(n)%speed_y = particles(n)%speed_y * exp_term + & |
---|
| 1515 | v_int(n) * ( 1.0_wp - exp_term ) |
---|
| 1516 | particles(n)%speed_z = particles(n)%speed_z * exp_term + & |
---|
| 1517 | ( w_int(n) - ( 1.0_wp - dens_ratio(n) ) * g / & |
---|
| 1518 | exp_arg ) * ( 1.0_wp - exp_term ) |
---|
[849] | 1519 | ENDIF |
---|
[1822] | 1520 | |
---|
[1359] | 1521 | ENDDO |
---|
[849] | 1522 | |
---|
[1359] | 1523 | ENDIF |
---|
| 1524 | |
---|
| 1525 | DO n = 1, number_of_particles |
---|
[849] | 1526 | ! |
---|
| 1527 | !-- Increment the particle age and the total time that the particle |
---|
| 1528 | !-- has advanced within the particle timestep procedure |
---|
[1359] | 1529 | particles(n)%age = particles(n)%age + dt_particle(n) |
---|
| 1530 | particles(n)%dt_sum = particles(n)%dt_sum + dt_particle(n) |
---|
[849] | 1531 | |
---|
| 1532 | ! |
---|
| 1533 | !-- Check whether there is still a particle that has not yet completed |
---|
| 1534 | !-- the total LES timestep |
---|
[1359] | 1535 | IF ( ( dt_3d - particles(n)%dt_sum ) > 1E-8_wp ) THEN |
---|
[849] | 1536 | dt_3d_reached_l = .FALSE. |
---|
| 1537 | ENDIF |
---|
| 1538 | |
---|
| 1539 | ENDDO |
---|
| 1540 | |
---|
[1359] | 1541 | CALL cpu_log( log_point_s(44), 'lpm_advec', 'pause' ) |
---|
[849] | 1542 | |
---|
[1929] | 1543 | |
---|
[849] | 1544 | END SUBROUTINE lpm_advec |
---|
[1929] | 1545 | |
---|
| 1546 | ! Description: |
---|
| 1547 | ! ------------ |
---|
| 1548 | !> Calculation of subgrid-scale particle speed using the stochastic model |
---|
| 1549 | !> of Weil et al. (2004, JAS, 61, 2877-2887). |
---|
| 1550 | !------------------------------------------------------------------------------! |
---|
| 1551 | SUBROUTINE weil_stochastic_eq( v_sgs, fs_n, e_n, dedxi_n, dedt_n, diss_n, & |
---|
| 1552 | dt_n, rg_n, fac ) |
---|
| 1553 | |
---|
| 1554 | USE kinds |
---|
| 1555 | |
---|
| 1556 | USE particle_attributes, & |
---|
| 1557 | ONLY: c_0, sgs_wf_part |
---|
| 1558 | |
---|
| 1559 | IMPLICIT NONE |
---|
| 1560 | |
---|
| 1561 | REAL(wp) :: a1 !< dummy argument |
---|
| 1562 | REAL(wp) :: dedt_n !< time derivative of TKE at particle position |
---|
| 1563 | REAL(wp) :: dedxi_n !< horizontal derivative of TKE at particle position |
---|
| 1564 | REAL(wp) :: diss_n !< dissipation at particle position |
---|
| 1565 | REAL(wp) :: dt_n !< particle timestep |
---|
| 1566 | REAL(wp) :: e_n !< TKE at particle position |
---|
| 1567 | REAL(wp) :: fac !< flag to identify adjacent topography |
---|
| 1568 | REAL(wp) :: fs_n !< weighting factor to prevent that subgrid-scale particle speed becomes too large |
---|
| 1569 | REAL(wp) :: sgs_w !< constant (1/3) |
---|
| 1570 | REAL(wp) :: rg_n !< random number |
---|
| 1571 | REAL(wp) :: term1 !< memory term |
---|
| 1572 | REAL(wp) :: term2 !< drift correction term |
---|
| 1573 | REAL(wp) :: term3 !< random term |
---|
| 1574 | REAL(wp) :: v_sgs !< subgrid-scale velocity component |
---|
| 1575 | |
---|
| 1576 | ! |
---|
| 1577 | !-- Please note, terms 1 and 2 (drift and memory term, respectively) are |
---|
| 1578 | !-- multiplied by a flag to switch of both terms near topography. |
---|
| 1579 | !-- This is necessary, as both terms may cause a subgrid-scale velocity build up |
---|
| 1580 | !-- if particles are trapped in regions with very small TKE, e.g. in narrow street |
---|
| 1581 | !-- canyons resolved by only a few grid points. Hence, term 1 and term 2 are |
---|
| 1582 | !-- disabled if one of the adjacent grid points belongs to topography. |
---|
| 1583 | !-- Moreover, in this case, the previous subgrid-scale component is also set |
---|
| 1584 | !-- to zero. |
---|
| 1585 | |
---|
| 1586 | a1 = fs_n * c_0 * diss_n |
---|
| 1587 | ! |
---|
| 1588 | !-- Memory term |
---|
| 1589 | term1 = - a1 * v_sgs * dt_n / ( 4.0_wp * sgs_wf_part * e_n + 1E-20_wp ) & |
---|
| 1590 | * fac |
---|
| 1591 | ! |
---|
| 1592 | !-- Drift correction term |
---|
| 1593 | term2 = ( ( dedt_n * v_sgs / e_n ) + dedxi_n ) * 0.5_wp * dt_n & |
---|
| 1594 | * fac |
---|
| 1595 | ! |
---|
| 1596 | !-- Random term |
---|
| 1597 | term3 = SQRT( MAX( a1, 1E-20 ) ) * ( rg_n - 1.0_wp ) * SQRT( dt_n ) |
---|
| 1598 | ! |
---|
| 1599 | !-- In cese one of the adjacent grid-boxes belongs to topograhy, the previous |
---|
| 1600 | !-- subgrid-scale velocity component is set to zero, in order to prevent a |
---|
| 1601 | !-- velocity build-up. |
---|
| 1602 | |
---|
| 1603 | !-- This case, set also previous subgrid-scale component to zero. |
---|
| 1604 | v_sgs = v_sgs * fac + term1 + term2 + term3 |
---|
| 1605 | |
---|
| 1606 | END SUBROUTINE weil_stochastic_eq |
---|