[1359] | 1 | SUBROUTINE lpm_advec (ip,jp,kp) |
---|
[849] | 2 | |
---|
[1036] | 3 | !--------------------------------------------------------------------------------! |
---|
| 4 | ! This file is part of PALM. |
---|
| 5 | ! |
---|
| 6 | ! PALM is free software: you can redistribute it and/or modify it under the terms |
---|
| 7 | ! of the GNU General Public License as published by the Free Software Foundation, |
---|
| 8 | ! either version 3 of the License, or (at your option) any later version. |
---|
| 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
[1310] | 17 | ! Copyright 1997-2014 Leibniz Universitaet Hannover |
---|
[1036] | 18 | !--------------------------------------------------------------------------------! |
---|
| 19 | ! |
---|
[849] | 20 | ! Current revisions: |
---|
| 21 | ! ------------------ |
---|
[1370] | 22 | ! |
---|
[1584] | 23 | ! |
---|
[1321] | 24 | ! Former revisions: |
---|
| 25 | ! ----------------- |
---|
| 26 | ! $Id: lpm_advec.f90 1584 2015-04-15 12:17:32Z maronga $ |
---|
| 27 | ! |
---|
[1584] | 28 | ! 1583 2015-04-15 12:16:27Z suehring |
---|
| 29 | ! Bugfix: particle advection within Prandtl-layer in case of Galilei |
---|
| 30 | ! transformation. |
---|
| 31 | ! |
---|
[1370] | 32 | ! 1369 2014-04-24 05:57:38Z raasch |
---|
| 33 | ! usage of module interfaces removed |
---|
| 34 | ! |
---|
[1360] | 35 | ! 1359 2014-04-11 17:15:14Z hoffmann |
---|
| 36 | ! New particle structure integrated. |
---|
| 37 | ! Kind definition added to all floating point numbers. |
---|
| 38 | ! |
---|
[1323] | 39 | ! 1322 2014-03-20 16:38:49Z raasch |
---|
| 40 | ! REAL constants defined as wp_kind |
---|
| 41 | ! |
---|
[1321] | 42 | ! 1320 2014-03-20 08:40:49Z raasch |
---|
[1320] | 43 | ! ONLY-attribute added to USE-statements, |
---|
| 44 | ! kind-parameters added to all INTEGER and REAL declaration statements, |
---|
| 45 | ! kinds are defined in new module kinds, |
---|
| 46 | ! revision history before 2012 removed, |
---|
| 47 | ! comment fields (!:) to be used for variable explanations added to |
---|
| 48 | ! all variable declaration statements |
---|
[849] | 49 | ! |
---|
[1315] | 50 | ! 1314 2014-03-14 18:25:17Z suehring |
---|
| 51 | ! Vertical logarithmic interpolation of horizontal particle speed for particles |
---|
| 52 | ! between roughness height and first vertical grid level. |
---|
| 53 | ! |
---|
[1037] | 54 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
| 55 | ! code put under GPL (PALM 3.9) |
---|
| 56 | ! |
---|
[850] | 57 | ! 849 2012-03-15 10:35:09Z raasch |
---|
| 58 | ! initial revision (former part of advec_particles) |
---|
[849] | 59 | ! |
---|
[850] | 60 | ! |
---|
[849] | 61 | ! Description: |
---|
| 62 | ! ------------ |
---|
| 63 | ! Calculation of new particle positions due to advection using a simple Euler |
---|
| 64 | ! scheme. Particles may feel inertia effects. SGS transport can be included |
---|
| 65 | ! using the stochastic model of Weil et al. (2004, JAS, 61, 2877-2887). |
---|
| 66 | !------------------------------------------------------------------------------! |
---|
| 67 | |
---|
[1320] | 68 | USE arrays_3d, & |
---|
[1359] | 69 | ONLY: de_dx, de_dy, de_dz, diss, e, u, us, usws, v, vsws, w, z0, zu, & |
---|
| 70 | zw |
---|
[849] | 71 | |
---|
[1359] | 72 | USE cpulog |
---|
| 73 | |
---|
| 74 | USE pegrid |
---|
| 75 | |
---|
[1320] | 76 | USE control_parameters, & |
---|
| 77 | ONLY: atmos_ocean_sign, cloud_droplets, dt_3d, dt_3d_reached_l, dz, & |
---|
| 78 | g, kappa, molecular_viscosity, prandtl_layer, topography, & |
---|
[1359] | 79 | u_gtrans, v_gtrans, simulated_time |
---|
[849] | 80 | |
---|
[1320] | 81 | USE grid_variables, & |
---|
| 82 | ONLY: ddx, dx, ddy, dy |
---|
| 83 | |
---|
| 84 | USE indices, & |
---|
| 85 | ONLY: nzb, nzb_s_inner, nzt |
---|
| 86 | |
---|
| 87 | USE kinds |
---|
| 88 | |
---|
| 89 | USE particle_attributes, & |
---|
[1359] | 90 | ONLY: block_offset, c_0, density_ratio, dt_min_part, grid_particles, & |
---|
| 91 | iran_part, log_z_z0, number_of_particles, number_of_sublayers, & |
---|
| 92 | particles, particle_groups, offset_ocean_nzt, & |
---|
| 93 | offset_ocean_nzt_m1, sgs_wfu_part, sgs_wfv_part, sgs_wfw_part, & |
---|
| 94 | use_sgs_for_particles, vertical_particle_advection, z0_av_global |
---|
[1320] | 95 | |
---|
| 96 | USE statistics, & |
---|
| 97 | ONLY: hom |
---|
[849] | 98 | |
---|
[1320] | 99 | IMPLICIT NONE |
---|
[849] | 100 | |
---|
[1320] | 101 | INTEGER(iwp) :: agp !: |
---|
| 102 | INTEGER(iwp) :: gp_outside_of_building(1:8) !: |
---|
| 103 | INTEGER(iwp) :: i !: |
---|
[1359] | 104 | INTEGER(iwp) :: ip !: |
---|
[1320] | 105 | INTEGER(iwp) :: j !: |
---|
[1359] | 106 | INTEGER(iwp) :: jp !: |
---|
[1320] | 107 | INTEGER(iwp) :: k !: |
---|
[1359] | 108 | INTEGER(iwp) :: kp !: |
---|
[1320] | 109 | INTEGER(iwp) :: kw !: |
---|
| 110 | INTEGER(iwp) :: n !: |
---|
[1359] | 111 | INTEGER(iwp) :: nb !: |
---|
[1320] | 112 | INTEGER(iwp) :: num_gp !: |
---|
[849] | 113 | |
---|
[1359] | 114 | INTEGER(iwp), DIMENSION(0:7) :: start_index !: |
---|
| 115 | INTEGER(iwp), DIMENSION(0:7) :: end_index !: |
---|
| 116 | |
---|
[1320] | 117 | REAL(wp) :: aa !: |
---|
| 118 | REAL(wp) :: bb !: |
---|
| 119 | REAL(wp) :: cc !: |
---|
| 120 | REAL(wp) :: d_sum !: |
---|
| 121 | REAL(wp) :: d_z_p_z0 !: |
---|
| 122 | REAL(wp) :: dd !: |
---|
| 123 | REAL(wp) :: de_dx_int_l !: |
---|
| 124 | REAL(wp) :: de_dx_int_u !: |
---|
| 125 | REAL(wp) :: de_dy_int_l !: |
---|
| 126 | REAL(wp) :: de_dy_int_u !: |
---|
| 127 | REAL(wp) :: de_dt !: |
---|
| 128 | REAL(wp) :: de_dt_min !: |
---|
| 129 | REAL(wp) :: de_dz_int_l !: |
---|
| 130 | REAL(wp) :: de_dz_int_u !: |
---|
| 131 | REAL(wp) :: diss_int_l !: |
---|
| 132 | REAL(wp) :: diss_int_u !: |
---|
| 133 | REAL(wp) :: dt_gap !: |
---|
| 134 | REAL(wp) :: dt_particle_m !: |
---|
| 135 | REAL(wp) :: e_int_l !: |
---|
| 136 | REAL(wp) :: e_int_u !: |
---|
| 137 | REAL(wp) :: e_mean_int !: |
---|
| 138 | REAL(wp) :: exp_arg !: |
---|
| 139 | REAL(wp) :: exp_term !: |
---|
| 140 | REAL(wp) :: gg !: |
---|
| 141 | REAL(wp) :: height_int !: |
---|
| 142 | REAL(wp) :: height_p !: |
---|
| 143 | REAL(wp) :: lagr_timescale !: |
---|
| 144 | REAL(wp) :: location(1:30,1:3) !: |
---|
| 145 | REAL(wp) :: random_gauss !: |
---|
| 146 | REAL(wp) :: u_int_l !: |
---|
| 147 | REAL(wp) :: u_int_u !: |
---|
| 148 | REAL(wp) :: us_int !: |
---|
| 149 | REAL(wp) :: v_int_l !: |
---|
| 150 | REAL(wp) :: v_int_u !: |
---|
| 151 | REAL(wp) :: vv_int !: |
---|
| 152 | REAL(wp) :: w_int_l !: |
---|
| 153 | REAL(wp) :: w_int_u !: |
---|
| 154 | REAL(wp) :: x !: |
---|
| 155 | REAL(wp) :: y !: |
---|
| 156 | REAL(wp) :: z_p !: |
---|
[849] | 157 | |
---|
[1320] | 158 | REAL(wp), DIMENSION(1:30) :: d_gp_pl !: |
---|
| 159 | REAL(wp), DIMENSION(1:30) :: de_dxi !: |
---|
| 160 | REAL(wp), DIMENSION(1:30) :: de_dyi !: |
---|
| 161 | REAL(wp), DIMENSION(1:30) :: de_dzi !: |
---|
| 162 | REAL(wp), DIMENSION(1:30) :: dissi !: |
---|
| 163 | REAL(wp), DIMENSION(1:30) :: ei !: |
---|
[849] | 164 | |
---|
[1359] | 165 | REAL(wp), DIMENSION(number_of_particles) :: dens_ratio !: |
---|
| 166 | REAL(wp), DIMENSION(number_of_particles) :: de_dx_int !: |
---|
| 167 | REAL(wp), DIMENSION(number_of_particles) :: de_dy_int !: |
---|
| 168 | REAL(wp), DIMENSION(number_of_particles) :: de_dz_int !: |
---|
| 169 | REAL(wp), DIMENSION(number_of_particles) :: diss_int !: |
---|
| 170 | REAL(wp), DIMENSION(number_of_particles) :: dt_particle !: |
---|
| 171 | REAL(wp), DIMENSION(number_of_particles) :: e_int !: |
---|
| 172 | REAL(wp), DIMENSION(number_of_particles) :: fs_int !: |
---|
| 173 | REAL(wp), DIMENSION(number_of_particles) :: log_z_z0_int !: |
---|
| 174 | REAL(wp), DIMENSION(number_of_particles) :: u_int !: |
---|
| 175 | REAL(wp), DIMENSION(number_of_particles) :: v_int !: |
---|
| 176 | REAL(wp), DIMENSION(number_of_particles) :: w_int !: |
---|
| 177 | REAL(wp), DIMENSION(number_of_particles) :: xv !: |
---|
| 178 | REAL(wp), DIMENSION(number_of_particles) :: yv !: |
---|
| 179 | REAL(wp), DIMENSION(number_of_particles) :: zv !: |
