[1682] | 1 | !> @file lpm_advec.f90 |
---|
[1036] | 2 | !--------------------------------------------------------------------------------! |
---|
| 3 | ! This file is part of PALM. |
---|
| 4 | ! |
---|
| 5 | ! PALM is free software: you can redistribute it and/or modify it under the terms |
---|
| 6 | ! of the GNU General Public License as published by the Free Software Foundation, |
---|
| 7 | ! either version 3 of the License, or (at your option) any later version. |
---|
| 8 | ! |
---|
| 9 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 10 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 11 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 12 | ! |
---|
| 13 | ! You should have received a copy of the GNU General Public License along with |
---|
| 14 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 15 | ! |
---|
[1818] | 16 | ! Copyright 1997-2016 Leibniz Universitaet Hannover |
---|
[1036] | 17 | !--------------------------------------------------------------------------------! |
---|
| 18 | ! |
---|
[849] | 19 | ! Current revisions: |
---|
| 20 | ! ------------------ |
---|
[1889] | 21 | ! |
---|
[1823] | 22 | ! |
---|
| 23 | ! Former revisions: |
---|
| 24 | ! ----------------- |
---|
| 25 | ! $Id: lpm_advec.f90 1889 2016-04-21 12:21:54Z suehring $ |
---|
| 26 | ! |
---|
[1889] | 27 | ! 1888 2016-04-21 12:20:49Z suehring |
---|
| 28 | ! Bugfix concerning logarithmic interpolation of particle speed |
---|
| 29 | ! |
---|
[1823] | 30 | ! 1822 2016-04-07 07:49:42Z hoffmann |
---|
[1822] | 31 | ! Random velocity fluctuations for particles added. Terminal fall velocity |
---|
| 32 | ! for droplets is calculated from a parameterization (which is better than |
---|
| 33 | ! the previous, physically correct calculation, which demands a very short |
---|
| 34 | ! time step that is not used in the model). |
---|
| 35 | ! |
---|
| 36 | ! Unused variables deleted. |
---|
[1321] | 37 | ! |
---|
[1692] | 38 | ! 1691 2015-10-26 16:17:44Z maronga |
---|
| 39 | ! Renamed prandtl_layer to constant_flux_layer. |
---|
| 40 | ! |
---|
[1686] | 41 | ! 1685 2015-10-08 07:32:13Z raasch |
---|
| 42 | ! TKE check for negative values (so far, only zero value was checked) |
---|
| 43 | ! offset_ocean_nzt_m1 removed |
---|
| 44 | ! |
---|
[1683] | 45 | ! 1682 2015-10-07 23:56:08Z knoop |
---|
| 46 | ! Code annotations made doxygen readable |
---|
| 47 | ! |
---|
[1584] | 48 | ! 1583 2015-04-15 12:16:27Z suehring |
---|
| 49 | ! Bugfix: particle advection within Prandtl-layer in case of Galilei |
---|
| 50 | ! transformation. |
---|
| 51 | ! |
---|
[1370] | 52 | ! 1369 2014-04-24 05:57:38Z raasch |
---|
| 53 | ! usage of module interfaces removed |
---|
| 54 | ! |
---|
[1360] | 55 | ! 1359 2014-04-11 17:15:14Z hoffmann |
---|
| 56 | ! New particle structure integrated. |
---|
| 57 | ! Kind definition added to all floating point numbers. |
---|
| 58 | ! |
---|
[1323] | 59 | ! 1322 2014-03-20 16:38:49Z raasch |
---|
| 60 | ! REAL constants defined as wp_kind |
---|
| 61 | ! |
---|
[1321] | 62 | ! 1320 2014-03-20 08:40:49Z raasch |
---|
[1320] | 63 | ! ONLY-attribute added to USE-statements, |
---|
| 64 | ! kind-parameters added to all INTEGER and REAL declaration statements, |
---|
| 65 | ! kinds are defined in new module kinds, |
---|
| 66 | ! revision history before 2012 removed, |
---|
| 67 | ! comment fields (!:) to be used for variable explanations added to |
---|
| 68 | ! all variable declaration statements |
---|
[849] | 69 | ! |
---|
[1315] | 70 | ! 1314 2014-03-14 18:25:17Z suehring |
---|
| 71 | ! Vertical logarithmic interpolation of horizontal particle speed for particles |
---|
| 72 | ! between roughness height and first vertical grid level. |
---|
| 73 | ! |
---|
[1037] | 74 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
| 75 | ! code put under GPL (PALM 3.9) |
---|
| 76 | ! |
---|
[850] | 77 | ! 849 2012-03-15 10:35:09Z raasch |
---|
| 78 | ! initial revision (former part of advec_particles) |
---|
[849] | 79 | ! |
---|
[850] | 80 | ! |
---|
[849] | 81 | ! Description: |
---|
| 82 | ! ------------ |
---|
[1682] | 83 | !> Calculation of new particle positions due to advection using a simple Euler |
---|
| 84 | !> scheme. Particles may feel inertia effects. SGS transport can be included |
---|
| 85 | !> using the stochastic model of Weil et al. (2004, JAS, 61, 2877-2887). |
---|
[849] | 86 | !------------------------------------------------------------------------------! |
---|
[1682] | 87 | SUBROUTINE lpm_advec (ip,jp,kp) |
---|
| 88 | |
---|
[849] | 89 | |
---|
[1320] | 90 | USE arrays_3d, & |
---|
[1822] | 91 | ONLY: de_dx, de_dy, de_dz, diss, e, km, u, us, usws, v, vsws, w, zu, zw |
---|
[849] | 92 | |
---|
[1359] | 93 | USE cpulog |
---|
| 94 | |
---|
| 95 | USE pegrid |
---|
| 96 | |
---|
[1320] | 97 | USE control_parameters, & |
---|
[1691] | 98 | ONLY: atmos_ocean_sign, cloud_droplets, constant_flux_layer, dt_3d, & |
---|
[1822] | 99 | dt_3d_reached_l, dz, g, kappa, topography, u_gtrans, v_gtrans |
---|
[849] | 100 | |
---|
[1320] | 101 | USE grid_variables, & |
---|
| 102 | ONLY: ddx, dx, ddy, dy |
---|
| 103 | |
---|
| 104 | USE indices, & |
---|
| 105 | ONLY: nzb, nzb_s_inner, nzt |
---|
| 106 | |
---|
| 107 | USE kinds |
---|
| 108 | |
---|
| 109 | USE particle_attributes, & |
---|
[1822] | 110 | ONLY: block_offset, c_0, dt_min_part, grid_particles, & |
---|
[1359] | 111 | iran_part, log_z_z0, number_of_particles, number_of_sublayers, & |
---|
[1685] | 112 | particles, particle_groups, offset_ocean_nzt, sgs_wfu_part, & |
---|
| 113 | sgs_wfv_part, sgs_wfw_part, use_sgs_for_particles, & |
---|
| 114 | vertical_particle_advection, z0_av_global |
---|
[1320] | 115 | |
---|
| 116 | USE statistics, & |
---|
| 117 | ONLY: hom |
---|
[849] | 118 | |
---|
[1320] | 119 | IMPLICIT NONE |
---|
[849] | 120 | |
---|
[1682] | 121 | INTEGER(iwp) :: agp !< |
---|
| 122 | INTEGER(iwp) :: gp_outside_of_building(1:8) !< |
---|
| 123 | INTEGER(iwp) :: i !< |
---|
| 124 | INTEGER(iwp) :: ip !< |
---|
| 125 | INTEGER(iwp) :: j !< |
---|
| 126 | INTEGER(iwp) :: jp !< |
---|
| 127 | INTEGER(iwp) :: k !< |
---|
| 128 | INTEGER(iwp) :: kp !< |
---|
| 129 | INTEGER(iwp) :: kw !< |
---|
| 130 | INTEGER(iwp) :: n !< |
---|
| 131 | INTEGER(iwp) :: nb !< |
---|
| 132 | INTEGER(iwp) :: num_gp !< |
---|
[849] | 133 | |
---|
[1682] | 134 | INTEGER(iwp), DIMENSION(0:7) :: start_index !< |
---|
| 135 | INTEGER(iwp), DIMENSION(0:7) :: end_index !< |
---|
[1359] | 136 | |
---|
[1682] | 137 | REAL(wp) :: aa !< |
---|
| 138 | REAL(wp) :: bb !< |
---|
| 139 | REAL(wp) :: cc !< |
---|
| 140 | REAL(wp) :: d_sum !< |
---|
| 141 | REAL(wp) :: d_z_p_z0 !< |
---|
| 142 | REAL(wp) :: dd !< |
---|
| 143 | REAL(wp) :: de_dx_int_l !< |
---|
| 144 | REAL(wp) :: de_dx_int_u !< |
---|
| 145 | REAL(wp) :: de_dy_int_l !< |
---|
| 146 | REAL(wp) :: de_dy_int_u !< |
---|
| 147 | REAL(wp) :: de_dt !< |
---|
| 148 | REAL(wp) :: de_dt_min !< |
---|
| 149 | REAL(wp) :: de_dz_int_l !< |
---|
| 150 | REAL(wp) :: de_dz_int_u !< |
---|
[1822] | 151 | REAL(wp) :: diameter !< diamter of droplet |
---|
[1682] | 152 | REAL(wp) :: diss_int_l !< |
---|
| 153 | REAL(wp) :: diss_int_u !< |
---|
| 154 | REAL(wp) :: dt_gap !< |
---|
| 155 | REAL(wp) :: dt_particle_m !< |
---|
| 156 | REAL(wp) :: e_int_l !< |
---|
| 157 | REAL(wp) :: e_int_u !< |
---|
| 158 | REAL(wp) :: e_mean_int !< |
---|
| 159 | REAL(wp) :: exp_arg !< |
---|
| 160 | REAL(wp) :: exp_term !< |
---|
| 161 | REAL(wp) :: gg !< |
---|
| 162 | REAL(wp) :: height_p !< |
---|
[1822] | 163 | REAL(wp) :: lagr_timescale !< Lagrangian timescale |
---|
[1682] | 164 | REAL(wp) :: location(1:30,1:3) !< |
---|
| 165 | REAL(wp) :: random_gauss !< |
---|
[1822] | 166 | REAL(wp) :: RL !< Lagrangian autocorrelation coefficient |
---|
| 167 | REAL(wp) :: rg1 !< Gaussian distributed random number |
---|
| 168 | REAL(wp) :: rg2 !< Gaussian distributed random number |
---|
| 169 | REAL(wp) :: rg3 !< Gaussian distributed random number |
---|
| 170 | REAL(wp) :: sigma !< velocity standard deviation |
---|
[1682] | 171 | REAL(wp) :: u_int_l !< |
---|
| 172 | REAL(wp) :: u_int_u !< |
---|
| 173 | REAL(wp) :: us_int !< |
---|
| 174 | REAL(wp) :: v_int_l !< |
---|
| 175 | REAL(wp) :: v_int_u !< |
---|
| 176 | REAL(wp) :: vv_int !< |
---|
| 177 | REAL(wp) :: w_int_l !< |
---|
| 178 | REAL(wp) :: w_int_u !< |
---|
[1822] | 179 | REAL(wp) :: w_s !< terminal velocity of droplets |
---|
[1682] | 180 | REAL(wp) :: x !< |
---|
| 181 | REAL(wp) :: y !< |
---|
[1822] | 182 | REAL(wp) :: z_p !< |
---|
[849] | 183 | |
---|
[1822] | 184 | REAL(wp), PARAMETER :: a_rog = 9.65_wp !< parameter for fall velocity |
---|
| 185 | REAL(wp), PARAMETER :: b_rog = 10.43_wp !< parameter for fall velocity |
---|
