[849] | 1 | SUBROUTINE lpm_advec |
---|
| 2 | |
---|
[1036] | 3 | !--------------------------------------------------------------------------------! |
---|
| 4 | ! This file is part of PALM. |
---|
| 5 | ! |
---|
| 6 | ! PALM is free software: you can redistribute it and/or modify it under the terms |
---|
| 7 | ! of the GNU General Public License as published by the Free Software Foundation, |
---|
| 8 | ! either version 3 of the License, or (at your option) any later version. |
---|
| 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
[1310] | 17 | ! Copyright 1997-2014 Leibniz Universitaet Hannover |
---|
[1036] | 18 | !--------------------------------------------------------------------------------! |
---|
| 19 | ! |
---|
[849] | 20 | ! Current revisions: |
---|
| 21 | ! ------------------ |
---|
[1321] | 22 | ! |
---|
[1323] | 23 | ! |
---|
[1321] | 24 | ! Former revisions: |
---|
| 25 | ! ----------------- |
---|
| 26 | ! $Id: lpm_advec.f90 1323 2014-03-20 17:09:54Z heinze $ |
---|
| 27 | ! |
---|
[1323] | 28 | ! 1322 2014-03-20 16:38:49Z raasch |
---|
| 29 | ! REAL constants defined as wp_kind |
---|
| 30 | ! |
---|
[1321] | 31 | ! 1320 2014-03-20 08:40:49Z raasch |
---|
[1320] | 32 | ! ONLY-attribute added to USE-statements, |
---|
| 33 | ! kind-parameters added to all INTEGER and REAL declaration statements, |
---|
| 34 | ! kinds are defined in new module kinds, |
---|
| 35 | ! revision history before 2012 removed, |
---|
| 36 | ! comment fields (!:) to be used for variable explanations added to |
---|
| 37 | ! all variable declaration statements |
---|
[849] | 38 | ! |
---|
[1315] | 39 | ! 1314 2014-03-14 18:25:17Z suehring |
---|
| 40 | ! Vertical logarithmic interpolation of horizontal particle speed for particles |
---|
| 41 | ! between roughness height and first vertical grid level. |
---|
| 42 | ! |
---|
[1037] | 43 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
| 44 | ! code put under GPL (PALM 3.9) |
---|
| 45 | ! |
---|
[850] | 46 | ! 849 2012-03-15 10:35:09Z raasch |
---|
| 47 | ! initial revision (former part of advec_particles) |
---|
[849] | 48 | ! |
---|
[850] | 49 | ! |
---|
[849] | 50 | ! Description: |
---|
| 51 | ! ------------ |
---|
| 52 | ! Calculation of new particle positions due to advection using a simple Euler |
---|
| 53 | ! scheme. Particles may feel inertia effects. SGS transport can be included |
---|
| 54 | ! using the stochastic model of Weil et al. (2004, JAS, 61, 2877-2887). |
---|
| 55 | !------------------------------------------------------------------------------! |
---|
| 56 | |
---|
[1320] | 57 | USE arrays_3d, & |
---|
| 58 | ONLY: de_dx, de_dy, de_dz, diss, e, u, us, usws, v, vsws, w, z0, zu, zw |
---|
[849] | 59 | |
---|
[1320] | 60 | USE control_parameters, & |
---|
| 61 | ONLY: atmos_ocean_sign, cloud_droplets, dt_3d, dt_3d_reached_l, dz, & |
---|
| 62 | g, kappa, molecular_viscosity, prandtl_layer, topography, & |
---|
| 63 | u_gtrans, v_gtrans |
---|
[849] | 64 | |
---|
[1320] | 65 | USE grid_variables, & |
---|
| 66 | ONLY: ddx, dx, ddy, dy |
---|
| 67 | |
---|
| 68 | USE indices, & |
---|
| 69 | ONLY: nzb, nzb_s_inner, nzt |
---|
| 70 | |
---|
| 71 | USE kinds |
---|
| 72 | |
---|
| 73 | USE particle_attributes, & |
---|
| 74 | ONLY: c_0, density_ratio, dt_min_part, iran_part, log_z_z0, & |
---|
| 75 | number_of_particles, number_of_sublayers, particles, & |
---|
| 76 | particle_groups, offset_ocean_nzt, offset_ocean_nzt_m1, & |
---|
| 77 | sgs_wfu_part, sgs_wfv_part, sgs_wfw_part, use_sgs_for_particles,& |
---|
| 78 | vertical_particle_advection, z0_av_global |
---|
| 79 | |
---|
| 80 | USE statistics, & |
---|
| 81 | ONLY: hom |
---|
| 82 | |
---|
[849] | 83 | |
---|
[1320] | 84 | IMPLICIT NONE |
---|
[849] | 85 | |
---|
[1320] | 86 | INTEGER(iwp) :: agp !: |
---|
| 87 | INTEGER(iwp) :: gp_outside_of_building(1:8) !: |
---|
| 88 | INTEGER(iwp) :: i !: |
---|
| 89 | INTEGER(iwp) :: j !: |
---|
| 90 | INTEGER(iwp) :: k !: |
---|
| 91 | INTEGER(iwp) :: kw !: |
---|
| 92 | INTEGER(iwp) :: n !: |
---|
| 93 | INTEGER(iwp) :: num_gp !: |
---|
[849] | 94 | |
---|
[1320] | 95 | REAL(wp) :: aa !: |
---|
| 96 | REAL(wp) :: bb !: |
---|
| 97 | REAL(wp) :: cc !: |
---|
| 98 | REAL(wp) :: d_sum !: |
---|
| 99 | REAL(wp) :: d_z_p_z0 !: |
---|
| 100 | REAL(wp) :: dd !: |
---|
| 101 | REAL(wp) :: de_dx_int !: |
---|
| 102 | REAL(wp) :: de_dx_int_l !: |
---|
| 103 | REAL(wp) :: de_dx_int_u !: |
---|
| 104 | REAL(wp) :: de_dy_int !: |
---|
| 105 | REAL(wp) :: de_dy_int_l !: |
---|
| 106 | REAL(wp) :: de_dy_int_u !: |
---|
| 107 | REAL(wp) :: de_dt !: |
---|
| 108 | REAL(wp) :: de_dt_min !: |
---|
| 109 | REAL(wp) :: de_dz_int !: |
---|
| 110 | REAL(wp) :: de_dz_int_l !: |
---|
| 111 | REAL(wp) :: de_dz_int_u !: |
---|
| 112 | REAL(wp) :: dens_ratio !: |
---|
| 113 | REAL(wp) :: diss_int !: |
---|
| 114 | REAL(wp) :: diss_int_l !: |
---|
| 115 | REAL(wp) :: diss_int_u !: |
---|
| 116 | REAL(wp) :: dt_gap !: |
---|
| 117 | REAL(wp) :: dt_particle !: |
---|
| 118 | REAL(wp) :: dt_particle_m !: |
---|
| 119 | REAL(wp) :: e_int !: |
---|
| 120 | REAL(wp) :: e_int_l !: |
---|
| 121 | REAL(wp) :: e_int_u !: |
---|
| 122 | REAL(wp) :: e_mean_int !: |
---|
| 123 | REAL(wp) :: exp_arg !: |
---|
| 124 | REAL(wp) :: exp_term !: |
---|
| 125 | REAL(wp) :: fs_int !: |
---|
| 126 | REAL(wp) :: gg !: |
---|
| 127 | REAL(wp) :: height_int !: |
---|
| 128 | REAL(wp) :: height_p !: |
---|
| 129 | REAL(wp) :: lagr_timescale !: |
---|