---|
| 180 | |
---|
| 181 | REAL(wp), DIMENSION(number_of_particles, 3) :: rg !: |
---|
| 182 | |
---|
| 183 | CALL cpu_log( log_point_s(44), 'lpm_advec', 'continue' ) |
---|
| 184 | |
---|
[1314] | 185 | ! |
---|
| 186 | !-- Determine height of Prandtl layer and distance between Prandtl-layer |
---|
| 187 | !-- height and horizontal mean roughness height, which are required for |
---|
| 188 | !-- vertical logarithmic interpolation of horizontal particle speeds |
---|
| 189 | !-- (for particles below first vertical grid level). |
---|
| 190 | z_p = zu(nzb+1) - zw(nzb) |
---|
[1359] | 191 | d_z_p_z0 = 1.0_wp / ( z_p - z0_av_global ) |
---|
[849] | 192 | |
---|
[1359] | 193 | start_index = grid_particles(kp,jp,ip)%start_index |
---|
| 194 | end_index = grid_particles(kp,jp,ip)%end_index |
---|
[849] | 195 | |
---|
[1359] | 196 | xv = particles(1:number_of_particles)%x |
---|
| 197 | yv = particles(1:number_of_particles)%y |
---|
| 198 | zv = particles(1:number_of_particles)%z |
---|
[849] | 199 | |
---|
[1359] | 200 | DO nb = 0, 7 |
---|
[1314] | 201 | |
---|
[1359] | 202 | i = ip |
---|
| 203 | j = jp + block_offset(nb)%j_off |
---|
| 204 | k = kp + block_offset(nb)%k_off |
---|
| 205 | |
---|
[849] | 206 | ! |
---|
[1359] | 207 | !-- Interpolate u velocity-component |
---|
| 208 | DO n = start_index(nb), end_index(nb) |
---|
[1314] | 209 | ! |
---|
[1359] | 210 | !-- Interpolation of the u velocity component onto particle position. |
---|
| 211 | !-- Particles are interpolation bi-linearly in the horizontal and a |
---|
| 212 | !-- linearly in the vertical. An exception is made for particles below |
---|
| 213 | !-- the first vertical grid level in case of a prandtl layer. In this |
---|
| 214 | !-- case the horizontal particle velocity components are determined using |
---|
| 215 | !-- Monin-Obukhov relations (if branch). |
---|
| 216 | !-- First, check if particle is located below first vertical grid level |
---|
| 217 | !-- (Prandtl-layer height) |
---|
| 218 | IF ( prandtl_layer .AND. particles(n)%z < z_p ) THEN |
---|
[1314] | 219 | ! |
---|
[1359] | 220 | !-- Resolved-scale horizontal particle velocity is zero below z0. |
---|
| 221 | IF ( particles(n)%z < z0_av_global ) THEN |
---|
| 222 | u_int(n) = 0.0_wp |
---|
| 223 | ELSE |
---|
[1314] | 224 | ! |
---|
[1359] | 225 | !-- Determine the sublayer. Further used as index. |
---|
| 226 | height_p = ( particles(n)%z - z0_av_global ) & |
---|
| 227 | * REAL( number_of_sublayers, KIND=wp ) & |
---|
| 228 | * d_z_p_z0 |
---|
[1314] | 229 | ! |
---|
[1359] | 230 | !-- Calculate LOG(z/z0) for exact particle height. Therefore, |
---|
| 231 | !-- interpolate linearly between precalculated logarithm. |
---|
| 232 | log_z_z0_int(n) = log_z_z0(INT(height_p)) & |
---|
| 233 | + ( height_p - INT(height_p) ) & |
---|
| 234 | * ( log_z_z0(INT(height_p)+1) & |
---|
| 235 | - log_z_z0(INT(height_p)) & |
---|
| 236 | ) |
---|
[1314] | 237 | ! |
---|
[1359] | 238 | !-- Neutral solution is applied for all situations, e.g. also for |
---|
| 239 | !-- unstable and stable situations. Even though this is not exact |
---|
| 240 | !-- this saves a lot of CPU time since several calls of intrinsic |
---|
| 241 | !-- FORTRAN procedures (LOG, ATAN) are avoided, This is justified |
---|
| 242 | !-- as sensitivity studies revealed no significant effect of |
---|
| 243 | !-- using the neutral solution also for un/stable situations. |
---|
| 244 | !-- Calculated left and bottom index on u grid. |
---|
| 245 | us_int = 0.5_wp * ( us(j,i) + us(j,i-1) ) |
---|
[1314] | 246 | |
---|
[1359] | 247 | u_int = -usws(j,i) / ( us_int * kappa + 1E-10_wp ) & |
---|
[1583] | 248 | * log_z_z0_int(n) - u_gtrans |
---|
[1314] | 249 | |
---|
[1359] | 250 | ENDIF |
---|
| 251 | ! |
---|
| 252 | !-- Particle above the first grid level. Bi-linear interpolation in the |
---|
| 253 | !-- horizontal and linear interpolation in the vertical direction. |
---|
[1314] | 254 | ELSE |
---|
| 255 | |
---|
[1359] | 256 | x = xv(n) + ( 0.5_wp - i ) * dx |
---|
| 257 | y = yv(n) - j * dy |
---|
| 258 | aa = x**2 + y**2 |
---|
| 259 | bb = ( dx - x )**2 + y**2 |
---|
| 260 | cc = x**2 + ( dy - y )**2 |
---|
| 261 | dd = ( dx - x )**2 + ( dy - y )**2 |
---|
| 262 | gg = aa + bb + cc + dd |
---|
[1314] | 263 | |
---|
[1359] | 264 | u_int_l = ( ( gg - aa ) * u(k,j,i) + ( gg - bb ) * u(k,j,i+1) & |
---|
| 265 | + ( gg - cc ) * u(k,j+1,i) + ( gg - dd ) * & |
---|
| 266 | u(k,j+1,i+1) ) / ( 3.0_wp * gg ) - u_gtrans |
---|
[1314] | 267 | |
---|
[1359] | 268 | IF ( k == nzt ) THEN |
---|
| 269 | u_int(n) = u_int_l |
---|
| 270 | ELSE |
---|
| 271 | u_int_u = ( ( gg-aa ) * u(k+1,j,i) + ( gg-bb ) * u(k+1,j,i+1) & |
---|
| 272 | + ( gg-cc ) * u(k+1,j+1,i) + ( gg-dd ) * & |
---|
| 273 | u(k+1,j+1,i+1) ) / ( 3.0_wp * gg ) - u_gtrans |
---|
| 274 | u_int(n) = u_int_l + ( zv(n) - zu(k) ) / dz * & |
---|
| 275 | ( u_int_u - u_int_l ) |
---|
| 276 | ENDIF |
---|
[1314] | 277 | ENDIF |
---|
| 278 | |
---|
[1359] | 279 | ENDDO |
---|
[849] | 280 | |
---|
[1359] | 281 | i = ip + block_offset(nb)%i_off |
---|
| 282 | j = jp |
---|
| 283 | k = kp + block_offset(nb)%k_off |
---|
[849] | 284 | ! |
---|
[1359] | 285 | !-- Same procedure for interpolation of the v velocity-component |
---|
| 286 | DO n = start_index(nb), end_index(nb) |
---|
| 287 | IF ( prandtl_layer .AND. particles(n)%z < z_p ) THEN |
---|
[849] | 288 | |
---|
[1359] | 289 | IF ( particles(n)%z < z0_av_global ) THEN |
---|
[1314] | 290 | ! |
---|
[1359] | 291 | !-- Resolved-scale horizontal particle velocity is zero below z0. |
---|
| 292 | v_int(n) = 0.0_wp |
---|
| 293 | ELSE |
---|
| 294 | ! |
---|
| 295 | !-- Neutral solution is applied for all situations, e.g. also for |
---|
| 296 | !-- unstable and stable situations. Even though this is not exact |
---|
| 297 | !-- this saves a lot of CPU time since several calls of intrinsic |
---|
| 298 | !-- FORTRAN procedures (LOG, ATAN) are avoided, This is justified |
---|
| 299 | !-- as sensitivity studies revealed no significant effect of |
---|
| 300 | !-- using the neutral solution also for un/stable situations. |
---|
| 301 | !-- Calculated left and bottom index on v grid. |
---|
| 302 | us_int = 0.5_wp * ( us(j,i) + us(j-1,i) ) |
---|
[1314] | 303 | |
---|
[1359] | 304 | v_int = -vsws(j,i) / ( us_int * kappa + 1E-10_wp ) & |
---|
[1583] | 305 | * log_z_z0_int(n) - v_gtrans |
---|
[1359] | 306 | ENDIF |
---|
| 307 | ELSE |
---|
| 308 | x = xv(n) - i * dx |
---|
| 309 | y = yv(n) + ( 0.5_wp - j ) * dy |
---|
| 310 | aa = x**2 + y**2 |
---|
| 311 | bb = ( dx - x )**2 + y**2 |
---|
| 312 | cc = x**2 + ( dy - y )**2 |
---|
| 313 | dd = ( dx - x )**2 + ( dy - y )**2 |
---|
| 314 | gg = aa + bb + cc + dd |
---|
[1314] | 315 | |
---|
[1359] | 316 | v_int_l = ( ( gg - aa ) * v(k,j,i) + ( gg - bb ) * v(k,j,i+1) & |
---|
| 317 | + ( gg - cc ) * v(k,j+1,i) + ( gg - dd ) * v(k,j+1,i+1) & |
---|
| 318 | ) / ( 3.0_wp * gg ) - v_gtrans |
---|
[1314] | 319 | |
---|
[1359] | 320 | IF ( k == nzt ) THEN |
---|
| 321 | v_int(n) = v_int_l |
---|
| 322 | ELSE |
---|
| 323 | v_int_u = ( ( gg-aa ) * v(k+1,j,i) + ( gg-bb ) * v(k+1,j,i+1) & |
---|
| 324 | + ( gg-cc ) * v(k+1,j+1,i) + ( gg-dd ) * v(k+1,j+1,i+1) & |
---|
| 325 | ) / ( 3.0_wp * gg ) - v_gtrans |
---|
| 326 | v_int(n) = v_int_l + ( zv(n) - zu(k) ) / dz * & |
---|
| 327 | ( v_int_u - v_int_l ) |
---|
| 328 | ENDIF |
---|
[1314] | 329 | ENDIF |
---|
| 330 | |
---|
[1359] | 331 | ENDDO |
---|
[1314] | 332 | |
---|
[1359] | 333 | i = ip + block_offset(nb)%i_off |
---|
| 334 | j = jp + block_offset(nb)%j_off |
---|
| 335 | k = kp-1 |
---|
[849] | 336 | ! |
---|
[1314] | 337 | !-- Same procedure for interpolation of the w velocity-component |
---|
[1359] | 338 | DO n = start_index(nb), end_index(nb) |
---|
[849] | 339 | |
---|
[1359] | 340 | IF ( vertical_particle_advection(particles(n)%group) ) THEN |
---|
[849] | 341 | |
---|
[1359] | 342 | x = xv(n) - i * dx |
---|
| 343 | y = yv(n) - j * dy |
---|
[849] | 344 | aa = x**2 + y**2 |
---|
| 345 | bb = ( dx - x )**2 + y**2 |
---|
| 346 | cc = x**2 + ( dy - y )**2 |