| 186 | REAL(wp), PARAMETER :: c_rog = 0.6_wp !< parameter for fall velocity |
---|
| 187 | REAL(wp), PARAMETER :: k_cap_rog = 4.0_wp !< parameter for fall velocity |
---|
| 188 | REAL(wp), PARAMETER :: k_low_rog = 12.0_wp !< parameter for fall velocity |
---|
| 189 | REAL(wp), PARAMETER :: d0_rog = 0.745_wp !< separation diameter |
---|
| 190 | |
---|
[1682] | 191 | REAL(wp), DIMENSION(1:30) :: d_gp_pl !< |
---|
| 192 | REAL(wp), DIMENSION(1:30) :: de_dxi !< |
---|
| 193 | REAL(wp), DIMENSION(1:30) :: de_dyi !< |
---|
| 194 | REAL(wp), DIMENSION(1:30) :: de_dzi !< |
---|
| 195 | REAL(wp), DIMENSION(1:30) :: dissi !< |
---|
| 196 | REAL(wp), DIMENSION(1:30) :: ei !< |
---|
[849] | 197 | |
---|
[1682] | 198 | REAL(wp), DIMENSION(number_of_particles) :: dens_ratio !< |
---|
| 199 | REAL(wp), DIMENSION(number_of_particles) :: de_dx_int !< |
---|
| 200 | REAL(wp), DIMENSION(number_of_particles) :: de_dy_int !< |
---|
| 201 | REAL(wp), DIMENSION(number_of_particles) :: de_dz_int !< |
---|
| 202 | REAL(wp), DIMENSION(number_of_particles) :: diss_int !< |
---|
| 203 | REAL(wp), DIMENSION(number_of_particles) :: dt_particle !< |
---|
| 204 | REAL(wp), DIMENSION(number_of_particles) :: e_int !< |
---|
| 205 | REAL(wp), DIMENSION(number_of_particles) :: fs_int !< |
---|
| 206 | REAL(wp), DIMENSION(number_of_particles) :: log_z_z0_int !< |
---|
| 207 | REAL(wp), DIMENSION(number_of_particles) :: u_int !< |
---|
| 208 | REAL(wp), DIMENSION(number_of_particles) :: v_int !< |
---|
| 209 | REAL(wp), DIMENSION(number_of_particles) :: w_int !< |
---|
| 210 | REAL(wp), DIMENSION(number_of_particles) :: xv !< |
---|
| 211 | REAL(wp), DIMENSION(number_of_particles) :: yv !< |
---|
| 212 | REAL(wp), DIMENSION(number_of_particles) :: zv !< |
---|
[1359] | 213 | |
---|
[1682] | 214 | REAL(wp), DIMENSION(number_of_particles, 3) :: rg !< |
---|
[1359] | 215 | |
---|
| 216 | CALL cpu_log( log_point_s(44), 'lpm_advec', 'continue' ) |
---|
| 217 | |
---|
[1314] | 218 | ! |
---|
| 219 | !-- Determine height of Prandtl layer and distance between Prandtl-layer |
---|
| 220 | !-- height and horizontal mean roughness height, which are required for |
---|
| 221 | !-- vertical logarithmic interpolation of horizontal particle speeds |
---|
| 222 | !-- (for particles below first vertical grid level). |
---|
| 223 | z_p = zu(nzb+1) - zw(nzb) |
---|
[1359] | 224 | d_z_p_z0 = 1.0_wp / ( z_p - z0_av_global ) |
---|
[849] | 225 | |
---|
[1359] | 226 | start_index = grid_particles(kp,jp,ip)%start_index |
---|
| 227 | end_index = grid_particles(kp,jp,ip)%end_index |
---|
[849] | 228 | |
---|
[1359] | 229 | xv = particles(1:number_of_particles)%x |
---|
| 230 | yv = particles(1:number_of_particles)%y |
---|
| 231 | zv = particles(1:number_of_particles)%z |
---|
[849] | 232 | |
---|
[1359] | 233 | DO nb = 0, 7 |
---|
[1314] | 234 | |
---|
[1359] | 235 | i = ip |
---|
| 236 | j = jp + block_offset(nb)%j_off |
---|
| 237 | k = kp + block_offset(nb)%k_off |
---|
| 238 | |
---|
[849] | 239 | ! |
---|
[1359] | 240 | !-- Interpolate u velocity-component |
---|
| 241 | DO n = start_index(nb), end_index(nb) |
---|
[1314] | 242 | ! |
---|
[1359] | 243 | !-- Interpolation of the u velocity component onto particle position. |
---|
| 244 | !-- Particles are interpolation bi-linearly in the horizontal and a |
---|
| 245 | !-- linearly in the vertical. An exception is made for particles below |
---|
| 246 | !-- the first vertical grid level in case of a prandtl layer. In this |
---|
| 247 | !-- case the horizontal particle velocity components are determined using |
---|
| 248 | !-- Monin-Obukhov relations (if branch). |
---|
| 249 | !-- First, check if particle is located below first vertical grid level |
---|
| 250 | !-- (Prandtl-layer height) |
---|
[1691] | 251 | IF ( constant_flux_layer .AND. particles(n)%z < z_p ) THEN |
---|
[1314] | 252 | ! |
---|
[1359] | 253 | !-- Resolved-scale horizontal particle velocity is zero below z0. |
---|
| 254 | IF ( particles(n)%z < z0_av_global ) THEN |
---|
| 255 | u_int(n) = 0.0_wp |
---|
| 256 | ELSE |
---|
[1314] | 257 | ! |
---|
[1359] | 258 | !-- Determine the sublayer. Further used as index. |
---|
| 259 | height_p = ( particles(n)%z - z0_av_global ) & |
---|
| 260 | * REAL( number_of_sublayers, KIND=wp ) & |
---|
| 261 | * d_z_p_z0 |
---|
[1314] | 262 | ! |
---|
[1359] | 263 | !-- Calculate LOG(z/z0) for exact particle height. Therefore, |
---|
| 264 | !-- interpolate linearly between precalculated logarithm. |
---|
| 265 | log_z_z0_int(n) = log_z_z0(INT(height_p)) & |
---|
| 266 | + ( height_p - INT(height_p) ) & |
---|
| 267 | * ( log_z_z0(INT(height_p)+1) & |
---|
| 268 | - log_z_z0(INT(height_p)) & |
---|
| 269 | ) |
---|
[1314] | 270 | ! |
---|
[1359] | 271 | !-- Neutral solution is applied for all situations, e.g. also for |
---|
| 272 | !-- unstable and stable situations. Even though this is not exact |
---|
| 273 | !-- this saves a lot of CPU time since several calls of intrinsic |
---|
| 274 | !-- FORTRAN procedures (LOG, ATAN) are avoided, This is justified |
---|
| 275 | !-- as sensitivity studies revealed no significant effect of |
---|
| 276 | !-- using the neutral solution also for un/stable situations. |
---|
| 277 | !-- Calculated left and bottom index on u grid. |
---|
[1888] | 278 | us_int = 0.5_wp * ( us(j,i) + us(j,i-1) ) |
---|
[1314] | 279 | |
---|
[1888] | 280 | u_int(n) = -usws(j,i) / ( us_int * kappa + 1E-10_wp ) & |
---|
[1583] | 281 | * log_z_z0_int(n) - u_gtrans |
---|
[1314] | 282 | |
---|
[1359] | 283 | ENDIF |
---|
| 284 | ! |
---|
| 285 | !-- Particle above the first grid level. Bi-linear interpolation in the |
---|
| 286 | !-- horizontal and linear interpolation in the vertical direction. |
---|
[1314] | 287 | ELSE |
---|
| 288 | |
---|
[1359] | 289 | x = xv(n) + ( 0.5_wp - i ) * dx |
---|
| 290 | y = yv(n) - j * dy |
---|
| 291 | aa = x**2 + y**2 |
---|
| 292 | bb = ( dx - x )**2 + y**2 |
---|
| 293 | cc = x**2 + ( dy - y )**2 |
---|
| 294 | dd = ( dx - x )**2 + ( dy - y )**2 |
---|
| 295 | gg = aa + bb + cc + dd |
---|
[1314] | 296 | |
---|
[1359] | 297 | u_int_l = ( ( gg - aa ) * u(k,j,i) + ( gg - bb ) * u(k,j,i+1) & |
---|
| 298 | + ( gg - cc ) * u(k,j+1,i) + ( gg - dd ) * & |
---|
| 299 | u(k,j+1,i+1) ) / ( 3.0_wp * gg ) - u_gtrans |
---|
[1314] | 300 | |
---|
[1359] | 301 | IF ( k == nzt ) THEN |
---|
| 302 | u_int(n) = u_int_l |
---|
| 303 | ELSE |
---|
| 304 | u_int_u = ( ( gg-aa ) * u(k+1,j,i) + ( gg-bb ) * u(k+1,j,i+1) & |
---|
| 305 | + ( gg-cc ) * u(k+1,j+1,i) + ( gg-dd ) * & |
---|
| 306 | u(k+1,j+1,i+1) ) / ( 3.0_wp * gg ) - u_gtrans |
---|
| 307 | u_int(n) = u_int_l + ( zv(n) - zu(k) ) / dz * & |
---|
| 308 | ( u_int_u - u_int_l ) |
---|
| 309 | ENDIF |
---|
[1314] | 310 | ENDIF |
---|
| 311 | |
---|
[1359] | 312 | ENDDO |
---|
[849] | 313 | |
---|
[1359] | 314 | i = ip + block_offset(nb)%i_off |
---|
| 315 | j = jp |
---|
| 316 | k = kp + block_offset(nb)%k_off |
---|
[849] | 317 | ! |
---|
[1359] | 318 | !-- Same procedure for interpolation of the v velocity-component |
---|
| 319 | DO n = start_index(nb), end_index(nb) |
---|
[1685] | 320 | |
---|
[1691] | 321 | IF ( constant_flux_layer .AND. particles(n)%z < z_p ) THEN |
---|
[849] | 322 | |
---|
[1359] | 323 | IF ( particles(n)%z < z0_av_global ) THEN |
---|
[1314] | 324 | ! |
---|
[1359] | 325 | !-- Resolved-scale horizontal particle velocity is zero below z0. |
---|
| 326 | v_int(n) = 0.0_wp |
---|
| 327 | ELSE |
---|
| 328 | ! |
---|
| 329 | !-- Neutral solution is applied for all situations, e.g. also for |
---|
| 330 | !-- unstable and stable situations. Even though this is not exact |
---|
| 331 | !-- this saves a lot of CPU time since several calls of intrinsic |
---|
| 332 | !-- FORTRAN procedures (LOG, ATAN) are avoided, This is justified |
---|
| 333 | !-- as sensitivity studies revealed no significant effect of |
---|
| 334 | !-- using the neutral solution also for un/stable situations. |
---|
| 335 | !-- Calculated left and bottom index on v grid. |
---|
[1888] | 336 | us_int = 0.5_wp * ( us(j,i) + us(j-1,i) ) |
---|
[1314] | 337 | |
---|
[1888] | 338 | v_int(n) = -vsws(j,i) / ( us_int * kappa + 1E-10_wp ) & |
---|
[1583] | 339 | * log_z_z0_int(n) - v_gtrans |
---|
[1359] | 340 | ENDIF |
---|
| 341 | ELSE |
---|
| 342 | x = xv(n) - i * dx |
---|
| 343 | y = yv(n) + ( 0.5_wp - j ) * dy |
---|
| 344 | aa = x**2 + y**2 |
---|
| 345 | bb = ( dx - x )**2 + y**2 |
---|
| 346 | cc = x**2 + ( dy - y )**2 |
---|
| 347 | dd = ( dx - x )**2 + ( dy - y )**2 |
---|
| 348 | gg = aa + bb + cc + dd |
---|
[1314] | 349 | |
---|
[1359] | 350 | v_int_l = ( ( gg - aa ) * v(k,j,i) + ( gg - bb ) * v(k,j,i+1) & |
---|
| 351 | + ( gg - cc ) * v(k,j+1,i) + ( gg - dd ) * v(k,j+1,i+1) & |
---|
| 352 | ) / ( 3.0_wp * gg ) - v_gtrans |
---|
[1314] | 353 | |
---|