| 130 | REAL(wp) :: location(1:30,1:3) !: |
---|
| 131 | REAL(wp) :: log_z_z0_int !: |
---|
| 132 | REAL(wp) :: random_gauss !: |
---|
| 133 | REAL(wp) :: u_int !: |
---|
| 134 | REAL(wp) :: u_int_l !: |
---|
| 135 | REAL(wp) :: u_int_u !: |
---|
| 136 | REAL(wp) :: us_int !: |
---|
| 137 | REAL(wp) :: v_int !: |
---|
| 138 | REAL(wp) :: v_int_l !: |
---|
| 139 | REAL(wp) :: v_int_u !: |
---|
| 140 | REAL(wp) :: vv_int !: |
---|
| 141 | REAL(wp) :: w_int !: |
---|
| 142 | REAL(wp) :: w_int_l !: |
---|
| 143 | REAL(wp) :: w_int_u !: |
---|
| 144 | REAL(wp) :: x !: |
---|
| 145 | REAL(wp) :: y !: |
---|
| 146 | REAL(wp) :: z_p !: |
---|
[849] | 147 | |
---|
[1320] | 148 | REAL(wp), DIMENSION(1:30) :: d_gp_pl !: |
---|
| 149 | REAL(wp), DIMENSION(1:30) :: de_dxi !: |
---|
| 150 | REAL(wp), DIMENSION(1:30) :: de_dyi !: |
---|
| 151 | REAL(wp), DIMENSION(1:30) :: de_dzi !: |
---|
| 152 | REAL(wp), DIMENSION(1:30) :: dissi !: |
---|
| 153 | REAL(wp), DIMENSION(1:30) :: ei !: |
---|
[849] | 154 | |
---|
[1314] | 155 | ! |
---|
| 156 | !-- Determine height of Prandtl layer and distance between Prandtl-layer |
---|
| 157 | !-- height and horizontal mean roughness height, which are required for |
---|
| 158 | !-- vertical logarithmic interpolation of horizontal particle speeds |
---|
| 159 | !-- (for particles below first vertical grid level). |
---|
| 160 | z_p = zu(nzb+1) - zw(nzb) |
---|
| 161 | d_z_p_z0 = 1.0 / ( z_p - z0_av_global ) |
---|
[849] | 162 | |
---|
| 163 | DO n = 1, number_of_particles |
---|
| 164 | |
---|
| 165 | ! |
---|
| 166 | !-- Move particle only if the LES timestep has not (approximately) been |
---|
| 167 | !-- reached |
---|
| 168 | IF ( ( dt_3d - particles(n)%dt_sum ) < 1E-8 ) CYCLE |
---|
| 169 | ! |
---|
[1314] | 170 | !-- Determine bottom index |
---|
[849] | 171 | k = ( particles(n)%z + 0.5 * dz * atmos_ocean_sign ) / dz & |
---|
[1314] | 172 | + offset_ocean_nzt ! only exact if equidistant |
---|
| 173 | ! |
---|
| 174 | !-- Interpolation of the u velocity component onto particle position. |
---|
| 175 | !-- Particles are interpolation bi-linearly in the horizontal and a |
---|
| 176 | !-- linearly in the vertical. An exception is made for particles below |
---|
| 177 | !-- the first vertical grid level in case of a prandtl layer. In this |
---|
| 178 | !-- case the horizontal particle velocity components are determined using |
---|
| 179 | !-- Monin-Obukhov relations (if branch). |
---|
| 180 | !-- First, check if particle is located below first vertical grid level |
---|
| 181 | !-- (Prandtl-layer height) |
---|
| 182 | IF ( prandtl_layer .AND. particles(n)%z < z_p ) THEN |
---|
| 183 | ! |
---|
| 184 | !-- Resolved-scale horizontal particle velocity is zero below z0. |
---|
| 185 | IF ( particles(n)%z < z0_av_global ) THEN |
---|
[849] | 186 | |
---|
[1314] | 187 | u_int = 0.0 |
---|
| 188 | |
---|
| 189 | ELSE |
---|
[849] | 190 | ! |
---|
[1314] | 191 | !-- Determine the sublayer. Further used as index. |
---|
[1322] | 192 | height_p = ( particles(n)%z - z0_av_global ) & |
---|
| 193 | * REAL( number_of_sublayers, KIND=wp ) & |
---|
[1314] | 194 | * d_z_p_z0 |
---|
| 195 | ! |
---|
| 196 | !-- Calculate LOG(z/z0) for exact particle height. Therefore, |
---|
| 197 | !-- interpolate linearly between precalculated logarithm. |
---|
| 198 | log_z_z0_int = log_z_z0(INT(height_p)) & |
---|
| 199 | + ( height_p - INT(height_p) ) & |
---|
| 200 | * ( log_z_z0(INT(height_p)+1) & |
---|
| 201 | - log_z_z0(INT(height_p)) & |
---|
| 202 | ) |
---|
| 203 | ! |
---|
| 204 | !-- Neutral solution is applied for all situations, e.g. also for |
---|
| 205 | !-- unstable and stable situations. Even though this is not exact |
---|
| 206 | !-- this saves a lot of CPU time since several calls of intrinsic |
---|
| 207 | !-- FORTRAN procedures (LOG, ATAN) are avoided, This is justified |
---|
| 208 | !-- as sensitivity studies revealed no significant effect of |
---|
| 209 | !-- using the neutral solution also for un/stable situations. |
---|
| 210 | !-- Calculated left and bottom index on u grid. |
---|
| 211 | i = ( particles(n)%x + 0.5 * dx ) * ddx |
---|
| 212 | j = particles(n)%y * ddy |
---|
[849] | 213 | |
---|
[1314] | 214 | us_int = 0.5 * ( us(j,i) + us(j,i-1) ) |
---|
| 215 | |
---|
[1322] | 216 | u_int = -usws(j,i) / ( us_int * kappa + 1E-10_wp ) & |
---|
[1314] | 217 | * log_z_z0_int |
---|
| 218 | |
---|
| 219 | ENDIF |
---|
| 220 | ! |
---|
| 221 | !-- Particle above the first grid level. Bi-linear interpolation in the |
---|
| 222 | !-- horizontal and linear interpolation in the vertical direction. |
---|
[849] | 223 | ELSE |
---|
[1314] | 224 | ! |
---|
| 225 | !-- Interpolate u velocity-component, determine left, front, bottom |
---|
| 226 | !-- index of u-array. Adopt k index from above |
---|
| 227 | i = ( particles(n)%x + 0.5 * dx ) * ddx |
---|
| 228 | j = particles(n)%y * ddy |
---|
| 229 | ! |
---|
| 230 | !-- Interpolation of the velocity components in the xy-plane |
---|
| 231 | x = particles(n)%x + ( 0.5 - i ) * dx |
---|
| 232 | y = particles(n)%y - j * dy |
---|
| 233 | aa = x**2 + y**2 |
---|
| 234 | bb = ( dx - x )**2 + y**2 |
---|
| 235 | cc = x**2 + ( dy - y )**2 |
---|
| 236 | dd = ( dx - x )**2 + ( dy - y )**2 |
---|
| 237 | gg = aa + bb + cc + dd |
---|
| 238 | |
---|
| 239 | u_int_l = ( ( gg - aa ) * u(k,j,i) + ( gg - bb ) * u(k,j,i+1) & |
---|
| 240 | + ( gg - cc ) * u(k,j+1,i) + ( gg - dd ) * u(k,j+1,i+1)& |
---|