---|
| 347 | dd = ( dx - x )**2 + ( dy - y )**2 |
---|
| 348 | gg = aa + bb + cc + dd |
---|
| 349 | |
---|
[1359] | 350 | w_int_l = ( ( gg - aa ) * w(k,j,i) + ( gg - bb ) * w(k,j,i+1) & |
---|
| 351 | + ( gg - cc ) * w(k,j+1,i) + ( gg - dd ) * w(k,j+1,i+1) & |
---|
| 352 | ) / ( 3.0_wp * gg ) |
---|
[849] | 353 | |
---|
[1359] | 354 | IF ( k == nzt ) THEN |
---|
| 355 | w_int(n) = w_int_l |
---|
[849] | 356 | ELSE |
---|
[1359] | 357 | w_int_u = ( ( gg-aa ) * w(k+1,j,i) + & |
---|
| 358 | ( gg-bb ) * w(k+1,j,i+1) + & |
---|
| 359 | ( gg-cc ) * w(k+1,j+1,i) + & |
---|
| 360 | ( gg-dd ) * w(k+1,j+1,i+1) & |
---|
| 361 | ) / ( 3.0_wp * gg ) |
---|
| 362 | w_int(n) = w_int_l + ( zv(n) - zw(k) ) / dz * & |
---|
| 363 | ( w_int_u - w_int_l ) |
---|
[849] | 364 | ENDIF |
---|
| 365 | |
---|
[1359] | 366 | ELSE |
---|
[849] | 367 | |
---|
[1359] | 368 | w_int(n) = 0.0_wp |
---|
[849] | 369 | |
---|
[1359] | 370 | ENDIF |
---|
| 371 | |
---|
| 372 | ENDDO |
---|
| 373 | |
---|
| 374 | ENDDO |
---|
| 375 | |
---|
| 376 | !-- Interpolate and calculate quantities needed for calculating the SGS |
---|
| 377 | !-- velocities |
---|
| 378 | IF ( use_sgs_for_particles ) THEN |
---|
| 379 | |
---|
| 380 | IF ( topography == 'flat' ) THEN |
---|
| 381 | |
---|
| 382 | DO nb = 0,7 |
---|
| 383 | |
---|
| 384 | i = ip + block_offset(nb)%i_off |
---|
| 385 | j = jp + block_offset(nb)%j_off |
---|
| 386 | k = kp + block_offset(nb)%k_off |
---|
| 387 | |
---|
| 388 | DO n = start_index(nb), end_index(nb) |
---|
[849] | 389 | ! |
---|
[1359] | 390 | !-- Interpolate TKE |
---|
| 391 | x = xv(n) - i * dx |
---|
| 392 | y = yv(n) - j * dy |
---|
| 393 | aa = x**2 + y**2 |
---|
| 394 | bb = ( dx - x )**2 + y**2 |
---|
| 395 | cc = x**2 + ( dy - y )**2 |
---|
| 396 | dd = ( dx - x )**2 + ( dy - y )**2 |
---|
| 397 | gg = aa + bb + cc + dd |
---|
[849] | 398 | |
---|
[1359] | 399 | e_int_l = ( ( gg-aa ) * e(k,j,i) + ( gg-bb ) * e(k,j,i+1) & |
---|
| 400 | + ( gg-cc ) * e(k,j+1,i) + ( gg-dd ) * e(k,j+1,i+1) & |
---|
| 401 | ) / ( 3.0_wp * gg ) |
---|
| 402 | |
---|
| 403 | IF ( k+1 == nzt+1 ) THEN |
---|
| 404 | e_int(n) = e_int_l |
---|
| 405 | ELSE |
---|
| 406 | e_int_u = ( ( gg - aa ) * e(k+1,j,i) + & |
---|
| 407 | ( gg - bb ) * e(k+1,j,i+1) + & |
---|
| 408 | ( gg - cc ) * e(k+1,j+1,i) + & |
---|
| 409 | ( gg - dd ) * e(k+1,j+1,i+1) & |
---|
| 410 | ) / ( 3.0_wp * gg ) |
---|
| 411 | e_int(n) = e_int_l + ( zv(n) - zu(k) ) / dz * & |
---|
| 412 | ( e_int_u - e_int_l ) |
---|
| 413 | ENDIF |
---|
[849] | 414 | ! |
---|
[1359] | 415 | !-- Needed to avoid NaN particle velocities |
---|
| 416 | IF ( e_int(n) == 0.0_wp ) THEN |
---|
| 417 | e_int(n) = 1.0E-20_wp |
---|
| 418 | ENDIF |
---|
| 419 | ! |
---|
| 420 | !-- Interpolate the TKE gradient along x (adopt incides i,j,k and |
---|
| 421 | !-- all position variables from above (TKE)) |
---|
| 422 | de_dx_int_l = ( ( gg - aa ) * de_dx(k,j,i) + & |
---|
| 423 | ( gg - bb ) * de_dx(k,j,i+1) + & |
---|
| 424 | ( gg - cc ) * de_dx(k,j+1,i) + & |
---|
| 425 | ( gg - dd ) * de_dx(k,j+1,i+1) & |
---|
| 426 | ) / ( 3.0_wp * gg ) |
---|
[849] | 427 | |
---|
| 428 | IF ( ( k+1 == nzt+1 ) .OR. ( k == nzb ) ) THEN |
---|
[1359] | 429 | de_dx_int(n) = de_dx_int_l |
---|
[849] | 430 | ELSE |
---|
[1359] | 431 | de_dx_int_u = ( ( gg - aa ) * de_dx(k+1,j,i) + & |
---|
| 432 | ( gg - bb ) * de_dx(k+1,j,i+1) + & |
---|
| 433 | ( gg - cc ) * de_dx(k+1,j+1,i) + & |
---|
| 434 | ( gg - dd ) * de_dx(k+1,j+1,i+1) & |
---|
| 435 | ) / ( 3.0_wp * gg ) |
---|
| 436 | de_dx_int(n) = de_dx_int_l + ( zv(n) - zu(k) ) / dz * & |
---|
| 437 | ( de_dx_int_u - de_dx_int_l ) |
---|
[849] | 438 | ENDIF |
---|
[1359] | 439 | ! |
---|
| 440 | !-- Interpolate the TKE gradient along y |
---|
| 441 | de_dy_int_l = ( ( gg - aa ) * de_dy(k,j,i) + & |
---|
| 442 | ( gg - bb ) * de_dy(k,j,i+1) + & |
---|
| 443 | ( gg - cc ) * de_dy(k,j+1,i) + & |
---|
| 444 | ( gg - dd ) * de_dy(k,j+1,i+1) & |
---|
| 445 | ) / ( 3.0_wp * gg ) |
---|
| 446 | IF ( ( k+1 == nzt+1 ) .OR. ( k == nzb ) ) THEN |
---|
| 447 | de_dy_int(n) = de_dy_int_l |
---|
| 448 | ELSE |
---|
| 449 | de_dy_int_u = ( ( gg - aa ) * de_dy(k+1,j,i) + & |
---|
| 450 | ( gg - bb ) * de_dy(k+1,j,i+1) + & |
---|
| 451 | ( gg - cc ) * de_dy(k+1,j+1,i) + & |
---|
| 452 | ( gg - dd ) * de_dy(k+1,j+1,i+1) & |
---|
| 453 | ) / ( 3.0_wp * gg ) |
---|
| 454 | de_dy_int(n) = de_dy_int_l + ( zv(n) - zu(k) ) / dz * & |
---|
| 455 | ( de_dy_int_u - de_dy_int_l ) |
---|
| 456 | ENDIF |
---|
[849] | 457 | |
---|
| 458 | ! |
---|
[1359] | 459 | !-- Interpolate the TKE gradient along z |
---|
| 460 | IF ( zv(n) < 0.5_wp * dz ) THEN |
---|
| 461 | de_dz_int(n) = 0.0_wp |
---|
| 462 | ELSE |
---|
| 463 | de_dz_int_l = ( ( gg - aa ) * de_dz(k,j,i) + & |
---|
| 464 | ( gg - bb ) * de_dz(k,j,i+1) + & |
---|
| 465 | ( gg - cc ) * de_dz(k,j+1,i) + & |
---|
| 466 | ( gg - dd ) * de_dz(k,j+1,i+1) & |
---|
| 467 | ) / ( 3.0_wp * gg ) |
---|
[849] | 468 | |
---|
[1359] | 469 | IF ( ( k+1 == nzt+1 ) .OR. ( k == nzb ) ) THEN |
---|
| 470 | de_dz_int(n) = de_dz_int_l |
---|
| 471 | ELSE |
---|
| 472 | de_dz_int_u = ( ( gg - aa ) * de_dz(k+1,j,i) + & |
---|
| 473 | ( gg - bb ) * de_dz(k+1,j,i+1) + & |
---|
| 474 | ( gg - cc ) * de_dz(k+1,j+1,i) + & |
---|
| 475 | ( gg - dd ) * de_dz(k+1,j+1,i+1) & |
---|
| 476 | ) / ( 3.0_wp * gg ) |
---|
| 477 | de_dz_int(n) = de_dz_int_l + ( zv(n) - zu(k) ) / dz * & |
---|
| 478 | ( de_dz_int_u - de_dz_int_l ) |
---|
| 479 | ENDIF |
---|
| 480 | ENDIF |
---|
[849] | 481 | |
---|
[1359] | 482 | ! |
---|
| 483 | !-- Interpolate the dissipation of TKE |
---|
| 484 | diss_int_l = ( ( gg - aa ) * diss(k,j,i) + & |
---|
| 485 | ( gg - bb ) * diss(k,j,i+1) + & |
---|
| 486 | ( gg - cc ) * diss(k,j+1,i) + & |
---|
| 487 | ( gg - dd ) * diss(k,j+1,i+1) & |
---|
| 488 | ) / ( 3.0_wp * gg ) |
---|
[849] | 489 | |
---|
[1359] | 490 | IF ( k == nzt ) THEN |
---|
| 491 | diss_int(n) = diss_int_l |
---|
| 492 | ELSE |
---|
| 493 | diss_int_u = ( ( gg - aa ) * diss(k+1,j,i) + & |
---|
| 494 | ( gg - bb ) * diss(k+1,j,i+1) + & |
---|
| 495 | ( gg - cc ) * diss(k+1,j+1,i) + & |
---|
| 496 | ( gg - dd ) * diss(k+1,j+1,i+1) & |
---|
| 497 | ) / ( 3.0_wp * gg ) |
---|
| 498 | diss_int(n) = diss_int_l + ( zv(n) - zu(k) ) / dz * & |
---|
| 499 | ( diss_int_u - diss_int_l ) |
---|
| 500 | ENDIF |
---|
| 501 | |
---|
| 502 | ENDDO |
---|
| 503 | ENDDO |
---|
| 504 | |
---|
| 505 | ELSE ! non-flat topography, e.g., buildings |
---|
| 506 | |
---|
| 507 | DO n = 1, number_of_particles |
---|
| 508 | |
---|
| 509 | i = particles(n)%x * ddx |
---|
| 510 | j = particles(n)%y * ddy |
---|
| 511 | k = ( zv(n) + 0.5_wp * dz * atmos_ocean_sign ) / dz & |
---|
| 512 | + offset_ocean_nzt ! only exact if eq.dist |
---|
[849] | 513 | ! |
---|
| 514 | !-- In case that there are buildings it has to be determined |
---|
| 515 | !-- how many of the gridpoints defining the particle box are |
---|
| 516 | !-- situated within a building |
---|
| 517 | !-- gp_outside_of_building(1): i,j,k |
---|
| 518 | !-- gp_outside_of_building(2): i,j+1,k |
---|
| 519 | !-- gp_outside_of_building(3): i,j,k+1 |
---|
| 520 | !-- gp_outside_of_building(4): i,j+1,k+1 |
---|
| 521 | !-- gp_outside_of_building(5): i+1,j,k |
---|
| 522 | !-- gp_outside_of_building(6): i+1,j+1,k |
---|
| 523 | !-- gp_outside_of_building(7): i+1,j,k+1 |
---|
| 524 | !-- gp_outside_of_building(8): i+1,j+1,k+1 |
---|
| 525 | |
---|
| 526 | gp_outside_of_building = 0 |
---|
[1359] | 527 | location = 0.0_wp |
---|
[849] | 528 | num_gp = 0 |
---|
| 529 | |
---|
| 530 | IF ( k > nzb_s_inner(j,i) .OR. nzb_s_inner(j,i) == 0 ) THEN |
---|
| 531 | num_gp = num_gp + 1 |
---|
| 532 | gp_outside_of_building(1) = 1 |
---|
| 533 | location(num_gp,1) = i * dx |
---|
| 534 | location(num_gp,2) = j * dy |
---|
[1359] | 535 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
[849] | 536 | ei(num_gp) = e(k,j,i) |
---|
| 537 | dissi(num_gp) = diss(k,j,i) |
---|
| 538 | de_dxi(num_gp) = de_dx(k,j,i) |
---|
| 539 | de_dyi(num_gp) = de_dy(k,j,i) |
---|
| 540 | de_dzi(num_gp) = de_dz(k,j,i) |
---|