[1359] | 354 | IF ( k == nzt ) THEN |
---|
| 355 | v_int(n) = v_int_l |
---|
| 356 | ELSE |
---|
| 357 | v_int_u = ( ( gg-aa ) * v(k+1,j,i) + ( gg-bb ) * v(k+1,j,i+1) & |
---|
| 358 | + ( gg-cc ) * v(k+1,j+1,i) + ( gg-dd ) * v(k+1,j+1,i+1) & |
---|
| 359 | ) / ( 3.0_wp * gg ) - v_gtrans |
---|
| 360 | v_int(n) = v_int_l + ( zv(n) - zu(k) ) / dz * & |
---|
| 361 | ( v_int_u - v_int_l ) |
---|
| 362 | ENDIF |
---|
[1314] | 363 | ENDIF |
---|
| 364 | |
---|
[1359] | 365 | ENDDO |
---|
[1314] | 366 | |
---|
[1359] | 367 | i = ip + block_offset(nb)%i_off |
---|
| 368 | j = jp + block_offset(nb)%j_off |
---|
| 369 | k = kp-1 |
---|
[849] | 370 | ! |
---|
[1314] | 371 | !-- Same procedure for interpolation of the w velocity-component |
---|
[1359] | 372 | DO n = start_index(nb), end_index(nb) |
---|
[849] | 373 | |
---|
[1359] | 374 | IF ( vertical_particle_advection(particles(n)%group) ) THEN |
---|
[849] | 375 | |
---|
[1359] | 376 | x = xv(n) - i * dx |
---|
| 377 | y = yv(n) - j * dy |
---|
[849] | 378 | aa = x**2 + y**2 |
---|
| 379 | bb = ( dx - x )**2 + y**2 |
---|
| 380 | cc = x**2 + ( dy - y )**2 |
---|
| 381 | dd = ( dx - x )**2 + ( dy - y )**2 |
---|
| 382 | gg = aa + bb + cc + dd |
---|
| 383 | |
---|
[1359] | 384 | w_int_l = ( ( gg - aa ) * w(k,j,i) + ( gg - bb ) * w(k,j,i+1) & |
---|
| 385 | + ( gg - cc ) * w(k,j+1,i) + ( gg - dd ) * w(k,j+1,i+1) & |
---|
| 386 | ) / ( 3.0_wp * gg ) |
---|
[849] | 387 | |
---|
[1359] | 388 | IF ( k == nzt ) THEN |
---|
| 389 | w_int(n) = w_int_l |
---|
[849] | 390 | ELSE |
---|
[1359] | 391 | w_int_u = ( ( gg-aa ) * w(k+1,j,i) + & |
---|
| 392 | ( gg-bb ) * w(k+1,j,i+1) + & |
---|
| 393 | ( gg-cc ) * w(k+1,j+1,i) + & |
---|
| 394 | ( gg-dd ) * w(k+1,j+1,i+1) & |
---|
| 395 | ) / ( 3.0_wp * gg ) |
---|
| 396 | w_int(n) = w_int_l + ( zv(n) - zw(k) ) / dz * & |
---|
| 397 | ( w_int_u - w_int_l ) |
---|
[849] | 398 | ENDIF |
---|
| 399 | |
---|
[1359] | 400 | ELSE |
---|
[849] | 401 | |
---|
[1359] | 402 | w_int(n) = 0.0_wp |
---|
[849] | 403 | |
---|
[1359] | 404 | ENDIF |
---|
| 405 | |
---|
| 406 | ENDDO |
---|
| 407 | |
---|
| 408 | ENDDO |
---|
| 409 | |
---|
| 410 | !-- Interpolate and calculate quantities needed for calculating the SGS |
---|
| 411 | !-- velocities |
---|
[1822] | 412 | IF ( use_sgs_for_particles .AND. .NOT. cloud_droplets ) THEN |
---|
[1359] | 413 | |
---|
| 414 | IF ( topography == 'flat' ) THEN |
---|
| 415 | |
---|
| 416 | DO nb = 0,7 |
---|
| 417 | |
---|
| 418 | i = ip + block_offset(nb)%i_off |
---|
| 419 | j = jp + block_offset(nb)%j_off |
---|
| 420 | k = kp + block_offset(nb)%k_off |
---|
| 421 | |
---|
| 422 | DO n = start_index(nb), end_index(nb) |
---|
[849] | 423 | ! |
---|
[1359] | 424 | !-- Interpolate TKE |
---|
| 425 | x = xv(n) - i * dx |
---|
| 426 | y = yv(n) - j * dy |
---|
| 427 | aa = x**2 + y**2 |
---|
| 428 | bb = ( dx - x )**2 + y**2 |
---|
| 429 | cc = x**2 + ( dy - y )**2 |
---|
| 430 | dd = ( dx - x )**2 + ( dy - y )**2 |
---|
| 431 | gg = aa + bb + cc + dd |
---|
[849] | 432 | |
---|
[1359] | 433 | e_int_l = ( ( gg-aa ) * e(k,j,i) + ( gg-bb ) * e(k,j,i+1) & |
---|
| 434 | + ( gg-cc ) * e(k,j+1,i) + ( gg-dd ) * e(k,j+1,i+1) & |
---|
| 435 | ) / ( 3.0_wp * gg ) |
---|
| 436 | |
---|
| 437 | IF ( k+1 == nzt+1 ) THEN |
---|
| 438 | e_int(n) = e_int_l |
---|
| 439 | ELSE |
---|
| 440 | e_int_u = ( ( gg - aa ) * e(k+1,j,i) + & |
---|
| 441 | ( gg - bb ) * e(k+1,j,i+1) + & |
---|
| 442 | ( gg - cc ) * e(k+1,j+1,i) + & |
---|
| 443 | ( gg - dd ) * e(k+1,j+1,i+1) & |
---|
| 444 | ) / ( 3.0_wp * gg ) |
---|
| 445 | e_int(n) = e_int_l + ( zv(n) - zu(k) ) / dz * & |
---|
| 446 | ( e_int_u - e_int_l ) |
---|
| 447 | ENDIF |
---|
[849] | 448 | ! |
---|
[1685] | 449 | !-- Needed to avoid NaN particle velocities (this might not be |
---|
| 450 | !-- required any more) |
---|
| 451 | IF ( e_int(n) <= 0.0_wp ) THEN |
---|
[1359] | 452 | e_int(n) = 1.0E-20_wp |
---|
| 453 | ENDIF |
---|
| 454 | ! |
---|
| 455 | !-- Interpolate the TKE gradient along x (adopt incides i,j,k and |
---|
| 456 | !-- all position variables from above (TKE)) |
---|
| 457 | de_dx_int_l = ( ( gg - aa ) * de_dx(k,j,i) + & |
---|
| 458 | ( gg - bb ) * de_dx(k,j,i+1) + & |
---|
| 459 | ( gg - cc ) * de_dx(k,j+1,i) + & |
---|
| 460 | ( gg - dd ) * de_dx(k,j+1,i+1) & |
---|
| 461 | ) / ( 3.0_wp * gg ) |
---|
[849] | 462 | |
---|
| 463 | IF ( ( k+1 == nzt+1 ) .OR. ( k == nzb ) ) THEN |
---|
[1359] | 464 | de_dx_int(n) = de_dx_int_l |
---|
[849] | 465 | ELSE |
---|
[1359] | 466 | de_dx_int_u = ( ( gg - aa ) * de_dx(k+1,j,i) + & |
---|
| 467 | ( gg - bb ) * de_dx(k+1,j,i+1) + & |
---|
| 468 | ( gg - cc ) * de_dx(k+1,j+1,i) + & |
---|
| 469 | ( gg - dd ) * de_dx(k+1,j+1,i+1) & |
---|
| 470 | ) / ( 3.0_wp * gg ) |
---|
| 471 | de_dx_int(n) = de_dx_int_l + ( zv(n) - zu(k) ) / dz * & |
---|
| 472 | ( de_dx_int_u - de_dx_int_l ) |
---|
[849] | 473 | ENDIF |
---|
[1359] | 474 | ! |
---|
| 475 | !-- Interpolate the TKE gradient along y |
---|
| 476 | de_dy_int_l = ( ( gg - aa ) * de_dy(k,j,i) + & |
---|
| 477 | ( gg - bb ) * de_dy(k,j,i+1) + & |
---|
| 478 | ( gg - cc ) * de_dy(k,j+1,i) + & |
---|
| 479 | ( gg - dd ) * de_dy(k,j+1,i+1) & |
---|
| 480 | ) / ( 3.0_wp * gg ) |
---|
| 481 | IF ( ( k+1 == nzt+1 ) .OR. ( k == nzb ) ) THEN |
---|
| 482 | de_dy_int(n) = de_dy_int_l |
---|
| 483 | ELSE |
---|
| 484 | de_dy_int_u = ( ( gg - aa ) * de_dy(k+1,j,i) + & |
---|
| 485 | ( gg - bb ) * de_dy(k+1,j,i+1) + & |
---|
| 486 | ( gg - cc ) * de_dy(k+1,j+1,i) + & |
---|
| 487 | ( gg - dd ) * de_dy(k+1,j+1,i+1) & |
---|
| 488 | ) / ( 3.0_wp * gg ) |
---|
| 489 | de_dy_int(n) = de_dy_int_l + ( zv(n) - zu(k) ) / dz * & |
---|
| 490 | ( de_dy_int_u - de_dy_int_l ) |
---|
| 491 | ENDIF |
---|
[849] | 492 | |
---|
| 493 | ! |
---|
[1359] | 494 | !-- Interpolate the TKE gradient along z |
---|
| 495 | IF ( zv(n) < 0.5_wp * dz ) THEN |
---|
| 496 | de_dz_int(n) = 0.0_wp |
---|
| 497 | ELSE |
---|
| 498 | de_dz_int_l = ( ( gg - aa ) * de_dz(k,j,i) + & |
---|
| 499 | ( gg - bb ) * de_dz(k,j,i+1) + & |
---|
| 500 | ( gg - cc ) * de_dz(k,j+1,i) + & |
---|
| 501 | ( gg - dd ) * de_dz(k,j+1,i+1) & |
---|
| 502 | ) / ( 3.0_wp * gg ) |
---|
[849] | 503 | |
---|
[1359] | 504 | IF ( ( k+1 == nzt+1 ) .OR. ( k == nzb ) ) THEN |
---|
| 505 | de_dz_int(n) = de_dz_int_l |
---|
| 506 | ELSE |
---|
| 507 | de_dz_int_u = ( ( gg - aa ) * de_dz(k+1,j,i) + & |
---|
| 508 | ( gg - bb ) * de_dz(k+1,j,i+1) + & |
---|
| 509 | ( gg - cc ) * de_dz(k+1,j+1,i) + & |
---|
| 510 | ( gg - dd ) * de_dz(k+1,j+1,i+1) & |
---|
| 511 | ) / ( 3.0_wp * gg ) |
---|
| 512 | de_dz_int(n) = de_dz_int_l + ( zv(n) - zu(k) ) / dz * & |
---|
| 513 | ( de_dz_int_u - de_dz_int_l ) |
---|
| 514 | ENDIF |
---|
| 515 | ENDIF |
---|
[849] | 516 | |
---|
[1359] | 517 | ! |
---|
| 518 | !-- Interpolate the dissipation of TKE |
---|
| 519 | diss_int_l = ( ( gg - aa ) * diss(k,j,i) + & |
---|
| 520 | ( gg - bb ) * diss(k,j,i+1) + & |
---|
| 521 | ( gg - cc ) * diss(k,j+1,i) + & |
---|
| 522 | ( gg - dd ) * diss(k,j+1,i+1) & |
---|
| 523 | ) / ( 3.0_wp * gg ) |
---|
[849] | 524 | |
---|
[1359] | 525 | IF ( k == nzt ) THEN |
---|
| 526 | diss_int(n) = diss_int_l |
---|
| 527 | ELSE |
---|
| 528 | diss_int_u = ( ( gg - aa ) * diss(k+1,j,i) + & |
---|
| 529 | ( gg - bb ) * diss(k+1,j,i+1) + & |
---|
| 530 | ( gg - cc ) * diss(k+1,j+1,i) + & |
---|
| 531 | ( gg - dd ) * diss(k+1,j+1,i+1) & |
---|
| 532 | ) / ( 3.0_wp * gg ) |
---|
| 533 | diss_int(n) = diss_int_l + ( zv(n) - zu(k) ) / dz * & |
---|
| 534 | ( diss_int_u - diss_int_l ) |
---|
| 535 | ENDIF |
---|
| 536 | |
---|
| 537 | ENDDO |
---|
| 538 | ENDDO |
---|
| 539 | |
---|
| 540 | ELSE ! non-flat topography, e.g., buildings |
---|
| 541 | |
---|
| 542 | DO n = 1, number_of_particles |
---|
| 543 | |
---|
| 544 | i = particles(n)%x * ddx |
---|
| 545 | j = particles(n)%y * ddy |
---|
| 546 | k = ( zv(n) + 0.5_wp * dz * atmos_ocean_sign ) / dz & |
---|
| 547 | + offset_ocean_nzt ! only exact if eq.dist |
---|
[849] | 548 | ! |
---|
| 549 | !-- In case that there are buildings it has to be determined |
---|
| 550 | !-- how many of the gridpoints defining the particle box are |
---|
| 551 | !-- situated within a building |
---|
| 552 | !-- gp_outside_of_building(1): i,j,k |
---|
| 553 | !-- gp_outside_of_building(2): i,j+1,k |
---|
| 554 | !-- gp_outside_of_building(3): i,j,k+1 |
---|
| 555 | !-- gp_outside_of_building(4): i,j+1,k+1 |
---|
| 556 | !-- gp_outside_of_building(5): i+1,j,k |
---|
| 557 | !-- gp_outside_of_building(6): i+1,j+1,k |
---|
| 558 | !-- gp_outside_of_building(7): i+1,j,k+1 |
---|
| 559 | !-- gp_outside_of_building(8): i+1,j+1,k+1 |
---|
| 560 | |
---|
| 561 | gp_outside_of_building = 0 |
---|
[1359] | 562 | location = 0.0_wp |
---|
[849] | 563 | num_gp = 0 |
---|
| 564 | |
---|