[849] | 241 | ) / ( 3.0 * gg ) - u_gtrans |
---|
[1314] | 242 | |
---|
| 243 | IF ( k+1 == nzt+1 ) THEN |
---|
| 244 | |
---|
| 245 | u_int = u_int_l |
---|
| 246 | |
---|
| 247 | ELSE |
---|
| 248 | |
---|
| 249 | u_int_u = ( ( gg-aa ) * u(k+1,j,i) + ( gg-bb ) * u(k+1,j,i+1) & |
---|
| 250 | + ( gg-cc ) * u(k+1,j+1,i) + ( gg-dd ) * u(k+1,j+1,i+1) & |
---|
| 251 | ) / ( 3.0 * gg ) - u_gtrans |
---|
| 252 | |
---|
| 253 | u_int = u_int_l + ( particles(n)%z - zu(k) ) / dz * & |
---|
[849] | 254 | ( u_int_u - u_int_l ) |
---|
[1314] | 255 | |
---|
| 256 | ENDIF |
---|
| 257 | |
---|
[849] | 258 | ENDIF |
---|
| 259 | |
---|
| 260 | ! |
---|
[1314] | 261 | !-- Same procedure for interpolation of the v velocity-component. |
---|
| 262 | IF ( prandtl_layer .AND. particles(n)%z < z_p ) THEN |
---|
| 263 | ! |
---|
| 264 | !-- Resolved-scale horizontal particle velocity is zero below z0. |
---|
| 265 | IF ( particles(n)%z < z0_av_global ) THEN |
---|
[849] | 266 | |
---|
[1314] | 267 | v_int = 0.0 |
---|
[849] | 268 | |
---|
[1314] | 269 | ELSE |
---|
| 270 | ! |
---|
| 271 | !-- Neutral solution is applied for all situations, e.g. also for |
---|
| 272 | !-- unstable and stable situations. Even though this is not exact |
---|
| 273 | !-- this saves a lot of CPU time since several calls of intrinsic |
---|
| 274 | !-- FORTRAN procedures (LOG, ATAN) are avoided, This is justified |
---|
| 275 | !-- as sensitivity studies revealed no significant effect of |
---|
| 276 | !-- using the neutral solution also for un/stable situations. |
---|
| 277 | !-- Calculated left and bottom index on v grid. |
---|
| 278 | i = particles(n)%x * ddx |
---|
| 279 | j = ( particles(n)%y + 0.5 * dy ) * ddy |
---|
| 280 | |
---|
| 281 | us_int = 0.5 * ( us(j,i) + us(j-1,i) ) |
---|
| 282 | |
---|
[1322] | 283 | v_int = -vsws(j,i) / ( us_int * kappa + 1E-10_wp ) & |
---|
[1314] | 284 | * log_z_z0_int |
---|
| 285 | |
---|
| 286 | ENDIF |
---|
| 287 | ! |
---|
| 288 | !-- Particle above the first grid level. Bi-linear interpolation in the |
---|
| 289 | !-- horizontal and linear interpolation in the vertical direction. |
---|
[849] | 290 | ELSE |
---|
[1314] | 291 | i = particles(n)%x * ddx |
---|
| 292 | j = ( particles(n)%y + 0.5 * dy ) * ddy |
---|
| 293 | x = particles(n)%x - i * dx |
---|
| 294 | y = particles(n)%y + ( 0.5 - j ) * dy |
---|
| 295 | aa = x**2 + y**2 |
---|
| 296 | bb = ( dx - x )**2 + y**2 |
---|
| 297 | cc = x**2 + ( dy - y )**2 |
---|
| 298 | dd = ( dx - x )**2 + ( dy - y )**2 |
---|
| 299 | gg = aa + bb + cc + dd |
---|
| 300 | |
---|
| 301 | v_int_l = ( ( gg - aa ) * v(k,j,i) + ( gg - bb ) * v(k,j,i+1) & |
---|
| 302 | + ( gg - cc ) * v(k,j+1,i) + ( gg - dd ) * v(k,j+1,i+1)& |
---|
[849] | 303 | ) / ( 3.0 * gg ) - v_gtrans |
---|
[1314] | 304 | IF ( k+1 == nzt+1 ) THEN |
---|
| 305 | v_int = v_int_l |
---|
| 306 | ELSE |
---|
| 307 | v_int_u = ( ( gg-aa ) * v(k+1,j,i) + ( gg-bb ) * v(k+1,j,i+1) & |
---|
| 308 | + ( gg-cc ) * v(k+1,j+1,i) + ( gg-dd ) * v(k+1,j+1,i+1) & |
---|
| 309 | ) / ( 3.0 * gg ) - v_gtrans |
---|
| 310 | v_int = v_int_l + ( particles(n)%z - zu(k) ) / dz * & |
---|
[849] | 311 | ( v_int_u - v_int_l ) |
---|
[1314] | 312 | ENDIF |
---|
| 313 | |
---|
[849] | 314 | ENDIF |
---|
| 315 | |
---|
| 316 | ! |
---|
[1314] | 317 | !-- Same procedure for interpolation of the w velocity-component |
---|
[849] | 318 | IF ( vertical_particle_advection(particles(n)%group) ) THEN |
---|
[1314] | 319 | i = particles(n)%x * ddx |
---|
[849] | 320 | j = particles(n)%y * ddy |
---|
| 321 | k = particles(n)%z / dz + offset_ocean_nzt_m1 |
---|
| 322 | |
---|
| 323 | x = particles(n)%x - i * dx |
---|
| 324 | y = particles(n)%y - j * dy |
---|
| 325 | aa = x**2 + y**2 |
---|
| 326 | bb = ( dx - x )**2 + y**2 |
---|
| 327 | cc = x**2 + ( dy - y )**2 |
---|
| 328 | dd = ( dx - x )**2 + ( dy - y )**2 |
---|
| 329 | gg = aa + bb + cc + dd |
---|
| 330 | |
---|
| 331 | w_int_l = ( ( gg - aa ) * w(k,j,i) + ( gg - bb ) * w(k,j,i+1) & |
---|
| 332 | + ( gg - cc ) * w(k,j+1,i) + ( gg - dd ) * w(k,j+1,i+1) & |
---|
| 333 | ) / ( 3.0 * gg ) |
---|
| 334 | IF ( k+1 == nzt+1 ) THEN |
---|
| 335 | w_int = w_int_l |
---|
| 336 | ELSE |
---|
| 337 | w_int_u = ( ( gg-aa ) * w(k+1,j,i) + & |
---|
| 338 | ( gg-bb ) * w(k+1,j,i+1) + & |
---|
| 339 | ( gg-cc ) * w(k+1,j+1,i) + & |
---|
| 340 | ( gg-dd ) * w(k+1,j+1,i+1) & |
---|
| 341 | ) / ( 3.0 * gg ) |
---|
| 342 | w_int = w_int_l + ( particles(n)%z - zw(k) ) / dz * & |
---|
| 343 | ( w_int_u - w_int_l ) |
---|
| 344 | ENDIF |
---|
| 345 | ELSE |
---|
| 346 | w_int = 0.0 |
---|
| 347 | ENDIF |
---|
| 348 | |
---|
| 349 | ! |
---|
| 350 | !-- Interpolate and calculate quantities needed for calculating the SGS |
---|
| 351 | !-- velocities |
---|
| 352 | IF ( use_sgs_for_particles ) THEN |
---|
| 353 | ! |
---|
| 354 | !-- Interpolate TKE |
---|
| 355 | i = particles(n)%x * ddx |
---|
| 356 | j = particles(n)%y * ddy |
---|
| 357 | k = ( particles(n)%z + 0.5 * dz * atmos_ocean_sign ) / dz & |
---|
| 358 | + offset_ocean_nzt ! only exact if eq.dist |
---|
| 359 | |
---|
| 360 | IF ( topography == 'flat' ) THEN |
---|
| 361 | |
---|
| 362 | x = particles(n)%x - i * dx |
---|
| 363 | y = particles(n)%y - j * dy |
---|
| 364 | aa = x**2 + y**2 |
---|
| 365 | bb = ( dx - x )**2 + y**2 |
---|
| 366 | cc = x**2 + ( dy - y )**2 |
---|
| 367 | dd = ( dx - x )**2 + ( dy - y )**2 |
---|
| 368 | gg = aa + bb + cc + dd |
---|
| 369 | |
---|