| 541 | ENDIF |
---|
| 542 | |
---|
| 543 | IF ( k > nzb_s_inner(j+1,i) .OR. nzb_s_inner(j+1,i) == 0 ) & |
---|
| 544 | THEN |
---|
| 545 | num_gp = num_gp + 1 |
---|
| 546 | gp_outside_of_building(2) = 1 |
---|
| 547 | location(num_gp,1) = i * dx |
---|
| 548 | location(num_gp,2) = (j+1) * dy |
---|
[1359] | 549 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
[849] | 550 | ei(num_gp) = e(k,j+1,i) |
---|
| 551 | dissi(num_gp) = diss(k,j+1,i) |
---|
| 552 | de_dxi(num_gp) = de_dx(k,j+1,i) |
---|
| 553 | de_dyi(num_gp) = de_dy(k,j+1,i) |
---|
| 554 | de_dzi(num_gp) = de_dz(k,j+1,i) |
---|
| 555 | ENDIF |
---|
| 556 | |
---|
| 557 | IF ( k+1 > nzb_s_inner(j,i) .OR. nzb_s_inner(j,i) == 0 ) THEN |
---|
| 558 | num_gp = num_gp + 1 |
---|
| 559 | gp_outside_of_building(3) = 1 |
---|
| 560 | location(num_gp,1) = i * dx |
---|
| 561 | location(num_gp,2) = j * dy |
---|
[1359] | 562 | location(num_gp,3) = (k+1) * dz - 0.5_wp * dz |
---|
[849] | 563 | ei(num_gp) = e(k+1,j,i) |
---|
| 564 | dissi(num_gp) = diss(k+1,j,i) |
---|
| 565 | de_dxi(num_gp) = de_dx(k+1,j,i) |
---|
| 566 | de_dyi(num_gp) = de_dy(k+1,j,i) |
---|
| 567 | de_dzi(num_gp) = de_dz(k+1,j,i) |
---|
| 568 | ENDIF |
---|
| 569 | |
---|
| 570 | IF ( k+1 > nzb_s_inner(j+1,i) .OR. nzb_s_inner(j+1,i) == 0 ) & |
---|
| 571 | THEN |
---|
| 572 | num_gp = num_gp + 1 |
---|
| 573 | gp_outside_of_building(4) = 1 |
---|
| 574 | location(num_gp,1) = i * dx |
---|
| 575 | location(num_gp,2) = (j+1) * dy |
---|
[1359] | 576 | location(num_gp,3) = (k+1) * dz - 0.5_wp * dz |
---|
[849] | 577 | ei(num_gp) = e(k+1,j+1,i) |
---|
| 578 | dissi(num_gp) = diss(k+1,j+1,i) |
---|
| 579 | de_dxi(num_gp) = de_dx(k+1,j+1,i) |
---|
| 580 | de_dyi(num_gp) = de_dy(k+1,j+1,i) |
---|
| 581 | de_dzi(num_gp) = de_dz(k+1,j+1,i) |
---|
| 582 | ENDIF |
---|
| 583 | |
---|
| 584 | IF ( k > nzb_s_inner(j,i+1) .OR. nzb_s_inner(j,i+1) == 0 ) & |
---|
| 585 | THEN |
---|
| 586 | num_gp = num_gp + 1 |
---|
| 587 | gp_outside_of_building(5) = 1 |
---|
| 588 | location(num_gp,1) = (i+1) * dx |
---|
| 589 | location(num_gp,2) = j * dy |
---|
[1359] | 590 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
[849] | 591 | ei(num_gp) = e(k,j,i+1) |
---|
| 592 | dissi(num_gp) = diss(k,j,i+1) |
---|
| 593 | de_dxi(num_gp) = de_dx(k,j,i+1) |
---|
| 594 | de_dyi(num_gp) = de_dy(k,j,i+1) |
---|
| 595 | de_dzi(num_gp) = de_dz(k,j,i+1) |
---|
| 596 | ENDIF |
---|
| 597 | |
---|
[1359] | 598 | IF ( k > nzb_s_inner(j+1,i+1) .OR. nzb_s_inner(j+1,i+1) == 0 ) & |
---|
[849] | 599 | THEN |
---|
| 600 | num_gp = num_gp + 1 |
---|
| 601 | gp_outside_of_building(6) = 1 |
---|
| 602 | location(num_gp,1) = (i+1) * dx |
---|
| 603 | location(num_gp,2) = (j+1) * dy |
---|
[1359] | 604 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
[849] | 605 | ei(num_gp) = e(k,j+1,i+1) |
---|
| 606 | dissi(num_gp) = diss(k,j+1,i+1) |
---|
| 607 | de_dxi(num_gp) = de_dx(k,j+1,i+1) |
---|
| 608 | de_dyi(num_gp) = de_dy(k,j+1,i+1) |
---|
| 609 | de_dzi(num_gp) = de_dz(k,j+1,i+1) |
---|
| 610 | ENDIF |
---|
| 611 | |
---|
| 612 | IF ( k+1 > nzb_s_inner(j,i+1) .OR. nzb_s_inner(j,i+1) == 0 ) & |
---|
| 613 | THEN |
---|
| 614 | num_gp = num_gp + 1 |
---|
| 615 | gp_outside_of_building(7) = 1 |
---|
| 616 | location(num_gp,1) = (i+1) * dx |
---|
| 617 | location(num_gp,2) = j * dy |
---|
[1359] | 618 | location(num_gp,3) = (k+1) * dz - 0.5_wp * dz |
---|
[849] | 619 | ei(num_gp) = e(k+1,j,i+1) |
---|
| 620 | dissi(num_gp) = diss(k+1,j,i+1) |
---|
| 621 | de_dxi(num_gp) = de_dx(k+1,j,i+1) |
---|
| 622 | de_dyi(num_gp) = de_dy(k+1,j,i+1) |
---|
| 623 | de_dzi(num_gp) = de_dz(k+1,j,i+1) |
---|
| 624 | ENDIF |
---|
| 625 | |
---|
[1359] | 626 | IF ( k+1 > nzb_s_inner(j+1,i+1) .OR. nzb_s_inner(j+1,i+1) == 0)& |
---|
[849] | 627 | THEN |
---|
| 628 | num_gp = num_gp + 1 |
---|
| 629 | gp_outside_of_building(8) = 1 |
---|
| 630 | location(num_gp,1) = (i+1) * dx |
---|
| 631 | location(num_gp,2) = (j+1) * dy |
---|
[1359] | 632 | location(num_gp,3) = (k+1) * dz - 0.5_wp * dz |
---|
[849] | 633 | ei(num_gp) = e(k+1,j+1,i+1) |
---|
| 634 | dissi(num_gp) = diss(k+1,j+1,i+1) |
---|
| 635 | de_dxi(num_gp) = de_dx(k+1,j+1,i+1) |
---|
| 636 | de_dyi(num_gp) = de_dy(k+1,j+1,i+1) |
---|
| 637 | de_dzi(num_gp) = de_dz(k+1,j+1,i+1) |
---|
| 638 | ENDIF |
---|
| 639 | |
---|
| 640 | ! |
---|
| 641 | !-- If all gridpoints are situated outside of a building, then the |
---|
| 642 | !-- ordinary interpolation scheme can be used. |
---|
| 643 | IF ( num_gp == 8 ) THEN |
---|
| 644 | |
---|
| 645 | x = particles(n)%x - i * dx |
---|
| 646 | y = particles(n)%y - j * dy |
---|
| 647 | aa = x**2 + y**2 |
---|
| 648 | bb = ( dx - x )**2 + y**2 |
---|
| 649 | cc = x**2 + ( dy - y )**2 |
---|
| 650 | dd = ( dx - x )**2 + ( dy - y )**2 |
---|
| 651 | gg = aa + bb + cc + dd |
---|
| 652 | |
---|
[1359] | 653 | e_int_l = ( ( gg - aa ) * e(k,j,i) + ( gg - bb ) * e(k,j,i+1) & |
---|
| 654 | + ( gg - cc ) * e(k,j+1,i) + ( gg - dd ) * e(k,j+1,i+1) & |
---|
| 655 | ) / ( 3.0_wp * gg ) |
---|
[849] | 656 | |
---|
[1359] | 657 | IF ( k == nzt ) THEN |
---|
| 658 | e_int(n) = e_int_l |
---|
[849] | 659 | ELSE |
---|
| 660 | e_int_u = ( ( gg - aa ) * e(k+1,j,i) + & |
---|
| 661 | ( gg - bb ) * e(k+1,j,i+1) + & |
---|
| 662 | ( gg - cc ) * e(k+1,j+1,i) + & |
---|
| 663 | ( gg - dd ) * e(k+1,j+1,i+1) & |
---|
[1359] | 664 | ) / ( 3.0_wp * gg ) |
---|
| 665 | e_int(n) = e_int_l + ( zv(n) - zu(k) ) / dz * & |
---|
[849] | 666 | ( e_int_u - e_int_l ) |
---|
| 667 | ENDIF |
---|
| 668 | ! |
---|
[1359] | 669 | !-- Needed to avoid NaN particle velocities |
---|
| 670 | IF ( e_int(n) == 0.0_wp ) THEN |
---|
| 671 | e_int(n) = 1.0E-20_wp |
---|
| 672 | ENDIF |
---|
| 673 | ! |
---|
[849] | 674 | !-- Interpolate the TKE gradient along x (adopt incides i,j,k |
---|
| 675 | !-- and all position variables from above (TKE)) |
---|
| 676 | de_dx_int_l = ( ( gg - aa ) * de_dx(k,j,i) + & |
---|
| 677 | ( gg - bb ) * de_dx(k,j,i+1) + & |
---|
| 678 | ( gg - cc ) * de_dx(k,j+1,i) + & |
---|
| 679 | ( gg - dd ) * de_dx(k,j+1,i+1) & |
---|
[1359] | 680 | ) / ( 3.0_wp * gg ) |
---|
[849] | 681 | |
---|
[1359] | 682 | IF ( ( k == nzt ) .OR. ( k == nzb ) ) THEN |
---|
| 683 | de_dx_int(n) = de_dx_int_l |
---|
[849] | 684 | ELSE |
---|
| 685 | de_dx_int_u = ( ( gg - aa ) * de_dx(k+1,j,i) + & |
---|
| 686 | ( gg - bb ) * de_dx(k+1,j,i+1) + & |
---|
| 687 | ( gg - cc ) * de_dx(k+1,j+1,i) + & |
---|
| 688 | ( gg - dd ) * de_dx(k+1,j+1,i+1) & |
---|
[1359] | 689 | ) / ( 3.0_wp * gg ) |
---|
| 690 | de_dx_int(n) = de_dx_int_l + ( zv(n) - zu(k) ) / & |
---|
[849] | 691 | dz * ( de_dx_int_u - de_dx_int_l ) |
---|
| 692 | ENDIF |
---|
| 693 | |
---|
| 694 | ! |
---|
| 695 | !-- Interpolate the TKE gradient along y |
---|
| 696 | de_dy_int_l = ( ( gg - aa ) * de_dy(k,j,i) + & |
---|
| 697 | ( gg - bb ) * de_dy(k,j,i+1) + & |
---|
| 698 | ( gg - cc ) * de_dy(k,j+1,i) + & |
---|
| 699 | ( gg - dd ) * de_dy(k,j+1,i+1) & |
---|
[1359] | 700 | ) / ( 3.0_wp * gg ) |
---|
[849] | 701 | IF ( ( k+1 == nzt+1 ) .OR. ( k == nzb ) ) THEN |
---|
[1359] | 702 | de_dy_int(n) = de_dy_int_l |
---|
[849] | 703 | ELSE |
---|
| 704 | de_dy_int_u = ( ( gg - aa ) * de_dy(k+1,j,i) + & |
---|
| 705 | ( gg - bb ) * de_dy(k+1,j,i+1) + & |
---|
| 706 | ( gg - cc ) * de_dy(k+1,j+1,i) + & |
---|
| 707 | ( gg - dd ) * de_dy(k+1,j+1,i+1) & |
---|
[1359] | 708 | ) / ( 3.0_wp * gg ) |
---|
| 709 | de_dy_int(n) = de_dy_int_l + ( zv(n) - zu(k) ) / & |
---|
[849] | 710 | dz * ( de_dy_int_u - de_dy_int_l ) |
---|
| 711 | ENDIF |
---|
| 712 | |
---|
| 713 | ! |
---|
| 714 | !-- Interpolate the TKE gradient along z |
---|
[1359] | 715 | IF ( zv(n) < 0.5_wp * dz ) THEN |
---|
| 716 | de_dz_int(n) = 0.0_wp |
---|
[849] | 717 | ELSE |
---|
| 718 | de_dz_int_l = ( ( gg - aa ) * de_dz(k,j,i) + & |
---|
| 719 | ( gg - bb ) * de_dz(k,j,i+1) + & |
---|
| 720 | ( gg - cc ) * de_dz(k,j+1,i) + & |
---|
| 721 | ( gg - dd ) * de_dz(k,j+1,i+1) & |
---|
[1359] | 722 | ) / ( 3.0_wp * gg ) |
---|
[849] | 723 | |
---|
| 724 | IF ( ( k+1 == nzt+1 ) .OR. ( k == nzb ) ) THEN |
---|