| 565 | IF ( k > nzb_s_inner(j,i) .OR. nzb_s_inner(j,i) == 0 ) THEN |
---|
| 566 | num_gp = num_gp + 1 |
---|
| 567 | gp_outside_of_building(1) = 1 |
---|
| 568 | location(num_gp,1) = i * dx |
---|
| 569 | location(num_gp,2) = j * dy |
---|
[1359] | 570 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
[849] | 571 | ei(num_gp) = e(k,j,i) |
---|
| 572 | dissi(num_gp) = diss(k,j,i) |
---|
| 573 | de_dxi(num_gp) = de_dx(k,j,i) |
---|
| 574 | de_dyi(num_gp) = de_dy(k,j,i) |
---|
| 575 | de_dzi(num_gp) = de_dz(k,j,i) |
---|
| 576 | ENDIF |
---|
| 577 | |
---|
| 578 | IF ( k > nzb_s_inner(j+1,i) .OR. nzb_s_inner(j+1,i) == 0 ) & |
---|
| 579 | THEN |
---|
| 580 | num_gp = num_gp + 1 |
---|
| 581 | gp_outside_of_building(2) = 1 |
---|
| 582 | location(num_gp,1) = i * dx |
---|
| 583 | location(num_gp,2) = (j+1) * dy |
---|
[1359] | 584 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
[849] | 585 | ei(num_gp) = e(k,j+1,i) |
---|
| 586 | dissi(num_gp) = diss(k,j+1,i) |
---|
| 587 | de_dxi(num_gp) = de_dx(k,j+1,i) |
---|
| 588 | de_dyi(num_gp) = de_dy(k,j+1,i) |
---|
| 589 | de_dzi(num_gp) = de_dz(k,j+1,i) |
---|
| 590 | ENDIF |
---|
| 591 | |
---|
| 592 | IF ( k+1 > nzb_s_inner(j,i) .OR. nzb_s_inner(j,i) == 0 ) THEN |
---|
| 593 | num_gp = num_gp + 1 |
---|
| 594 | gp_outside_of_building(3) = 1 |
---|
| 595 | location(num_gp,1) = i * dx |
---|
| 596 | location(num_gp,2) = j * dy |
---|
[1359] | 597 | location(num_gp,3) = (k+1) * dz - 0.5_wp * dz |
---|
[849] | 598 | ei(num_gp) = e(k+1,j,i) |
---|
| 599 | dissi(num_gp) = diss(k+1,j,i) |
---|
| 600 | de_dxi(num_gp) = de_dx(k+1,j,i) |
---|
| 601 | de_dyi(num_gp) = de_dy(k+1,j,i) |
---|
| 602 | de_dzi(num_gp) = de_dz(k+1,j,i) |
---|
| 603 | ENDIF |
---|
| 604 | |
---|
| 605 | IF ( k+1 > nzb_s_inner(j+1,i) .OR. nzb_s_inner(j+1,i) == 0 ) & |
---|
| 606 | THEN |
---|
| 607 | num_gp = num_gp + 1 |
---|
| 608 | gp_outside_of_building(4) = 1 |
---|
| 609 | location(num_gp,1) = i * dx |
---|
| 610 | location(num_gp,2) = (j+1) * dy |
---|
[1359] | 611 | location(num_gp,3) = (k+1) * dz - 0.5_wp * dz |
---|
[849] | 612 | ei(num_gp) = e(k+1,j+1,i) |
---|
| 613 | dissi(num_gp) = diss(k+1,j+1,i) |
---|
| 614 | de_dxi(num_gp) = de_dx(k+1,j+1,i) |
---|
| 615 | de_dyi(num_gp) = de_dy(k+1,j+1,i) |
---|
| 616 | de_dzi(num_gp) = de_dz(k+1,j+1,i) |
---|
| 617 | ENDIF |
---|
| 618 | |
---|
| 619 | IF ( k > nzb_s_inner(j,i+1) .OR. nzb_s_inner(j,i+1) == 0 ) & |
---|
| 620 | THEN |
---|
| 621 | num_gp = num_gp + 1 |
---|
| 622 | gp_outside_of_building(5) = 1 |
---|
| 623 | location(num_gp,1) = (i+1) * dx |
---|
| 624 | location(num_gp,2) = j * dy |
---|
[1359] | 625 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
[849] | 626 | ei(num_gp) = e(k,j,i+1) |
---|
| 627 | dissi(num_gp) = diss(k,j,i+1) |
---|
| 628 | de_dxi(num_gp) = de_dx(k,j,i+1) |
---|
| 629 | de_dyi(num_gp) = de_dy(k,j,i+1) |
---|
| 630 | de_dzi(num_gp) = de_dz(k,j,i+1) |
---|
| 631 | ENDIF |
---|
| 632 | |
---|
[1359] | 633 | IF ( k > nzb_s_inner(j+1,i+1) .OR. nzb_s_inner(j+1,i+1) == 0 ) & |
---|
[849] | 634 | THEN |
---|
| 635 | num_gp = num_gp + 1 |
---|
| 636 | gp_outside_of_building(6) = 1 |
---|
| 637 | location(num_gp,1) = (i+1) * dx |
---|
| 638 | location(num_gp,2) = (j+1) * dy |
---|
[1359] | 639 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
[849] | 640 | ei(num_gp) = e(k,j+1,i+1) |
---|
| 641 | dissi(num_gp) = diss(k,j+1,i+1) |
---|
| 642 | de_dxi(num_gp) = de_dx(k,j+1,i+1) |
---|
| 643 | de_dyi(num_gp) = de_dy(k,j+1,i+1) |
---|
| 644 | de_dzi(num_gp) = de_dz(k,j+1,i+1) |
---|
| 645 | ENDIF |
---|
| 646 | |
---|
| 647 | IF ( k+1 > nzb_s_inner(j,i+1) .OR. nzb_s_inner(j,i+1) == 0 ) & |
---|
| 648 | THEN |
---|
| 649 | num_gp = num_gp + 1 |
---|
| 650 | gp_outside_of_building(7) = 1 |
---|
| 651 | location(num_gp,1) = (i+1) * dx |
---|
| 652 | location(num_gp,2) = j * dy |
---|
[1359] | 653 | location(num_gp,3) = (k+1) * dz - 0.5_wp * dz |
---|
[849] | 654 | ei(num_gp) = e(k+1,j,i+1) |
---|
| 655 | dissi(num_gp) = diss(k+1,j,i+1) |
---|
| 656 | de_dxi(num_gp) = de_dx(k+1,j,i+1) |
---|
| 657 | de_dyi(num_gp) = de_dy(k+1,j,i+1) |
---|
| 658 | de_dzi(num_gp) = de_dz(k+1,j,i+1) |
---|
| 659 | ENDIF |
---|
| 660 | |
---|
[1359] | 661 | IF ( k+1 > nzb_s_inner(j+1,i+1) .OR. nzb_s_inner(j+1,i+1) == 0)& |
---|
[849] | 662 | THEN |
---|
| 663 | num_gp = num_gp + 1 |
---|
| 664 | gp_outside_of_building(8) = 1 |
---|
| 665 | location(num_gp,1) = (i+1) * dx |
---|
| 666 | location(num_gp,2) = (j+1) * dy |
---|
[1359] | 667 | location(num_gp,3) = (k+1) * dz - 0.5_wp * dz |
---|
[849] | 668 | ei(num_gp) = e(k+1,j+1,i+1) |
---|
| 669 | dissi(num_gp) = diss(k+1,j+1,i+1) |
---|
| 670 | de_dxi(num_gp) = de_dx(k+1,j+1,i+1) |
---|
| 671 | de_dyi(num_gp) = de_dy(k+1,j+1,i+1) |
---|
| 672 | de_dzi(num_gp) = de_dz(k+1,j+1,i+1) |
---|
| 673 | ENDIF |
---|
| 674 | |
---|
| 675 | ! |
---|
| 676 | !-- If all gridpoints are situated outside of a building, then the |
---|
| 677 | !-- ordinary interpolation scheme can be used. |
---|
| 678 | IF ( num_gp == 8 ) THEN |
---|
| 679 | |
---|
| 680 | x = particles(n)%x - i * dx |
---|
| 681 | y = particles(n)%y - j * dy |
---|
| 682 | aa = x**2 + y**2 |
---|
| 683 | bb = ( dx - x )**2 + y**2 |
---|
| 684 | cc = x**2 + ( dy - y )**2 |
---|
| 685 | dd = ( dx - x )**2 + ( dy - y )**2 |
---|
| 686 | gg = aa + bb + cc + dd |
---|
| 687 | |
---|
[1359] | 688 | e_int_l = ( ( gg - aa ) * e(k,j,i) + ( gg - bb ) * e(k,j,i+1) & |
---|
| 689 | + ( gg - cc ) * e(k,j+1,i) + ( gg - dd ) * e(k,j+1,i+1) & |
---|
| 690 | ) / ( 3.0_wp * gg ) |
---|
[849] | 691 | |
---|
[1359] | 692 | IF ( k == nzt ) THEN |
---|
| 693 | e_int(n) = e_int_l |
---|
[849] | 694 | ELSE |
---|
| 695 | e_int_u = ( ( gg - aa ) * e(k+1,j,i) + & |
---|
| 696 | ( gg - bb ) * e(k+1,j,i+1) + & |
---|
| 697 | ( gg - cc ) * e(k+1,j+1,i) + & |
---|
| 698 | ( gg - dd ) * e(k+1,j+1,i+1) & |
---|
[1359] | 699 | ) / ( 3.0_wp * gg ) |
---|
| 700 | e_int(n) = e_int_l + ( zv(n) - zu(k) ) / dz * & |
---|
[849] | 701 | ( e_int_u - e_int_l ) |
---|
| 702 | ENDIF |
---|
| 703 | ! |
---|
[1685] | 704 | !-- Needed to avoid NaN particle velocities (this might not be |
---|
| 705 | !-- required any more) |
---|
| 706 | IF ( e_int(n) <= 0.0_wp ) THEN |
---|
[1359] | 707 | e_int(n) = 1.0E-20_wp |
---|
| 708 | ENDIF |
---|
| 709 | ! |
---|
[849] | 710 | !-- Interpolate the TKE gradient along x (adopt incides i,j,k |
---|
| 711 | !-- and all position variables from above (TKE)) |
---|
| 712 | de_dx_int_l = ( ( gg - aa ) * de_dx(k,j,i) + & |
---|
| 713 | ( gg - bb ) * de_dx(k,j,i+1) + & |
---|
| 714 | ( gg - cc ) * de_dx(k,j+1,i) + & |
---|
| 715 | ( gg - dd ) * de_dx(k,j+1,i+1) & |
---|
[1359] | 716 | ) / ( 3.0_wp * gg ) |
---|
[849] | 717 | |
---|
[1359] | 718 | IF ( ( k == nzt ) .OR. ( k == nzb ) ) THEN |
---|
| 719 | de_dx_int(n) = de_dx_int_l |
---|
[849] | 720 | ELSE |
---|
| 721 | de_dx_int_u = ( ( gg - aa ) * de_dx(k+1,j,i) + & |
---|
| 722 | ( gg - bb ) * de_dx(k+1,j,i+1) + & |
---|
| 723 | ( gg - cc ) * de_dx(k+1,j+1,i) + & |
---|
| 724 | ( gg - dd ) * de_dx(k+1,j+1,i+1) & |
---|
[1359] | 725 | ) / ( 3.0_wp * gg ) |
---|
| 726 | de_dx_int(n) = de_dx_int_l + ( zv(n) - zu(k) ) / & |
---|
[849] | 727 | dz * ( de_dx_int_u - de_dx_int_l ) |
---|
| 728 | ENDIF |
---|
| 729 | |
---|
| 730 | ! |
---|
| 731 | !-- Interpolate the TKE gradient along y |
---|
| 732 | de_dy_int_l = ( ( gg - aa ) * de_dy(k,j,i) + & |
---|
| 733 | ( gg - bb ) * de_dy(k,j,i+1) + & |
---|
| 734 | ( gg - cc ) * de_dy(k,j+1,i) + & |
---|
| 735 | ( gg - dd ) * de_dy(k,j+1,i+1) & |
---|
[1359] | 736 | ) / ( 3.0_wp * gg ) |
---|
[849] | 737 | IF ( ( k+1 == nzt+1 ) .OR. ( k == nzb ) ) THEN |
---|
[1359] | 738 | de_dy_int(n) = de_dy_int_l |
---|
[849] | 739 | ELSE |
---|
| 740 | de_dy_int_u = ( ( gg - aa ) * de_dy(k+1,j,i) + & |
---|
| 741 | ( gg - bb ) * de_dy(k+1,j,i+1) + & |
---|
| 742 | ( gg - cc ) * de_dy(k+1,j+1,i) + & |
---|
| 743 | ( gg - dd ) * de_dy(k+1,j+1,i+1) & |
---|
[1359] | 744 | ) / ( 3.0_wp * gg ) |
---|
| 745 | de_dy_int(n) = de_dy_int_l + ( zv(n) - zu(k) ) / & |
---|
[849] | 746 | dz * ( de_dy_int_u - de_dy_int_l ) |
---|
| 747 | ENDIF |
---|
| 748 | |
---|
| 749 | ! |
---|
| 750 | !-- Interpolate the TKE gradient along z |
---|
[1359] | 751 | IF ( zv(n) < 0.5_wp * dz ) THEN |
---|
| 752 | de_dz_int(n) = 0.0_wp |
---|
[849] | 753 | ELSE |
---|
| 754 | de_dz_int_l = ( ( gg - aa ) * de_dz(k,j,i) + & |
---|
| 755 | ( gg - bb ) * de_dz(k,j,i+1) + & |
---|
| 756 | ( gg - cc ) * de_dz(k,j+1,i) + & |
---|
| 757 | ( gg - dd ) * de_dz(k,j+1,i+1) & |
---|
[1359] | 758 | ) / ( 3.0_wp * gg ) |
---|
[849] | 759 | |
---|
| 760 | IF ( ( k+1 == nzt+1 ) .OR. ( k == nzb ) ) THEN |
---|
[1359] | 761 | de_dz_int(n) = de_dz_int_l |
---|
[849] | 762 | ELSE |
---|
| 763 | de_dz_int_u = ( ( gg - aa ) * de_dz(k+1,j,i) + & |
