[1682] | 1 | !> @file lpm_advec.f90 |
---|
[1036] | 2 | !--------------------------------------------------------------------------------! |
---|
| 3 | ! This file is part of PALM. |
---|
| 4 | ! |
---|
| 5 | ! PALM is free software: you can redistribute it and/or modify it under the terms |
---|
| 6 | ! of the GNU General Public License as published by the Free Software Foundation, |
---|
| 7 | ! either version 3 of the License, or (at your option) any later version. |
---|
| 8 | ! |
---|
| 9 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 10 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 11 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 12 | ! |
---|
| 13 | ! You should have received a copy of the GNU General Public License along with |
---|
| 14 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 15 | ! |
---|
[1818] | 16 | ! Copyright 1997-2016 Leibniz Universitaet Hannover |
---|
[1036] | 17 | !--------------------------------------------------------------------------------! |
---|
| 18 | ! |
---|
[849] | 19 | ! Current revisions: |
---|
| 20 | ! ------------------ |
---|
[1823] | 21 | ! |
---|
| 22 | ! |
---|
| 23 | ! Former revisions: |
---|
| 24 | ! ----------------- |
---|
| 25 | ! $Id: lpm_advec.f90 1823 2016-04-07 08:57:52Z raasch $ |
---|
| 26 | ! |
---|
| 27 | ! 1822 2016-04-07 07:49:42Z hoffmann |
---|
[1822] | 28 | ! Random velocity fluctuations for particles added. Terminal fall velocity |
---|
| 29 | ! for droplets is calculated from a parameterization (which is better than |
---|
| 30 | ! the previous, physically correct calculation, which demands a very short |
---|
| 31 | ! time step that is not used in the model). |
---|
| 32 | ! |
---|
| 33 | ! Unused variables deleted. |
---|
[1321] | 34 | ! |
---|
[1692] | 35 | ! 1691 2015-10-26 16:17:44Z maronga |
---|
| 36 | ! Renamed prandtl_layer to constant_flux_layer. |
---|
| 37 | ! |
---|
[1686] | 38 | ! 1685 2015-10-08 07:32:13Z raasch |
---|
| 39 | ! TKE check for negative values (so far, only zero value was checked) |
---|
| 40 | ! offset_ocean_nzt_m1 removed |
---|
| 41 | ! |
---|
[1683] | 42 | ! 1682 2015-10-07 23:56:08Z knoop |
---|
| 43 | ! Code annotations made doxygen readable |
---|
| 44 | ! |
---|
[1584] | 45 | ! 1583 2015-04-15 12:16:27Z suehring |
---|
| 46 | ! Bugfix: particle advection within Prandtl-layer in case of Galilei |
---|
| 47 | ! transformation. |
---|
| 48 | ! |
---|
[1370] | 49 | ! 1369 2014-04-24 05:57:38Z raasch |
---|
| 50 | ! usage of module interfaces removed |
---|
| 51 | ! |
---|
[1360] | 52 | ! 1359 2014-04-11 17:15:14Z hoffmann |
---|
| 53 | ! New particle structure integrated. |
---|
| 54 | ! Kind definition added to all floating point numbers. |
---|
| 55 | ! |
---|
[1323] | 56 | ! 1322 2014-03-20 16:38:49Z raasch |
---|
| 57 | ! REAL constants defined as wp_kind |
---|
| 58 | ! |
---|
[1321] | 59 | ! 1320 2014-03-20 08:40:49Z raasch |
---|
[1320] | 60 | ! ONLY-attribute added to USE-statements, |
---|
| 61 | ! kind-parameters added to all INTEGER and REAL declaration statements, |
---|
| 62 | ! kinds are defined in new module kinds, |
---|
| 63 | ! revision history before 2012 removed, |
---|
| 64 | ! comment fields (!:) to be used for variable explanations added to |
---|
| 65 | ! all variable declaration statements |
---|
[849] | 66 | ! |
---|
[1315] | 67 | ! 1314 2014-03-14 18:25:17Z suehring |
---|
| 68 | ! Vertical logarithmic interpolation of horizontal particle speed for particles |
---|
| 69 | ! between roughness height and first vertical grid level. |
---|
| 70 | ! |
---|
[1037] | 71 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
| 72 | ! code put under GPL (PALM 3.9) |
---|
| 73 | ! |
---|
[850] | 74 | ! 849 2012-03-15 10:35:09Z raasch |
---|
| 75 | ! initial revision (former part of advec_particles) |
---|
[849] | 76 | ! |
---|
[850] | 77 | ! |
---|
[849] | 78 | ! Description: |
---|
| 79 | ! ------------ |
---|
[1682] | 80 | !> Calculation of new particle positions due to advection using a simple Euler |
---|
| 81 | !> scheme. Particles may feel inertia effects. SGS transport can be included |
---|
| 82 | !> using the stochastic model of Weil et al. (2004, JAS, 61, 2877-2887). |
---|
[849] | 83 | !------------------------------------------------------------------------------! |
---|
[1682] | 84 | SUBROUTINE lpm_advec (ip,jp,kp) |
---|
| 85 | |
---|
[849] | 86 | |
---|
[1320] | 87 | USE arrays_3d, & |
---|
[1822] | 88 | ONLY: de_dx, de_dy, de_dz, diss, e, km, u, us, usws, v, vsws, w, zu, zw |
---|
[849] | 89 | |
---|
[1359] | 90 | USE cpulog |
---|
| 91 | |
---|
| 92 | USE pegrid |
---|
| 93 | |
---|
[1320] | 94 | USE control_parameters, & |
---|
[1691] | 95 | ONLY: atmos_ocean_sign, cloud_droplets, constant_flux_layer, dt_3d, & |
---|
[1822] | 96 | dt_3d_reached_l, dz, g, kappa, topography, u_gtrans, v_gtrans |
---|
[849] | 97 | |
---|
[1320] | 98 | USE grid_variables, & |
---|
| 99 | ONLY: ddx, dx, ddy, dy |
---|
| 100 | |
---|
| 101 | USE indices, & |
---|
| 102 | ONLY: nzb, nzb_s_inner, nzt |
---|
| 103 | |
---|
| 104 | USE kinds |
---|
| 105 | |
---|
| 106 | USE particle_attributes, & |
---|
[1822] | 107 | ONLY: block_offset, c_0, dt_min_part, grid_particles, & |
---|
[1359] | 108 | iran_part, log_z_z0, number_of_particles, number_of_sublayers, & |
---|
[1685] | 109 | particles, particle_groups, offset_ocean_nzt, sgs_wfu_part, & |
---|
| 110 | sgs_wfv_part, sgs_wfw_part, use_sgs_for_particles, & |
---|
| 111 | vertical_particle_advection, z0_av_global |
---|
[1320] | 112 | |
---|
| 113 | USE statistics, & |
---|
| 114 | ONLY: hom |
---|
[849] | 115 | |
---|
[1320] | 116 | IMPLICIT NONE |
---|
[849] | 117 | |
---|
[1682] | 118 | INTEGER(iwp) :: agp !< |
---|
| 119 | INTEGER(iwp) :: gp_outside_of_building(1:8) !< |
---|
| 120 | INTEGER(iwp) :: i !< |
---|
| 121 | INTEGER(iwp) :: ip !< |
---|
| 122 | INTEGER(iwp) :: j !< |
---|
| 123 | INTEGER(iwp) :: jp !< |
---|
| 124 | INTEGER(iwp) :: k !< |
---|
| 125 | INTEGER(iwp) :: kp !< |
---|
| 126 | INTEGER(iwp) :: kw !< |
---|
| 127 | INTEGER(iwp) :: n !< |
---|
| 128 | INTEGER(iwp) :: nb !< |
---|
| 129 | INTEGER(iwp) :: num_gp !< |
---|
[849] | 130 | |
---|
[1682] | 131 | INTEGER(iwp), DIMENSION(0:7) :: start_index !< |
---|
| 132 | INTEGER(iwp), DIMENSION(0:7) :: end_index !< |
---|
[1359] | 133 | |
---|
[1682] | 134 | REAL(wp) :: aa !< |
---|
| 135 | REAL(wp) :: bb !< |
---|
| 136 | REAL(wp) :: cc !< |
---|
| 137 | REAL(wp) :: d_sum !< |
---|
| 138 | REAL(wp) :: d_z_p_z0 !< |
---|
| 139 | REAL(wp) :: dd !< |
---|
| 140 | REAL(wp) :: de_dx_int_l !< |
---|
| 141 | REAL(wp) :: de_dx_int_u !< |
---|
| 142 | REAL(wp) :: de_dy_int_l !< |
---|
| 143 | REAL(wp) :: de_dy_int_u !< |
---|
| 144 | REAL(wp) :: de_dt !< |
---|
| 145 | REAL(wp) :: de_dt_min !< |
---|
| 146 | REAL(wp) :: de_dz_int_l !< |
---|
| 147 | REAL(wp) :: de_dz_int_u !< |
---|
[1822] | 148 | REAL(wp) :: diameter !< diamter of droplet |
---|
[1682] | 149 | REAL(wp) :: diss_int_l !< |
---|
| 150 | REAL(wp) :: diss_int_u !< |
---|
| 151 | REAL(wp) :: dt_gap !< |
---|
| 152 | REAL(wp) :: dt_particle_m !< |
---|
| 153 | REAL(wp) :: e_int_l !< |
---|
| 154 | REAL(wp) :: e_int_u !< |
---|
| 155 | REAL(wp) :: e_mean_int !< |
---|
| 156 | REAL(wp) :: exp_arg !< |
---|
| 157 | REAL(wp) :: exp_term !< |
---|
| 158 | REAL(wp) :: gg !< |
---|
| 159 | REAL(wp) :: height_p !< |
---|
[1822] | 160 | REAL(wp) :: lagr_timescale !< Lagrangian timescale |
---|
[1682] | 161 | REAL(wp) :: location(1:30,1:3) !< |
---|
| 162 | REAL(wp) :: random_gauss !< |
---|
[1822] | 163 | REAL(wp) :: RL !< Lagrangian autocorrelation coefficient |
---|
| 164 | REAL(wp) :: rg1 !< Gaussian distributed random number |
---|
| 165 | REAL(wp) :: rg2 !< Gaussian distributed random number |
---|
| 166 | REAL(wp) :: rg3 !< Gaussian distributed random number |
---|
| 167 | REAL(wp) :: sigma !< velocity standard deviation |
---|
[1682] | 168 | REAL(wp) :: u_int_l !< |
---|
| 169 | REAL(wp) :: u_int_u !< |
---|
| 170 | REAL(wp) :: us_int !< |
---|
| 171 | REAL(wp) :: v_int_l !< |
---|
| 172 | REAL(wp) :: v_int_u !< |
---|
| 173 | REAL(wp) :: vv_int !< |
---|
| 174 | REAL(wp) :: w_int_l !< |
---|
| 175 | REAL(wp) :: w_int_u !< |
---|
[1822] | 176 | REAL(wp) :: w_s !< terminal velocity of droplets |
---|
[1682] | 177 | REAL(wp) :: x !< |
---|
| 178 | REAL(wp) :: y !< |
---|
[1822] | 179 | REAL(wp) :: z_p !< |
---|
[849] | 180 | |
---|
[1822] | 181 | REAL(wp), PARAMETER :: a_rog = 9.65_wp !< parameter for fall velocity |
---|
| 182 | REAL(wp), PARAMETER :: b_rog = 10.43_wp !< parameter for fall velocity |
---|
| 183 | REAL(wp), PARAMETER :: c_rog = 0.6_wp !< parameter for fall velocity |
---|
| 184 | REAL(wp), PARAMETER :: k_cap_rog = 4.0_wp !< parameter for fall velocity |
---|