[1359] | 725 | de_dz_int(n) = de_dz_int_l |
---|
[849] | 726 | ELSE |
---|
| 727 | de_dz_int_u = ( ( gg - aa ) * de_dz(k+1,j,i) + & |
---|
| 728 | ( gg - bb ) * de_dz(k+1,j,i+1) + & |
---|
| 729 | ( gg - cc ) * de_dz(k+1,j+1,i) + & |
---|
| 730 | ( gg - dd ) * de_dz(k+1,j+1,i+1) & |
---|
[1359] | 731 | ) / ( 3.0_wp * gg ) |
---|
| 732 | de_dz_int(n) = de_dz_int_l + ( zv(n) - zu(k) ) /& |
---|
[849] | 733 | dz * ( de_dz_int_u - de_dz_int_l ) |
---|
| 734 | ENDIF |
---|
| 735 | ENDIF |
---|
| 736 | |
---|
| 737 | ! |
---|
| 738 | !-- Interpolate the dissipation of TKE |
---|
| 739 | diss_int_l = ( ( gg - aa ) * diss(k,j,i) + & |
---|
| 740 | ( gg - bb ) * diss(k,j,i+1) + & |
---|
| 741 | ( gg - cc ) * diss(k,j+1,i) + & |
---|
| 742 | ( gg - dd ) * diss(k,j+1,i+1) & |
---|
[1359] | 743 | ) / ( 3.0_wp * gg ) |
---|
[849] | 744 | |
---|
[1359] | 745 | IF ( k == nzt ) THEN |
---|
| 746 | diss_int(n) = diss_int_l |
---|
[849] | 747 | ELSE |
---|
| 748 | diss_int_u = ( ( gg - aa ) * diss(k+1,j,i) + & |
---|
| 749 | ( gg - bb ) * diss(k+1,j,i+1) + & |
---|
| 750 | ( gg - cc ) * diss(k+1,j+1,i) + & |
---|
| 751 | ( gg - dd ) * diss(k+1,j+1,i+1) & |
---|
[1359] | 752 | ) / ( 3.0_wp * gg ) |
---|
| 753 | diss_int(n) = diss_int_l + ( zv(n) - zu(k) ) / dz *& |
---|
[849] | 754 | ( diss_int_u - diss_int_l ) |
---|
| 755 | ENDIF |
---|
| 756 | |
---|
| 757 | ELSE |
---|
| 758 | |
---|
| 759 | ! |
---|
| 760 | !-- If wall between gridpoint 1 and gridpoint 5, then |
---|
| 761 | !-- Neumann boundary condition has to be applied |
---|
| 762 | IF ( gp_outside_of_building(1) == 1 .AND. & |
---|
| 763 | gp_outside_of_building(5) == 0 ) THEN |
---|
| 764 | num_gp = num_gp + 1 |
---|
[1359] | 765 | location(num_gp,1) = i * dx + 0.5_wp * dx |
---|
[849] | 766 | location(num_gp,2) = j * dy |
---|
[1359] | 767 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
[849] | 768 | ei(num_gp) = e(k,j,i) |
---|
| 769 | dissi(num_gp) = diss(k,j,i) |
---|
[1359] | 770 | de_dxi(num_gp) = 0.0_wp |
---|
[849] | 771 | de_dyi(num_gp) = de_dy(k,j,i) |
---|
| 772 | de_dzi(num_gp) = de_dz(k,j,i) |
---|
| 773 | ENDIF |
---|
| 774 | |
---|
| 775 | IF ( gp_outside_of_building(5) == 1 .AND. & |
---|
| 776 | gp_outside_of_building(1) == 0 ) THEN |
---|
| 777 | num_gp = num_gp + 1 |
---|
[1359] | 778 | location(num_gp,1) = i * dx + 0.5_wp * dx |
---|
[849] | 779 | location(num_gp,2) = j * dy |
---|
[1359] | 780 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
[849] | 781 | ei(num_gp) = e(k,j,i+1) |
---|
| 782 | dissi(num_gp) = diss(k,j,i+1) |
---|
[1359] | 783 | de_dxi(num_gp) = 0.0_wp |
---|
[849] | 784 | de_dyi(num_gp) = de_dy(k,j,i+1) |
---|
| 785 | de_dzi(num_gp) = de_dz(k,j,i+1) |
---|
| 786 | ENDIF |
---|
| 787 | |
---|
| 788 | ! |
---|
| 789 | !-- If wall between gridpoint 5 and gridpoint 6, then |
---|
| 790 | !-- then Neumann boundary condition has to be applied |
---|
| 791 | IF ( gp_outside_of_building(5) == 1 .AND. & |
---|
| 792 | gp_outside_of_building(6) == 0 ) THEN |
---|
| 793 | num_gp = num_gp + 1 |
---|
| 794 | location(num_gp,1) = (i+1) * dx |
---|
[1359] | 795 | location(num_gp,2) = j * dy + 0.5_wp * dy |
---|
| 796 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
[849] | 797 | ei(num_gp) = e(k,j,i+1) |
---|
| 798 | dissi(num_gp) = diss(k,j,i+1) |
---|
| 799 | de_dxi(num_gp) = de_dx(k,j,i+1) |
---|
[1359] | 800 | de_dyi(num_gp) = 0.0_wp |
---|
[849] | 801 | de_dzi(num_gp) = de_dz(k,j,i+1) |
---|
| 802 | ENDIF |
---|
| 803 | |
---|
| 804 | IF ( gp_outside_of_building(6) == 1 .AND. & |
---|
| 805 | gp_outside_of_building(5) == 0 ) THEN |
---|
| 806 | num_gp = num_gp + 1 |
---|
| 807 | location(num_gp,1) = (i+1) * dx |
---|
[1359] | 808 | location(num_gp,2) = j * dy + 0.5_wp * dy |
---|
| 809 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
[849] | 810 | ei(num_gp) = e(k,j+1,i+1) |
---|
| 811 | dissi(num_gp) = diss(k,j+1,i+1) |
---|
| 812 | de_dxi(num_gp) = de_dx(k,j+1,i+1) |
---|
[1359] | 813 | de_dyi(num_gp) = 0.0_wp |
---|
[849] | 814 | de_dzi(num_gp) = de_dz(k,j+1,i+1) |
---|
| 815 | ENDIF |
---|
| 816 | |
---|
| 817 | ! |
---|
| 818 | !-- If wall between gridpoint 2 and gridpoint 6, then |
---|
| 819 | !-- Neumann boundary condition has to be applied |
---|
| 820 | IF ( gp_outside_of_building(2) == 1 .AND. & |
---|
| 821 | gp_outside_of_building(6) == 0 ) THEN |
---|
| 822 | num_gp = num_gp + 1 |
---|
[1359] | 823 | location(num_gp,1) = i * dx + 0.5_wp * dx |
---|
[849] | 824 | location(num_gp,2) = (j+1) * dy |
---|
[1359] | 825 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
[849] | 826 | ei(num_gp) = e(k,j+1,i) |
---|
| 827 | dissi(num_gp) = diss(k,j+1,i) |
---|
[1359] | 828 | de_dxi(num_gp) = 0.0_wp |
---|
[849] | 829 | de_dyi(num_gp) = de_dy(k,j+1,i) |
---|
| 830 | de_dzi(num_gp) = de_dz(k,j+1,i) |
---|
| 831 | ENDIF |
---|
| 832 | |
---|
| 833 | IF ( gp_outside_of_building(6) == 1 .AND. & |
---|
| 834 | gp_outside_of_building(2) == 0 ) THEN |
---|
| 835 | num_gp = num_gp + 1 |
---|
[1359] | 836 | location(num_gp,1) = i * dx + 0.5_wp * dx |
---|
[849] | 837 | location(num_gp,2) = (j+1) * dy |
---|
[1359] | 838 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
[849] | 839 | ei(num_gp) = e(k,j+1,i+1) |
---|
| 840 | dissi(num_gp) = diss(k,j+1,i+1) |
---|
[1359] | 841 | de_dxi(num_gp) = 0.0_wp |
---|
[849] | 842 | de_dyi(num_gp) = de_dy(k,j+1,i+1) |
---|
| 843 | de_dzi(num_gp) = de_dz(k,j+1,i+1) |
---|
| 844 | ENDIF |
---|
| 845 | |
---|
| 846 | ! |
---|
| 847 | !-- If wall between gridpoint 1 and gridpoint 2, then |
---|
| 848 | !-- Neumann boundary condition has to be applied |
---|
| 849 | IF ( gp_outside_of_building(1) == 1 .AND. & |
---|
| 850 | gp_outside_of_building(2) == 0 ) THEN |
---|
| 851 | num_gp = num_gp + 1 |
---|
| 852 | location(num_gp,1) = i * dx |
---|
[1359] | 853 | location(num_gp,2) = j * dy + 0.5_wp * dy |
---|
| 854 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
[849] | 855 | ei(num_gp) = e(k,j,i) |
---|
| 856 | dissi(num_gp) = diss(k,j,i) |
---|
| 857 | de_dxi(num_gp) = de_dx(k,j,i) |
---|
[1359] | 858 | de_dyi(num_gp) = 0.0_wp |
---|
[849] | 859 | de_dzi(num_gp) = de_dz(k,j,i) |
---|
| 860 | ENDIF |
---|
| 861 | |
---|
| 862 | IF ( gp_outside_of_building(2) == 1 .AND. & |
---|
| 863 | gp_outside_of_building(1) == 0 ) THEN |
---|
| 864 | num_gp = num_gp + 1 |
---|
| 865 | location(num_gp,1) = i * dx |
---|
[1359] | 866 | location(num_gp,2) = j * dy + 0.5_wp * dy |
---|
| 867 | location(num_gp,3) = k * dz - 0.5_wp * dz |
---|
[849] | 868 | ei(num_gp) = e(k,j+1,i) |
---|
| 869 | dissi(num_gp) = diss(k,j+1,i) |
---|
| 870 | de_dxi(num_gp) = de_dx(k,j+1,i) |
---|
[1359] | 871 | de_dyi(num_gp) = 0.0_wp |
---|
[849] | 872 | de_dzi(num_gp) = de_dz(k,j+1,i) |
---|
| 873 | ENDIF |
---|
| 874 | |
---|
| 875 | ! |
---|
| 876 | !-- If wall between gridpoint 3 and gridpoint 7, then |
---|
| 877 | !-- Neumann boundary condition has to be applied |
---|
| 878 | IF ( gp_outside_of_building(3) == 1 .AND. & |
---|
| 879 | gp_outside_of_building(7) == 0 ) THEN |
---|
| 880 | num_gp = num_gp + 1 |
---|
[1359] | 881 | location(num_gp,1) = i * dx + 0.5_wp * dx |
---|
[849] | 882 | location(num_gp,2) = j * dy |
---|
[1359] | 883 | location(num_gp,3) = k * dz + 0.5_wp * dz |
---|
[849] | 884 | ei(num_gp) = e(k+1,j,i) |
---|
| 885 | dissi(num_gp) = diss(k+1,j,i) |
---|
[1359] | 886 | de_dxi(num_gp) = 0.0_wp |
---|
[849] | 887 | de_dyi(num_gp) = de_dy(k+1,j,i) |
---|
| 888 | de_dzi(num_gp) = de_dz(k+1,j,i) |
---|
| 889 | ENDIF |
---|
| 890 | |
---|
| 891 | IF ( gp_outside_of_building(7) == 1 .AND. & |
---|
| 892 | gp_outside_of_building(3) == 0 ) THEN |
---|
| 893 | num_gp = num_gp + 1 |
---|
[1359] | 894 | location(num_gp,1) = i * dx + 0.5_wp * dx |
---|
[849] | 895 | location(num_gp,2) = j * dy |
---|
[1359] | 896 | location(num_gp,3) = k * dz + 0.5_wp * dz |
---|
[849] | 897 | ei(num_gp) = e(k+1,j,i+1) |
---|
| 898 | dissi(num_gp) = diss(k+1,j,i+1) |
---|
[1359] | 899 | de_dxi(num_gp) = 0.0_wp |
---|
[849] | 900 | de_dyi(num_gp) = de_dy(k+1,j,i+1) |
---|
| 901 | de_dzi(num_gp) = de_dz(k+1,j,i+1) |
---|
| 902 | ENDIF |
---|
| 903 | |
---|
| 904 | ! |