---|
| 764 | ( gg - bb ) * de_dz(k+1,j,i+1) + & |
---|
| 765 | ( gg - cc ) * de_dz(k+1,j+1,i) + & |
---|
| 766 | ( gg - dd ) * de_dz(k+1,j+1,i+1) & |
---|
[1359] | 767 | ) / ( 3.0_wp * gg ) |
---|
| 768 | de_dz_int(n) = de_dz_int_l + ( zv(n) - zu(k) ) /& |
---|
[849] | 769 | dz * ( de_dz_int_u - de_dz_int_l ) |
---|
| 770 | ENDIF |
---|
| 771 | ENDIF |
---|
| 772 | |
---|
| 773 | ! |
---|
| 774 | !-- Interpolate the dissipation of TKE |
---|
| 775 | diss_int_l = ( ( gg - aa ) * diss(k,j,i) + & |
---|
| 776 | ( gg - bb ) * diss(k,j,i+1) + & |
---|
| 777 | ( gg - cc ) * diss(k,j+1,i) + & |
---|
| 778 | ( gg - dd ) * diss(k,j+1,i+1) & |
---|
[1359] | 779 | ) / ( 3.0_wp * gg ) |
---|
[849] | 780 | |
---|
[1359] | 781 | IF ( k == nzt ) THEN |
---|
| 782 | diss_int(n) = diss_int_l |
---|
[849] | 783 | ELSE |
---|
| 784 | diss_int_u = ( ( gg - aa ) * diss(k+1,j,i) + & |
---|
| 785 | ( gg - bb ) * diss(k+1,j,i+1) + & |
---|
| 786 | ( gg - cc ) * diss(k+1,j+1,i) + & |
---|
| 787 | ( gg - dd ) * diss(k+1,j+1,i+1) & |
---|
[1359] | 788 | ) / ( 3.0_wp * gg ) |
---|
| 789 | diss_int(n) = diss_int_l + ( zv(n) - zu(k) ) / dz *& |
---|
[849] | 790 | ( diss_int_u - diss_int_l ) |
---|
| 791 | ENDIF |
---|
| 792 | |
---|
| 793 | ELSE |
---|
| 794 | |
---|
| 795 | ! |
---|
| 796 | !-- If wall between gridpoint 1 and gridpoint 5, then |
---|
| 797 | !-- Neumann boundary condition has to be applied |
---|
| 798 | IF ( gp_outside_of_building(1) == 1 .AND. & |
---|
| 799 | gp_outside_of_building(5) == 0 ) THEN |
---|
| 800 | num_gp = num_gp + 1 |
---|
[1359] | 801 | location(num_gp,1) = i * dx + 0.5_wp * dx |
---|
[849] | 802 | location(num_gp,2) = j * dy |
---|
[1359] | 803 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
[849] | 804 | ei(num_gp) = e(k,j,i) |
---|
| 805 | dissi(num_gp) = diss(k,j,i) |
---|
[1359] | 806 | de_dxi(num_gp) = 0.0_wp |
---|
[849] | 807 | de_dyi(num_gp) = de_dy(k,j,i) |
---|
| 808 | de_dzi(num_gp) = de_dz(k,j,i) |
---|
| 809 | ENDIF |
---|
| 810 | |
---|
| 811 | IF ( gp_outside_of_building(5) == 1 .AND. & |
---|
| 812 | gp_outside_of_building(1) == 0 ) THEN |
---|
| 813 | num_gp = num_gp + 1 |
---|
[1359] | 814 | location(num_gp,1) = i * dx + 0.5_wp * dx |
---|
[849] | 815 | location(num_gp,2) = j * dy |
---|
[1359] | 816 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
[849] | 817 | ei(num_gp) = e(k,j,i+1) |
---|
| 818 | dissi(num_gp) = diss(k,j,i+1) |
---|
[1359] | 819 | de_dxi(num_gp) = 0.0_wp |
---|
[849] | 820 | de_dyi(num_gp) = de_dy(k,j,i+1) |
---|
| 821 | de_dzi(num_gp) = de_dz(k,j,i+1) |
---|
| 822 | ENDIF |
---|
| 823 | |
---|
| 824 | ! |
---|
| 825 | !-- If wall between gridpoint 5 and gridpoint 6, then |
---|
| 826 | !-- then Neumann boundary condition has to be applied |
---|
| 827 | IF ( gp_outside_of_building(5) == 1 .AND. & |
---|
| 828 | gp_outside_of_building(6) == 0 ) THEN |
---|
| 829 | num_gp = num_gp + 1 |
---|
| 830 | location(num_gp,1) = (i+1) * dx |
---|
[1359] | 831 | location(num_gp,2) = j * dy + 0.5_wp * dy |
---|
| 832 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
[849] | 833 | ei(num_gp) = e(k,j,i+1) |
---|
| 834 | dissi(num_gp) = diss(k,j,i+1) |
---|
| 835 | de_dxi(num_gp) = de_dx(k,j,i+1) |
---|
[1359] | 836 | de_dyi(num_gp) = 0.0_wp |
---|
[849] | 837 | de_dzi(num_gp) = de_dz(k,j,i+1) |
---|
| 838 | ENDIF |
---|
| 839 | |
---|
| 840 | IF ( gp_outside_of_building(6) == 1 .AND. & |
---|
| 841 | gp_outside_of_building(5) == 0 ) THEN |
---|
| 842 | num_gp = num_gp + 1 |
---|
| 843 | location(num_gp,1) = (i+1) * dx |
---|
[1359] | 844 | location(num_gp,2) = j * dy + 0.5_wp * dy |
---|
| 845 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
[849] | 846 | ei(num_gp) = e(k,j+1,i+1) |
---|
| 847 | dissi(num_gp) = diss(k,j+1,i+1) |
---|
| 848 | de_dxi(num_gp) = de_dx(k,j+1,i+1) |
---|
[1359] | 849 | de_dyi(num_gp) = 0.0_wp |
---|
[849] | 850 | de_dzi(num_gp) = de_dz(k,j+1,i+1) |
---|
| 851 | ENDIF |
---|
| 852 | |
---|
| 853 | ! |
---|
| 854 | !-- If wall between gridpoint 2 and gridpoint 6, then |
---|
| 855 | !-- Neumann boundary condition has to be applied |
---|
| 856 | IF ( gp_outside_of_building(2) == 1 .AND. & |
---|
| 857 | gp_outside_of_building(6) == 0 ) THEN |
---|
| 858 | num_gp = num_gp + 1 |
---|
[1359] | 859 | location(num_gp,1) = i * dx + 0.5_wp * dx |
---|
[849] | 860 | location(num_gp,2) = (j+1) * dy |
---|
[1359] | 861 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
[849] | 862 | ei(num_gp) = e(k,j+1,i) |
---|
| 863 | dissi(num_gp) = diss(k,j+1,i) |
---|
[1359] | 864 | de_dxi(num_gp) = 0.0_wp |
---|
[849] | 865 | de_dyi(num_gp) = de_dy(k,j+1,i) |
---|
| 866 | de_dzi(num_gp) = de_dz(k,j+1,i) |
---|
| 867 | ENDIF |
---|
| 868 | |
---|
| 869 | IF ( gp_outside_of_building(6) == 1 .AND. & |
---|
| 870 | gp_outside_of_building(2) == 0 ) THEN |
---|
| 871 | num_gp = num_gp + 1 |
---|
[1359] | 872 | location(num_gp,1) = i * dx + 0.5_wp * dx |
---|
[849] | 873 | location(num_gp,2) = (j+1) * dy |
---|
[1359] | 874 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
[849] | 875 | ei(num_gp) = e(k,j+1,i+1) |
---|
| 876 | dissi(num_gp) = diss(k,j+1,i+1) |
---|
[1359] | 877 | de_dxi(num_gp) = 0.0_wp |
---|
[849] | 878 | de_dyi(num_gp) = de_dy(k,j+1,i+1) |
---|
| 879 | de_dzi(num_gp) = de_dz(k,j+1,i+1) |
---|
| 880 | ENDIF |
---|
| 881 | |
---|
| 882 | ! |
---|
| 883 | !-- If wall between gridpoint 1 and gridpoint 2, then |
---|
| 884 | !-- Neumann boundary condition has to be applied |
---|
| 885 | IF ( gp_outside_of_building(1) == 1 .AND. & |
---|
| 886 | gp_outside_of_building(2) == 0 ) THEN |
---|
| 887 | num_gp = num_gp + 1 |
---|
| 888 | location(num_gp,1) = i * dx |
---|
[1359] | 889 | location(num_gp,2) = j * dy + 0.5_wp * dy |
---|
| 890 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
[849] | 891 | ei(num_gp) = e(k,j,i) |
---|
| 892 | dissi(num_gp) = diss(k,j,i) |
---|
| 893 | de_dxi(num_gp) = de_dx(k,j,i) |
---|
[1359] | 894 | de_dyi(num_gp) = 0.0_wp |
---|
[849] | 895 | de_dzi(num_gp) = de_dz(k,j,i) |
---|
| 896 | ENDIF |
---|
| 897 | |
---|
| 898 | IF ( gp_outside_of_building(2) == 1 .AND. & |
---|
| 899 | gp_outside_of_building(1) == 0 ) THEN |
---|
| 900 | num_gp = num_gp + 1 |
---|
| 901 | location(num_gp,1) = i * dx |
---|
[1359] | 902 | location(num_gp,2) = j * dy + 0.5_wp * dy |
---|
| 903 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
[849] | 904 | ei(num_gp) = e(k,j+1,i) |
---|
| 905 | dissi(num_gp) = diss(k,j+1,i) |
---|
| 906 | de_dxi(num_gp) = de_dx(k,j+1,i) |
---|
[1359] | 907 | de_dyi(num_gp) = 0.0_wp |
---|
[849] | 908 | de_dzi(num_gp) = de_dz(k,j+1,i) |
---|
| 909 | ENDIF |
---|
| 910 | |
---|
| 911 | ! |
---|
| 912 | !-- If wall between gridpoint 3 and gridpoint 7, then |
---|
| 913 | !-- Neumann boundary condition has to be applied |
---|
| 914 | IF ( gp_outside_of_building(3) == 1 .AND. & |
---|
| 915 | gp_outside_of_building(7) == 0 ) THEN |
---|
| 916 | num_gp = num_gp + 1 |
---|
[1359] | 917 | location(num_gp,1) = i * dx + 0.5_wp * dx |
---|
[849] | 918 | location(num_gp,2) = j * dy |
---|
[1359] | 919 | location(num_gp,3) = k * dz + 0.5_wp * dz |
---|
[849] | 920 | ei(num_gp) = e(k+1,j,i) |
---|
| 921 | dissi(num_gp) = diss(k+1,j,i) |
---|
[1359] | 922 | de_dxi(num_gp) = 0.0_wp |
---|
[849] | 923 | de_dyi(num_gp) = de_dy(k+1,j,i) |
---|
| 924 | de_dzi(num_gp) = de_dz(k+1,j,i) |
---|
| 925 | ENDIF |
---|
| 926 | |
---|
| 927 | IF ( gp_outside_of_building(7) == 1 .AND. & |
---|
| 928 | gp_outside_of_building(3) == 0 ) THEN |
---|
| 929 | num_gp = num_gp + 1 |
---|
[1359] | 930 | location(num_gp,1) = i * dx + 0.5_wp * dx |
---|
[849] | 931 | location(num_gp,2) = j * dy |
---|
[1359] | 932 | location(num_gp,3) = k * dz + 0.5_wp * dz |
---|
[849] | 933 | ei(num_gp) = e(k+1,j,i+1) |
---|
| 934 | dissi(num_gp) = diss(k+1,j,i+1) |
---|
[1359] | 935 | de_dxi(num_gp) = 0.0_wp |
---|
[849] | 936 | de_dyi(num_gp) = de_dy(k+1,j,i+1) |
---|
| 937 | de_dzi(num_gp) = de_dz(k+1,j,i+1) |
---|
| 938 | ENDIF |
---|
| 939 | |
---|
| 940 | ! |
---|
| 941 | !-- If wall between gridpoint 7 and gridpoint 8, then |
---|
| 942 | !-- Neumann boundary condition has to be applied |
---|
| 943 | IF ( gp_outside_of_building(7) == 1 .AND. & |
---|
| 944 | gp_outside_of_building(8) == 0 ) THEN |
---|
| 945 | num_gp = num_gp + 1 |
---|
| 946 | location(num_gp,1) = (i+1) * dx |
---|
[1359] | 947 | location(num_gp,2) = j * dy + 0.5_wp * dy |
---|
| 948 | location(num_gp,3) = k * dz + 0.5_wp * dz |
---|
[849] | 949 | ei(num_gp) = e(k+1,j,i+1) |
---|
| 950 | dissi(num_gp) = diss(k+1,j,i+1) |
---|
| 951 | de_dxi(num_gp) = de_dx(k+1,j,i+1) |
---|
[1359] | 952 | de_dyi(num_gp) = 0.0_wp |
---|
[849] | 953 | de_dzi(num_gp) = de_dz(k+1,j,i+1) |
---|
| 954 | ENDIF |
---|
| 955 | |
---|
| 956 | IF ( gp_outside_of_building(8) == 1 .AND. & |
---|