| 185 | REAL(wp), PARAMETER :: k_low_rog = 12.0_wp !< parameter for fall velocity |
---|
| 186 | REAL(wp), PARAMETER :: d0_rog = 0.745_wp !< separation diameter |
---|
| 187 | |
---|
[1682] | 188 | REAL(wp), DIMENSION(1:30) :: d_gp_pl !< |
---|
| 189 | REAL(wp), DIMENSION(1:30) :: de_dxi !< |
---|
| 190 | REAL(wp), DIMENSION(1:30) :: de_dyi !< |
---|
| 191 | REAL(wp), DIMENSION(1:30) :: de_dzi !< |
---|
| 192 | REAL(wp), DIMENSION(1:30) :: dissi !< |
---|
| 193 | REAL(wp), DIMENSION(1:30) :: ei !< |
---|
[849] | 194 | |
---|
[1682] | 195 | REAL(wp), DIMENSION(number_of_particles) :: dens_ratio !< |
---|
| 196 | REAL(wp), DIMENSION(number_of_particles) :: de_dx_int !< |
---|
| 197 | REAL(wp), DIMENSION(number_of_particles) :: de_dy_int !< |
---|
| 198 | REAL(wp), DIMENSION(number_of_particles) :: de_dz_int !< |
---|
| 199 | REAL(wp), DIMENSION(number_of_particles) :: diss_int !< |
---|
| 200 | REAL(wp), DIMENSION(number_of_particles) :: dt_particle !< |
---|
| 201 | REAL(wp), DIMENSION(number_of_particles) :: e_int !< |
---|
| 202 | REAL(wp), DIMENSION(number_of_particles) :: fs_int !< |
---|
| 203 | REAL(wp), DIMENSION(number_of_particles) :: log_z_z0_int !< |
---|
| 204 | REAL(wp), DIMENSION(number_of_particles) :: u_int !< |
---|
| 205 | REAL(wp), DIMENSION(number_of_particles) :: v_int !< |
---|
| 206 | REAL(wp), DIMENSION(number_of_particles) :: w_int !< |
---|
| 207 | REAL(wp), DIMENSION(number_of_particles) :: xv !< |
---|
| 208 | REAL(wp), DIMENSION(number_of_particles) :: yv !< |
---|
| 209 | REAL(wp), DIMENSION(number_of_particles) :: zv !< |
---|
[1359] | 210 | |
---|
[1682] | 211 | REAL(wp), DIMENSION(number_of_particles, 3) :: rg !< |
---|
[1359] | 212 | |
---|
| 213 | CALL cpu_log( log_point_s(44), 'lpm_advec', 'continue' ) |
---|
| 214 | |
---|
[1314] | 215 | ! |
---|
| 216 | !-- Determine height of Prandtl layer and distance between Prandtl-layer |
---|
| 217 | !-- height and horizontal mean roughness height, which are required for |
---|
| 218 | !-- vertical logarithmic interpolation of horizontal particle speeds |
---|
| 219 | !-- (for particles below first vertical grid level). |
---|
| 220 | z_p = zu(nzb+1) - zw(nzb) |
---|
[1359] | 221 | d_z_p_z0 = 1.0_wp / ( z_p - z0_av_global ) |
---|
[849] | 222 | |
---|
[1359] | 223 | start_index = grid_particles(kp,jp,ip)%start_index |
---|
| 224 | end_index = grid_particles(kp,jp,ip)%end_index |
---|
[849] | 225 | |
---|
[1359] | 226 | xv = particles(1:number_of_particles)%x |
---|
| 227 | yv = particles(1:number_of_particles)%y |
---|
| 228 | zv = particles(1:number_of_particles)%z |
---|
[849] | 229 | |
---|
[1359] | 230 | DO nb = 0, 7 |
---|
[1314] | 231 | |
---|
[1359] | 232 | i = ip |
---|
| 233 | j = jp + block_offset(nb)%j_off |
---|
| 234 | k = kp + block_offset(nb)%k_off |
---|
| 235 | |
---|
[849] | 236 | ! |
---|
[1359] | 237 | !-- Interpolate u velocity-component |
---|
| 238 | DO n = start_index(nb), end_index(nb) |
---|
[1314] | 239 | ! |
---|
[1359] | 240 | !-- Interpolation of the u velocity component onto particle position. |
---|
| 241 | !-- Particles are interpolation bi-linearly in the horizontal and a |
---|
| 242 | !-- linearly in the vertical. An exception is made for particles below |
---|
| 243 | !-- the first vertical grid level in case of a prandtl layer. In this |
---|
| 244 | !-- case the horizontal particle velocity components are determined using |
---|
| 245 | !-- Monin-Obukhov relations (if branch). |
---|
| 246 | !-- First, check if particle is located below first vertical grid level |
---|
| 247 | !-- (Prandtl-layer height) |
---|
[1691] | 248 | IF ( constant_flux_layer .AND. particles(n)%z < z_p ) THEN |
---|
[1314] | 249 | ! |
---|
[1359] | 250 | !-- Resolved-scale horizontal particle velocity is zero below z0. |
---|
| 251 | IF ( particles(n)%z < z0_av_global ) THEN |
---|
| 252 | u_int(n) = 0.0_wp |
---|
| 253 | ELSE |
---|
[1314] | 254 | ! |
---|
[1359] | 255 | !-- Determine the sublayer. Further used as index. |
---|
| 256 | height_p = ( particles(n)%z - z0_av_global ) & |
---|
| 257 | * REAL( number_of_sublayers, KIND=wp ) & |
---|
| 258 | * d_z_p_z0 |
---|
[1314] | 259 | ! |
---|
[1359] | 260 | !-- Calculate LOG(z/z0) for exact particle height. Therefore, |
---|
| 261 | !-- interpolate linearly between precalculated logarithm. |
---|
| 262 | log_z_z0_int(n) = log_z_z0(INT(height_p)) & |
---|
| 263 | + ( height_p - INT(height_p) ) & |
---|
| 264 | * ( log_z_z0(INT(height_p)+1) & |
---|
| 265 | - log_z_z0(INT(height_p)) & |
---|
| 266 | ) |
---|
[1314] | 267 | ! |
---|
[1359] | 268 | !-- Neutral solution is applied for all situations, e.g. also for |
---|
| 269 | !-- unstable and stable situations. Even though this is not exact |
---|
| 270 | !-- this saves a lot of CPU time since several calls of intrinsic |
---|
| 271 | !-- FORTRAN procedures (LOG, ATAN) are avoided, This is justified |
---|
| 272 | !-- as sensitivity studies revealed no significant effect of |
---|
| 273 | !-- using the neutral solution also for un/stable situations. |
---|
| 274 | !-- Calculated left and bottom index on u grid. |
---|
| 275 | us_int = 0.5_wp * ( us(j,i) + us(j,i-1) ) |
---|
[1314] | 276 | |
---|
[1359] | 277 | u_int = -usws(j,i) / ( us_int * kappa + 1E-10_wp ) & |
---|
[1583] | 278 | * log_z_z0_int(n) - u_gtrans |
---|
[1314] | 279 | |
---|
[1359] | 280 | ENDIF |
---|
| 281 | ! |
---|
| 282 | !-- Particle above the first grid level. Bi-linear interpolation in the |
---|
| 283 | !-- horizontal and linear interpolation in the vertical direction. |
---|
[1314] | 284 | ELSE |
---|
| 285 | |
---|
[1359] | 286 | x = xv(n) + ( 0.5_wp - i ) * dx |
---|
| 287 | y = yv(n) - j * dy |
---|
| 288 | aa = x**2 + y**2 |
---|
| 289 | bb = ( dx - x )**2 + y**2 |
---|
| 290 | cc = x**2 + ( dy - y )**2 |
---|
| 291 | dd = ( dx - x )**2 + ( dy - y )**2 |
---|
| 292 | gg = aa + bb + cc + dd |
---|
[1314] | 293 | |
---|
[1359] | 294 | u_int_l = ( ( gg - aa ) * u(k,j,i) + ( gg - bb ) * u(k,j,i+1) & |
---|
| 295 | + ( gg - cc ) * u(k,j+1,i) + ( gg - dd ) * & |
---|
| 296 | u(k,j+1,i+1) ) / ( 3.0_wp * gg ) - u_gtrans |
---|
[1314] | 297 | |
---|
[1359] | 298 | IF ( k == nzt ) THEN |
---|
| 299 | u_int(n) = u_int_l |
---|
| 300 | ELSE |
---|
| 301 | u_int_u = ( ( gg-aa ) * u(k+1,j,i) + ( gg-bb ) * u(k+1,j,i+1) & |
---|
| 302 | + ( gg-cc ) * u(k+1,j+1,i) + ( gg-dd ) * & |
---|
| 303 | u(k+1,j+1,i+1) ) / ( 3.0_wp * gg ) - u_gtrans |
---|
| 304 | u_int(n) = u_int_l + ( zv(n) - zu(k) ) / dz * & |
---|
| 305 | ( u_int_u - u_int_l ) |
---|
| 306 | ENDIF |
---|
[1314] | 307 | ENDIF |
---|
| 308 | |
---|
[1359] | 309 | ENDDO |
---|
[849] | 310 | |
---|
[1359] | 311 | i = ip + block_offset(nb)%i_off |
---|
| 312 | j = jp |
---|
| 313 | k = kp + block_offset(nb)%k_off |
---|
[849] | 314 | ! |
---|
[1359] | 315 | !-- Same procedure for interpolation of the v velocity-component |
---|
| 316 | DO n = start_index(nb), end_index(nb) |
---|
[1685] | 317 | |
---|
[1691] | 318 | IF ( constant_flux_layer .AND. particles(n)%z < z_p ) THEN |
---|
[849] | 319 | |
---|
[1359] | 320 | IF ( particles(n)%z < z0_av_global ) THEN |
---|
[1314] | 321 | ! |
---|
[1359] | 322 | !-- Resolved-scale horizontal particle velocity is zero below z0. |
---|
| 323 | v_int(n) = 0.0_wp |
---|
| 324 | ELSE |
---|
| 325 | ! |
---|
| 326 | !-- Neutral solution is applied for all situations, e.g. also for |
---|
| 327 | !-- unstable and stable situations. Even though this is not exact |
---|
| 328 | !-- this saves a lot of CPU time since several calls of intrinsic |
---|
| 329 | !-- FORTRAN procedures (LOG, ATAN) are avoided, This is justified |
---|
| 330 | !-- as sensitivity studies revealed no significant effect of |
---|
| 331 | !-- using the neutral solution also for un/stable situations. |
---|
| 332 | !-- Calculated left and bottom index on v grid. |
---|
| 333 | us_int = 0.5_wp * ( us(j,i) + us(j-1,i) ) |
---|
[1314] | 334 | |
---|
[1359] | 335 | v_int = -vsws(j,i) / ( us_int * kappa + 1E-10_wp ) & |
---|
[1583] | 336 | * log_z_z0_int(n) - v_gtrans |
---|
[1359] | 337 | ENDIF |
---|
| 338 | ELSE |
---|
| 339 | x = xv(n) - i * dx |
---|
| 340 | y = yv(n) + ( 0.5_wp - j ) * dy |
---|
| 341 | aa = x**2 + y**2 |
---|
| 342 | bb = ( dx - x )**2 + y**2 |
---|
| 343 | cc = x**2 + ( dy - y )**2 |
---|
| 344 | dd = ( dx - x )**2 + ( dy - y )**2 |
---|
| 345 | gg = aa + bb + cc + dd |
---|
[1314] | 346 | |
---|
[1359] | 347 | v_int_l = ( ( gg - aa ) * v(k,j,i) + ( gg - bb ) * v(k,j,i+1) & |
---|
| 348 | + ( gg - cc ) * v(k,j+1,i) + ( gg - dd ) * v(k,j+1,i+1) & |
---|
| 349 | ) / ( 3.0_wp * gg ) - v_gtrans |
---|
[1314] | 350 | |
---|
[1359] | 351 | IF ( k == nzt ) THEN |
---|
| 352 | v_int(n) = v_int_l |
---|
| 353 | ELSE |
---|
| 354 | v_int_u = ( ( gg-aa ) * v(k+1,j,i) + ( gg-bb ) * v(k+1,j,i+1) & |