---|
| 905 | !-- If wall between gridpoint 7 and gridpoint 8, then |
---|
| 906 | !-- Neumann boundary condition has to be applied |
---|
| 907 | IF ( gp_outside_of_building(7) == 1 .AND. & |
---|
| 908 | gp_outside_of_building(8) == 0 ) THEN |
---|
| 909 | num_gp = num_gp + 1 |
---|
| 910 | location(num_gp,1) = (i+1) * dx |
---|
[1359] | 911 | location(num_gp,2) = j * dy + 0.5_wp * dy |
---|
| 912 | location(num_gp,3) = k * dz + 0.5_wp * dz |
---|
[849] | 913 | ei(num_gp) = e(k+1,j,i+1) |
---|
| 914 | dissi(num_gp) = diss(k+1,j,i+1) |
---|
| 915 | de_dxi(num_gp) = de_dx(k+1,j,i+1) |
---|
[1359] | 916 | de_dyi(num_gp) = 0.0_wp |
---|
[849] | 917 | de_dzi(num_gp) = de_dz(k+1,j,i+1) |
---|
| 918 | ENDIF |
---|
| 919 | |
---|
| 920 | IF ( gp_outside_of_building(8) == 1 .AND. & |
---|
| 921 | gp_outside_of_building(7) == 0 ) THEN |
---|
| 922 | num_gp = num_gp + 1 |
---|
| 923 | location(num_gp,1) = (i+1) * dx |
---|
[1359] | 924 | location(num_gp,2) = j * dy + 0.5_wp * dy |
---|
| 925 | location(num_gp,3) = k * dz + 0.5_wp * dz |
---|
[849] | 926 | ei(num_gp) = e(k+1,j+1,i+1) |
---|
| 927 | dissi(num_gp) = diss(k+1,j+1,i+1) |
---|
| 928 | de_dxi(num_gp) = de_dx(k+1,j+1,i+1) |
---|
[1359] | 929 | de_dyi(num_gp) = 0.0_wp |
---|
[849] | 930 | de_dzi(num_gp) = de_dz(k+1,j+1,i+1) |
---|
| 931 | ENDIF |
---|
| 932 | |
---|
| 933 | ! |
---|
| 934 | !-- If wall between gridpoint 4 and gridpoint 8, then |
---|
| 935 | !-- Neumann boundary condition has to be applied |
---|
| 936 | IF ( gp_outside_of_building(4) == 1 .AND. & |
---|
| 937 | gp_outside_of_building(8) == 0 ) THEN |
---|
| 938 | num_gp = num_gp + 1 |
---|
[1359] | 939 | location(num_gp,1) = i * dx + 0.5_wp * dx |
---|
[849] | 940 | location(num_gp,2) = (j+1) * dy |
---|
[1359] | 941 | location(num_gp,3) = k * dz + 0.5_wp * dz |
---|
[849] | 942 | ei(num_gp) = e(k+1,j+1,i) |
---|
| 943 | dissi(num_gp) = diss(k+1,j+1,i) |
---|
[1359] | 944 | de_dxi(num_gp) = 0.0_wp |
---|
[849] | 945 | de_dyi(num_gp) = de_dy(k+1,j+1,i) |
---|
| 946 | de_dzi(num_gp) = de_dz(k+1,j+1,i) |
---|
| 947 | ENDIF |
---|
| 948 | |
---|
| 949 | IF ( gp_outside_of_building(8) == 1 .AND. & |
---|
| 950 | gp_outside_of_building(4) == 0 ) THEN |
---|
| 951 | num_gp = num_gp + 1 |
---|
[1359] | 952 | location(num_gp,1) = i * dx + 0.5_wp * dx |
---|
[849] | 953 | location(num_gp,2) = (j+1) * dy |
---|
[1359] | 954 | location(num_gp,3) = k * dz + 0.5_wp * dz |
---|
[849] | 955 | ei(num_gp) = e(k+1,j+1,i+1) |
---|
| 956 | dissi(num_gp) = diss(k+1,j+1,i+1) |
---|
[1359] | 957 | de_dxi(num_gp) = 0.0_wp |
---|
[849] | 958 | de_dyi(num_gp) = de_dy(k+1,j+1,i+1) |
---|
| 959 | de_dzi(num_gp) = de_dz(k+1,j+1,i+1) |
---|
| 960 | ENDIF |
---|
| 961 | |
---|
| 962 | ! |
---|
| 963 | !-- If wall between gridpoint 3 and gridpoint 4, then |
---|
| 964 | !-- Neumann boundary condition has to be applied |
---|
| 965 | IF ( gp_outside_of_building(3) == 1 .AND. & |
---|
| 966 | gp_outside_of_building(4) == 0 ) THEN |
---|
| 967 | num_gp = num_gp + 1 |
---|
| 968 | location(num_gp,1) = i * dx |
---|
[1359] | 969 | location(num_gp,2) = j * dy + 0.5_wp * dy |
---|
| 970 | location(num_gp,3) = k * dz + 0.5_wp * dz |
---|
[849] | 971 | ei(num_gp) = e(k+1,j,i) |
---|
| 972 | dissi(num_gp) = diss(k+1,j,i) |
---|
| 973 | de_dxi(num_gp) = de_dx(k+1,j,i) |
---|
[1359] | 974 | de_dyi(num_gp) = 0.0_wp |
---|
[849] | 975 | de_dzi(num_gp) = de_dz(k+1,j,i) |
---|
| 976 | ENDIF |
---|
| 977 | |
---|
| 978 | IF ( gp_outside_of_building(4) == 1 .AND. & |
---|
| 979 | gp_outside_of_building(3) == 0 ) THEN |
---|
| 980 | num_gp = num_gp + 1 |
---|
| 981 | location(num_gp,1) = i * dx |
---|
[1359] | 982 | location(num_gp,2) = j * dy + 0.5_wp * dy |
---|
| 983 | location(num_gp,3) = k * dz + 0.5_wp * dz |
---|
[849] | 984 | ei(num_gp) = e(k+1,j+1,i) |
---|
| 985 | dissi(num_gp) = diss(k+1,j+1,i) |
---|
| 986 | de_dxi(num_gp) = de_dx(k+1,j+1,i) |
---|
[1359] | 987 | de_dyi(num_gp) = 0.0_wp |
---|
[849] | 988 | de_dzi(num_gp) = de_dz(k+1,j+1,i) |
---|
| 989 | ENDIF |
---|
| 990 | |
---|
| 991 | ! |
---|
| 992 | !-- If wall between gridpoint 1 and gridpoint 3, then |
---|
| 993 | !-- Neumann boundary condition has to be applied |
---|
| 994 | !-- (only one case as only building beneath is possible) |
---|
| 995 | IF ( gp_outside_of_building(1) == 0 .AND. & |
---|
| 996 | gp_outside_of_building(3) == 1 ) THEN |
---|
| 997 | num_gp = num_gp + 1 |
---|
| 998 | location(num_gp,1) = i * dx |
---|
| 999 | location(num_gp,2) = j * dy |
---|
| 1000 | location(num_gp,3) = k * dz |
---|
| 1001 | ei(num_gp) = e(k+1,j,i) |
---|
| 1002 | dissi(num_gp) = diss(k+1,j,i) |
---|
| 1003 | de_dxi(num_gp) = de_dx(k+1,j,i) |
---|
| 1004 | de_dyi(num_gp) = de_dy(k+1,j,i) |
---|
[1359] | 1005 | de_dzi(num_gp) = 0.0_wp |
---|
[849] | 1006 | ENDIF |
---|
| 1007 | |
---|
| 1008 | ! |
---|
| 1009 | !-- If wall between gridpoint 5 and gridpoint 7, then |
---|
| 1010 | !-- Neumann boundary condition has to be applied |
---|
| 1011 | !-- (only one case as only building beneath is possible) |
---|
| 1012 | IF ( gp_outside_of_building(5) == 0 .AND. & |
---|
| 1013 | gp_outside_of_building(7) == 1 ) THEN |
---|
| 1014 | num_gp = num_gp + 1 |
---|
| 1015 | location(num_gp,1) = (i+1) * dx |
---|
| 1016 | location(num_gp,2) = j * dy |
---|
| 1017 | location(num_gp,3) = k * dz |
---|
| 1018 | ei(num_gp) = e(k+1,j,i+1) |
---|
| 1019 | dissi(num_gp) = diss(k+1,j,i+1) |
---|
| 1020 | de_dxi(num_gp) = de_dx(k+1,j,i+1) |
---|
| 1021 | de_dyi(num_gp) = de_dy(k+1,j,i+1) |
---|
[1359] | 1022 | de_dzi(num_gp) = 0.0_wp |
---|
[849] | 1023 | ENDIF |
---|
| 1024 | |
---|
| 1025 | ! |
---|
| 1026 | !-- If wall between gridpoint 2 and gridpoint 4, then |
---|
| 1027 | !-- Neumann boundary condition has to be applied |
---|
| 1028 | !-- (only one case as only building beneath is possible) |
---|
| 1029 | IF ( gp_outside_of_building(2) == 0 .AND. & |
---|
| 1030 | gp_outside_of_building(4) == 1 ) THEN |
---|
| 1031 | num_gp = num_gp + 1 |
---|
| 1032 | location(num_gp,1) = i * dx |
---|
| 1033 | location(num_gp,2) = (j+1) * dy |
---|
| 1034 | location(num_gp,3) = k * dz |
---|
| 1035 | ei(num_gp) = e(k+1,j+1,i) |
---|
| 1036 | dissi(num_gp) = diss(k+1,j+1,i) |
---|
| 1037 | de_dxi(num_gp) = de_dx(k+1,j+1,i) |
---|
| 1038 | de_dyi(num_gp) = de_dy(k+1,j+1,i) |
---|
[1359] | 1039 | de_dzi(num_gp) = 0.0_wp |
---|
[849] | 1040 | ENDIF |
---|
| 1041 | |
---|
| 1042 | ! |
---|
| 1043 | !-- If wall between gridpoint 6 and gridpoint 8, then |
---|
| 1044 | !-- Neumann boundary condition has to be applied |
---|
| 1045 | !-- (only one case as only building beneath is possible) |
---|
| 1046 | IF ( gp_outside_of_building(6) == 0 .AND. & |
---|
| 1047 | gp_outside_of_building(8) == 1 ) THEN |
---|
| 1048 | num_gp = num_gp + 1 |
---|
| 1049 | location(num_gp,1) = (i+1) * dx |
---|
| 1050 | location(num_gp,2) = (j+1) * dy |
---|
| 1051 | location(num_gp,3) = k * dz |
---|
| 1052 | ei(num_gp) = e(k+1,j+1,i+1) |
---|
| 1053 | dissi(num_gp) = diss(k+1,j+1,i+1) |
---|
| 1054 | de_dxi(num_gp) = de_dx(k+1,j+1,i+1) |
---|
| 1055 | de_dyi(num_gp) = de_dy(k+1,j+1,i+1) |
---|
[1359] | 1056 | de_dzi(num_gp) = 0.0_wp |
---|
[849] | 1057 | ENDIF |
---|
| 1058 | |
---|
| 1059 | ! |
---|
| 1060 | !-- Carry out the interpolation |
---|
| 1061 | IF ( num_gp == 1 ) THEN |
---|
| 1062 | ! |
---|
| 1063 | !-- If only one of the gridpoints is situated outside of the |
---|
| 1064 | !-- building, it follows that the values at the particle |
---|
| 1065 | !-- location are the same as the gridpoint values |
---|
[1359] | 1066 | e_int(n) = ei(num_gp) |
---|
| 1067 | diss_int(n) = dissi(num_gp) |
---|
| 1068 | de_dx_int(n) = de_dxi(num_gp) |
---|
| 1069 | de_dy_int(n) = de_dyi(num_gp) |
---|
| 1070 | de_dz_int(n) = de_dzi(num_gp) |
---|
[849] | 1071 | ELSE IF ( num_gp > 1 ) THEN |
---|
| 1072 | |
---|
[1359] | 1073 | d_sum = 0.0_wp |
---|
[849] | 1074 | ! |
---|
| 1075 | !-- Evaluation of the distances between the gridpoints |
---|
| 1076 | !-- contributing to the interpolated values, and the particle |
---|
| 1077 | !-- location |
---|
| 1078 | DO agp = 1, num_gp |