| 957 | gp_outside_of_building(7) == 0 ) THEN |
---|
| 958 | num_gp = num_gp + 1 |
---|
| 959 | location(num_gp,1) = (i+1) * dx |
---|
[1359] | 960 | location(num_gp,2) = j * dy + 0.5_wp * dy |
---|
| 961 | location(num_gp,3) = k * dz + 0.5_wp * dz |
---|
[849] | 962 | ei(num_gp) = e(k+1,j+1,i+1) |
---|
| 963 | dissi(num_gp) = diss(k+1,j+1,i+1) |
---|
| 964 | de_dxi(num_gp) = de_dx(k+1,j+1,i+1) |
---|
[1359] | 965 | de_dyi(num_gp) = 0.0_wp |
---|
[849] | 966 | de_dzi(num_gp) = de_dz(k+1,j+1,i+1) |
---|
| 967 | ENDIF |
---|
| 968 | |
---|
| 969 | ! |
---|
| 970 | !-- If wall between gridpoint 4 and gridpoint 8, then |
---|
| 971 | !-- Neumann boundary condition has to be applied |
---|
| 972 | IF ( gp_outside_of_building(4) == 1 .AND. & |
---|
| 973 | gp_outside_of_building(8) == 0 ) THEN |
---|
| 974 | num_gp = num_gp + 1 |
---|
[1359] | 975 | location(num_gp,1) = i * dx + 0.5_wp * dx |
---|
[849] | 976 | location(num_gp,2) = (j+1) * dy |
---|
[1359] | 977 | location(num_gp,3) = k * dz + 0.5_wp * dz |
---|
[849] | 978 | ei(num_gp) = e(k+1,j+1,i) |
---|
| 979 | dissi(num_gp) = diss(k+1,j+1,i) |
---|
[1359] | 980 | de_dxi(num_gp) = 0.0_wp |
---|
[849] | 981 | de_dyi(num_gp) = de_dy(k+1,j+1,i) |
---|
| 982 | de_dzi(num_gp) = de_dz(k+1,j+1,i) |
---|
| 983 | ENDIF |
---|
| 984 | |
---|
| 985 | IF ( gp_outside_of_building(8) == 1 .AND. & |
---|
| 986 | gp_outside_of_building(4) == 0 ) THEN |
---|
| 987 | num_gp = num_gp + 1 |
---|
[1359] | 988 | location(num_gp,1) = i * dx + 0.5_wp * dx |
---|
[849] | 989 | location(num_gp,2) = (j+1) * dy |
---|
[1359] | 990 | location(num_gp,3) = k * dz + 0.5_wp * dz |
---|
[849] | 991 | ei(num_gp) = e(k+1,j+1,i+1) |
---|
| 992 | dissi(num_gp) = diss(k+1,j+1,i+1) |
---|
[1359] | 993 | de_dxi(num_gp) = 0.0_wp |
---|
[849] | 994 | de_dyi(num_gp) = de_dy(k+1,j+1,i+1) |
---|
| 995 | de_dzi(num_gp) = de_dz(k+1,j+1,i+1) |
---|
| 996 | ENDIF |
---|
| 997 | |
---|
| 998 | ! |
---|
| 999 | !-- If wall between gridpoint 3 and gridpoint 4, then |
---|
| 1000 | !-- Neumann boundary condition has to be applied |
---|
| 1001 | IF ( gp_outside_of_building(3) == 1 .AND. & |
---|
| 1002 | gp_outside_of_building(4) == 0 ) THEN |
---|
| 1003 | num_gp = num_gp + 1 |
---|
| 1004 | location(num_gp,1) = i * dx |
---|
[1359] | 1005 | location(num_gp,2) = j * dy + 0.5_wp * dy |
---|
| 1006 | location(num_gp,3) = k * dz + 0.5_wp * dz |
---|
[849] | 1007 | ei(num_gp) = e(k+1,j,i) |
---|
| 1008 | dissi(num_gp) = diss(k+1,j,i) |
---|
| 1009 | de_dxi(num_gp) = de_dx(k+1,j,i) |
---|
[1359] | 1010 | de_dyi(num_gp) = 0.0_wp |
---|
[849] | 1011 | de_dzi(num_gp) = de_dz(k+1,j,i) |
---|
| 1012 | ENDIF |
---|
| 1013 | |
---|
| 1014 | IF ( gp_outside_of_building(4) == 1 .AND. & |
---|
| 1015 | gp_outside_of_building(3) == 0 ) THEN |
---|
| 1016 | num_gp = num_gp + 1 |
---|
| 1017 | location(num_gp,1) = i * dx |
---|
[1359] | 1018 | location(num_gp,2) = j * dy + 0.5_wp * dy |
---|
| 1019 | location(num_gp,3) = k * dz + 0.5_wp * dz |
---|
[849] | 1020 | ei(num_gp) = e(k+1,j+1,i) |
---|
| 1021 | dissi(num_gp) = diss(k+1,j+1,i) |
---|
| 1022 | de_dxi(num_gp) = de_dx(k+1,j+1,i) |
---|
[1359] | 1023 | de_dyi(num_gp) = 0.0_wp |
---|
[849] | 1024 | de_dzi(num_gp) = de_dz(k+1,j+1,i) |
---|
| 1025 | ENDIF |
---|
| 1026 | |
---|
| 1027 | ! |
---|
| 1028 | !-- If wall between gridpoint 1 and gridpoint 3, then |
---|
| 1029 | !-- Neumann boundary condition has to be applied |
---|
| 1030 | !-- (only one case as only building beneath is possible) |
---|
| 1031 | IF ( gp_outside_of_building(1) == 0 .AND. & |
---|
| 1032 | gp_outside_of_building(3) == 1 ) THEN |
---|
| 1033 | num_gp = num_gp + 1 |
---|
| 1034 | location(num_gp,1) = i * dx |
---|
| 1035 | location(num_gp,2) = j * dy |
---|
| 1036 | location(num_gp,3) = k * dz |
---|
| 1037 | ei(num_gp) = e(k+1,j,i) |
---|
| 1038 | dissi(num_gp) = diss(k+1,j,i) |
---|
| 1039 | de_dxi(num_gp) = de_dx(k+1,j,i) |
---|
| 1040 | de_dyi(num_gp) = de_dy(k+1,j,i) |
---|
[1359] | 1041 | de_dzi(num_gp) = 0.0_wp |
---|
[849] | 1042 | ENDIF |
---|
| 1043 | |
---|
| 1044 | ! |
---|
| 1045 | !-- If wall between gridpoint 5 and gridpoint 7, then |
---|
| 1046 | !-- Neumann boundary condition has to be applied |
---|
| 1047 | !-- (only one case as only building beneath is possible) |
---|
| 1048 | IF ( gp_outside_of_building(5) == 0 .AND. & |
---|
| 1049 | gp_outside_of_building(7) == 1 ) THEN |
---|
| 1050 | num_gp = num_gp + 1 |
---|
| 1051 | location(num_gp,1) = (i+1) * dx |
---|
| 1052 | location(num_gp,2) = j * dy |
---|
| 1053 | location(num_gp,3) = k * dz |
---|
| 1054 | ei(num_gp) = e(k+1,j,i+1) |
---|
| 1055 | dissi(num_gp) = diss(k+1,j,i+1) |
---|
| 1056 | de_dxi(num_gp) = de_dx(k+1,j,i+1) |
---|
| 1057 | de_dyi(num_gp) = de_dy(k+1,j,i+1) |
---|
[1359] | 1058 | de_dzi(num_gp) = 0.0_wp |
---|
[849] | 1059 | ENDIF |
---|
| 1060 | |
---|
| 1061 | ! |
---|
| 1062 | !-- If wall between gridpoint 2 and gridpoint 4, then |
---|
| 1063 | !-- Neumann boundary condition has to be applied |
---|
| 1064 | !-- (only one case as only building beneath is possible) |
---|
| 1065 | IF ( gp_outside_of_building(2) == 0 .AND. & |
---|
| 1066 | gp_outside_of_building(4) == 1 ) THEN |
---|
| 1067 | num_gp = num_gp + 1 |
---|
| 1068 | location(num_gp,1) = i * dx |
---|
| 1069 | location(num_gp,2) = (j+1) * dy |
---|
| 1070 | location(num_gp,3) = k * dz |
---|
| 1071 | ei(num_gp) = e(k+1,j+1,i) |
---|
| 1072 | dissi(num_gp) = diss(k+1,j+1,i) |
---|
| 1073 | de_dxi(num_gp) = de_dx(k+1,j+1,i) |
---|
| 1074 | de_dyi(num_gp) = de_dy(k+1,j+1,i) |
---|
[1359] | 1075 | de_dzi(num_gp) = 0.0_wp |
---|
[849] | 1076 | ENDIF |
---|
| 1077 | |
---|
| 1078 | ! |
---|
| 1079 | !-- If wall between gridpoint 6 and gridpoint 8, then |
---|
| 1080 | !-- Neumann boundary condition has to be applied |
---|
| 1081 | !-- (only one case as only building beneath is possible) |
---|
| 1082 | IF ( gp_outside_of_building(6) == 0 .AND. & |
---|
| 1083 | gp_outside_of_building(8) == 1 ) THEN |
---|
| 1084 | num_gp = num_gp + 1 |
---|
| 1085 | location(num_gp,1) = (i+1) * dx |
---|
| 1086 | location(num_gp,2) = (j+1) * dy |
---|
| 1087 | location(num_gp,3) = k * dz |
---|
| 1088 | ei(num_gp) = e(k+1,j+1,i+1) |
---|
| 1089 | dissi(num_gp) = diss(k+1,j+1,i+1) |
---|
| 1090 | de_dxi(num_gp) = de_dx(k+1,j+1,i+1) |
---|
| 1091 | de_dyi(num_gp) = de_dy(k+1,j+1,i+1) |
---|
[1359] | 1092 | de_dzi(num_gp) = 0.0_wp |
---|
[849] | 1093 | ENDIF |
---|
| 1094 | |
---|
| 1095 | ! |
---|
| 1096 | !-- Carry out the interpolation |
---|
| 1097 | IF ( num_gp == 1 ) THEN |
---|
| 1098 | ! |
---|
| 1099 | !-- If only one of the gridpoints is situated outside of the |
---|
| 1100 | !-- building, it follows that the values at the particle |
---|
| 1101 | !-- location are the same as the gridpoint values |
---|
[1359] | 1102 | e_int(n) = ei(num_gp) |
---|
| 1103 | diss_int(n) = dissi(num_gp) |
---|
| 1104 | de_dx_int(n) = de_dxi(num_gp) |
---|
| 1105 | de_dy_int(n) = de_dyi(num_gp) |
---|
| 1106 | de_dz_int(n) = de_dzi(num_gp) |
---|
[849] | 1107 | ELSE IF ( num_gp > 1 ) THEN |
---|
| 1108 | |
---|
[1359] | 1109 | d_sum = 0.0_wp |
---|
[849] | 1110 | ! |
---|
| 1111 | !-- Evaluation of the distances between the gridpoints |
---|
| 1112 | !-- contributing to the interpolated values, and the particle |
---|
| 1113 | !-- location |
---|
| 1114 | DO agp = 1, num_gp |
---|
| 1115 | d_gp_pl(agp) = ( particles(n)%x-location(agp,1) )**2 & |
---|
| 1116 | + ( particles(n)%y-location(agp,2) )**2 & |
---|
[1359] | 1117 | + ( zv(n)-location(agp,3) )**2 |
---|
[849] | 1118 | d_sum = d_sum + d_gp_pl(agp) |
---|
| 1119 | ENDDO |
---|
| 1120 | |
---|
| 1121 | ! |
---|
| 1122 | !-- Finally the interpolation can be carried out |
---|
[1359] | 1123 | e_int(n) = 0.0_wp |
---|
| 1124 | diss_int(n) = 0.0_wp |
---|
| 1125 | de_dx_int(n) = 0.0_wp |
---|
| 1126 | de_dy_int(n) = 0.0_wp |
---|
| 1127 | de_dz_int(n) = 0.0_wp |
---|
[849] | 1128 | DO agp = 1, num_gp |
---|
[1359] | 1129 | e_int(n) = e_int(n) + ( d_sum - d_gp_pl(agp) ) * & |
---|
[849] | 1130 | ei(agp) / ( (num_gp-1) * d_sum ) |
---|
[1359] | 1131 | diss_int(n) = diss_int(n) + ( d_sum - d_gp_pl(agp) ) * & |
---|
[849] | 1132 | dissi(agp) / ( (num_gp-1) * d_sum ) |
---|
[1359] | 1133 | de_dx_int(n) = de_dx_int(n) + ( d_sum - d_gp_pl(agp) ) * & |
---|
[849] | 1134 | de_dxi(agp) / ( (num_gp-1) * d_sum ) |
---|
[1359] | 1135 | de_dy_int(n) = de_dy_int(n) + ( d_sum - d_gp_pl(agp) ) * & |
---|
[849] | 1136 | de_dyi(agp) / ( (num_gp-1) * d_sum ) |
---|
[1359] | 1137 | de_dz_int(n) = de_dz_int(n) + ( d_sum - d_gp_pl(agp) ) * & |
---|
[849] | 1138 | de_dzi(agp) / ( (num_gp-1) * d_sum ) |
---|
| 1139 | ENDDO |
---|
| 1140 | |
---|
| 1141 | ENDIF |
---|
| 1142 | |
---|
| 1143 | ENDIF |
---|
[1359] | 1144 | ENDDO |
---|
| 1145 | ENDIF |
---|
[849] | 1146 | |