---|
| 355 | + ( gg-cc ) * v(k+1,j+1,i) + ( gg-dd ) * v(k+1,j+1,i+1) & |
---|
| 356 | ) / ( 3.0_wp * gg ) - v_gtrans |
---|
| 357 | v_int(n) = v_int_l + ( zv(n) - zu(k) ) / dz * & |
---|
| 358 | ( v_int_u - v_int_l ) |
---|
| 359 | ENDIF |
---|
[1314] | 360 | ENDIF |
---|
| 361 | |
---|
[1359] | 362 | ENDDO |
---|
[1314] | 363 | |
---|
[1359] | 364 | i = ip + block_offset(nb)%i_off |
---|
| 365 | j = jp + block_offset(nb)%j_off |
---|
| 366 | k = kp-1 |
---|
[849] | 367 | ! |
---|
[1314] | 368 | !-- Same procedure for interpolation of the w velocity-component |
---|
[1359] | 369 | DO n = start_index(nb), end_index(nb) |
---|
[849] | 370 | |
---|
[1359] | 371 | IF ( vertical_particle_advection(particles(n)%group) ) THEN |
---|
[849] | 372 | |
---|
[1359] | 373 | x = xv(n) - i * dx |
---|
| 374 | y = yv(n) - j * dy |
---|
[849] | 375 | aa = x**2 + y**2 |
---|
| 376 | bb = ( dx - x )**2 + y**2 |
---|
| 377 | cc = x**2 + ( dy - y )**2 |
---|
| 378 | dd = ( dx - x )**2 + ( dy - y )**2 |
---|
| 379 | gg = aa + bb + cc + dd |
---|
| 380 | |
---|
[1359] | 381 | w_int_l = ( ( gg - aa ) * w(k,j,i) + ( gg - bb ) * w(k,j,i+1) & |
---|
| 382 | + ( gg - cc ) * w(k,j+1,i) + ( gg - dd ) * w(k,j+1,i+1) & |
---|
| 383 | ) / ( 3.0_wp * gg ) |
---|
[849] | 384 | |
---|
[1359] | 385 | IF ( k == nzt ) THEN |
---|
| 386 | w_int(n) = w_int_l |
---|
[849] | 387 | ELSE |
---|
[1359] | 388 | w_int_u = ( ( gg-aa ) * w(k+1,j,i) + & |
---|
| 389 | ( gg-bb ) * w(k+1,j,i+1) + & |
---|
| 390 | ( gg-cc ) * w(k+1,j+1,i) + & |
---|
| 391 | ( gg-dd ) * w(k+1,j+1,i+1) & |
---|
| 392 | ) / ( 3.0_wp * gg ) |
---|
| 393 | w_int(n) = w_int_l + ( zv(n) - zw(k) ) / dz * & |
---|
| 394 | ( w_int_u - w_int_l ) |
---|
[849] | 395 | ENDIF |
---|
| 396 | |
---|
[1359] | 397 | ELSE |
---|
[849] | 398 | |
---|
[1359] | 399 | w_int(n) = 0.0_wp |
---|
[849] | 400 | |
---|
[1359] | 401 | ENDIF |
---|
| 402 | |
---|
| 403 | ENDDO |
---|
| 404 | |
---|
| 405 | ENDDO |
---|
| 406 | |
---|
| 407 | !-- Interpolate and calculate quantities needed for calculating the SGS |
---|
| 408 | !-- velocities |
---|
[1822] | 409 | IF ( use_sgs_for_particles .AND. .NOT. cloud_droplets ) THEN |
---|
[1359] | 410 | |
---|
| 411 | IF ( topography == 'flat' ) THEN |
---|
| 412 | |
---|
| 413 | DO nb = 0,7 |
---|
| 414 | |
---|
| 415 | i = ip + block_offset(nb)%i_off |
---|
| 416 | j = jp + block_offset(nb)%j_off |
---|
| 417 | k = kp + block_offset(nb)%k_off |
---|
| 418 | |
---|
| 419 | DO n = start_index(nb), end_index(nb) |
---|
[849] | 420 | ! |
---|
[1359] | 421 | !-- Interpolate TKE |
---|
| 422 | x = xv(n) - i * dx |
---|
| 423 | y = yv(n) - j * dy |
---|
| 424 | aa = x**2 + y**2 |
---|
| 425 | bb = ( dx - x )**2 + y**2 |
---|
| 426 | cc = x**2 + ( dy - y )**2 |
---|
| 427 | dd = ( dx - x )**2 + ( dy - y )**2 |
---|
| 428 | gg = aa + bb + cc + dd |
---|
[849] | 429 | |
---|
[1359] | 430 | e_int_l = ( ( gg-aa ) * e(k,j,i) + ( gg-bb ) * e(k,j,i+1) & |
---|
| 431 | + ( gg-cc ) * e(k,j+1,i) + ( gg-dd ) * e(k,j+1,i+1) & |
---|
| 432 | ) / ( 3.0_wp * gg ) |
---|
| 433 | |
---|
| 434 | IF ( k+1 == nzt+1 ) THEN |
---|
| 435 | e_int(n) = e_int_l |
---|
| 436 | ELSE |
---|
| 437 | e_int_u = ( ( gg - aa ) * e(k+1,j,i) + & |
---|
| 438 | ( gg - bb ) * e(k+1,j,i+1) + & |
---|
| 439 | ( gg - cc ) * e(k+1,j+1,i) + & |
---|
| 440 | ( gg - dd ) * e(k+1,j+1,i+1) & |
---|
| 441 | ) / ( 3.0_wp * gg ) |
---|
| 442 | e_int(n) = e_int_l + ( zv(n) - zu(k) ) / dz * & |
---|
| 443 | ( e_int_u - e_int_l ) |
---|
| 444 | ENDIF |
---|
[849] | 445 | ! |
---|
[1685] | 446 | !-- Needed to avoid NaN particle velocities (this might not be |
---|
| 447 | !-- required any more) |
---|
| 448 | IF ( e_int(n) <= 0.0_wp ) THEN |
---|
[1359] | 449 | e_int(n) = 1.0E-20_wp |
---|
| 450 | ENDIF |
---|
| 451 | ! |
---|
| 452 | !-- Interpolate the TKE gradient along x (adopt incides i,j,k and |
---|
| 453 | !-- all position variables from above (TKE)) |
---|
| 454 | de_dx_int_l = ( ( gg - aa ) * de_dx(k,j,i) + & |
---|
| 455 | ( gg - bb ) * de_dx(k,j,i+1) + & |
---|
| 456 | ( gg - cc ) * de_dx(k,j+1,i) + & |
---|
| 457 | ( gg - dd ) * de_dx(k,j+1,i+1) & |
---|
| 458 | ) / ( 3.0_wp * gg ) |
---|
[849] | 459 | |
---|
| 460 | IF ( ( k+1 == nzt+1 ) .OR. ( k == nzb ) ) THEN |
---|
[1359] | 461 | de_dx_int(n) = de_dx_int_l |
---|
[849] | 462 | ELSE |
---|
[1359] | 463 | de_dx_int_u = ( ( gg - aa ) * de_dx(k+1,j,i) + & |
---|
| 464 | ( gg - bb ) * de_dx(k+1,j,i+1) + & |
---|
| 465 | ( gg - cc ) * de_dx(k+1,j+1,i) + & |
---|
| 466 | ( gg - dd ) * de_dx(k+1,j+1,i+1) & |
---|
| 467 | ) / ( 3.0_wp * gg ) |
---|
| 468 | de_dx_int(n) = de_dx_int_l + ( zv(n) - zu(k) ) / dz * & |
---|
| 469 | ( de_dx_int_u - de_dx_int_l ) |
---|
[849] | 470 | ENDIF |
---|
[1359] | 471 | ! |
---|
| 472 | !-- Interpolate the TKE gradient along y |
---|
| 473 | de_dy_int_l = ( ( gg - aa ) * de_dy(k,j,i) + & |
---|
| 474 | ( gg - bb ) * de_dy(k,j,i+1) + & |
---|
| 475 | ( gg - cc ) * de_dy(k,j+1,i) + & |
---|
| 476 | ( gg - dd ) * de_dy(k,j+1,i+1) & |
---|
| 477 | ) / ( 3.0_wp * gg ) |
---|
| 478 | IF ( ( k+1 == nzt+1 ) .OR. ( k == nzb ) ) THEN |
---|
| 479 | de_dy_int(n) = de_dy_int_l |
---|
| 480 | ELSE |
---|
| 481 | de_dy_int_u = ( ( gg - aa ) * de_dy(k+1,j,i) + & |
---|
| 482 | ( gg - bb ) * de_dy(k+1,j,i+1) + & |
---|
| 483 | ( gg - cc ) * de_dy(k+1,j+1,i) + & |
---|
| 484 | ( gg - dd ) * de_dy(k+1,j+1,i+1) & |
---|
| 485 | ) / ( 3.0_wp * gg ) |
---|
| 486 | de_dy_int(n) = de_dy_int_l + ( zv(n) - zu(k) ) / dz * & |
---|
| 487 | ( de_dy_int_u - de_dy_int_l ) |
---|
| 488 | ENDIF |
---|
[849] | 489 | |
---|
| 490 | ! |
---|
[1359] | 491 | !-- Interpolate the TKE gradient along z |
---|
| 492 | IF ( zv(n) < 0.5_wp * dz ) THEN |
---|
| 493 | de_dz_int(n) = 0.0_wp |
---|
| 494 | ELSE |
---|
| 495 | de_dz_int_l = ( ( gg - aa ) * de_dz(k,j,i) + & |
---|
| 496 | ( gg - bb ) * de_dz(k,j,i+1) + & |
---|
| 497 | ( gg - cc ) * de_dz(k,j+1,i) + & |
---|
| 498 | ( gg - dd ) * de_dz(k,j+1,i+1) & |
---|
| 499 | ) / ( 3.0_wp * gg ) |
---|
[849] | 500 | |
---|
[1359] | 501 | IF ( ( k+1 == nzt+1 ) .OR. ( k == nzb ) ) THEN |
---|
| 502 | de_dz_int(n) = de_dz_int_l |
---|
| 503 | ELSE |
---|
| 504 | de_dz_int_u = ( ( gg - aa ) * de_dz(k+1,j,i) + & |
---|
| 505 | ( gg - bb ) * de_dz(k+1,j,i+1) + & |
---|
| 506 | ( gg - cc ) * de_dz(k+1,j+1,i) + & |
---|
| 507 | ( gg - dd ) * de_dz(k+1,j+1,i+1) & |
---|
| 508 | ) / ( 3.0_wp * gg ) |
---|
| 509 | de_dz_int(n) = de_dz_int_l + ( zv(n) - zu(k) ) / dz * & |
---|
| 510 | ( de_dz_int_u - de_dz_int_l ) |
---|
| 511 | ENDIF |
---|
| 512 | ENDIF |
---|
[849] | 513 | |
---|
[1359] | 514 | ! |
---|
| 515 | !-- Interpolate the dissipation of TKE |
---|
| 516 | diss_int_l = ( ( gg - aa ) * diss(k,j,i) + & |
---|
| 517 | ( gg - bb ) * diss(k,j,i+1) + & |
---|
| 518 | ( gg - cc ) * diss(k,j+1,i) + & |
---|
| 519 | ( gg - dd ) * diss(k,j+1,i+1) & |
---|
| 520 | ) / ( 3.0_wp * gg ) |
---|
[849] | 521 | |
---|
[1359] | 522 | IF ( k == nzt ) THEN |
---|
| 523 | diss_int(n) = diss_int_l |
---|
| 524 | ELSE |
---|
| 525 | diss_int_u = ( ( gg - aa ) * diss(k+1,j,i) + & |
---|
| 526 | ( gg - bb ) * diss(k+1,j,i+1) + & |
---|
| 527 | ( gg - cc ) * diss(k+1,j+1,i) + & |
---|
| 528 | ( gg - dd ) * diss(k+1,j+1,i+1) & |
---|
| 529 | ) / ( 3.0_wp * gg ) |
---|
| 530 | diss_int(n) = diss_int_l + ( zv(n) - zu(k) ) / dz * & |
---|
| 531 | ( diss_int_u - diss_int_l ) |
---|
| 532 | ENDIF |
---|
| 533 | |
---|
| 534 | ENDDO |
---|
| 535 | ENDDO |
---|
| 536 | |
---|
| 537 | ELSE ! non-flat topography, e.g., buildings |
---|
| 538 | |
---|
| 539 | DO n = 1, number_of_particles |
---|
| 540 | |
---|
| 541 | i = particles(n)%x * ddx |
---|
| 542 | j = particles(n)%y * ddy |
---|
| 543 | k = ( zv(n) + 0.5_wp * dz * atmos_ocean_sign ) / dz & |
---|
| 544 | + offset_ocean_nzt ! only exact if eq.dist |
---|
[849] | 545 | ! |
---|
| 546 | !-- In case that there are buildings it has to be determined |
---|
| 547 | !-- how many of the gridpoints defining the particle box are |
---|
| 548 | !-- situated within a building |
---|
| 549 | !-- gp_outside_of_building(1): i,j,k |
---|
| 550 | !-- gp_outside_of_building(2): i,j+1,k |
---|
| 551 | !-- gp_outside_of_building(3): i,j,k+1 |
---|
| 552 | !-- gp_outside_of_building(4): i,j+1,k+1 |
---|
| 553 | !-- gp_outside_of_building(5): i+1,j,k |
---|
| 554 | !-- gp_outside_of_building(6): i+1,j+1,k |
---|
| 555 | !-- gp_outside_of_building(7): i+1,j,k+1 |
---|
| 556 | !-- gp_outside_of_building(8): i+1,j+1,k+1 |
---|
| 557 | |
---|
| 558 | gp_outside_of_building = 0 |
---|
[1359] | 559 | location = 0.0_wp |
---|
[849] | 560 | num_gp = 0 |
---|
| 561 | |
---|
| 562 | IF ( k > nzb_s_inner(j,i) .OR. nzb_s_inner(j,i) == 0 ) THEN |
---|
| 563 | num_gp = num_gp + 1 |
---|
| 564 | gp_outside_of_building(1) = 1 |