---|
| 1079 | d_gp_pl(agp) = ( particles(n)%x-location(agp,1) )**2 & |
---|
| 1080 | + ( particles(n)%y-location(agp,2) )**2 & |
---|
[1359] | 1081 | + ( zv(n)-location(agp,3) )**2 |
---|
[849] | 1082 | d_sum = d_sum + d_gp_pl(agp) |
---|
| 1083 | ENDDO |
---|
| 1084 | |
---|
| 1085 | ! |
---|
| 1086 | !-- Finally the interpolation can be carried out |
---|
[1359] | 1087 | e_int(n) = 0.0_wp |
---|
| 1088 | diss_int(n) = 0.0_wp |
---|
| 1089 | de_dx_int(n) = 0.0_wp |
---|
| 1090 | de_dy_int(n) = 0.0_wp |
---|
| 1091 | de_dz_int(n) = 0.0_wp |
---|
[849] | 1092 | DO agp = 1, num_gp |
---|
[1359] | 1093 | e_int(n) = e_int(n) + ( d_sum - d_gp_pl(agp) ) * & |
---|
[849] | 1094 | ei(agp) / ( (num_gp-1) * d_sum ) |
---|
[1359] | 1095 | diss_int(n) = diss_int(n) + ( d_sum - d_gp_pl(agp) ) * & |
---|
[849] | 1096 | dissi(agp) / ( (num_gp-1) * d_sum ) |
---|
[1359] | 1097 | de_dx_int(n) = de_dx_int(n) + ( d_sum - d_gp_pl(agp) ) * & |
---|
[849] | 1098 | de_dxi(agp) / ( (num_gp-1) * d_sum ) |
---|
[1359] | 1099 | de_dy_int(n) = de_dy_int(n) + ( d_sum - d_gp_pl(agp) ) * & |
---|
[849] | 1100 | de_dyi(agp) / ( (num_gp-1) * d_sum ) |
---|
[1359] | 1101 | de_dz_int(n) = de_dz_int(n) + ( d_sum - d_gp_pl(agp) ) * & |
---|
[849] | 1102 | de_dzi(agp) / ( (num_gp-1) * d_sum ) |
---|
| 1103 | ENDDO |
---|
| 1104 | |
---|
| 1105 | ENDIF |
---|
| 1106 | |
---|
| 1107 | ENDIF |
---|
[1359] | 1108 | ENDDO |
---|
| 1109 | ENDIF |
---|
[849] | 1110 | |
---|
[1359] | 1111 | DO nb = 0,7 |
---|
| 1112 | i = ip + block_offset(nb)%i_off |
---|
| 1113 | j = jp + block_offset(nb)%j_off |
---|
| 1114 | k = kp + block_offset(nb)%k_off |
---|
[849] | 1115 | |
---|
[1359] | 1116 | DO n = start_index(nb), end_index(nb) |
---|
[849] | 1117 | ! |
---|
[1359] | 1118 | !-- Vertical interpolation of the horizontally averaged SGS TKE and |
---|
| 1119 | !-- resolved-scale velocity variances and use the interpolated values |
---|
| 1120 | !-- to calculate the coefficient fs, which is a measure of the ratio |
---|
| 1121 | !-- of the subgrid-scale turbulent kinetic energy to the total amount |
---|
| 1122 | !-- of turbulent kinetic energy. |
---|
| 1123 | IF ( k == 0 ) THEN |
---|
| 1124 | e_mean_int = hom(0,1,8,0) |
---|
| 1125 | ELSE |
---|
| 1126 | e_mean_int = hom(k,1,8,0) + & |
---|
| 1127 | ( hom(k+1,1,8,0) - hom(k,1,8,0) ) / & |
---|
| 1128 | ( zu(k+1) - zu(k) ) * & |
---|
| 1129 | ( zv(n) - zu(k) ) |
---|
| 1130 | ENDIF |
---|
[849] | 1131 | |
---|
[1359] | 1132 | ! kw = particles(n)%z / dz |
---|
| 1133 | kw = kp-1 ! ok for ocean??? ( + offset_ocean_nzt_m1 ???) |
---|
[849] | 1134 | |
---|
[1359] | 1135 | IF ( k == 0 ) THEN |
---|
| 1136 | aa = hom(k+1,1,30,0) * ( zv(n) / & |
---|
| 1137 | ( 0.5_wp * ( zu(k+1) - zu(k) ) ) ) |
---|
| 1138 | bb = hom(k+1,1,31,0) * ( zv(n) / & |
---|
| 1139 | ( 0.5_wp * ( zu(k+1) - zu(k) ) ) ) |
---|
| 1140 | cc = hom(kw+1,1,32,0) * ( zv(n) / & |
---|
| 1141 | ( 1.0_wp * ( zw(kw+1) - zw(kw) ) ) ) |
---|
| 1142 | ELSE |
---|
| 1143 | aa = hom(k,1,30,0) + ( hom(k+1,1,30,0) - hom(k,1,30,0) ) * & |
---|
| 1144 | ( ( zv(n) - zu(k) ) / ( zu(k+1) - zu(k) ) ) |
---|
| 1145 | bb = hom(k,1,31,0) + ( hom(k+1,1,31,0) - hom(k,1,31,0) ) * & |
---|
| 1146 | ( ( zv(n) - zu(k) ) / ( zu(k+1) - zu(k) ) ) |
---|
| 1147 | cc = hom(kw,1,32,0) + ( hom(kw+1,1,32,0)-hom(kw,1,32,0) ) * & |
---|
| 1148 | ( ( zv(n) - zw(kw) ) / ( zw(kw+1)-zw(kw) ) ) |
---|
| 1149 | ENDIF |
---|
[849] | 1150 | |
---|
[1359] | 1151 | vv_int = ( 1.0_wp / 3.0_wp ) * ( aa + bb + cc ) |
---|
| 1152 | ! |
---|
| 1153 | !-- Needed to avoid NaN particle velocities. The value of 1.0 is just |
---|
| 1154 | !-- an educated guess for the given case. |
---|
| 1155 | IF ( vv_int + ( 2.0_wp / 3.0_wp ) * e_mean_int == 0.0_wp ) THEN |
---|
| 1156 | fs_int(n) = 1.0_wp |
---|
| 1157 | ELSE |
---|
| 1158 | fs_int(n) = ( 2.0_wp / 3.0_wp ) * e_mean_int / & |
---|
| 1159 | ( vv_int + ( 2.0_wp / 3.0_wp ) * e_mean_int ) |
---|
| 1160 | ENDIF |
---|
[849] | 1161 | |
---|
[1359] | 1162 | ENDDO |
---|
| 1163 | ENDDO |
---|
[849] | 1164 | |
---|
[1359] | 1165 | DO n = 1, number_of_particles |
---|
| 1166 | |
---|
| 1167 | rg(n,1) = random_gauss( iran_part, 5.0_wp ) |
---|
| 1168 | rg(n,2) = random_gauss( iran_part, 5.0_wp ) |
---|
| 1169 | rg(n,3) = random_gauss( iran_part, 5.0_wp ) |
---|
| 1170 | |
---|
| 1171 | ENDDO |
---|
| 1172 | |
---|
| 1173 | DO n = 1, number_of_particles |
---|
[849] | 1174 | ! |
---|
| 1175 | !-- Calculate the Lagrangian timescale according to Weil et al. (2004). |
---|
[1359] | 1176 | lagr_timescale = ( 4.0_wp * e_int(n) ) / & |
---|
| 1177 | ( 3.0_wp * fs_int(n) * c_0 * diss_int(n) ) |
---|
[849] | 1178 | |
---|
| 1179 | ! |
---|
| 1180 | !-- Calculate the next particle timestep. dt_gap is the time needed to |
---|
| 1181 | !-- complete the current LES timestep. |
---|
| 1182 | dt_gap = dt_3d - particles(n)%dt_sum |
---|
[1359] | 1183 | dt_particle(n) = MIN( dt_3d, 0.025_wp * lagr_timescale, dt_gap ) |
---|
[849] | 1184 | |
---|
| 1185 | ! |
---|
| 1186 | !-- The particle timestep should not be too small in order to prevent |
---|
| 1187 | !-- the number of particle timesteps of getting too large |
---|
[1359] | 1188 | IF ( dt_particle(n) < dt_min_part .AND. dt_min_part < dt_gap ) THEN |
---|
| 1189 | dt_particle(n) = dt_min_part |
---|
[849] | 1190 | ENDIF |
---|
| 1191 | |
---|
| 1192 | ! |
---|
| 1193 | !-- Calculate the SGS velocity components |
---|
[1359] | 1194 | IF ( particles(n)%age == 0.0_wp ) THEN |
---|
[849] | 1195 | ! |
---|
| 1196 | !-- For new particles the SGS components are derived from the SGS |
---|
| 1197 | !-- TKE. Limit the Gaussian random number to the interval |
---|
| 1198 | !-- [-5.0*sigma, 5.0*sigma] in order to prevent the SGS velocities |
---|
| 1199 | !-- from becoming unrealistically large. |
---|
[1359] | 1200 | particles(n)%rvar1 = SQRT( 2.0_wp * sgs_wfu_part * e_int(n) ) * & |
---|
| 1201 | ( rg(n,1) - 1.0_wp ) |
---|
| 1202 | particles(n)%rvar2 = SQRT( 2.0_wp * sgs_wfv_part * e_int(n) ) * & |
---|
| 1203 | ( rg(n,2) - 1.0_wp ) |
---|
| 1204 | particles(n)%rvar3 = SQRT( 2.0_wp * sgs_wfw_part * e_int(n) ) * & |
---|
| 1205 | ( rg(n,3) - 1.0_wp ) |
---|
[849] | 1206 | |
---|
| 1207 | ELSE |
---|
| 1208 | ! |
---|
| 1209 | !-- Restriction of the size of the new timestep: compared to the |
---|
| 1210 | !-- previous timestep the increase must not exceed 200% |
---|
| 1211 | |
---|
| 1212 | dt_particle_m = particles(n)%age - particles(n)%age_m |
---|
[1359] | 1213 | IF ( dt_particle(n) > 2.0_wp * dt_particle_m ) THEN |
---|
| 1214 | dt_particle(n) = 2.0_wp * dt_particle_m |
---|
[849] | 1215 | ENDIF |
---|
| 1216 | |
---|
| 1217 | ! |
---|
| 1218 | !-- For old particles the SGS components are correlated with the |
---|
| 1219 | !-- values from the previous timestep. Random numbers have also to |
---|
| 1220 | !-- be limited (see above). |
---|
| 1221 | !-- As negative values for the subgrid TKE are not allowed, the |
---|
| 1222 | !-- change of the subgrid TKE with time cannot be smaller than |
---|
[1359] | 1223 | !-- -e_int(n)/dt_particle. This value is used as a lower boundary |
---|
[849] | 1224 | !-- value for the change of TKE |
---|
| 1225 | |
---|
[1359] | 1226 | de_dt_min = - e_int(n) / dt_particle(n) |
---|
[849] | 1227 | |
---|
[1359] | 1228 | de_dt = ( e_int(n) - particles(n)%e_m ) / dt_particle_m |
---|
[849] | 1229 | |
---|
| 1230 | IF ( de_dt < de_dt_min ) THEN |
---|
| 1231 | de_dt = de_dt_min |
---|
| 1232 | ENDIF |
---|
| 1233 | |
---|
[1359] | 1234 | particles(n)%rvar1 = particles(n)%rvar1 - fs_int(n) * c_0 * & |
---|
| 1235 | diss_int(n) * particles(n)%rvar1 * dt_particle(n) / & |
---|
| 1236 | ( 4.0_wp * sgs_wfu_part * e_int(n) ) + & |
---|
| 1237 | ( 2.0_wp * sgs_wfu_part * de_dt * & |
---|
| 1238 | particles(n)%rvar1 / & |
---|
| 1239 | ( 2.0_wp * sgs_wfu_part * e_int(n) ) + & |
---|
| 1240 | de_dx_int(n) & |
---|
| 1241 | ) * dt_particle(n) / 2.0_wp + & |
---|
| 1242 | SQRT( fs_int(n) * c_0 * diss_int(n) ) * & |
---|
| 1243 | ( rg(n,1) - 1.0_wp ) * & |
---|
| 1244 | SQRT( dt_particle(n) ) |
---|
[849] | 1245 | |
---|