---|
[1359] | 1147 | DO nb = 0,7 |
---|
| 1148 | i = ip + block_offset(nb)%i_off |
---|
| 1149 | j = jp + block_offset(nb)%j_off |
---|
| 1150 | k = kp + block_offset(nb)%k_off |
---|
[849] | 1151 | |
---|
[1359] | 1152 | DO n = start_index(nb), end_index(nb) |
---|
[849] | 1153 | ! |
---|
[1359] | 1154 | !-- Vertical interpolation of the horizontally averaged SGS TKE and |
---|
| 1155 | !-- resolved-scale velocity variances and use the interpolated values |
---|
| 1156 | !-- to calculate the coefficient fs, which is a measure of the ratio |
---|
| 1157 | !-- of the subgrid-scale turbulent kinetic energy to the total amount |
---|
| 1158 | !-- of turbulent kinetic energy. |
---|
| 1159 | IF ( k == 0 ) THEN |
---|
| 1160 | e_mean_int = hom(0,1,8,0) |
---|
| 1161 | ELSE |
---|
| 1162 | e_mean_int = hom(k,1,8,0) + & |
---|
| 1163 | ( hom(k+1,1,8,0) - hom(k,1,8,0) ) / & |
---|
| 1164 | ( zu(k+1) - zu(k) ) * & |
---|
| 1165 | ( zv(n) - zu(k) ) |
---|
| 1166 | ENDIF |
---|
[849] | 1167 | |
---|
[1685] | 1168 | kw = kp - 1 |
---|
[849] | 1169 | |
---|
[1359] | 1170 | IF ( k == 0 ) THEN |
---|
| 1171 | aa = hom(k+1,1,30,0) * ( zv(n) / & |
---|
| 1172 | ( 0.5_wp * ( zu(k+1) - zu(k) ) ) ) |
---|
| 1173 | bb = hom(k+1,1,31,0) * ( zv(n) / & |
---|
| 1174 | ( 0.5_wp * ( zu(k+1) - zu(k) ) ) ) |
---|
| 1175 | cc = hom(kw+1,1,32,0) * ( zv(n) / & |
---|
| 1176 | ( 1.0_wp * ( zw(kw+1) - zw(kw) ) ) ) |
---|
| 1177 | ELSE |
---|
| 1178 | aa = hom(k,1,30,0) + ( hom(k+1,1,30,0) - hom(k,1,30,0) ) * & |
---|
| 1179 | ( ( zv(n) - zu(k) ) / ( zu(k+1) - zu(k) ) ) |
---|
| 1180 | bb = hom(k,1,31,0) + ( hom(k+1,1,31,0) - hom(k,1,31,0) ) * & |
---|
| 1181 | ( ( zv(n) - zu(k) ) / ( zu(k+1) - zu(k) ) ) |
---|
| 1182 | cc = hom(kw,1,32,0) + ( hom(kw+1,1,32,0)-hom(kw,1,32,0) ) * & |
---|
| 1183 | ( ( zv(n) - zw(kw) ) / ( zw(kw+1)-zw(kw) ) ) |
---|
| 1184 | ENDIF |
---|
[849] | 1185 | |
---|
[1359] | 1186 | vv_int = ( 1.0_wp / 3.0_wp ) * ( aa + bb + cc ) |
---|
| 1187 | ! |
---|
| 1188 | !-- Needed to avoid NaN particle velocities. The value of 1.0 is just |
---|
| 1189 | !-- an educated guess for the given case. |
---|
| 1190 | IF ( vv_int + ( 2.0_wp / 3.0_wp ) * e_mean_int == 0.0_wp ) THEN |
---|
| 1191 | fs_int(n) = 1.0_wp |
---|
| 1192 | ELSE |
---|
| 1193 | fs_int(n) = ( 2.0_wp / 3.0_wp ) * e_mean_int / & |
---|
| 1194 | ( vv_int + ( 2.0_wp / 3.0_wp ) * e_mean_int ) |
---|
| 1195 | ENDIF |
---|
[849] | 1196 | |
---|
[1359] | 1197 | ENDDO |
---|
| 1198 | ENDDO |
---|
[849] | 1199 | |
---|
[1359] | 1200 | DO n = 1, number_of_particles |
---|
| 1201 | |
---|
| 1202 | rg(n,1) = random_gauss( iran_part, 5.0_wp ) |
---|
| 1203 | rg(n,2) = random_gauss( iran_part, 5.0_wp ) |
---|
| 1204 | rg(n,3) = random_gauss( iran_part, 5.0_wp ) |
---|
| 1205 | |
---|
| 1206 | ENDDO |
---|
| 1207 | |
---|
| 1208 | DO n = 1, number_of_particles |
---|
[849] | 1209 | ! |
---|
| 1210 | !-- Calculate the Lagrangian timescale according to Weil et al. (2004). |
---|
[1359] | 1211 | lagr_timescale = ( 4.0_wp * e_int(n) ) / & |
---|
| 1212 | ( 3.0_wp * fs_int(n) * c_0 * diss_int(n) ) |
---|
[849] | 1213 | |
---|
| 1214 | ! |
---|
| 1215 | !-- Calculate the next particle timestep. dt_gap is the time needed to |
---|
| 1216 | !-- complete the current LES timestep. |
---|
| 1217 | dt_gap = dt_3d - particles(n)%dt_sum |
---|
[1359] | 1218 | dt_particle(n) = MIN( dt_3d, 0.025_wp * lagr_timescale, dt_gap ) |
---|
[849] | 1219 | |
---|
| 1220 | ! |
---|
| 1221 | !-- The particle timestep should not be too small in order to prevent |
---|
| 1222 | !-- the number of particle timesteps of getting too large |
---|
[1359] | 1223 | IF ( dt_particle(n) < dt_min_part .AND. dt_min_part < dt_gap ) THEN |
---|
| 1224 | dt_particle(n) = dt_min_part |
---|
[849] | 1225 | ENDIF |
---|
| 1226 | |
---|
| 1227 | ! |
---|
| 1228 | !-- Calculate the SGS velocity components |
---|
[1359] | 1229 | IF ( particles(n)%age == 0.0_wp ) THEN |
---|
[849] | 1230 | ! |
---|
| 1231 | !-- For new particles the SGS components are derived from the SGS |
---|
| 1232 | !-- TKE. Limit the Gaussian random number to the interval |
---|
| 1233 | !-- [-5.0*sigma, 5.0*sigma] in order to prevent the SGS velocities |
---|
| 1234 | !-- from becoming unrealistically large. |
---|
[1359] | 1235 | particles(n)%rvar1 = SQRT( 2.0_wp * sgs_wfu_part * e_int(n) ) * & |
---|
| 1236 | ( rg(n,1) - 1.0_wp ) |
---|
| 1237 | particles(n)%rvar2 = SQRT( 2.0_wp * sgs_wfv_part * e_int(n) ) * & |
---|
| 1238 | ( rg(n,2) - 1.0_wp ) |
---|
| 1239 | particles(n)%rvar3 = SQRT( 2.0_wp * sgs_wfw_part * e_int(n) ) * & |
---|
| 1240 | ( rg(n,3) - 1.0_wp ) |
---|
[849] | 1241 | |
---|
| 1242 | ELSE |
---|
| 1243 | ! |
---|
| 1244 | !-- Restriction of the size of the new timestep: compared to the |
---|
| 1245 | !-- previous timestep the increase must not exceed 200% |
---|
| 1246 | |
---|
| 1247 | dt_particle_m = particles(n)%age - particles(n)%age_m |
---|
[1359] | 1248 | IF ( dt_particle(n) > 2.0_wp * dt_particle_m ) THEN |
---|
| 1249 | dt_particle(n) = 2.0_wp * dt_particle_m |
---|
[849] | 1250 | ENDIF |
---|
| 1251 | |
---|
| 1252 | ! |
---|
| 1253 | !-- For old particles the SGS components are correlated with the |
---|
| 1254 | !-- values from the previous timestep. Random numbers have also to |
---|
| 1255 | !-- be limited (see above). |
---|
| 1256 | !-- As negative values for the subgrid TKE are not allowed, the |
---|
| 1257 | !-- change of the subgrid TKE with time cannot be smaller than |
---|
[1359] | 1258 | !-- -e_int(n)/dt_particle. This value is used as a lower boundary |
---|
[849] | 1259 | !-- value for the change of TKE |
---|
| 1260 | |
---|
[1359] | 1261 | de_dt_min = - e_int(n) / dt_particle(n) |
---|
[849] | 1262 | |
---|
[1359] | 1263 | de_dt = ( e_int(n) - particles(n)%e_m ) / dt_particle_m |
---|
[849] | 1264 | |
---|
| 1265 | IF ( de_dt < de_dt_min ) THEN |
---|
| 1266 | de_dt = de_dt_min |
---|
| 1267 | ENDIF |
---|
| 1268 | |
---|
[1359] | 1269 | particles(n)%rvar1 = particles(n)%rvar1 - fs_int(n) * c_0 * & |
---|
| 1270 | diss_int(n) * particles(n)%rvar1 * dt_particle(n) / & |
---|
| 1271 | ( 4.0_wp * sgs_wfu_part * e_int(n) ) + & |
---|
| 1272 | ( 2.0_wp * sgs_wfu_part * de_dt * & |
---|
| 1273 | particles(n)%rvar1 / & |
---|
| 1274 | ( 2.0_wp * sgs_wfu_part * e_int(n) ) + & |
---|
| 1275 | de_dx_int(n) & |
---|
| 1276 | ) * dt_particle(n) / 2.0_wp + & |
---|
| 1277 | SQRT( fs_int(n) * c_0 * diss_int(n) ) * & |
---|
| 1278 | ( rg(n,1) - 1.0_wp ) * & |
---|
| 1279 | SQRT( dt_particle(n) ) |
---|
[849] | 1280 | |
---|
[1359] | 1281 | particles(n)%rvar2 = particles(n)%rvar2 - fs_int(n) * c_0 * & |
---|
| 1282 | diss_int(n) * particles(n)%rvar2 * dt_particle(n) / & |
---|
| 1283 | ( 4.0_wp * sgs_wfv_part * e_int(n) ) + & |
---|
| 1284 | ( 2.0_wp * sgs_wfv_part * de_dt * & |
---|
| 1285 | particles(n)%rvar2 / & |
---|
| 1286 | ( 2.0_wp * sgs_wfv_part * e_int(n) ) + & |
---|
| 1287 | de_dy_int(n) & |
---|
| 1288 | ) * dt_particle(n) / 2.0_wp + & |
---|
| 1289 | SQRT( fs_int(n) * c_0 * diss_int(n) ) * & |
---|
| 1290 | ( rg(n,2) - 1.0_wp ) * & |
---|
| 1291 | SQRT( dt_particle(n) ) |
---|
[849] | 1292 | |
---|
[1359] | 1293 | particles(n)%rvar3 = particles(n)%rvar3 - fs_int(n) * c_0 * & |
---|
| 1294 | diss_int(n) * particles(n)%rvar3 * dt_particle(n) / & |
---|
| 1295 | ( 4.0_wp * sgs_wfw_part * e_int(n) ) + & |
---|
| 1296 | ( 2.0_wp * sgs_wfw_part * de_dt * & |
---|
| 1297 | particles(n)%rvar3 / & |
---|
| 1298 | ( 2.0_wp * sgs_wfw_part * e_int(n) ) + & |
---|
| 1299 | de_dz_int(n) & |
---|
| 1300 | ) * dt_particle(n) / 2.0_wp + & |
---|
| 1301 | SQRT( fs_int(n) * c_0 * diss_int(n) ) * & |
---|
| 1302 | ( rg(n,3) - 1.0_wp ) * & |
---|
| 1303 | SQRT( dt_particle(n) ) |
---|
[849] | 1304 | |
---|
| 1305 | ENDIF |
---|
[1359] | 1306 | u_int(n) = u_int(n) + particles(n)%rvar1 |
---|
| 1307 | v_int(n) = v_int(n) + particles(n)%rvar2 |
---|
| 1308 | w_int(n) = w_int(n) + particles(n)%rvar3 |
---|
[849] | 1309 | |
---|
| 1310 | ! |
---|
| 1311 | !-- Store the SGS TKE of the current timelevel which is needed for |
---|
| 1312 | !-- for calculating the SGS particle velocities at the next timestep |
---|
[1359] | 1313 | particles(n)%e_m = e_int(n) |
---|
| 1314 | ENDDO |
---|
[849] | 1315 | |
---|
[1359] | 1316 | ELSE |
---|
[849] | 1317 | ! |
---|
[1359] | 1318 | !-- If no SGS velocities are used, only the particle timestep has to |
---|
| 1319 | !-- be set |
---|
| 1320 | dt_particle = dt_3d |
---|
[849] | 1321 | |
---|
[1359] | 1322 | ENDIF |
---|
[849] | 1323 | ! |
---|
[1359] | 1324 | !-- Store the old age of the particle ( needed to prevent that a |
---|
| 1325 | !-- particle crosses several PEs during one timestep, and for the |
---|
| 1326 | !-- evaluation of the subgrid particle velocity fluctuations ) |
---|