---|
| 565 | location(num_gp,1) = i * dx |
---|
| 566 | location(num_gp,2) = j * dy |
---|
[1359] | 567 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
[849] | 568 | ei(num_gp) = e(k,j,i) |
---|
| 569 | dissi(num_gp) = diss(k,j,i) |
---|
| 570 | de_dxi(num_gp) = de_dx(k,j,i) |
---|
| 571 | de_dyi(num_gp) = de_dy(k,j,i) |
---|
| 572 | de_dzi(num_gp) = de_dz(k,j,i) |
---|
| 573 | ENDIF |
---|
| 574 | |
---|
| 575 | IF ( k > nzb_s_inner(j+1,i) .OR. nzb_s_inner(j+1,i) == 0 ) & |
---|
| 576 | THEN |
---|
| 577 | num_gp = num_gp + 1 |
---|
| 578 | gp_outside_of_building(2) = 1 |
---|
| 579 | location(num_gp,1) = i * dx |
---|
| 580 | location(num_gp,2) = (j+1) * dy |
---|
[1359] | 581 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
[849] | 582 | ei(num_gp) = e(k,j+1,i) |
---|
| 583 | dissi(num_gp) = diss(k,j+1,i) |
---|
| 584 | de_dxi(num_gp) = de_dx(k,j+1,i) |
---|
| 585 | de_dyi(num_gp) = de_dy(k,j+1,i) |
---|
| 586 | de_dzi(num_gp) = de_dz(k,j+1,i) |
---|
| 587 | ENDIF |
---|
| 588 | |
---|
| 589 | IF ( k+1 > nzb_s_inner(j,i) .OR. nzb_s_inner(j,i) == 0 ) THEN |
---|
| 590 | num_gp = num_gp + 1 |
---|
| 591 | gp_outside_of_building(3) = 1 |
---|
| 592 | location(num_gp,1) = i * dx |
---|
| 593 | location(num_gp,2) = j * dy |
---|
[1359] | 594 | location(num_gp,3) = (k+1) * dz - 0.5_wp * dz |
---|
[849] | 595 | ei(num_gp) = e(k+1,j,i) |
---|
| 596 | dissi(num_gp) = diss(k+1,j,i) |
---|
| 597 | de_dxi(num_gp) = de_dx(k+1,j,i) |
---|
| 598 | de_dyi(num_gp) = de_dy(k+1,j,i) |
---|
| 599 | de_dzi(num_gp) = de_dz(k+1,j,i) |
---|
| 600 | ENDIF |
---|
| 601 | |
---|
| 602 | IF ( k+1 > nzb_s_inner(j+1,i) .OR. nzb_s_inner(j+1,i) == 0 ) & |
---|
| 603 | THEN |
---|
| 604 | num_gp = num_gp + 1 |
---|
| 605 | gp_outside_of_building(4) = 1 |
---|
| 606 | location(num_gp,1) = i * dx |
---|
| 607 | location(num_gp,2) = (j+1) * dy |
---|
[1359] | 608 | location(num_gp,3) = (k+1) * dz - 0.5_wp * dz |
---|
[849] | 609 | ei(num_gp) = e(k+1,j+1,i) |
---|
| 610 | dissi(num_gp) = diss(k+1,j+1,i) |
---|
| 611 | de_dxi(num_gp) = de_dx(k+1,j+1,i) |
---|
| 612 | de_dyi(num_gp) = de_dy(k+1,j+1,i) |
---|
| 613 | de_dzi(num_gp) = de_dz(k+1,j+1,i) |
---|
| 614 | ENDIF |
---|
| 615 | |
---|
| 616 | IF ( k > nzb_s_inner(j,i+1) .OR. nzb_s_inner(j,i+1) == 0 ) & |
---|
| 617 | THEN |
---|
| 618 | num_gp = num_gp + 1 |
---|
| 619 | gp_outside_of_building(5) = 1 |
---|
| 620 | location(num_gp,1) = (i+1) * dx |
---|
| 621 | location(num_gp,2) = j * dy |
---|
[1359] | 622 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
[849] | 623 | ei(num_gp) = e(k,j,i+1) |
---|
| 624 | dissi(num_gp) = diss(k,j,i+1) |
---|
| 625 | de_dxi(num_gp) = de_dx(k,j,i+1) |
---|
| 626 | de_dyi(num_gp) = de_dy(k,j,i+1) |
---|
| 627 | de_dzi(num_gp) = de_dz(k,j,i+1) |
---|
| 628 | ENDIF |
---|
| 629 | |
---|
[1359] | 630 | IF ( k > nzb_s_inner(j+1,i+1) .OR. nzb_s_inner(j+1,i+1) == 0 ) & |
---|
[849] | 631 | THEN |
---|
| 632 | num_gp = num_gp + 1 |
---|
| 633 | gp_outside_of_building(6) = 1 |
---|
| 634 | location(num_gp,1) = (i+1) * dx |
---|
| 635 | location(num_gp,2) = (j+1) * dy |
---|
[1359] | 636 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
[849] | 637 | ei(num_gp) = e(k,j+1,i+1) |
---|
| 638 | dissi(num_gp) = diss(k,j+1,i+1) |
---|
| 639 | de_dxi(num_gp) = de_dx(k,j+1,i+1) |
---|
| 640 | de_dyi(num_gp) = de_dy(k,j+1,i+1) |
---|
| 641 | de_dzi(num_gp) = de_dz(k,j+1,i+1) |
---|
| 642 | ENDIF |
---|
| 643 | |
---|
| 644 | IF ( k+1 > nzb_s_inner(j,i+1) .OR. nzb_s_inner(j,i+1) == 0 ) & |
---|
| 645 | THEN |
---|
| 646 | num_gp = num_gp + 1 |
---|
| 647 | gp_outside_of_building(7) = 1 |
---|
| 648 | location(num_gp,1) = (i+1) * dx |
---|
| 649 | location(num_gp,2) = j * dy |
---|
[1359] | 650 | location(num_gp,3) = (k+1) * dz - 0.5_wp * dz |
---|
[849] | 651 | ei(num_gp) = e(k+1,j,i+1) |
---|
| 652 | dissi(num_gp) = diss(k+1,j,i+1) |
---|
| 653 | de_dxi(num_gp) = de_dx(k+1,j,i+1) |
---|
| 654 | de_dyi(num_gp) = de_dy(k+1,j,i+1) |
---|
| 655 | de_dzi(num_gp) = de_dz(k+1,j,i+1) |
---|
| 656 | ENDIF |
---|
| 657 | |
---|
[1359] | 658 | IF ( k+1 > nzb_s_inner(j+1,i+1) .OR. nzb_s_inner(j+1,i+1) == 0)& |
---|
[849] | 659 | THEN |
---|
| 660 | num_gp = num_gp + 1 |
---|
| 661 | gp_outside_of_building(8) = 1 |
---|
| 662 | location(num_gp,1) = (i+1) * dx |
---|
| 663 | location(num_gp,2) = (j+1) * dy |
---|
[1359] | 664 | location(num_gp,3) = (k+1) * dz - 0.5_wp * dz |
---|
[849] | 665 | ei(num_gp) = e(k+1,j+1,i+1) |
---|
| 666 | dissi(num_gp) = diss(k+1,j+1,i+1) |
---|
| 667 | de_dxi(num_gp) = de_dx(k+1,j+1,i+1) |
---|
| 668 | de_dyi(num_gp) = de_dy(k+1,j+1,i+1) |
---|
| 669 | de_dzi(num_gp) = de_dz(k+1,j+1,i+1) |
---|
| 670 | ENDIF |
---|
| 671 | |
---|
| 672 | ! |
---|
| 673 | !-- If all gridpoints are situated outside of a building, then the |
---|
| 674 | !-- ordinary interpolation scheme can be used. |
---|
| 675 | IF ( num_gp == 8 ) THEN |
---|
| 676 | |
---|
| 677 | x = particles(n)%x - i * dx |
---|
| 678 | y = particles(n)%y - j * dy |
---|
| 679 | aa = x**2 + y**2 |
---|
| 680 | bb = ( dx - x )**2 + y**2 |
---|
| 681 | cc = x**2 + ( dy - y )**2 |
---|
| 682 | dd = ( dx - x )**2 + ( dy - y )**2 |
---|
| 683 | gg = aa + bb + cc + dd |
---|
| 684 | |
---|
[1359] | 685 | e_int_l = ( ( gg - aa ) * e(k,j,i) + ( gg - bb ) * e(k,j,i+1) & |
---|
| 686 | + ( gg - cc ) * e(k,j+1,i) + ( gg - dd ) * e(k,j+1,i+1) & |
---|
| 687 | ) / ( 3.0_wp * gg ) |
---|
[849] | 688 | |
---|
[1359] | 689 | IF ( k == nzt ) THEN |
---|
| 690 | e_int(n) = e_int_l |
---|
[849] | 691 | ELSE |
---|
| 692 | e_int_u = ( ( gg - aa ) * e(k+1,j,i) + & |
---|
| 693 | ( gg - bb ) * e(k+1,j,i+1) + & |
---|
| 694 | ( gg - cc ) * e(k+1,j+1,i) + & |
---|
| 695 | ( gg - dd ) * e(k+1,j+1,i+1) & |
---|
[1359] | 696 | ) / ( 3.0_wp * gg ) |
---|
| 697 | e_int(n) = e_int_l + ( zv(n) - zu(k) ) / dz * & |
---|
[849] | 698 | ( e_int_u - e_int_l ) |
---|
| 699 | ENDIF |
---|
| 700 | ! |
---|
[1685] | 701 | !-- Needed to avoid NaN particle velocities (this might not be |
---|
| 702 | !-- required any more) |
---|
| 703 | IF ( e_int(n) <= 0.0_wp ) THEN |
---|
[1359] | 704 | e_int(n) = 1.0E-20_wp |
---|
| 705 | ENDIF |
---|
| 706 | ! |
---|
[849] | 707 | !-- Interpolate the TKE gradient along x (adopt incides i,j,k |
---|
| 708 | !-- and all position variables from above (TKE)) |
---|
| 709 | de_dx_int_l = ( ( gg - aa ) * de_dx(k,j,i) + & |
---|
| 710 | ( gg - bb ) * de_dx(k,j,i+1) + & |
---|
| 711 | ( gg - cc ) * de_dx(k,j+1,i) + & |
---|
| 712 | ( gg - dd ) * de_dx(k,j+1,i+1) & |
---|
[1359] | 713 | ) / ( 3.0_wp * gg ) |
---|
[849] | 714 | |
---|
[1359] | 715 | IF ( ( k == nzt ) .OR. ( k == nzb ) ) THEN |
---|
| 716 | de_dx_int(n) = de_dx_int_l |
---|
[849] | 717 | ELSE |
---|
| 718 | de_dx_int_u = ( ( gg - aa ) * de_dx(k+1,j,i) + & |
---|
| 719 | ( gg - bb ) * de_dx(k+1,j,i+1) + & |
---|
| 720 | ( gg - cc ) * de_dx(k+1,j+1,i) + & |
---|
| 721 | ( gg - dd ) * de_dx(k+1,j+1,i+1) & |
---|
[1359] | 722 | ) / ( 3.0_wp * gg ) |
---|
| 723 | de_dx_int(n) = de_dx_int_l + ( zv(n) - zu(k) ) / & |
---|
[849] | 724 | dz * ( de_dx_int_u - de_dx_int_l ) |
---|
| 725 | ENDIF |
---|
| 726 | |
---|
| 727 | ! |
---|
| 728 | !-- Interpolate the TKE gradient along y |
---|
| 729 | de_dy_int_l = ( ( gg - aa ) * de_dy(k,j,i) + & |
---|
| 730 | ( gg - bb ) * de_dy(k,j,i+1) + & |
---|
| 731 | ( gg - cc ) * de_dy(k,j+1,i) + & |
---|
| 732 | ( gg - dd ) * de_dy(k,j+1,i+1) & |
---|
[1359] | 733 | ) / ( 3.0_wp * gg ) |
---|
[849] | 734 | IF ( ( k+1 == nzt+1 ) .OR. ( k == nzb ) ) THEN |
---|
[1359] | 735 | de_dy_int(n) = de_dy_int_l |
---|
[849] | 736 | ELSE |
---|
| 737 | de_dy_int_u = ( ( gg - aa ) * de_dy(k+1,j,i) + & |
---|
| 738 | ( gg - bb ) * de_dy(k+1,j,i+1) + & |
---|
| 739 | ( gg - cc ) * de_dy(k+1,j+1,i) + & |
---|
| 740 | ( gg - dd ) * de_dy(k+1,j+1,i+1) & |
---|
[1359] | 741 | ) / ( 3.0_wp * gg ) |
---|
| 742 | de_dy_int(n) = de_dy_int_l + ( zv(n) - zu(k) ) / & |
---|
[849] | 743 | dz * ( de_dy_int_u - de_dy_int_l ) |
---|
| 744 | ENDIF |
---|
| 745 | |
---|
| 746 | ! |
---|
| 747 | !-- Interpolate the TKE gradient along z |
---|
[1359] | 748 | IF ( zv(n) < 0.5_wp * dz ) THEN |
---|
| 749 | de_dz_int(n) = 0.0_wp |
---|
[849] | 750 | ELSE |
---|
| 751 | de_dz_int_l = ( ( gg - aa ) * de_dz(k,j,i) + & |
---|
| 752 | ( gg - bb ) * de_dz(k,j,i+1) + & |
---|
| 753 | ( gg - cc ) * de_dz(k,j+1,i) + & |
---|
| 754 | ( gg - dd ) * de_dz(k,j+1,i+1) & |
---|
[1359] | 755 | ) / ( 3.0_wp * gg ) |
---|
[849] | 756 | |
---|
| 757 | IF ( ( k+1 == nzt+1 ) .OR. ( k == nzb ) ) THEN |
---|
[1359] | 758 | de_dz_int(n) = de_dz_int_l |
---|
[849] | 759 | ELSE |
---|
| 760 | de_dz_int_u = ( ( gg - aa ) * de_dz(k+1,j,i) + & |
---|
| 761 | ( gg - bb ) * de_dz(k+1,j,i+1) + & |
---|
| 762 | ( gg - cc ) * de_dz(k+1,j+1,i) + & |