[1359] | 1246 | particles(n)%rvar2 = particles(n)%rvar2 - fs_int(n) * c_0 * & |
---|
| 1247 | diss_int(n) * particles(n)%rvar2 * dt_particle(n) / & |
---|
| 1248 | ( 4.0_wp * sgs_wfv_part * e_int(n) ) + & |
---|
| 1249 | ( 2.0_wp * sgs_wfv_part * de_dt * & |
---|
| 1250 | particles(n)%rvar2 / & |
---|
| 1251 | ( 2.0_wp * sgs_wfv_part * e_int(n) ) + & |
---|
| 1252 | de_dy_int(n) & |
---|
| 1253 | ) * dt_particle(n) / 2.0_wp + & |
---|
| 1254 | SQRT( fs_int(n) * c_0 * diss_int(n) ) * & |
---|
| 1255 | ( rg(n,2) - 1.0_wp ) * & |
---|
| 1256 | SQRT( dt_particle(n) ) |
---|
[849] | 1257 | |
---|
[1359] | 1258 | particles(n)%rvar3 = particles(n)%rvar3 - fs_int(n) * c_0 * & |
---|
| 1259 | diss_int(n) * particles(n)%rvar3 * dt_particle(n) / & |
---|
| 1260 | ( 4.0_wp * sgs_wfw_part * e_int(n) ) + & |
---|
| 1261 | ( 2.0_wp * sgs_wfw_part * de_dt * & |
---|
| 1262 | particles(n)%rvar3 / & |
---|
| 1263 | ( 2.0_wp * sgs_wfw_part * e_int(n) ) + & |
---|
| 1264 | de_dz_int(n) & |
---|
| 1265 | ) * dt_particle(n) / 2.0_wp + & |
---|
| 1266 | SQRT( fs_int(n) * c_0 * diss_int(n) ) * & |
---|
| 1267 | ( rg(n,3) - 1.0_wp ) * & |
---|
| 1268 | SQRT( dt_particle(n) ) |
---|
[849] | 1269 | |
---|
| 1270 | ENDIF |
---|
[1359] | 1271 | u_int(n) = u_int(n) + particles(n)%rvar1 |
---|
| 1272 | v_int(n) = v_int(n) + particles(n)%rvar2 |
---|
| 1273 | w_int(n) = w_int(n) + particles(n)%rvar3 |
---|
[849] | 1274 | |
---|
| 1275 | ! |
---|
| 1276 | !-- Store the SGS TKE of the current timelevel which is needed for |
---|
| 1277 | !-- for calculating the SGS particle velocities at the next timestep |
---|
[1359] | 1278 | particles(n)%e_m = e_int(n) |
---|
| 1279 | ENDDO |
---|
[849] | 1280 | |
---|
[1359] | 1281 | ELSE |
---|
[849] | 1282 | ! |
---|
[1359] | 1283 | !-- If no SGS velocities are used, only the particle timestep has to |
---|
| 1284 | !-- be set |
---|
| 1285 | dt_particle = dt_3d |
---|
[849] | 1286 | |
---|
[1359] | 1287 | ENDIF |
---|
[849] | 1288 | ! |
---|
[1359] | 1289 | !-- Store the old age of the particle ( needed to prevent that a |
---|
| 1290 | !-- particle crosses several PEs during one timestep, and for the |
---|
| 1291 | !-- evaluation of the subgrid particle velocity fluctuations ) |
---|
| 1292 | particles(1:number_of_particles)%age_m = particles(1:number_of_particles)%age |
---|
[849] | 1293 | |
---|
[1359] | 1294 | dens_ratio = particle_groups(particles(1:number_of_particles)%group)%density_ratio |
---|
[849] | 1295 | |
---|
[1359] | 1296 | IF ( ANY( dens_ratio == 0.0_wp ) ) THEN |
---|
| 1297 | DO n = 1, number_of_particles |
---|
| 1298 | |
---|
[849] | 1299 | ! |
---|
[1359] | 1300 | !-- Particle advection |
---|
| 1301 | IF ( dens_ratio(n) == 0.0_wp ) THEN |
---|
[849] | 1302 | ! |
---|
[1359] | 1303 | !-- Pure passive transport (without particle inertia) |
---|
| 1304 | particles(n)%x = xv(n) + u_int(n) * dt_particle(n) |
---|
| 1305 | particles(n)%y = yv(n) + v_int(n) * dt_particle(n) |
---|
| 1306 | particles(n)%z = zv(n) + w_int(n) * dt_particle(n) |
---|
[849] | 1307 | |
---|
[1359] | 1308 | particles(n)%speed_x = u_int(n) |
---|
| 1309 | particles(n)%speed_y = v_int(n) |
---|
| 1310 | particles(n)%speed_z = w_int(n) |
---|
[849] | 1311 | |
---|
[1359] | 1312 | ELSE |
---|
[849] | 1313 | ! |
---|
[1359] | 1314 | !-- Transport of particles with inertia |
---|
| 1315 | particles(n)%x = particles(n)%x + particles(n)%speed_x * & |
---|
| 1316 | dt_particle(n) |
---|
| 1317 | particles(n)%y = particles(n)%y + particles(n)%speed_y * & |
---|
| 1318 | dt_particle(n) |
---|
| 1319 | particles(n)%z = particles(n)%z + particles(n)%speed_z * & |
---|
| 1320 | dt_particle(n) |
---|
[849] | 1321 | |
---|
| 1322 | ! |
---|
[1359] | 1323 | !-- Update of the particle velocity |
---|
| 1324 | IF ( cloud_droplets ) THEN |
---|
| 1325 | exp_arg = 4.5_wp * dens_ratio(n) * molecular_viscosity / & |
---|
| 1326 | ( particles(n)%radius )**2 * & |
---|
| 1327 | ( 1.0_wp + 0.15_wp * ( 2.0_wp * particles(n)%radius & |
---|
| 1328 | * SQRT( ( u_int(n) - particles(n)%speed_x )**2 + & |
---|
| 1329 | ( v_int(n) - particles(n)%speed_y )**2 + & |
---|
| 1330 | ( w_int(n) - particles(n)%speed_z )**2 ) & |
---|
| 1331 | / molecular_viscosity )**0.687_wp & |
---|
| 1332 | ) |
---|
| 1333 | |
---|
| 1334 | exp_term = EXP( -exp_arg * dt_particle(n) ) |
---|
| 1335 | ELSEIF ( use_sgs_for_particles ) THEN |
---|
| 1336 | exp_arg = particle_groups(particles(n)%group)%exp_arg |
---|
| 1337 | exp_term = EXP( -exp_arg * dt_particle(n) ) |
---|
| 1338 | ELSE |
---|
| 1339 | exp_arg = particle_groups(particles(n)%group)%exp_arg |
---|
| 1340 | exp_term = particle_groups(particles(n)%group)%exp_term |
---|
| 1341 | ENDIF |
---|
| 1342 | particles(n)%speed_x = particles(n)%speed_x * exp_term + & |
---|
| 1343 | u_int(n) * ( 1.0_wp - exp_term ) |
---|
| 1344 | particles(n)%speed_y = particles(n)%speed_y * exp_term + & |
---|
| 1345 | v_int(n) * ( 1.0_wp - exp_term ) |
---|
| 1346 | particles(n)%speed_z = particles(n)%speed_z * exp_term + & |
---|
| 1347 | ( w_int(n) - ( 1.0_wp - dens_ratio(n) ) * & |
---|
| 1348 | g / exp_arg ) * ( 1.0_wp - exp_term ) |
---|
| 1349 | ENDIF |
---|
| 1350 | |
---|
| 1351 | ENDDO |
---|
| 1352 | |
---|
| 1353 | ELSE |
---|
| 1354 | |
---|
| 1355 | DO n = 1, number_of_particles |
---|
| 1356 | |
---|
| 1357 | !-- Transport of particles with inertia |
---|
| 1358 | particles(n)%x = xv(n) + particles(n)%speed_x * dt_particle(n) |
---|
| 1359 | particles(n)%y = yv(n) + particles(n)%speed_y * dt_particle(n) |
---|
| 1360 | particles(n)%z = zv(n) + particles(n)%speed_z * dt_particle(n) |
---|
| 1361 | ! |
---|
[849] | 1362 | !-- Update of the particle velocity |
---|
| 1363 | IF ( cloud_droplets ) THEN |
---|
[1359] | 1364 | |
---|
| 1365 | exp_arg = 4.5_wp * dens_ratio(n) * molecular_viscosity / & |
---|
| 1366 | ( particles(n)%radius )**2 * & |
---|
| 1367 | ( 1.0_wp + 0.15_wp * ( 2.0_wp * particles(n)%radius * & |
---|
| 1368 | SQRT( ( u_int(n) - particles(n)%speed_x )**2 + & |
---|
| 1369 | ( v_int(n) - particles(n)%speed_y )**2 + & |
---|
| 1370 | ( w_int(n) - particles(n)%speed_z )**2 ) / & |
---|
| 1371 | molecular_viscosity )**0.687_wp & |
---|
[849] | 1372 | ) |
---|
[1359] | 1373 | |
---|
| 1374 | exp_term = EXP( -exp_arg * dt_particle(n) ) |
---|
[849] | 1375 | ELSEIF ( use_sgs_for_particles ) THEN |
---|
| 1376 | exp_arg = particle_groups(particles(n)%group)%exp_arg |
---|
[1359] | 1377 | exp_term = EXP( -exp_arg * dt_particle(n) ) |
---|
[849] | 1378 | ELSE |
---|
| 1379 | exp_arg = particle_groups(particles(n)%group)%exp_arg |
---|
| 1380 | exp_term = particle_groups(particles(n)%group)%exp_term |
---|
| 1381 | ENDIF |
---|
| 1382 | particles(n)%speed_x = particles(n)%speed_x * exp_term + & |
---|
[1359] | 1383 | u_int(n) * ( 1.0_wp - exp_term ) |
---|
[849] | 1384 | particles(n)%speed_y = particles(n)%speed_y * exp_term + & |
---|
[1359] | 1385 | v_int(n) * ( 1.0_wp - exp_term ) |
---|
[849] | 1386 | particles(n)%speed_z = particles(n)%speed_z * exp_term + & |
---|
[1359] | 1387 | ( w_int(n) - ( 1.0_wp - dens_ratio(n) ) * g / & |
---|
| 1388 | exp_arg ) * ( 1.0_wp - exp_term ) |
---|
| 1389 | ENDDO |
---|
[849] | 1390 | |
---|
[1359] | 1391 | ENDIF |
---|
| 1392 | |
---|
| 1393 | DO n = 1, number_of_particles |
---|
[849] | 1394 | ! |
---|
| 1395 | !-- Increment the particle age and the total time that the particle |
---|
| 1396 | !-- has advanced within the particle timestep procedure |
---|
[1359] | 1397 | particles(n)%age = particles(n)%age + dt_particle(n) |
---|
| 1398 | particles(n)%dt_sum = particles(n)%dt_sum + dt_particle(n) |
---|
[849] | 1399 | |
---|
| 1400 | ! |
---|
| 1401 | !-- Check whether there is still a particle that has not yet completed |
---|
| 1402 | !-- the total LES timestep |
---|
[1359] | 1403 | IF ( ( dt_3d - particles(n)%dt_sum ) > 1E-8_wp ) THEN |
---|
[849] | 1404 | dt_3d_reached_l = .FALSE. |
---|
| 1405 | ENDIF |
---|
| 1406 | |
---|
| 1407 | ENDDO |
---|
| 1408 | |
---|
[1359] | 1409 | CALL cpu_log( log_point_s(44), 'lpm_advec', 'pause' ) |
---|
[849] | 1410 | |
---|
| 1411 | END SUBROUTINE lpm_advec |
---|