| 370 | e_int_l = ( ( gg-aa ) * e(k,j,i) + ( gg-bb ) * e(k,j,i+1) & |
---|
| 371 | + ( gg-cc ) * e(k,j+1,i) + ( gg-dd ) * e(k,j+1,i+1) & |
---|
| 372 | ) / ( 3.0 * gg ) |
---|
| 373 | |
---|
| 374 | IF ( k+1 == nzt+1 ) THEN |
---|
| 375 | e_int = e_int_l |
---|
| 376 | ELSE |
---|
| 377 | e_int_u = ( ( gg - aa ) * e(k+1,j,i) + & |
---|
| 378 | ( gg - bb ) * e(k+1,j,i+1) + & |
---|
| 379 | ( gg - cc ) * e(k+1,j+1,i) + & |
---|
| 380 | ( gg - dd ) * e(k+1,j+1,i+1) & |
---|
| 381 | ) / ( 3.0 * gg ) |
---|
| 382 | e_int = e_int_l + ( particles(n)%z - zu(k) ) / dz * & |
---|
| 383 | ( e_int_u - e_int_l ) |
---|
| 384 | ENDIF |
---|
| 385 | |
---|
| 386 | ! |
---|
| 387 | !-- Interpolate the TKE gradient along x (adopt incides i,j,k and |
---|
| 388 | !-- all position variables from above (TKE)) |
---|
| 389 | de_dx_int_l = ( ( gg - aa ) * de_dx(k,j,i) + & |
---|
| 390 | ( gg - bb ) * de_dx(k,j,i+1) + & |
---|
| 391 | ( gg - cc ) * de_dx(k,j+1,i) + & |
---|
| 392 | ( gg - dd ) * de_dx(k,j+1,i+1) & |
---|
| 393 | ) / ( 3.0 * gg ) |
---|
| 394 | |
---|
| 395 | IF ( ( k+1 == nzt+1 ) .OR. ( k == nzb ) ) THEN |
---|
| 396 | de_dx_int = de_dx_int_l |
---|
| 397 | ELSE |
---|
| 398 | de_dx_int_u = ( ( gg - aa ) * de_dx(k+1,j,i) + & |
---|
| 399 | ( gg - bb ) * de_dx(k+1,j,i+1) + & |
---|
| 400 | ( gg - cc ) * de_dx(k+1,j+1,i) + & |
---|
| 401 | ( gg - dd ) * de_dx(k+1,j+1,i+1) & |
---|
| 402 | ) / ( 3.0 * gg ) |
---|
| 403 | de_dx_int = de_dx_int_l + ( particles(n)%z - zu(k) ) / dz * & |
---|
| 404 | ( de_dx_int_u - de_dx_int_l ) |
---|
| 405 | ENDIF |
---|
| 406 | |
---|
| 407 | ! |
---|
| 408 | !-- Interpolate the TKE gradient along y |
---|
| 409 | de_dy_int_l = ( ( gg - aa ) * de_dy(k,j,i) + & |
---|
| 410 | ( gg - bb ) * de_dy(k,j,i+1) + & |
---|
| 411 | ( gg - cc ) * de_dy(k,j+1,i) + & |
---|
| 412 | ( gg - dd ) * de_dy(k,j+1,i+1) & |
---|
| 413 | ) / ( 3.0 * gg ) |
---|
| 414 | IF ( ( k+1 == nzt+1 ) .OR. ( k == nzb ) ) THEN |
---|
| 415 | de_dy_int = de_dy_int_l |
---|
| 416 | ELSE |
---|
| 417 | de_dy_int_u = ( ( gg - aa ) * de_dy(k+1,j,i) + & |
---|
| 418 | ( gg - bb ) * de_dy(k+1,j,i+1) + & |
---|
| 419 | ( gg - cc ) * de_dy(k+1,j+1,i) + & |
---|
| 420 | ( gg - dd ) * de_dy(k+1,j+1,i+1) & |
---|
| 421 | ) / ( 3.0 * gg ) |
---|
| 422 | de_dy_int = de_dy_int_l + ( particles(n)%z - zu(k) ) / dz * & |
---|
| 423 | ( de_dy_int_u - de_dy_int_l ) |
---|
| 424 | ENDIF |
---|
| 425 | |
---|
| 426 | ! |
---|
| 427 | !-- Interpolate the TKE gradient along z |
---|
| 428 | IF ( particles(n)%z < 0.5 * dz ) THEN |
---|
| 429 | de_dz_int = 0.0 |
---|
| 430 | ELSE |
---|
| 431 | de_dz_int_l = ( ( gg - aa ) * de_dz(k,j,i) + & |
---|
| 432 | ( gg - bb ) * de_dz(k,j,i+1) + & |
---|
| 433 | ( gg - cc ) * de_dz(k,j+1,i) + & |
---|
| 434 | ( gg - dd ) * de_dz(k,j+1,i+1) & |
---|
| 435 | ) / ( 3.0 * gg ) |
---|
| 436 | |
---|
| 437 | IF ( ( k+1 == nzt+1 ) .OR. ( k == nzb ) ) THEN |
---|
| 438 | de_dz_int = de_dz_int_l |
---|
| 439 | ELSE |
---|
| 440 | de_dz_int_u = ( ( gg - aa ) * de_dz(k+1,j,i) + & |
---|
| 441 | ( gg - bb ) * de_dz(k+1,j,i+1) + & |
---|
| 442 | ( gg - cc ) * de_dz(k+1,j+1,i) + & |
---|
| 443 | ( gg - dd ) * de_dz(k+1,j+1,i+1) & |
---|
| 444 | ) / ( 3.0 * gg ) |
---|
| 445 | de_dz_int = de_dz_int_l + ( particles(n)%z - zu(k) ) / dz * & |
---|
| 446 | ( de_dz_int_u - de_dz_int_l ) |
---|
| 447 | ENDIF |
---|
| 448 | ENDIF |
---|
| 449 | |
---|
| 450 | ! |
---|
| 451 | !-- Interpolate the dissipation of TKE |
---|
| 452 | diss_int_l = ( ( gg - aa ) * diss(k,j,i) + & |
---|
| 453 | ( gg - bb ) * diss(k,j,i+1) + & |
---|
| 454 | ( gg - cc ) * diss(k,j+1,i) + & |
---|
| 455 | ( gg - dd ) * diss(k,j+1,i+1) & |
---|
| 456 | ) / ( 3.0 * gg ) |
---|
| 457 | |
---|
| 458 | IF ( k+1 == nzt+1 ) THEN |
---|
| 459 | diss_int = diss_int_l |
---|
| 460 | ELSE |
---|
| 461 | diss_int_u = ( ( gg - aa ) * diss(k+1,j,i) + & |
---|
| 462 | ( gg - bb ) * diss(k+1,j,i+1) + & |
---|
| 463 | ( gg - cc ) * diss(k+1,j+1,i) + & |
---|
| 464 | ( gg - dd ) * diss(k+1,j+1,i+1) & |
---|
| 465 | ) / ( 3.0 * gg ) |
---|
| 466 | diss_int = diss_int_l + ( particles(n)%z - zu(k) ) / dz * & |
---|
| 467 | ( diss_int_u - diss_int_l ) |
---|
| 468 | ENDIF |
---|
| 469 | |
---|
| 470 | ELSE |
---|
| 471 | |
---|
| 472 | ! |
---|
| 473 | !-- In case that there are buildings it has to be determined |
---|
| 474 | !-- how many of the gridpoints defining the particle box are |
---|
| 475 | !-- situated within a building |
---|
| 476 | !-- gp_outside_of_building(1): i,j,k |
---|
| 477 | !-- gp_outside_of_building(2): i,j+1,k |
---|
| 478 | !-- gp_outside_of_building(3): i,j,k+1 |
---|
| 479 | !-- gp_outside_of_building(4): i,j+1,k+1 |
---|
| 480 | !-- gp_outside_of_building(5): i+1,j,k |
---|
| 481 | !-- gp_outside_of_building(6): i+1,j+1,k |
---|
| 482 | !-- gp_outside_of_building(7): i+1,j,k+1 |
---|
| 483 | !-- gp_outside_of_building(8): i+1,j+1,k+1 |
---|
| 484 | |
---|
| 485 | gp_outside_of_building = 0 |
---|
| 486 | location = 0.0 |
---|
| 487 | num_gp = 0 |
---|
| 488 | |
---|
| 489 | IF ( k > nzb_s_inner(j,i) .OR. nzb_s_inner(j,i) == 0 ) THEN |
---|
| 490 | num_gp = num_gp + 1 |
---|
| 491 | gp_outside_of_building(1) = 1 |
---|
| 492 | location(num_gp,1) = i * dx |
---|
| 493 | location(num_gp,2) = j * dy |
---|
| 494 | location(num_gp,3) = k * dz - 0.5 * dz |
---|
| 495 | ei(num_gp) = e(k,j,i) |
---|
| 496 | dissi(num_gp) = diss(k,j,i) |
---|
| 497 | de_dxi(num_gp) = de_dx(k,j,i) |
---|
| 498 | de_dyi(num_gp) = de_dy(k,j,i) |