---|
| 763 | ( gg - dd ) * de_dz(k+1,j+1,i+1) & |
---|
[1359] | 764 | ) / ( 3.0_wp * gg ) |
---|
| 765 | de_dz_int(n) = de_dz_int_l + ( zv(n) - zu(k) ) /& |
---|
[849] | 766 | dz * ( de_dz_int_u - de_dz_int_l ) |
---|
| 767 | ENDIF |
---|
| 768 | ENDIF |
---|
| 769 | |
---|
| 770 | ! |
---|
| 771 | !-- Interpolate the dissipation of TKE |
---|
| 772 | diss_int_l = ( ( gg - aa ) * diss(k,j,i) + & |
---|
| 773 | ( gg - bb ) * diss(k,j,i+1) + & |
---|
| 774 | ( gg - cc ) * diss(k,j+1,i) + & |
---|
| 775 | ( gg - dd ) * diss(k,j+1,i+1) & |
---|
[1359] | 776 | ) / ( 3.0_wp * gg ) |
---|
[849] | 777 | |
---|
[1359] | 778 | IF ( k == nzt ) THEN |
---|
| 779 | diss_int(n) = diss_int_l |
---|
[849] | 780 | ELSE |
---|
| 781 | diss_int_u = ( ( gg - aa ) * diss(k+1,j,i) + & |
---|
| 782 | ( gg - bb ) * diss(k+1,j,i+1) + & |
---|
| 783 | ( gg - cc ) * diss(k+1,j+1,i) + & |
---|
| 784 | ( gg - dd ) * diss(k+1,j+1,i+1) & |
---|
[1359] | 785 | ) / ( 3.0_wp * gg ) |
---|
| 786 | diss_int(n) = diss_int_l + ( zv(n) - zu(k) ) / dz *& |
---|
[849] | 787 | ( diss_int_u - diss_int_l ) |
---|
| 788 | ENDIF |
---|
| 789 | |
---|
| 790 | ELSE |
---|
| 791 | |
---|
| 792 | ! |
---|
| 793 | !-- If wall between gridpoint 1 and gridpoint 5, then |
---|
| 794 | !-- Neumann boundary condition has to be applied |
---|
| 795 | IF ( gp_outside_of_building(1) == 1 .AND. & |
---|
| 796 | gp_outside_of_building(5) == 0 ) THEN |
---|
| 797 | num_gp = num_gp + 1 |
---|
[1359] | 798 | location(num_gp,1) = i * dx + 0.5_wp * dx |
---|
[849] | 799 | location(num_gp,2) = j * dy |
---|
[1359] | 800 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
[849] | 801 | ei(num_gp) = e(k,j,i) |
---|
| 802 | dissi(num_gp) = diss(k,j,i) |
---|
[1359] | 803 | de_dxi(num_gp) = 0.0_wp |
---|
[849] | 804 | de_dyi(num_gp) = de_dy(k,j,i) |
---|
| 805 | de_dzi(num_gp) = de_dz(k,j,i) |
---|
| 806 | ENDIF |
---|
| 807 | |
---|
| 808 | IF ( gp_outside_of_building(5) == 1 .AND. & |
---|
| 809 | gp_outside_of_building(1) == 0 ) THEN |
---|
| 810 | num_gp = num_gp + 1 |
---|
[1359] | 811 | location(num_gp,1) = i * dx + 0.5_wp * dx |
---|
[849] | 812 | location(num_gp,2) = j * dy |
---|
[1359] | 813 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
[849] | 814 | ei(num_gp) = e(k,j,i+1) |
---|
| 815 | dissi(num_gp) = diss(k,j,i+1) |
---|
[1359] | 816 | de_dxi(num_gp) = 0.0_wp |
---|
[849] | 817 | de_dyi(num_gp) = de_dy(k,j,i+1) |
---|
| 818 | de_dzi(num_gp) = de_dz(k,j,i+1) |
---|
| 819 | ENDIF |
---|
| 820 | |
---|
| 821 | ! |
---|
| 822 | !-- If wall between gridpoint 5 and gridpoint 6, then |
---|
| 823 | !-- then Neumann boundary condition has to be applied |
---|
| 824 | IF ( gp_outside_of_building(5) == 1 .AND. & |
---|
| 825 | gp_outside_of_building(6) == 0 ) THEN |
---|
| 826 | num_gp = num_gp + 1 |
---|
| 827 | location(num_gp,1) = (i+1) * dx |
---|
[1359] | 828 | location(num_gp,2) = j * dy + 0.5_wp * dy |
---|
| 829 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
[849] | 830 | ei(num_gp) = e(k,j,i+1) |
---|
| 831 | dissi(num_gp) = diss(k,j,i+1) |
---|
| 832 | de_dxi(num_gp) = de_dx(k,j,i+1) |
---|
[1359] | 833 | de_dyi(num_gp) = 0.0_wp |
---|
[849] | 834 | de_dzi(num_gp) = de_dz(k,j,i+1) |
---|
| 835 | ENDIF |
---|
| 836 | |
---|
| 837 | IF ( gp_outside_of_building(6) == 1 .AND. & |
---|
| 838 | gp_outside_of_building(5) == 0 ) THEN |
---|
| 839 | num_gp = num_gp + 1 |
---|
| 840 | location(num_gp,1) = (i+1) * dx |
---|
[1359] | 841 | location(num_gp,2) = j * dy + 0.5_wp * dy |
---|
| 842 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
[849] | 843 | ei(num_gp) = e(k,j+1,i+1) |
---|
| 844 | dissi(num_gp) = diss(k,j+1,i+1) |
---|
| 845 | de_dxi(num_gp) = de_dx(k,j+1,i+1) |
---|
[1359] | 846 | de_dyi(num_gp) = 0.0_wp |
---|
[849] | 847 | de_dzi(num_gp) = de_dz(k,j+1,i+1) |
---|
| 848 | ENDIF |
---|
| 849 | |
---|
| 850 | ! |
---|
| 851 | !-- If wall between gridpoint 2 and gridpoint 6, then |
---|
| 852 | !-- Neumann boundary condition has to be applied |
---|
| 853 | IF ( gp_outside_of_building(2) == 1 .AND. & |
---|
| 854 | gp_outside_of_building(6) == 0 ) THEN |
---|
| 855 | num_gp = num_gp + 1 |
---|
[1359] | 856 | location(num_gp,1) = i * dx + 0.5_wp * dx |
---|
[849] | 857 | location(num_gp,2) = (j+1) * dy |
---|
[1359] | 858 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
[849] | 859 | ei(num_gp) = e(k,j+1,i) |
---|
| 860 | dissi(num_gp) = diss(k,j+1,i) |
---|
[1359] | 861 | de_dxi(num_gp) = 0.0_wp |
---|
[849] | 862 | de_dyi(num_gp) = de_dy(k,j+1,i) |
---|
| 863 | de_dzi(num_gp) = de_dz(k,j+1,i) |
---|
| 864 | ENDIF |
---|
| 865 | |
---|
| 866 | IF ( gp_outside_of_building(6) == 1 .AND. & |
---|
| 867 | gp_outside_of_building(2) == 0 ) THEN |
---|
| 868 | num_gp = num_gp + 1 |
---|
[1359] | 869 | location(num_gp,1) = i * dx + 0.5_wp * dx |
---|
[849] | 870 | location(num_gp,2) = (j+1) * dy |
---|
[1359] | 871 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
[849] | 872 | ei(num_gp) = e(k,j+1,i+1) |
---|
| 873 | dissi(num_gp) = diss(k,j+1,i+1) |
---|
[1359] | 874 | de_dxi(num_gp) = 0.0_wp |
---|
[849] | 875 | de_dyi(num_gp) = de_dy(k,j+1,i+1) |
---|
| 876 | de_dzi(num_gp) = de_dz(k,j+1,i+1) |
---|
| 877 | ENDIF |
---|
| 878 | |
---|
| 879 | ! |
---|
| 880 | !-- If wall between gridpoint 1 and gridpoint 2, then |
---|
| 881 | !-- Neumann boundary condition has to be applied |
---|
| 882 | IF ( gp_outside_of_building(1) == 1 .AND. & |
---|
| 883 | gp_outside_of_building(2) == 0 ) THEN |
---|
| 884 | num_gp = num_gp + 1 |
---|
| 885 | location(num_gp,1) = i * dx |
---|
[1359] | 886 | location(num_gp,2) = j * dy + 0.5_wp * dy |
---|
| 887 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
[849] | 888 | ei(num_gp) = e(k,j,i) |
---|
| 889 | dissi(num_gp) = diss(k,j,i) |
---|
| 890 | de_dxi(num_gp) = de_dx(k,j,i) |
---|
[1359] | 891 | de_dyi(num_gp) = 0.0_wp |
---|
[849] | 892 | de_dzi(num_gp) = de_dz(k,j,i) |
---|
| 893 | ENDIF |
---|
| 894 | |
---|
| 895 | IF ( gp_outside_of_building(2) == 1 .AND. & |
---|
| 896 | gp_outside_of_building(1) == 0 ) THEN |
---|
| 897 | num_gp = num_gp + 1 |
---|
| 898 | location(num_gp,1) = i * dx |
---|
[1359] | 899 | location(num_gp,2) = j * dy + 0.5_wp * dy |
---|
| 900 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
[849] | 901 | ei(num_gp) = e(k,j+1,i) |
---|
| 902 | dissi(num_gp) = diss(k,j+1,i) |
---|
| 903 | de_dxi(num_gp) = de_dx(k,j+1,i) |
---|
[1359] | 904 | de_dyi(num_gp) = 0.0_wp |
---|
[849] | 905 | de_dzi(num_gp) = de_dz(k,j+1,i) |
---|
| 906 | ENDIF |
---|
| 907 | |
---|
| 908 | ! |
---|
| 909 | !-- If wall between gridpoint 3 and gridpoint 7, then |
---|
| 910 | !-- Neumann boundary condition has to be applied |
---|
| 911 | IF ( gp_outside_of_building(3) == 1 .AND. & |
---|
| 912 | gp_outside_of_building(7) == 0 ) THEN |
---|
| 913 | num_gp = num_gp + 1 |
---|
[1359] | 914 | location(num_gp,1) = i * dx + 0.5_wp * dx |
---|
[849] | 915 | location(num_gp,2) = j * dy |
---|
[1359] | 916 | location(num_gp,3) = k * dz + 0.5_wp * dz |
---|
[849] | 917 | ei(num_gp) = e(k+1,j,i) |
---|
| 918 | dissi(num_gp) = diss(k+1,j,i) |
---|
[1359] | 919 | de_dxi(num_gp) = 0.0_wp |
---|
[849] | 920 | de_dyi(num_gp) = de_dy(k+1,j,i) |
---|
| 921 | de_dzi(num_gp) = de_dz(k+1,j,i) |
---|
| 922 | ENDIF |
---|
| 923 | |
---|
| 924 | IF ( gp_outside_of_building(7) == 1 .AND. & |
---|
| 925 | gp_outside_of_building(3) == 0 ) THEN |
---|
| 926 | num_gp = num_gp + 1 |
---|
[1359] | 927 | location(num_gp,1) = i * dx + 0.5_wp * dx |
---|
[849] | 928 | location(num_gp,2) = j * dy |
---|
[1359] | 929 | location(num_gp,3) = k * dz + 0.5_wp * dz |
---|
[849] | 930 | ei(num_gp) = e(k+1,j,i+1) |
---|
| 931 | dissi(num_gp) = diss(k+1,j,i+1) |
---|
[1359] | 932 | de_dxi(num_gp) = 0.0_wp |
---|
[849] | 933 | de_dyi(num_gp) = de_dy(k+1,j,i+1) |
---|
| 934 | de_dzi(num_gp) = de_dz(k+1,j,i+1) |
---|
| 935 | ENDIF |
---|
| 936 | |
---|
| 937 | ! |
---|
| 938 | !-- If wall between gridpoint 7 and gridpoint 8, then |
---|
| 939 | !-- Neumann boundary condition has to be applied |
---|
| 940 | IF ( gp_outside_of_building(7) == 1 .AND. & |
---|
| 941 | gp_outside_of_building(8) == 0 ) THEN |
---|
| 942 | num_gp = num_gp + 1 |
---|
| 943 | location(num_gp,1) = (i+1) * dx |
---|
[1359] | 944 | location(num_gp,2) = j * dy + 0.5_wp * dy |
---|
| 945 | location(num_gp,3) = k * dz + 0.5_wp * dz |
---|
[849] | 946 | ei(num_gp) = e(k+1,j,i+1) |
---|
| 947 | dissi(num_gp) = diss(k+1,j,i+1) |
---|
| 948 | de_dxi(num_gp) = de_dx(k+1,j,i+1) |
---|
[1359] | 949 | de_dyi(num_gp) = 0.0_wp |
---|
[849] | 950 | de_dzi(num_gp) = de_dz(k+1,j,i+1) |
---|
| 951 | ENDIF |
---|
| 952 | |
---|
| 953 | IF ( gp_outside_of_building(8) == 1 .AND. & |
---|
| 954 | gp_outside_of_building(7) == 0 ) THEN |
---|
| 955 | num_gp = num_gp + 1 |