| 1327 | particles(1:number_of_particles)%age_m = particles(1:number_of_particles)%age |
---|
[849] | 1328 | |
---|
[1359] | 1329 | dens_ratio = particle_groups(particles(1:number_of_particles)%group)%density_ratio |
---|
[849] | 1330 | |
---|
[1359] | 1331 | IF ( ANY( dens_ratio == 0.0_wp ) ) THEN |
---|
| 1332 | DO n = 1, number_of_particles |
---|
| 1333 | |
---|
[849] | 1334 | ! |
---|
[1359] | 1335 | !-- Particle advection |
---|
| 1336 | IF ( dens_ratio(n) == 0.0_wp ) THEN |
---|
[849] | 1337 | ! |
---|
[1359] | 1338 | !-- Pure passive transport (without particle inertia) |
---|
| 1339 | particles(n)%x = xv(n) + u_int(n) * dt_particle(n) |
---|
| 1340 | particles(n)%y = yv(n) + v_int(n) * dt_particle(n) |
---|
| 1341 | particles(n)%z = zv(n) + w_int(n) * dt_particle(n) |
---|
[849] | 1342 | |
---|
[1359] | 1343 | particles(n)%speed_x = u_int(n) |
---|
| 1344 | particles(n)%speed_y = v_int(n) |
---|
| 1345 | particles(n)%speed_z = w_int(n) |
---|
[849] | 1346 | |
---|
[1359] | 1347 | ELSE |
---|
[849] | 1348 | ! |
---|
[1359] | 1349 | !-- Transport of particles with inertia |
---|
| 1350 | particles(n)%x = particles(n)%x + particles(n)%speed_x * & |
---|
| 1351 | dt_particle(n) |
---|
| 1352 | particles(n)%y = particles(n)%y + particles(n)%speed_y * & |
---|
| 1353 | dt_particle(n) |
---|
| 1354 | particles(n)%z = particles(n)%z + particles(n)%speed_z * & |
---|
| 1355 | dt_particle(n) |
---|
[849] | 1356 | |
---|
| 1357 | ! |
---|
[1359] | 1358 | !-- Update of the particle velocity |
---|
| 1359 | IF ( cloud_droplets ) THEN |
---|
[1822] | 1360 | ! |
---|
| 1361 | !-- Terminal velocity is computed for vertical direction (Rogers et |
---|
| 1362 | !-- al., 1993, J. Appl. Meteorol.) |
---|
| 1363 | diameter = particles(n)%radius * 2000.0_wp !diameter in mm |
---|
| 1364 | IF ( diameter <= d0_rog ) THEN |
---|
| 1365 | w_s = k_cap_rog * diameter * ( 1.0_wp - EXP( -k_low_rog * diameter ) ) |
---|
| 1366 | ELSE |
---|
| 1367 | w_s = a_rog - b_rog * EXP( -c_rog * diameter ) |
---|
| 1368 | ENDIF |
---|
[1359] | 1369 | |
---|
[1822] | 1370 | ! |
---|
| 1371 | !-- If selected, add random velocities following Soelch and Kaercher |
---|
| 1372 | !-- (2010, Q. J. R. Meteorol. Soc.) |
---|
| 1373 | IF ( use_sgs_for_particles ) THEN |
---|
| 1374 | lagr_timescale = km(kp,jp,ip) / MAX( e(kp,jp,ip), 1.0E-20_wp ) |
---|
| 1375 | RL = EXP( -1.0_wp * dt_3d / lagr_timescale ) |
---|
| 1376 | sigma = SQRT( e(kp,jp,ip) ) |
---|
| 1377 | |
---|
| 1378 | rg1 = random_gauss( iran_part, 5.0_wp ) - 1.0_wp |
---|
| 1379 | rg2 = random_gauss( iran_part, 5.0_wp ) - 1.0_wp |
---|
| 1380 | rg3 = random_gauss( iran_part, 5.0_wp ) - 1.0_wp |
---|
| 1381 | |
---|
| 1382 | particles(n)%rvar1 = RL * particles(n)%rvar1 + & |
---|
| 1383 | SQRT( 1.0_wp - RL**2 ) * sigma * rg1 |
---|
| 1384 | particles(n)%rvar2 = RL * particles(n)%rvar2 + & |
---|
| 1385 | SQRT( 1.0_wp - RL**2 ) * sigma * rg2 |
---|
| 1386 | particles(n)%rvar3 = RL * particles(n)%rvar3 + & |
---|
| 1387 | SQRT( 1.0_wp - RL**2 ) * sigma * rg3 |
---|
| 1388 | |
---|
| 1389 | particles(n)%speed_x = u_int(n) + particles(n)%rvar1 |
---|
| 1390 | particles(n)%speed_y = v_int(n) + particles(n)%rvar2 |
---|
| 1391 | particles(n)%speed_z = w_int(n) + particles(n)%rvar3 - w_s |
---|
| 1392 | ELSE |
---|
| 1393 | particles(n)%speed_x = u_int(n) |
---|
| 1394 | particles(n)%speed_y = v_int(n) |
---|
| 1395 | particles(n)%speed_z = w_int(n) - w_s |
---|
| 1396 | ENDIF |
---|
| 1397 | |
---|
[1359] | 1398 | ELSE |
---|
[1822] | 1399 | |
---|
| 1400 | IF ( use_sgs_for_particles ) THEN |
---|
| 1401 | exp_arg = particle_groups(particles(n)%group)%exp_arg |
---|
| 1402 | exp_term = EXP( -exp_arg * dt_particle(n) ) |
---|
| 1403 | ELSE |
---|
| 1404 | exp_arg = particle_groups(particles(n)%group)%exp_arg |
---|
| 1405 | exp_term = particle_groups(particles(n)%group)%exp_term |
---|
| 1406 | ENDIF |
---|
| 1407 | particles(n)%speed_x = particles(n)%speed_x * exp_term + & |
---|
| 1408 | u_int(n) * ( 1.0_wp - exp_term ) |
---|
| 1409 | particles(n)%speed_y = particles(n)%speed_y * exp_term + & |
---|
| 1410 | v_int(n) * ( 1.0_wp - exp_term ) |
---|
| 1411 | particles(n)%speed_z = particles(n)%speed_z * exp_term + & |
---|
| 1412 | ( w_int(n) - ( 1.0_wp - dens_ratio(n) ) * & |
---|
| 1413 | g / exp_arg ) * ( 1.0_wp - exp_term ) |
---|
[1359] | 1414 | ENDIF |
---|
[1822] | 1415 | |
---|
[1359] | 1416 | ENDIF |
---|
| 1417 | |
---|
| 1418 | ENDDO |
---|
| 1419 | |
---|
| 1420 | ELSE |
---|
| 1421 | |
---|
| 1422 | DO n = 1, number_of_particles |
---|
| 1423 | |
---|
| 1424 | !-- Transport of particles with inertia |
---|
| 1425 | particles(n)%x = xv(n) + particles(n)%speed_x * dt_particle(n) |
---|
| 1426 | particles(n)%y = yv(n) + particles(n)%speed_y * dt_particle(n) |
---|
| 1427 | particles(n)%z = zv(n) + particles(n)%speed_z * dt_particle(n) |
---|
| 1428 | ! |
---|
[849] | 1429 | !-- Update of the particle velocity |
---|
| 1430 | IF ( cloud_droplets ) THEN |
---|
[1822] | 1431 | ! |
---|
| 1432 | !-- Terminal velocity is computed for vertical direction (Rogers et al., |
---|
| 1433 | !-- 1993, J. Appl. Meteorol.) |
---|
| 1434 | diameter = particles(n)%radius * 2000.0_wp !diameter in mm |
---|
| 1435 | IF ( diameter <= d0_rog ) THEN |
---|
| 1436 | w_s = k_cap_rog * diameter * ( 1.0_wp - EXP( -k_low_rog * diameter ) ) |
---|
| 1437 | ELSE |
---|
| 1438 | w_s = a_rog - b_rog * EXP( -c_rog * diameter ) |
---|
| 1439 | ENDIF |
---|
[1359] | 1440 | |
---|
[1822] | 1441 | ! |
---|
| 1442 | !-- If selected, add random velocities following Soelch and Kaercher |
---|
| 1443 | !-- (2010, Q. J. R. Meteorol. Soc.) |
---|
| 1444 | IF ( use_sgs_for_particles ) THEN |
---|
| 1445 | lagr_timescale = km(kp,jp,ip) / MAX( e(kp,jp,ip), 1.0E-20_wp ) |
---|
| 1446 | RL = EXP( -1.0_wp * dt_3d / lagr_timescale ) |
---|
| 1447 | sigma = SQRT( e(kp,jp,ip) ) |
---|
[1359] | 1448 | |
---|
[1822] | 1449 | rg1 = random_gauss( iran_part, 5.0_wp ) - 1.0_wp |
---|
| 1450 | rg2 = random_gauss( iran_part, 5.0_wp ) - 1.0_wp |
---|
| 1451 | rg3 = random_gauss( iran_part, 5.0_wp ) - 1.0_wp |
---|
| 1452 | |
---|
| 1453 | particles(n)%rvar1 = RL * particles(n)%rvar1 + & |
---|
| 1454 | SQRT( 1.0_wp - RL**2 ) * sigma * rg1 |
---|
| 1455 | particles(n)%rvar2 = RL * particles(n)%rvar2 + & |
---|
| 1456 | SQRT( 1.0_wp - RL**2 ) * sigma * rg2 |
---|
| 1457 | particles(n)%rvar3 = RL * particles(n)%rvar3 + & |
---|
| 1458 | SQRT( 1.0_wp - RL**2 ) * sigma * rg3 |
---|
| 1459 | |
---|
| 1460 | particles(n)%speed_x = u_int(n) + particles(n)%rvar1 |
---|
| 1461 | particles(n)%speed_y = v_int(n) + particles(n)%rvar2 |
---|
| 1462 | particles(n)%speed_z = w_int(n) + particles(n)%rvar3 - w_s |
---|
| 1463 | ELSE |
---|
| 1464 | particles(n)%speed_x = u_int(n) |
---|
| 1465 | particles(n)%speed_y = v_int(n) |
---|
| 1466 | particles(n)%speed_z = w_int(n) - w_s |
---|
| 1467 | ENDIF |
---|
| 1468 | |
---|
[849] | 1469 | ELSE |
---|
[1822] | 1470 | |
---|
| 1471 | IF ( use_sgs_for_particles ) THEN |
---|
| 1472 | exp_arg = particle_groups(particles(n)%group)%exp_arg |
---|
| 1473 | exp_term = EXP( -exp_arg * dt_particle(n) ) |
---|
| 1474 | ELSE |
---|
| 1475 | exp_arg = particle_groups(particles(n)%group)%exp_arg |
---|
| 1476 | exp_term = particle_groups(particles(n)%group)%exp_term |
---|
| 1477 | ENDIF |
---|
| 1478 | particles(n)%speed_x = particles(n)%speed_x * exp_term + & |
---|
| 1479 | u_int(n) * ( 1.0_wp - exp_term ) |
---|
| 1480 | particles(n)%speed_y = particles(n)%speed_y * exp_term + & |
---|
| 1481 | v_int(n) * ( 1.0_wp - exp_term ) |
---|
| 1482 | particles(n)%speed_z = particles(n)%speed_z * exp_term + & |
---|
| 1483 | ( w_int(n) - ( 1.0_wp - dens_ratio(n) ) * g / & |
---|
| 1484 | exp_arg ) * ( 1.0_wp - exp_term ) |
---|
[849] | 1485 | ENDIF |
---|
[1822] | 1486 | |
---|
[1359] | 1487 | ENDDO |
---|
[849] | 1488 | |
---|
[1359] | 1489 | ENDIF |
---|
| 1490 | |
---|
| 1491 | DO n = 1, number_of_particles |
---|
[849] | 1492 | ! |
---|
| 1493 | !-- Increment the particle age and the total time that the particle |
---|
| 1494 | !-- has advanced within the particle timestep procedure |
---|
[1359] | 1495 | particles(n)%age = particles(n)%age + dt_particle(n) |
---|
| 1496 | particles(n)%dt_sum = particles(n)%dt_sum + dt_particle(n) |
---|
[849] | 1497 | |
---|
| 1498 | ! |
---|
| 1499 | !-- Check whether there is still a particle that has not yet completed |
---|
| 1500 | !-- the total LES timestep |
---|
[1359] | 1501 | IF ( ( dt_3d - particles(n)%dt_sum ) > 1E-8_wp ) THEN |
---|
[849] | 1502 | dt_3d_reached_l = .FALSE. |
---|
| 1503 | ENDIF |
---|
| 1504 | |
---|
| 1505 | ENDDO |
---|
| 1506 | |
---|
[1359] | 1507 | CALL cpu_log( log_point_s(44), 'lpm_advec', 'pause' ) |
---|
[849] | 1508 | |
---|
| 1509 | END SUBROUTINE lpm_advec |
---|