---|
| 499 | de_dzi(num_gp) = de_dz(k,j,i) |
---|
| 500 | ENDIF |
---|
| 501 | |
---|
| 502 | IF ( k > nzb_s_inner(j+1,i) .OR. nzb_s_inner(j+1,i) == 0 ) & |
---|
| 503 | THEN |
---|
| 504 | num_gp = num_gp + 1 |
---|
| 505 | gp_outside_of_building(2) = 1 |
---|
| 506 | location(num_gp,1) = i * dx |
---|
| 507 | location(num_gp,2) = (j+1) * dy |
---|
| 508 | location(num_gp,3) = k * dz - 0.5 * dz |
---|
| 509 | ei(num_gp) = e(k,j+1,i) |
---|
| 510 | dissi(num_gp) = diss(k,j+1,i) |
---|
| 511 | de_dxi(num_gp) = de_dx(k,j+1,i) |
---|
| 512 | de_dyi(num_gp) = de_dy(k,j+1,i) |
---|
| 513 | de_dzi(num_gp) = de_dz(k,j+1,i) |
---|
| 514 | ENDIF |
---|
| 515 | |
---|
| 516 | IF ( k+1 > nzb_s_inner(j,i) .OR. nzb_s_inner(j,i) == 0 ) THEN |
---|
| 517 | num_gp = num_gp + 1 |
---|
| 518 | gp_outside_of_building(3) = 1 |
---|
| 519 | location(num_gp,1) = i * dx |
---|
| 520 | location(num_gp,2) = j * dy |
---|
| 521 | location(num_gp,3) = (k+1) * dz - 0.5 * dz |
---|
| 522 | ei(num_gp) = e(k+1,j,i) |
---|
| 523 | dissi(num_gp) = diss(k+1,j,i) |
---|
| 524 | de_dxi(num_gp) = de_dx(k+1,j,i) |
---|
| 525 | de_dyi(num_gp) = de_dy(k+1,j,i) |
---|
| 526 | de_dzi(num_gp) = de_dz(k+1,j,i) |
---|
| 527 | ENDIF |
---|
| 528 | |
---|
| 529 | IF ( k+1 > nzb_s_inner(j+1,i) .OR. nzb_s_inner(j+1,i) == 0 ) & |
---|
| 530 | THEN |
---|
| 531 | num_gp = num_gp + 1 |
---|
| 532 | gp_outside_of_building(4) = 1 |
---|
| 533 | location(num_gp,1) = i * dx |
---|
| 534 | location(num_gp,2) = (j+1) * dy |
---|
| 535 | location(num_gp,3) = (k+1) * dz - 0.5 * dz |
---|
| 536 | ei(num_gp) = e(k+1,j+1,i) |
---|
| 537 | dissi(num_gp) = diss(k+1,j+1,i) |
---|
| 538 | de_dxi(num_gp) = de_dx(k+1,j+1,i) |
---|
| 539 | de_dyi(num_gp) = de_dy(k+1,j+1,i) |
---|
| 540 | de_dzi(num_gp) = de_dz(k+1,j+1,i) |
---|
| 541 | ENDIF |
---|
| 542 | |
---|
| 543 | IF ( k > nzb_s_inner(j,i+1) .OR. nzb_s_inner(j,i+1) == 0 ) & |
---|
| 544 | THEN |
---|
| 545 | num_gp = num_gp + 1 |
---|
| 546 | gp_outside_of_building(5) = 1 |
---|
| 547 | location(num_gp,1) = (i+1) * dx |
---|
| 548 | location(num_gp,2) = j * dy |
---|
| 549 | location(num_gp,3) = k * dz - 0.5 * dz |
---|
| 550 | ei(num_gp) = e(k,j,i+1) |
---|
| 551 | dissi(num_gp) = diss(k,j,i+1) |
---|
| 552 | de_dxi(num_gp) = de_dx(k,j,i+1) |
---|
| 553 | de_dyi(num_gp) = de_dy(k,j,i+1) |
---|
| 554 | de_dzi(num_gp) = de_dz(k,j,i+1) |
---|
| 555 | ENDIF |
---|
| 556 | |
---|
| 557 | IF ( k > nzb_s_inner(j+1,i+1) .OR. nzb_s_inner(j+1,i+1) == 0 ) & |
---|
| 558 | THEN |
---|
| 559 | num_gp = num_gp + 1 |
---|
| 560 | gp_outside_of_building(6) = 1 |
---|
| 561 | location(num_gp,1) = (i+1) * dx |
---|
| 562 | location(num_gp,2) = (j+1) * dy |
---|
| 563 | location(num_gp,3) = k * dz - 0.5 * dz |
---|
| 564 | ei(num_gp) = e(k,j+1,i+1) |
---|
| 565 | dissi(num_gp) = diss(k,j+1,i+1) |
---|
| 566 | de_dxi(num_gp) = de_dx(k,j+1,i+1) |
---|
| 567 | de_dyi(num_gp) = de_dy(k,j+1,i+1) |
---|
| 568 | de_dzi(num_gp) = de_dz(k,j+1,i+1) |
---|
| 569 | ENDIF |
---|
| 570 | |
---|
| 571 | IF ( k+1 > nzb_s_inner(j,i+1) .OR. nzb_s_inner(j,i+1) == 0 ) & |
---|
| 572 | THEN |
---|
| 573 | num_gp = num_gp + 1 |
---|
| 574 | gp_outside_of_building(7) = 1 |
---|
| 575 | location(num_gp,1) = (i+1) * dx |
---|
| 576 | location(num_gp,2) = j * dy |
---|
| 577 | location(num_gp,3) = (k+1) * dz - 0.5 * dz |
---|
| 578 | ei(num_gp) = e(k+1,j,i+1) |
---|
| 579 | dissi(num_gp) = diss(k+1,j,i+1) |
---|
| 580 | de_dxi(num_gp) = de_dx(k+1,j,i+1) |
---|
| 581 | de_dyi(num_gp) = de_dy(k+1,j,i+1) |
---|
| 582 | de_dzi(num_gp) = de_dz(k+1,j,i+1) |
---|
| 583 | ENDIF |
---|
| 584 | |
---|
| 585 | IF ( k+1 > nzb_s_inner(j+1,i+1) .OR. nzb_s_inner(j+1,i+1) == 0)& |
---|
| 586 | THEN |
---|
| 587 | num_gp = num_gp + 1 |
---|
| 588 | gp_outside_of_building(8) = 1 |
---|
| 589 | location(num_gp,1) = (i+1) * dx |
---|
| 590 | location(num_gp,2) = (j+1) * dy |
---|
| 591 | location(num_gp,3) = (k+1) * dz - 0.5 * dz |
---|
| 592 | ei(num_gp) = e(k+1,j+1,i+1) |
---|
| 593 | dissi(num_gp) = diss(k+1,j+1,i+1) |
---|
| 594 | de_dxi(num_gp) = de_dx(k+1,j+1,i+1) |
---|
| 595 | de_dyi(num_gp) = de_dy(k+1,j+1,i+1) |
---|
| 596 | de_dzi(num_gp) = de_dz(k+1,j+1,i+1) |
---|
| 597 | ENDIF |
---|
| 598 | |
---|
| 599 | ! |
---|
| 600 | !-- If all gridpoints are situated outside of a building, then the |
---|
| 601 | !-- ordinary interpolation scheme can be used. |
---|
| 602 | IF ( num_gp == 8 ) THEN |
---|
| 603 | |
---|
| 604 | x = particles(n)%x - i * dx |
---|
| 605 | y = particles(n)%y - j * dy |
---|
| 606 | aa = x**2 + y**2 |
---|
| 607 | bb = ( dx - x )**2 + y**2 |
---|
| 608 | cc = x**2 + ( dy - y )**2 |
---|
| 609 | dd = ( dx - x )**2 + ( dy - y )**2 |
---|
| 610 | gg = aa + bb + cc + dd |
---|
| 611 | |
---|
| 612 | e_int_l = (( gg-aa ) * e(k,j,i) + ( gg-bb ) * e(k,j,i+1) & |
---|
| 613 | + ( gg-cc ) * e(k,j+1,i) + ( gg-dd ) * e(k,j+1,i+1)& |
---|
| 614 | ) / ( 3.0 * gg ) |
---|
| 615 | |
---|
| 616 | IF ( k+1 == nzt+1 ) THEN |
---|
| 617 | e_int = e_int_l |
---|
| 618 | ELSE |
---|
| 619 | e_int_u = ( ( gg - aa ) * e(k+1,j,i) + & |
---|
| 620 | ( gg - bb ) * e(k+1,j,i+1) + & |
---|
| 621 | ( gg - cc ) * e(k+1,j+1,i) + & |
---|
| 622 | ( gg - dd ) * e(k+1,j+1,i+1) & |
---|
| 623 | ) / ( 3.0 * gg ) |
---|
| 624 | e_int = e_int_l + ( particles(n)%z - zu(k) ) / dz * & |
---|
| 625 | ( e_int_u - e_int_l ) |
---|
| 626 | ENDIF |
---|
| 627 | |
---|
| 628 | ! |
---|
| 629 | !-- Interpolate the TKE gradient along x (adopt incides i,j,k |