---|
| 956 | location(num_gp,1) = (i+1) * dx |
---|
[1359] | 957 | location(num_gp,2) = j * dy + 0.5_wp * dy |
---|
| 958 | location(num_gp,3) = k * dz + 0.5_wp * dz |
---|
[849] | 959 | ei(num_gp) = e(k+1,j+1,i+1) |
---|
| 960 | dissi(num_gp) = diss(k+1,j+1,i+1) |
---|
| 961 | de_dxi(num_gp) = de_dx(k+1,j+1,i+1) |
---|
[1359] | 962 | de_dyi(num_gp) = 0.0_wp |
---|
[849] | 963 | de_dzi(num_gp) = de_dz(k+1,j+1,i+1) |
---|
| 964 | ENDIF |
---|
| 965 | |
---|
| 966 | ! |
---|
| 967 | !-- If wall between gridpoint 4 and gridpoint 8, then |
---|
| 968 | !-- Neumann boundary condition has to be applied |
---|
| 969 | IF ( gp_outside_of_building(4) == 1 .AND. & |
---|
| 970 | gp_outside_of_building(8) == 0 ) THEN |
---|
| 971 | num_gp = num_gp + 1 |
---|
[1359] | 972 | location(num_gp,1) = i * dx + 0.5_wp * dx |
---|
[849] | 973 | location(num_gp,2) = (j+1) * dy |
---|
[1359] | 974 | location(num_gp,3) = k * dz + 0.5_wp * dz |
---|
[849] | 975 | ei(num_gp) = e(k+1,j+1,i) |
---|
| 976 | dissi(num_gp) = diss(k+1,j+1,i) |
---|
[1359] | 977 | de_dxi(num_gp) = 0.0_wp |
---|
[849] | 978 | de_dyi(num_gp) = de_dy(k+1,j+1,i) |
---|
| 979 | de_dzi(num_gp) = de_dz(k+1,j+1,i) |
---|
| 980 | ENDIF |
---|
| 981 | |
---|
| 982 | IF ( gp_outside_of_building(8) == 1 .AND. & |
---|
| 983 | gp_outside_of_building(4) == 0 ) THEN |
---|
| 984 | num_gp = num_gp + 1 |
---|
[1359] | 985 | location(num_gp,1) = i * dx + 0.5_wp * dx |
---|
[849] | 986 | location(num_gp,2) = (j+1) * dy |
---|
[1359] | 987 | location(num_gp,3) = k * dz + 0.5_wp * dz |
---|
[849] | 988 | ei(num_gp) = e(k+1,j+1,i+1) |
---|
| 989 | dissi(num_gp) = diss(k+1,j+1,i+1) |
---|
[1359] | 990 | de_dxi(num_gp) = 0.0_wp |
---|
[849] | 991 | de_dyi(num_gp) = de_dy(k+1,j+1,i+1) |
---|
| 992 | de_dzi(num_gp) = de_dz(k+1,j+1,i+1) |
---|
| 993 | ENDIF |
---|
| 994 | |
---|
| 995 | ! |
---|
| 996 | !-- If wall between gridpoint 3 and gridpoint 4, then |
---|
| 997 | !-- Neumann boundary condition has to be applied |
---|
| 998 | IF ( gp_outside_of_building(3) == 1 .AND. & |
---|
| 999 | gp_outside_of_building(4) == 0 ) THEN |
---|
| 1000 | num_gp = num_gp + 1 |
---|
| 1001 | location(num_gp,1) = i * dx |
---|
[1359] | 1002 | location(num_gp,2) = j * dy + 0.5_wp * dy |
---|
| 1003 | location(num_gp,3) = k * dz + 0.5_wp * dz |
---|
[849] | 1004 | ei(num_gp) = e(k+1,j,i) |
---|
| 1005 | dissi(num_gp) = diss(k+1,j,i) |
---|
| 1006 | de_dxi(num_gp) = de_dx(k+1,j,i) |
---|
[1359] | 1007 | de_dyi(num_gp) = 0.0_wp |
---|
[849] | 1008 | de_dzi(num_gp) = de_dz(k+1,j,i) |
---|
| 1009 | ENDIF |
---|
| 1010 | |
---|
| 1011 | IF ( gp_outside_of_building(4) == 1 .AND. & |
---|
| 1012 | gp_outside_of_building(3) == 0 ) THEN |
---|
| 1013 | num_gp = num_gp + 1 |
---|
| 1014 | location(num_gp,1) = i * dx |
---|
[1359] | 1015 | location(num_gp,2) = j * dy + 0.5_wp * dy |
---|
| 1016 | location(num_gp,3) = k * dz + 0.5_wp * dz |
---|
[849] | 1017 | ei(num_gp) = e(k+1,j+1,i) |
---|
| 1018 | dissi(num_gp) = diss(k+1,j+1,i) |
---|
| 1019 | de_dxi(num_gp) = de_dx(k+1,j+1,i) |
---|
[1359] | 1020 | de_dyi(num_gp) = 0.0_wp |
---|
[849] | 1021 | de_dzi(num_gp) = de_dz(k+1,j+1,i) |
---|
| 1022 | ENDIF |
---|
| 1023 | |
---|
| 1024 | ! |
---|
| 1025 | !-- If wall between gridpoint 1 and gridpoint 3, then |
---|
| 1026 | !-- Neumann boundary condition has to be applied |
---|
| 1027 | !-- (only one case as only building beneath is possible) |
---|
| 1028 | IF ( gp_outside_of_building(1) == 0 .AND. & |
---|
| 1029 | gp_outside_of_building(3) == 1 ) THEN |
---|
| 1030 | num_gp = num_gp + 1 |
---|
| 1031 | location(num_gp,1) = i * dx |
---|
| 1032 | location(num_gp,2) = j * dy |
---|
| 1033 | location(num_gp,3) = k * dz |
---|
| 1034 | ei(num_gp) = e(k+1,j,i) |
---|
| 1035 | dissi(num_gp) = diss(k+1,j,i) |
---|
| 1036 | de_dxi(num_gp) = de_dx(k+1,j,i) |
---|
| 1037 | de_dyi(num_gp) = de_dy(k+1,j,i) |
---|
[1359] | 1038 | de_dzi(num_gp) = 0.0_wp |
---|
[849] | 1039 | ENDIF |
---|
| 1040 | |
---|
| 1041 | ! |
---|
| 1042 | !-- If wall between gridpoint 5 and gridpoint 7, then |
---|
| 1043 | !-- Neumann boundary condition has to be applied |
---|
| 1044 | !-- (only one case as only building beneath is possible) |
---|
| 1045 | IF ( gp_outside_of_building(5) == 0 .AND. & |
---|
| 1046 | gp_outside_of_building(7) == 1 ) THEN |
---|
| 1047 | num_gp = num_gp + 1 |
---|
| 1048 | location(num_gp,1) = (i+1) * dx |
---|
| 1049 | location(num_gp,2) = j * dy |
---|
| 1050 | location(num_gp,3) = k * dz |
---|
| 1051 | ei(num_gp) = e(k+1,j,i+1) |
---|
| 1052 | dissi(num_gp) = diss(k+1,j,i+1) |
---|
| 1053 | de_dxi(num_gp) = de_dx(k+1,j,i+1) |
---|
| 1054 | de_dyi(num_gp) = de_dy(k+1,j,i+1) |
---|
[1359] | 1055 | de_dzi(num_gp) = 0.0_wp |
---|
[849] | 1056 | ENDIF |
---|
| 1057 | |
---|
| 1058 | ! |
---|
| 1059 | !-- If wall between gridpoint 2 and gridpoint 4, then |
---|
| 1060 | !-- Neumann boundary condition has to be applied |
---|
| 1061 | !-- (only one case as only building beneath is possible) |
---|
| 1062 | IF ( gp_outside_of_building(2) == 0 .AND. & |
---|
| 1063 | gp_outside_of_building(4) == 1 ) THEN |
---|
| 1064 | num_gp = num_gp + 1 |
---|
| 1065 | location(num_gp,1) = i * dx |
---|
| 1066 | location(num_gp,2) = (j+1) * dy |
---|
| 1067 | location(num_gp,3) = k * dz |
---|
| 1068 | ei(num_gp) = e(k+1,j+1,i) |
---|
| 1069 | dissi(num_gp) = diss(k+1,j+1,i) |
---|
| 1070 | de_dxi(num_gp) = de_dx(k+1,j+1,i) |
---|
| 1071 | de_dyi(num_gp) = de_dy(k+1,j+1,i) |
---|
[1359] | 1072 | de_dzi(num_gp) = 0.0_wp |
---|
[849] | 1073 | ENDIF |
---|
| 1074 | |
---|
| 1075 | ! |
---|
| 1076 | !-- If wall between gridpoint 6 and gridpoint 8, then |
---|
| 1077 | !-- Neumann boundary condition has to be applied |
---|
| 1078 | !-- (only one case as only building beneath is possible) |
---|
| 1079 | IF ( gp_outside_of_building(6) == 0 .AND. & |
---|
| 1080 | gp_outside_of_building(8) == 1 ) THEN |
---|
| 1081 | num_gp = num_gp + 1 |
---|
| 1082 | location(num_gp,1) = (i+1) * dx |
---|
| 1083 | location(num_gp,2) = (j+1) * dy |
---|
| 1084 | location(num_gp,3) = k * dz |
---|
| 1085 | ei(num_gp) = e(k+1,j+1,i+1) |
---|
| 1086 | dissi(num_gp) = diss(k+1,j+1,i+1) |
---|
| 1087 | de_dxi(num_gp) = de_dx(k+1,j+1,i+1) |
---|
| 1088 | de_dyi(num_gp) = de_dy(k+1,j+1,i+1) |
---|
[1359] | 1089 | de_dzi(num_gp) = 0.0_wp |
---|
[849] | 1090 | ENDIF |
---|
| 1091 | |
---|
| 1092 | ! |
---|
| 1093 | !-- Carry out the interpolation |
---|
| 1094 | IF ( num_gp == 1 ) THEN |
---|
| 1095 | ! |
---|
| 1096 | !-- If only one of the gridpoints is situated outside of the |
---|
| 1097 | !-- building, it follows that the values at the particle |
---|
| 1098 | !-- location are the same as the gridpoint values |
---|
[1359] | 1099 | e_int(n) = ei(num_gp) |
---|
| 1100 | diss_int(n) = dissi(num_gp) |
---|
| 1101 | de_dx_int(n) = de_dxi(num_gp) |
---|
| 1102 | de_dy_int(n) = de_dyi(num_gp) |
---|
| 1103 | de_dz_int(n) = de_dzi(num_gp) |
---|
[849] | 1104 | ELSE IF ( num_gp > 1 ) THEN |
---|
| 1105 | |
---|
[1359] | 1106 | d_sum = 0.0_wp |
---|
[849] | 1107 | ! |
---|
| 1108 | !-- Evaluation of the distances between the gridpoints |
---|
| 1109 | !-- contributing to the interpolated values, and the particle |
---|
| 1110 | !-- location |
---|
| 1111 | DO agp = 1, num_gp |
---|
| 1112 | d_gp_pl(agp) = ( particles(n)%x-location(agp,1) )**2 & |
---|
| 1113 | + ( particles(n)%y-location(agp,2) )**2 & |
---|
[1359] | 1114 | + ( zv(n)-location(agp,3) )**2 |
---|
[849] | 1115 | d_sum = d_sum + d_gp_pl(agp) |
---|
| 1116 | ENDDO |
---|
| 1117 | |
---|
| 1118 | ! |
---|
| 1119 | !-- Finally the interpolation can be carried out |
---|
[1359] | 1120 | e_int(n) = 0.0_wp |
---|
| 1121 | diss_int(n) = 0.0_wp |
---|
| 1122 | de_dx_int(n) = 0.0_wp |
---|
| 1123 | de_dy_int(n) = 0.0_wp |
---|
| 1124 | de_dz_int(n) = 0.0_wp |
---|
[849] | 1125 | DO agp = 1, num_gp |
---|
[1359] | 1126 | e_int(n) = e_int(n) + ( d_sum - d_gp_pl(agp) ) * & |
---|
[849] | 1127 | ei(agp) / ( (num_gp-1) * d_sum ) |
---|
[1359] | 1128 | diss_int(n) = diss_int(n) + ( d_sum - d_gp_pl(agp) ) * & |
---|
[849] | 1129 | dissi(agp) / ( (num_gp-1) * d_sum ) |
---|
[1359] | 1130 | de_dx_int(n) = de_dx_int(n) + ( d_sum - d_gp_pl(agp) ) * & |
---|
[849] | 1131 | de_dxi(agp) / ( (num_gp-1) * d_sum ) |
---|
[1359] | 1132 | de_dy_int(n) = de_dy_int(n) + ( d_sum - d_gp_pl(agp) ) * & |
---|
[849] | 1133 | de_dyi(agp) / ( (num_gp-1) * d_sum ) |
---|
[1359] | 1134 | de_dz_int(n) = de_dz_int(n) + ( d_sum - d_gp_pl(agp) ) * & |
---|
[849] | 1135 | de_dzi(agp) / ( (num_gp-1) * d_sum ) |
---|
| 1136 | ENDDO |
---|
| 1137 | |
---|
| 1138 | ENDIF |
---|
| 1139 | |
---|
| 1140 | ENDIF |
---|
[1359] | 1141 | ENDDO |
---|
| 1142 | ENDIF |
---|
[849] | 1143 | |
---|
[1359] | 1144 | DO nb = 0,7 |
---|
| 1145 | i = ip + block_offset(nb)%i_off |
---|
| 1146 | j = jp + block_offset(nb)%j_off |
---|
| 1147 | k = kp + block_offset(nb)%k_off |
---|
[849] | 1148 | |
---|
[1359] | 1149 | DO n = start_index(nb), end_index(nb) |
---|
[849] | 1150 | ! |
---|
[1359] | 1151 | !-- Vertical interpolation of the horizontally averaged SGS TKE and |
---|
| 1152 | !-- resolved-scale velocity variances and use the interpolated values |
---|
| 1153 | !-- to calculate the coefficient fs, which is a measure of the ratio |
---|
| 1154 | !-- of the subgrid-scale turbulent kinetic energy to the total amount |
---|
| 1155 | !-- of turbulent kinetic energy. |
---|
| 1156 | IF ( k == 0 ) THEN |
---|
| 1157 | e_mean_int = hom(0,1,8,0) |
---|
| 1158 | ELSE |
---|
| 1159 | e_mean_int = hom(k,1,8,0) + & |
---|
| 1160 | ( hom(k+1,1,8,0) - hom(k,1,8,0) ) / & |
---|
| 1161 | ( zu(k+1) - zu(k) ) * & |
---|
| 1162 | ( zv(n) - zu(k) ) |
---|
| 1163 | ENDIF |
---|
[849] | 1164 | |
---|
[1685] | 1165 | kw = kp - 1 |
---|
[849] | 1166 | |
---|
[1359] | 1167 | IF ( k == 0 ) THEN |
---|
| 1168 | aa = hom(k+1,1,30,0) * ( zv(n) / & |
---|
| 1169 | ( 0.5_wp * ( zu(k+1) - zu(k) ) ) ) |
---|
| 1170 | bb = hom(k+1,1,31,0) * ( zv(n) / & |
---|
| 1171 | ( 0.5_wp * ( zu(k+1) - zu(k) ) ) ) |
---|
| 1172 | cc = hom(kw+1,1,32,0) * ( zv(n) / & |
---|
| 1173 | ( 1.0_wp * ( zw(kw+1) - zw(kw) ) ) ) |
---|
| 1174 | ELSE |
---|
| 1175 | aa = hom(k,1,30,0) + ( hom(k+1,1,30,0) - hom(k,1,30,0) ) * & |
---|
| 1176 | ( ( zv(n) - zu(k) ) / ( zu(k+1) - zu(k) ) ) |
---|
| 1177 | bb = hom(k,1,31,0) + ( hom(k+1,1,31,0) - hom(k,1,31,0) ) * & |
---|
| 1178 | ( ( zv(n) - zu(k) ) / ( zu(k+1) - zu(k) ) ) |
---|
| 1179 | cc = hom(kw,1,32,0) + ( hom(kw+1,1,32,0)-hom(kw,1,32,0) ) * & |
---|
| 1180 | ( ( zv(n) - zw(kw) ) / ( zw(kw+1)-zw(kw) ) ) |
---|
| 1181 | ENDIF |
---|
[849] | 1182 | |
---|
[1359] | 1183 | vv_int = ( 1.0_wp / 3.0_wp ) * ( aa + bb + cc ) |
---|
| 1184 | ! |
---|
| 1185 | !-- Needed to avoid NaN particle velocities. The value of 1.0 is just |
---|
| 1186 | !-- an educated guess for the given case. |
---|
| 1187 | IF ( vv_int + ( 2.0_wp / 3.0_wp ) * e_mean_int == 0.0_wp ) THEN |
---|
| 1188 | fs_int(n) = 1.0_wp |
---|
| 1189 | ELSE |
---|
| 1190 | fs_int(n) = ( 2.0_wp / 3.0_wp ) * e_mean_int / & |
---|
| 1191 | ( vv_int + ( 2.0_wp / 3.0_wp ) * e_mean_int ) |
---|
| 1192 | ENDIF |
---|
[849] | 1193 | |
---|
[1359] | 1194 | ENDDO |
---|
| 1195 | ENDDO |
---|
[849] | 1196 | |
---|
[1359] | 1197 | DO n = 1, number_of_particles |
---|
| 1198 | |
---|
| 1199 | rg(n,1) = random_gauss( iran_part, 5.0_wp ) |
---|
| 1200 | rg(n,2) = random_gauss( iran_part, 5.0_wp ) |
---|
| 1201 | rg(n,3) = random_gauss( iran_part, 5.0_wp ) |
---|
| 1202 | |
---|
| 1203 | ENDDO |
---|
| 1204 | |
---|
| 1205 | DO n = 1, number_of_particles |
---|
[849] | 1206 | ! |
---|
| 1207 | !-- Calculate the Lagrangian timescale according to Weil et al. (2004). |
---|
[1359] | 1208 | lagr_timescale = ( 4.0_wp * e_int(n) ) / & |
---|
| 1209 | ( 3.0_wp * fs_int(n) * c_0 * diss_int(n) ) |
---|
[849] | 1210 | |
---|
| 1211 | ! |
---|
| 1212 | !-- Calculate the next particle timestep. dt_gap is the time needed to |
---|
| 1213 | !-- complete the current LES timestep. |
---|
| 1214 | dt_gap = dt_3d - particles(n)%dt_sum |
---|
[1359] | 1215 | dt_particle(n) = MIN( dt_3d, 0.025_wp * lagr_timescale, dt_gap ) |
---|
[849] | 1216 | |
---|
| 1217 | ! |
---|
| 1218 | !-- The particle timestep should not be too small in order to prevent |
---|
| 1219 | !-- the number of particle timesteps of getting too large |
---|
[1359] | 1220 | IF ( dt_particle(n) < dt_min_part .AND. dt_min_part < dt_gap ) THEN |
---|
| 1221 | dt_particle(n) = dt_min_part |
---|
[849] | 1222 | ENDIF |
---|
| 1223 | |
---|
| 1224 | ! |
---|
| 1225 | !-- Calculate the SGS velocity components |
---|
[1359] | 1226 | IF ( particles(n)%age == 0.0_wp ) THEN |
---|
[849] | 1227 | ! |
---|
| 1228 | !-- For new particles the SGS components are derived from the SGS |
---|
| 1229 | !-- TKE. Limit the Gaussian random number to the interval |
---|
| 1230 | !-- [-5.0*sigma, 5.0*sigma] in order to prevent the SGS velocities |
---|
| 1231 | !-- from becoming unrealistically large. |
---|
[1359] | 1232 | particles(n)%rvar1 = SQRT( 2.0_wp * sgs_wfu_part * e_int(n) ) * & |
---|
| 1233 | ( rg(n,1) - 1.0_wp ) |
---|
| 1234 | particles(n)%rvar2 = SQRT( 2.0_wp * sgs_wfv_part * e_int(n) ) * & |
---|
| 1235 | ( rg(n,2) - 1.0_wp ) |
---|
| 1236 | particles(n)%rvar3 = SQRT( 2.0_wp * sgs_wfw_part * e_int(n) ) * & |
---|
| 1237 | ( rg(n,3) - 1.0_wp ) |
---|
[849] | 1238 | |
---|
| 1239 | ELSE |
---|
| 1240 | ! |
---|
| 1241 | !-- Restriction of the size of the new timestep: compared to the |
---|
| 1242 | !-- previous timestep the increase must not exceed 200% |
---|
| 1243 | |
---|
| 1244 | dt_particle_m = particles(n)%age - particles(n)%age_m |
---|
[1359] | 1245 | IF ( dt_particle(n) > 2.0_wp * dt_particle_m ) THEN |
---|
| 1246 | dt_particle(n) = 2.0_wp * dt_particle_m |
---|
[849] | 1247 | ENDIF |
---|
| 1248 | |
---|
| 1249 | ! |
---|
| 1250 | !-- For old particles the SGS components are correlated with the |
---|
| 1251 | !-- values from the previous timestep. Random numbers have also to |
---|
| 1252 | !-- be limited (see above). |
---|
| 1253 | !-- As negative values for the subgrid TKE are not allowed, the |
---|
| 1254 | !-- change of the subgrid TKE with time cannot be smaller than |
---|
[1359] | 1255 | !-- -e_int(n)/dt_particle. This value is used as a lower boundary |
---|
[849] | 1256 | !-- value for the change of TKE |
---|
| 1257 | |
---|
[1359] | 1258 | de_dt_min = - e_int(n) / dt_particle(n) |
---|
[849] | 1259 | |
---|
[1359] | 1260 | de_dt = ( e_int(n) - particles(n)%e_m ) / dt_particle_m |
---|
[849] | 1261 | |
---|
| 1262 | IF ( de_dt < de_dt_min ) THEN |
---|
| 1263 | de_dt = de_dt_min |
---|
| 1264 | ENDIF |
---|
| 1265 | |
---|
[1359] | 1266 | particles(n)%rvar1 = particles(n)%rvar1 - fs_int(n) * c_0 * & |
---|
| 1267 | diss_int(n) * particles(n)%rvar1 * dt_particle(n) / & |
---|
| 1268 | ( 4.0_wp * sgs_wfu_part * e_int(n) ) + & |
---|
| 1269 | ( 2.0_wp * sgs_wfu_part * de_dt * & |
---|
| 1270 | particles(n)%rvar1 / & |
---|
| 1271 | ( 2.0_wp * sgs_wfu_part * e_int(n) ) + & |
---|
| 1272 | de_dx_int(n) & |
---|
| 1273 | ) * dt_particle(n) / 2.0_wp + & |
---|
| 1274 | SQRT( fs_int(n) * c_0 * diss_int(n) ) * & |
---|
| 1275 | ( rg(n,1) - 1.0_wp ) * & |
---|
| 1276 | SQRT( dt_particle(n) ) |
---|
[849] | 1277 | |
---|
[1359] | 1278 | particles(n)%rvar2 = particles(n)%rvar2 - fs_int(n) * c_0 * & |
---|
| 1279 | diss_int(n) * particles(n)%rvar2 * dt_particle(n) / & |
---|
| 1280 | ( 4.0_wp * sgs_wfv_part * e_int(n) ) + & |
---|
| 1281 | ( 2.0_wp * sgs_wfv_part * de_dt * & |
---|
| 1282 | particles(n)%rvar2 / & |
---|
| 1283 | ( 2.0_wp * sgs_wfv_part * e_int(n) ) + & |
---|
| 1284 | de_dy_int(n) & |
---|
| 1285 | ) * dt_particle(n) / 2.0_wp + & |
---|
| 1286 | SQRT( fs_int(n) * c_0 * diss_int(n) ) * & |
---|
| 1287 | ( rg(n,2) - 1.0_wp ) * & |
---|
| 1288 | SQRT( dt_particle(n) ) |
---|
[849] | 1289 | |
---|
[1359] | 1290 | particles(n)%rvar3 = particles(n)%rvar3 - fs_int(n) * c_0 * & |
---|
| 1291 | diss_int(n) * particles(n)%rvar3 * dt_particle(n) / & |
---|
| 1292 | ( 4.0_wp * sgs_wfw_part * e_int(n) ) + & |
---|
| 1293 | ( 2.0_wp * sgs_wfw_part * de_dt * & |
---|
| 1294 | particles(n)%rvar3 / & |
---|
| 1295 | ( 2.0_wp * sgs_wfw_part * e_int(n) ) + & |
---|
| 1296 | de_dz_int(n) & |
---|
| 1297 | ) * dt_particle(n) / 2.0_wp + & |
---|
| 1298 | SQRT( fs_int(n) * c_0 * diss_int(n) ) * & |
---|
| 1299 | ( rg(n,3) - 1.0_wp ) * & |
---|
| 1300 | SQRT( dt_particle(n) ) |
---|
[849] | 1301 | |
---|
| 1302 | ENDIF |
---|
[1359] | 1303 | u_int(n) = u_int(n) + particles(n)%rvar1 |
---|
| 1304 | v_int(n) = v_int(n) + particles(n)%rvar2 |
---|
| 1305 | w_int(n) = w_int(n) + particles(n)%rvar3 |
---|
[849] | 1306 | |
---|
| 1307 | ! |
---|
| 1308 | !-- Store the SGS TKE of the current timelevel which is needed for |
---|
| 1309 | !-- for calculating the SGS particle velocities at the next timestep |
---|
[1359] | 1310 | particles(n)%e_m = e_int(n) |
---|
| 1311 | ENDDO |
---|
[849] | 1312 | |
---|
[1359] | 1313 | ELSE |
---|
[849] | 1314 | ! |
---|
[1359] | 1315 | !-- If no SGS velocities are used, only the particle timestep has to |
---|
| 1316 | !-- be set |
---|
| 1317 | dt_particle = dt_3d |
---|
[849] | 1318 | |
---|
[1359] | 1319 | ENDIF |
---|
[849] | 1320 | ! |
---|
[1359] | 1321 | !-- Store the old age of the particle ( needed to prevent that a |
---|
| 1322 | !-- particle crosses several PEs during one timestep, and for the |
---|
| 1323 | !-- evaluation of the subgrid particle velocity fluctuations ) |
---|