---|
| 630 | !-- and all position variables from above (TKE)) |
---|
| 631 | de_dx_int_l = ( ( gg - aa ) * de_dx(k,j,i) + & |
---|
| 632 | ( gg - bb ) * de_dx(k,j,i+1) + & |
---|
| 633 | ( gg - cc ) * de_dx(k,j+1,i) + & |
---|
| 634 | ( gg - dd ) * de_dx(k,j+1,i+1) & |
---|
| 635 | ) / ( 3.0 * gg ) |
---|
| 636 | |
---|
| 637 | IF ( ( k+1 == nzt+1 ) .OR. ( k == nzb ) ) THEN |
---|
| 638 | de_dx_int = de_dx_int_l |
---|
| 639 | ELSE |
---|
| 640 | de_dx_int_u = ( ( gg - aa ) * de_dx(k+1,j,i) + & |
---|
| 641 | ( gg - bb ) * de_dx(k+1,j,i+1) + & |
---|
| 642 | ( gg - cc ) * de_dx(k+1,j+1,i) + & |
---|
| 643 | ( gg - dd ) * de_dx(k+1,j+1,i+1) & |
---|
| 644 | ) / ( 3.0 * gg ) |
---|
| 645 | de_dx_int = de_dx_int_l + ( particles(n)%z - zu(k) ) / & |
---|
| 646 | dz * ( de_dx_int_u - de_dx_int_l ) |
---|
| 647 | ENDIF |
---|
| 648 | |
---|
| 649 | ! |
---|
| 650 | !-- Interpolate the TKE gradient along y |
---|
| 651 | de_dy_int_l = ( ( gg - aa ) * de_dy(k,j,i) + & |
---|
| 652 | ( gg - bb ) * de_dy(k,j,i+1) + & |
---|
| 653 | ( gg - cc ) * de_dy(k,j+1,i) + & |
---|
| 654 | ( gg - dd ) * de_dy(k,j+1,i+1) & |
---|
| 655 | ) / ( 3.0 * gg ) |
---|
| 656 | IF ( ( k+1 == nzt+1 ) .OR. ( k == nzb ) ) THEN |
---|
| 657 | de_dy_int = de_dy_int_l |
---|
| 658 | ELSE |
---|
| 659 | de_dy_int_u = ( ( gg - aa ) * de_dy(k+1,j,i) + & |
---|
| 660 | ( gg - bb ) * de_dy(k+1,j,i+1) + & |
---|
| 661 | ( gg - cc ) * de_dy(k+1,j+1,i) + & |
---|
| 662 | ( gg - dd ) * de_dy(k+1,j+1,i+1) & |
---|
| 663 | ) / ( 3.0 * gg ) |
---|
| 664 | de_dy_int = de_dy_int_l + ( particles(n)%z - zu(k) ) / & |
---|
| 665 | dz * ( de_dy_int_u - de_dy_int_l ) |
---|
| 666 | ENDIF |
---|
| 667 | |
---|
| 668 | ! |
---|
| 669 | !-- Interpolate the TKE gradient along z |
---|
| 670 | IF ( particles(n)%z < 0.5 * dz ) THEN |
---|
| 671 | de_dz_int = 0.0 |
---|
| 672 | ELSE |
---|
| 673 | de_dz_int_l = ( ( gg - aa ) * de_dz(k,j,i) + & |
---|
| 674 | ( gg - bb ) * de_dz(k,j,i+1) + & |
---|
| 675 | ( gg - cc ) * de_dz(k,j+1,i) + & |
---|
| 676 | ( gg - dd ) * de_dz(k,j+1,i+1) & |
---|
| 677 | ) / ( 3.0 * gg ) |
---|
| 678 | |
---|
| 679 | IF ( ( k+1 == nzt+1 ) .OR. ( k == nzb ) ) THEN |
---|
| 680 | de_dz_int = de_dz_int_l |
---|
| 681 | ELSE |
---|
| 682 | de_dz_int_u = ( ( gg - aa ) * de_dz(k+1,j,i) + & |
---|
| 683 | ( gg - bb ) * de_dz(k+1,j,i+1) + & |
---|
| 684 | ( gg - cc ) * de_dz(k+1,j+1,i) + & |
---|
| 685 | ( gg - dd ) * de_dz(k+1,j+1,i+1) & |
---|
| 686 | ) / ( 3.0 * gg ) |
---|
| 687 | de_dz_int = de_dz_int_l + ( particles(n)%z - zu(k) ) /& |
---|
| 688 | dz * ( de_dz_int_u - de_dz_int_l ) |
---|
| 689 | ENDIF |
---|
| 690 | ENDIF |
---|
| 691 | |
---|
| 692 | ! |
---|
| 693 | !-- Interpolate the dissipation of TKE |
---|
| 694 | diss_int_l = ( ( gg - aa ) * diss(k,j,i) + & |
---|
| 695 | ( gg - bb ) * diss(k,j,i+1) + & |
---|
| 696 | ( gg - cc ) * diss(k,j+1,i) + & |
---|
| 697 | ( gg - dd ) * diss(k,j+1,i+1) & |
---|
| 698 | ) / ( 3.0 * gg ) |
---|
| 699 | |
---|
| 700 | IF ( k+1 == nzt+1 ) THEN |
---|
| 701 | diss_int = diss_int_l |
---|
| 702 | ELSE |
---|
| 703 | diss_int_u = ( ( gg - aa ) * diss(k+1,j,i) + & |
---|
| 704 | ( gg - bb ) * diss(k+1,j,i+1) + & |
---|
| 705 | ( gg - cc ) * diss(k+1,j+1,i) + & |
---|
| 706 | ( gg - dd ) * diss(k+1,j+1,i+1) & |
---|
| 707 | ) / ( 3.0 * gg ) |
---|
| 708 | diss_int = diss_int_l + ( particles(n)%z - zu(k) ) / dz *& |
---|
| 709 | ( diss_int_u - diss_int_l ) |
---|
| 710 | ENDIF |
---|
| 711 | |
---|
| 712 | ELSE |
---|
| 713 | |
---|
| 714 | ! |
---|
| 715 | !-- If wall between gridpoint 1 and gridpoint 5, then |
---|
| 716 | !-- Neumann boundary condition has to be applied |
---|
| 717 | IF ( gp_outside_of_building(1) == 1 .AND. & |
---|
| 718 | gp_outside_of_building(5) == 0 ) THEN |
---|
| 719 | num_gp = num_gp + 1 |
---|
| 720 | location(num_gp,1) = i * dx + 0.5 * dx |
---|
| 721 | location(num_gp,2) = j * dy |
---|
| 722 | location(num_gp,3) = k * dz - 0.5 * dz |
---|
| 723 | ei(num_gp) = e(k,j,i) |
---|
| 724 | dissi(num_gp) = diss(k,j,i) |
---|
| 725 | de_dxi(num_gp) = 0.0 |
---|
| 726 | de_dyi(num_gp) = de_dy(k,j,i) |
---|
| 727 | de_dzi(num_gp) = de_dz(k,j,i) |
---|
| 728 | ENDIF |
---|
| 729 | |
---|
| 730 | IF ( gp_outside_of_building(5) == 1 .AND. & |
---|
| 731 | gp_outside_of_building(1) == 0 ) THEN |
---|
| 732 | num_gp = num_gp + 1 |
---|
| 733 | location(num_gp,1) = i * dx + 0.5 * dx |
---|
| 734 | location(num_gp,2) = j * dy |
---|
| 735 | location(num_gp,3) = k * dz - 0.5 * dz |
---|
| 736 | ei(num_gp) = e(k,j,i+1) |
---|
| 737 | dissi(num_gp) = diss(k,j,i+1) |
---|
| 738 | de_dxi(num_gp) = 0.0 |
---|
| 739 | de_dyi(num_gp) = de_dy(k,j,i+1) |
---|
| 740 | de_dzi(num_gp) = de_dz(k,j,i+1) |
---|
| 741 | ENDIF |
---|
| 742 | |
---|
| 743 | ! |
---|
| 744 | !-- If wall between gridpoint 5 and gridpoint 6, then |
---|
| 745 | !-- then Neumann boundary condition has to be applied |
---|
| 746 | IF ( gp_outside_of_building(5) == 1 .AND. & |
---|
| 747 | gp_outside_of_building(6) == 0 ) THEN |
---|
| 748 | num_gp = num_gp + 1 |
---|
| 749 | location(num_gp,1) = (i+1) * dx |
---|
| 750 | location(num_gp,2) = j * dy + 0.5 * dy |
---|
| 751 | location(num_gp,3) = k * dz - 0.5 * dz |
---|
| 752 | ei(num_gp) = e(k,j,i+1) |
---|
| 753 | dissi(num_gp) = diss(k,j,i+1) |
---|
| 754 | de_dxi(num_gp) = de_dx(k,j,i+1) |
---|
| 755 | de_dyi(num_gp) = 0.0 |
---|
| 756 | de_dzi(num_gp) = de_dz(k,j,i+1) |
---|
| 757 | ENDIF |
---|
| 758 | |
---|
| 759 | IF ( gp_outside_of_building(6) == 1 .AND. & |
---|
| 760 | gp_outside_of_building(5) == 0 ) THEN |
---|
| 761 | num_gp = num_gp + 1 |
---|
| 762 | location(num_gp,1) = (i+1) * dx |
---|
| 763 | location(num_gp,2) = j * dy + 0.5 * dy |
---|
| 764 | location(num_gp,3) = k * dz - 0.5 * dz |
---|
| 765 | ei(num_gp) = e(k,j+1,i+1) |
---|
| 766 | dissi(num_gp) = diss(k,j+1,i+1) |
---|
| 767 | de_dxi(num_gp) = de_dx(k,j+1,i+1) |
---|
| 768 | de_dyi(num_gp) = 0.0 |
---|
| 769 | de_dzi(num_gp) = de_dz(k,j+1,i+1) |
---|
| 770 | ENDIF |
---|
| 771 | |
---|
| 772 | ! |
---|
| 773 | !-- If wall between gridpoint 2 and gridpoint 6, then |
---|
| 774 | !-- Neumann boundary condition has to be applied |
---|
| 775 | IF ( gp_outside_of_building(2) == 1 .AND. & |
---|
| 776 | gp_outside_of_building(6) == 0 ) THEN |
---|
| 777 | num_gp = num_gp + 1 |
---|
| 778 | location(num_gp,1) = i * dx + 0.5 * dx |
---|
| 779 | location(num_gp,2) = (j+1) * dy |
---|
| 780 | location(num_gp,3) = k * dz - 0.5 * dz |
---|
| 781 | ei(num_gp) = e(k,j+1,i) |
---|
| 782 | dissi(num_gp) = diss(k,j+1,i) |
---|
| 783 | de_dxi(num_gp) = 0.0 |
---|
| 784 | de_dyi(num_gp) = de_dy(k,j+1,i) |
---|
| 785 | de_dzi(num_gp) = de_dz(k,j+1,i) |
---|
| 786 | ENDIF |
---|
| 787 | |
---|
| 788 | IF ( gp_outside_of_building(6) == 1 .AND. & |
---|
| 789 | gp_outside_of_building(2) == 0 ) THEN |
---|
| 790 | num_gp = num_gp + 1 |
---|
| 791 | location(num_gp,1) = i * dx + 0.5 * dx |
---|
| 792 | location(num_gp,2) = (j+1) * dy |
---|
| 793 | location(num_gp,3) = k * dz - 0.5 * dz |
---|
| 794 | ei(num_gp) = e(k,j+1,i+1) |
---|
| 795 | dissi(num_gp) = diss(k,j+1,i+1) |
---|
| 796 | de_dxi(num_gp) = 0.0 |
---|
| 797 | de_dyi(num_gp) = de_dy(k,j+1,i+1) |
---|
| 798 | de_dzi(num_gp) = de_dz(k,j+1,i+1) |
---|
| 799 | ENDIF |
---|
| 800 | |
---|
| 801 | ! |
---|
| 802 | !-- If wall between gridpoint 1 and gridpoint 2, then |
---|
| 803 | !-- Neumann boundary condition has to be applied |
---|
| 804 | IF ( gp_outside_of_building(1) == 1 .AND. & |
---|
| 805 | gp_outside_of_building(2) == 0 ) THEN |
---|
| 806 | num_gp = num_gp + 1 |
---|
| 807 | location(num_gp,1) = i * dx |
---|
| 808 | location(num_gp,2) = j * dy + 0.5 * dy |
---|
| 809 | location(num_gp,3) = k * dz - 0.5 * dz |
---|
| 810 | ei(num_gp) = e(k,j,i) |
---|
| 811 | dissi(num_gp) = diss(k,j,i) |
---|
| 812 | de_dxi(num_gp) = de_dx(k,j,i) |
---|
| 813 | de_dyi(num_gp) = 0.0 |
---|
| 814 | de_dzi(num_gp) = de_dz(k,j,i) |
---|
| 815 | ENDIF |
---|
| 816 | |
---|
| 817 | IF ( gp_outside_of_building(2) == 1 .AND. & |
---|
| 818 | gp_outside_of_building(1) == 0 ) THEN |
---|
| 819 | num_gp = num_gp + 1 |
---|
| 820 | location(num_gp,1) = i * dx |
---|
| 821 | location(num_gp,2) = j * dy + 0.5 * dy |
---|
| 822 | location(num_gp,3) = k * dz - 0.5 * dz |
---|
| 823 | ei(num_gp) = e(k,j+1,i) |
---|
| 824 | dissi(num_gp) = diss(k,j+1,i) |
---|
| 825 | de_dxi(num_gp) = de_dx(k,j+1,i) |
---|
| 826 | de_dyi(num_gp) = 0.0 |
---|
| 827 | de_dzi(num_gp) = de_dz(k,j+1,i) |
---|
| 828 | ENDIF |
---|
| 829 | |
---|
| 830 | ! |
---|
| 831 | !-- If wall between gridpoint 3 and gridpoint 7, then |
---|
| 832 | !-- Neumann boundary condition has to be applied |
---|
| 833 | IF ( gp_outside_of_building(3) == 1 .AND. & |
---|
| 834 | gp_outside_of_building(7) == 0 ) THEN |
---|
| 835 | num_gp = num_gp + 1 |
---|
| 836 | location(num_gp,1) = i * dx + 0.5 * dx |
---|
| 837 | location(num_gp,2) = j * dy |
---|
| 838 | location(num_gp,3) = k * dz + 0.5 * dz |
---|
| 839 | ei(num_gp) = e(k+1,j,i) |
---|
| 840 | dissi(num_gp) = diss(k+1,j,i) |
---|
| 841 | de_dxi(num_gp) = 0.0 |
---|
| 842 | de_dyi(num_gp) = de_dy(k+1,j,i) |
---|
| 843 | de_dzi(num_gp) = de_dz(k+1,j,i) |
---|
| 844 | ENDIF |
---|
| 845 | |
---|
| 846 | IF ( gp_outside_of_building(7) == 1 .AND. & |
---|
| 847 | gp_outside_of_building(3) == 0 ) THEN |
---|
| 848 | num_gp = num_gp + 1 |
---|
| 849 | location(num_gp,1) = i * dx + 0.5 * dx |
---|
| 850 | location(num_gp,2) = j * dy |
---|
| 851 | location(num_gp,3) = k * dz + 0.5 * dz |
---|
| 852 | ei(num_gp) = e(k+1,j,i+1) |
---|
| 853 | dissi(num_gp) = diss(k+1,j,i+1) |
---|
| 854 | de_dxi(num_gp) = 0.0 |
---|
| 855 | de_dyi(num_gp) = de_dy(k+1,j,i+1) |
---|
| 856 | de_dzi(num_gp) = de_dz(k+1,j,i+1) |
---|
| 857 | ENDIF |
---|
| 858 | |
---|
| 859 | ! |
---|
| 860 | !-- If wall between gridpoint 7 and gridpoint 8, then |
---|
| 861 | !-- Neumann boundary condition has to be applied |
---|
| 862 | IF ( gp_outside_of_building(7) == 1 .AND. & |
---|
| 863 | gp_outside_of_building(8) == 0 ) THEN |
---|
| 864 | num_gp = num_gp + 1 |
---|
| 865 | location(num_gp,1) = (i+1) * dx |
---|
| 866 | location(num_gp,2) = j * dy + 0.5 * dy |
---|
| 867 | location(num_gp,3) = k * dz + 0.5 * dz |
---|
| 868 | ei(num_gp) = e(k+1,j,i+1) |
---|
| 869 | dissi(num_gp) = diss(k+1,j,i+1) |
---|
| 870 | de_dxi(num_gp) = de_dx(k+1,j,i+1) |
---|
| 871 | de_dyi(num_gp) = 0.0 |
---|
| 872 | de_dzi(num_gp) = de_dz(k+1,j,i+1) |
---|
| 873 | ENDIF |
---|
| 874 | |
---|
| 875 | IF ( gp_outside_of_building(8) == 1 .AND. & |
---|
| 876 | gp_outside_of_building(7) == 0 ) THEN |
---|
| 877 | num_gp = num_gp + 1 |
---|
| 878 | location(num_gp,1) = (i+1) * dx |
---|
| 879 | location(num_gp,2) = j * dy + 0.5 * dy |
---|
| 880 | location(num_gp,3) = k * dz + 0.5 * dz |
---|
| 881 | ei(num_gp) = e(k+1,j+1,i+1) |
---|
| 882 | dissi(num_gp) = diss(k+1,j+1,i+1) |
---|
| 883 | de_dxi(num_gp) = de_dx(k+1,j+1,i+1) |
---|