| 1324 | particles(1:number_of_particles)%age_m = particles(1:number_of_particles)%age |
---|
[849] | 1325 | |
---|
[1359] | 1326 | dens_ratio = particle_groups(particles(1:number_of_particles)%group)%density_ratio |
---|
[849] | 1327 | |
---|
[1359] | 1328 | IF ( ANY( dens_ratio == 0.0_wp ) ) THEN |
---|
| 1329 | DO n = 1, number_of_particles |
---|
| 1330 | |
---|
[849] | 1331 | ! |
---|
[1359] | 1332 | !-- Particle advection |
---|
| 1333 | IF ( dens_ratio(n) == 0.0_wp ) THEN |
---|
[849] | 1334 | ! |
---|
[1359] | 1335 | !-- Pure passive transport (without particle inertia) |
---|
| 1336 | particles(n)%x = xv(n) + u_int(n) * dt_particle(n) |
---|
| 1337 | particles(n)%y = yv(n) + v_int(n) * dt_particle(n) |
---|
| 1338 | particles(n)%z = zv(n) + w_int(n) * dt_particle(n) |
---|
[849] | 1339 | |
---|
[1359] | 1340 | particles(n)%speed_x = u_int(n) |
---|
| 1341 | particles(n)%speed_y = v_int(n) |
---|
| 1342 | particles(n)%speed_z = w_int(n) |
---|
[849] | 1343 | |
---|
[1359] | 1344 | ELSE |
---|
[849] | 1345 | ! |
---|
[1359] | 1346 | !-- Transport of particles with inertia |
---|
| 1347 | particles(n)%x = particles(n)%x + particles(n)%speed_x * & |
---|
| 1348 | dt_particle(n) |
---|
| 1349 | particles(n)%y = particles(n)%y + particles(n)%speed_y * & |
---|
| 1350 | dt_particle(n) |
---|
| 1351 | particles(n)%z = particles(n)%z + particles(n)%speed_z * & |
---|
| 1352 | dt_particle(n) |
---|
[849] | 1353 | |
---|
| 1354 | ! |
---|
[1359] | 1355 | !-- Update of the particle velocity |
---|
| 1356 | IF ( cloud_droplets ) THEN |
---|
[1822] | 1357 | ! |
---|
| 1358 | !-- Terminal velocity is computed for vertical direction (Rogers et |
---|
| 1359 | !-- al., 1993, J. Appl. Meteorol.) |
---|
| 1360 | diameter = particles(n)%radius * 2000.0_wp !diameter in mm |
---|
| 1361 | IF ( diameter <= d0_rog ) THEN |
---|
| 1362 | w_s = k_cap_rog * diameter * ( 1.0_wp - EXP( -k_low_rog * diameter ) ) |
---|
| 1363 | ELSE |
---|
| 1364 | w_s = a_rog - b_rog * EXP( -c_rog * diameter ) |
---|
| 1365 | ENDIF |
---|
[1359] | 1366 | |
---|
[1822] | 1367 | ! |
---|
| 1368 | !-- If selected, add random velocities following Soelch and Kaercher |
---|
| 1369 | !-- (2010, Q. J. R. Meteorol. Soc.) |
---|
| 1370 | IF ( use_sgs_for_particles ) THEN |
---|
| 1371 | lagr_timescale = km(kp,jp,ip) / MAX( e(kp,jp,ip), 1.0E-20_wp ) |
---|
| 1372 | RL = EXP( -1.0_wp * dt_3d / lagr_timescale ) |
---|
| 1373 | sigma = SQRT( e(kp,jp,ip) ) |
---|
| 1374 | |
---|
| 1375 | rg1 = random_gauss( iran_part, 5.0_wp ) - 1.0_wp |
---|
| 1376 | rg2 = random_gauss( iran_part, 5.0_wp ) - 1.0_wp |
---|
| 1377 | rg3 = random_gauss( iran_part, 5.0_wp ) - 1.0_wp |
---|
| 1378 | |
---|
| 1379 | particles(n)%rvar1 = RL * particles(n)%rvar1 + & |
---|
| 1380 | SQRT( 1.0_wp - RL**2 ) * sigma * rg1 |
---|
| 1381 | particles(n)%rvar2 = RL * particles(n)%rvar2 + & |
---|
| 1382 | SQRT( 1.0_wp - RL**2 ) * sigma * rg2 |
---|
| 1383 | particles(n)%rvar3 = RL * particles(n)%rvar3 + & |
---|
| 1384 | SQRT( 1.0_wp - RL**2 ) * sigma * rg3 |
---|
| 1385 | |
---|
| 1386 | particles(n)%speed_x = u_int(n) + particles(n)%rvar1 |
---|
| 1387 | particles(n)%speed_y = v_int(n) + particles(n)%rvar2 |
---|
| 1388 | particles(n)%speed_z = w_int(n) + particles(n)%rvar3 - w_s |
---|
| 1389 | ELSE |
---|
| 1390 | particles(n)%speed_x = u_int(n) |
---|
| 1391 | particles(n)%speed_y = v_int(n) |
---|
| 1392 | particles(n)%speed_z = w_int(n) - w_s |
---|
| 1393 | ENDIF |
---|
| 1394 | |
---|
[1359] | 1395 | ELSE |
---|
[1822] | 1396 | |
---|
| 1397 | IF ( use_sgs_for_particles ) THEN |
---|
| 1398 | exp_arg = particle_groups(particles(n)%group)%exp_arg |
---|
| 1399 | exp_term = EXP( -exp_arg * dt_particle(n) ) |
---|
| 1400 | ELSE |
---|
| 1401 | exp_arg = particle_groups(particles(n)%group)%exp_arg |
---|
| 1402 | exp_term = particle_groups(particles(n)%group)%exp_term |
---|
| 1403 | ENDIF |
---|
| 1404 | particles(n)%speed_x = particles(n)%speed_x * exp_term + & |
---|
| 1405 | u_int(n) * ( 1.0_wp - exp_term ) |
---|
| 1406 | particles(n)%speed_y = particles(n)%speed_y * exp_term + & |
---|
| 1407 | v_int(n) * ( 1.0_wp - exp_term ) |
---|
| 1408 | particles(n)%speed_z = particles(n)%speed_z * exp_term + & |
---|
| 1409 | ( w_int(n) - ( 1.0_wp - dens_ratio(n) ) * & |
---|
| 1410 | g / exp_arg ) * ( 1.0_wp - exp_term ) |
---|
[1359] | 1411 | ENDIF |
---|
[1822] | 1412 | |
---|
[1359] | 1413 | ENDIF |
---|
| 1414 | |
---|
| 1415 | ENDDO |
---|
| 1416 | |
---|
| 1417 | ELSE |
---|
| 1418 | |
---|
| 1419 | DO n = 1, number_of_particles |
---|
| 1420 | |
---|
| 1421 | !-- Transport of particles with inertia |
---|
| 1422 | particles(n)%x = xv(n) + particles(n)%speed_x * dt_particle(n) |
---|
| 1423 | particles(n)%y = yv(n) + particles(n)%speed_y * dt_particle(n) |
---|
| 1424 | particles(n)%z = zv(n) + particles(n)%speed_z * dt_particle(n) |
---|
| 1425 | ! |
---|
[849] | 1426 | !-- Update of the particle velocity |
---|
| 1427 | IF ( cloud_droplets ) THEN |
---|
[1822] | 1428 | ! |
---|
| 1429 | !-- Terminal velocity is computed for vertical direction (Rogers et al., |
---|
| 1430 | !-- 1993, J. Appl. Meteorol.) |
---|
| 1431 | diameter = particles(n)%radius * 2000.0_wp !diameter in mm |
---|
| 1432 | IF ( diameter <= d0_rog ) THEN |
---|
| 1433 | w_s = k_cap_rog * diameter * ( 1.0_wp - EXP( -k_low_rog * diameter ) ) |
---|
| 1434 | ELSE |
---|
| 1435 | w_s = a_rog - b_rog * EXP( -c_rog * diameter ) |
---|
| 1436 | ENDIF |
---|
[1359] | 1437 | |
---|
[1822] | 1438 | ! |
---|
| 1439 | !-- If selected, add random velocities following Soelch and Kaercher |
---|
| 1440 | !-- (2010, Q. J. R. Meteorol. Soc.) |
---|
| 1441 | IF ( use_sgs_for_particles ) THEN |
---|
| 1442 | lagr_timescale = km(kp,jp,ip) / MAX( e(kp,jp,ip), 1.0E-20_wp ) |
---|
| 1443 | RL = EXP( -1.0_wp * dt_3d / lagr_timescale ) |
---|
| 1444 | sigma = SQRT( e(kp,jp,ip) ) |
---|
[1359] | 1445 | |
---|
[1822] | 1446 | rg1 = random_gauss( iran_part, 5.0_wp ) - 1.0_wp |
---|
| 1447 | rg2 = random_gauss( iran_part, 5.0_wp ) - 1.0_wp |
---|
| 1448 | rg3 = random_gauss( iran_part, 5.0_wp ) - 1.0_wp |
---|
| 1449 | |
---|
| 1450 | particles(n)%rvar1 = RL * particles(n)%rvar1 + & |
---|
| 1451 | SQRT( 1.0_wp - RL**2 ) * sigma * rg1 |
---|
| 1452 | particles(n)%rvar2 = RL * particles(n)%rvar2 + & |
---|
| 1453 | SQRT( 1.0_wp - RL**2 ) * sigma * rg2 |
---|
| 1454 | particles(n)%rvar3 = RL * particles(n)%rvar3 + & |
---|
| 1455 | SQRT( 1.0_wp - RL**2 ) * sigma * rg3 |
---|
| 1456 | |
---|
| 1457 | particles(n)%speed_x = u_int(n) + particles(n)%rvar1 |
---|
| 1458 | particles(n)%speed_y = v_int(n) + particles(n)%rvar2 |
---|
| 1459 | particles(n)%speed_z = w_int(n) + particles(n)%rvar3 - w_s |
---|
| 1460 | ELSE |
---|
| 1461 | particles(n)%speed_x = u_int(n) |
---|
| 1462 | particles(n)%speed_y = v_int(n) |
---|
| 1463 | particles(n)%speed_z = w_int(n) - w_s |
---|
| 1464 | ENDIF |
---|
| 1465 | |
---|
[849] | 1466 | ELSE |
---|
[1822] | 1467 | |
---|
| 1468 | IF ( use_sgs_for_particles ) THEN |
---|
| 1469 | exp_arg = particle_groups(particles(n)%group)%exp_arg |
---|
| 1470 | exp_term = EXP( -exp_arg * dt_particle(n) ) |
---|
| 1471 | ELSE |
---|
| 1472 | exp_arg = particle_groups(particles(n)%group)%exp_arg |
---|
| 1473 | exp_term = particle_groups(particles(n)%group)%exp_term |
---|
| 1474 | ENDIF |
---|
| 1475 | particles(n)%speed_x = particles(n)%speed_x * exp_term + & |
---|
| 1476 | u_int(n) * ( 1.0_wp - exp_term ) |
---|
| 1477 | particles(n)%speed_y = particles(n)%speed_y * exp_term + & |
---|
| 1478 | v_int(n) * ( 1.0_wp - exp_term ) |
---|
| 1479 | particles(n)%speed_z = particles(n)%speed_z * exp_term + & |
---|
| 1480 | ( w_int(n) - ( 1.0_wp - dens_ratio(n) ) * g / & |
---|
| 1481 | exp_arg ) * ( 1.0_wp - exp_term ) |
---|
[849] | 1482 | ENDIF |
---|
[1822] | 1483 | |
---|
[1359] | 1484 | ENDDO |
---|
[849] | 1485 | |
---|
[1359] | 1486 | ENDIF |
---|
| 1487 | |
---|
| 1488 | DO n = 1, number_of_particles |
---|
[849] | 1489 | ! |
---|
| 1490 | !-- Increment the particle age and the total time that the particle |
---|
| 1491 | !-- has advanced within the particle timestep procedure |
---|
[1359] | 1492 | particles(n)%age = particles(n)%age + dt_particle(n) |
---|
| 1493 | particles(n)%dt_sum = particles(n)%dt_sum + dt_particle(n) |
---|
[849] | 1494 | |
---|
| 1495 | ! |
---|
| 1496 | !-- Check whether there is still a particle that has not yet completed |
---|
| 1497 | !-- the total LES timestep |
---|
[1359] | 1498 | IF ( ( dt_3d - particles(n)%dt_sum ) > 1E-8_wp ) THEN |
---|
[849] | 1499 | dt_3d_reached_l = .FALSE. |
---|
| 1500 | ENDIF |
---|
| 1501 | |
---|
| 1502 | ENDDO |
---|
| 1503 | |
---|
[1359] | 1504 | CALL cpu_log( log_point_s(44), 'lpm_advec', 'pause' ) |
---|
[849] | 1505 | |
---|
| 1506 | END SUBROUTINE lpm_advec |
---|