| 884 | de_dyi(num_gp) = 0.0 |
---|
| 885 | de_dzi(num_gp) = de_dz(k+1,j+1,i+1) |
---|
| 886 | ENDIF |
---|
| 887 | |
---|
| 888 | ! |
---|
| 889 | !-- If wall between gridpoint 4 and gridpoint 8, then |
---|
| 890 | !-- Neumann boundary condition has to be applied |
---|
| 891 | IF ( gp_outside_of_building(4) == 1 .AND. & |
---|
| 892 | gp_outside_of_building(8) == 0 ) THEN |
---|
| 893 | num_gp = num_gp + 1 |
---|
| 894 | location(num_gp,1) = i * dx + 0.5 * dx |
---|
| 895 | location(num_gp,2) = (j+1) * dy |
---|
| 896 | location(num_gp,3) = k * dz + 0.5 * dz |
---|
| 897 | ei(num_gp) = e(k+1,j+1,i) |
---|
| 898 | dissi(num_gp) = diss(k+1,j+1,i) |
---|
| 899 | de_dxi(num_gp) = 0.0 |
---|
| 900 | de_dyi(num_gp) = de_dy(k+1,j+1,i) |
---|
| 901 | de_dzi(num_gp) = de_dz(k+1,j+1,i) |
---|
| 902 | ENDIF |
---|
| 903 | |
---|
| 904 | IF ( gp_outside_of_building(8) == 1 .AND. & |
---|
| 905 | gp_outside_of_building(4) == 0 ) THEN |
---|
| 906 | num_gp = num_gp + 1 |
---|
| 907 | location(num_gp,1) = i * dx + 0.5 * dx |
---|
| 908 | location(num_gp,2) = (j+1) * dy |
---|
| 909 | location(num_gp,3) = k * dz + 0.5 * dz |
---|
| 910 | ei(num_gp) = e(k+1,j+1,i+1) |
---|
| 911 | dissi(num_gp) = diss(k+1,j+1,i+1) |
---|
| 912 | de_dxi(num_gp) = 0.0 |
---|
| 913 | de_dyi(num_gp) = de_dy(k+1,j+1,i+1) |
---|
| 914 | de_dzi(num_gp) = de_dz(k+1,j+1,i+1) |
---|
| 915 | ENDIF |
---|
| 916 | |
---|
| 917 | ! |
---|
| 918 | !-- If wall between gridpoint 3 and gridpoint 4, then |
---|
| 919 | !-- Neumann boundary condition has to be applied |
---|
| 920 | IF ( gp_outside_of_building(3) == 1 .AND. & |
---|
| 921 | gp_outside_of_building(4) == 0 ) THEN |
---|
| 922 | num_gp = num_gp + 1 |
---|
| 923 | location(num_gp,1) = i * dx |
---|
| 924 | location(num_gp,2) = j * dy + 0.5 * dy |
---|
| 925 | location(num_gp,3) = k * dz + 0.5 * dz |
---|
| 926 | ei(num_gp) = e(k+1,j,i) |
---|
| 927 | dissi(num_gp) = diss(k+1,j,i) |
---|
| 928 | de_dxi(num_gp) = de_dx(k+1,j,i) |
---|
| 929 | de_dyi(num_gp) = 0.0 |
---|
| 930 | de_dzi(num_gp) = de_dz(k+1,j,i) |
---|
| 931 | ENDIF |
---|
| 932 | |
---|
| 933 | IF ( gp_outside_of_building(4) == 1 .AND. & |
---|
| 934 | gp_outside_of_building(3) == 0 ) THEN |
---|
| 935 | num_gp = num_gp + 1 |
---|
| 936 | location(num_gp,1) = i * dx |
---|
| 937 | location(num_gp,2) = j * dy + 0.5 * dy |
---|
| 938 | location(num_gp,3) = k * dz + 0.5 * dz |
---|
| 939 | ei(num_gp) = e(k+1,j+1,i) |
---|
| 940 | dissi(num_gp) = diss(k+1,j+1,i) |
---|
| 941 | de_dxi(num_gp) = de_dx(k+1,j+1,i) |
---|
| 942 | de_dyi(num_gp) = 0.0 |
---|
| 943 | de_dzi(num_gp) = de_dz(k+1,j+1,i) |
---|
| 944 | ENDIF |
---|
| 945 | |
---|
| 946 | ! |
---|
| 947 | !-- If wall between gridpoint 1 and gridpoint 3, then |
---|
| 948 | !-- Neumann boundary condition has to be applied |
---|
| 949 | !-- (only one case as only building beneath is possible) |
---|
| 950 | IF ( gp_outside_of_building(1) == 0 .AND. & |
---|
| 951 | gp_outside_of_building(3) == 1 ) THEN |
---|
| 952 | num_gp = num_gp + 1 |
---|
| 953 | location(num_gp,1) = i * dx |
---|
| 954 | location(num_gp,2) = j * dy |
---|
| 955 | location(num_gp,3) = k * dz |
---|
| 956 | ei(num_gp) = e(k+1,j,i) |
---|
| 957 | dissi(num_gp) = diss(k+1,j,i) |
---|
| 958 | de_dxi(num_gp) = de_dx(k+1,j,i) |
---|
| 959 | de_dyi(num_gp) = de_dy(k+1,j,i) |
---|
| 960 | de_dzi(num_gp) = 0.0 |
---|
| 961 | ENDIF |
---|
| 962 | |
---|
| 963 | ! |
---|
| 964 | !-- If wall between gridpoint 5 and gridpoint 7, then |
---|
| 965 | !-- Neumann boundary condition has to be applied |
---|
| 966 | !-- (only one case as only building beneath is possible) |
---|
| 967 | IF ( gp_outside_of_building(5) == 0 .AND. & |
---|
| 968 | gp_outside_of_building(7) == 1 ) THEN |
---|
| 969 | num_gp = num_gp + 1 |
---|
| 970 | location(num_gp,1) = (i+1) * dx |
---|
| 971 | location(num_gp,2) = j * dy |
---|
| 972 | location(num_gp,3) = k * dz |
---|
| 973 | ei(num_gp) = e(k+1,j,i+1) |
---|
| 974 | dissi(num_gp) = diss(k+1,j,i+1) |
---|
| 975 | de_dxi(num_gp) = de_dx(k+1,j,i+1) |
---|
| 976 | de_dyi(num_gp) = de_dy(k+1,j,i+1) |
---|
| 977 | de_dzi(num_gp) = 0.0 |
---|
| 978 | ENDIF |
---|
| 979 | |
---|
| 980 | ! |
---|
| 981 | !-- If wall between gridpoint 2 and gridpoint 4, then |
---|
| 982 | !-- Neumann boundary condition has to be applied |
---|
| 983 | !-- (only one case as only building beneath is possible) |
---|
| 984 | IF ( gp_outside_of_building(2) == 0 .AND. & |
---|
| 985 | gp_outside_of_building(4) == 1 ) THEN |
---|
| 986 | num_gp = num_gp + 1 |
---|
| 987 | location(num_gp,1) = i * dx |
---|
| 988 | location(num_gp,2) = (j+1) * dy |
---|
| 989 | location(num_gp,3) = k * dz |
---|
| 990 | ei(num_gp) = e(k+1,j+1,i) |
---|
| 991 | dissi(num_gp) = diss(k+1,j+1,i) |
---|
| 992 | de_dxi(num_gp) = de_dx(k+1,j+1,i) |
---|
| 993 | de_dyi(num_gp) = de_dy(k+1,j+1,i) |
---|
| 994 | de_dzi(num_gp) = 0.0 |
---|
| 995 | ENDIF |
---|
| 996 | |
---|
| 997 | ! |
---|
| 998 | !-- If wall between gridpoint 6 and gridpoint 8, then |
---|
| 999 | !-- Neumann boundary condition has to be applied |
---|
| 1000 | !-- (only one case as only building beneath is possible) |
---|
| 1001 | IF ( gp_outside_of_building(6) == 0 .AND. & |
---|
| 1002 | gp_outside_of_building(8) == 1 ) THEN |
---|
| 1003 | num_gp = num_gp + 1 |
---|
| 1004 | location(num_gp,1) = (i+1) * dx |
---|
| 1005 | location(num_gp,2) = (j+1) * dy |
---|
| 1006 | location(num_gp,3) = k * dz |
---|
| 1007 | ei(num_gp) = e(k+1,j+1,i+1) |
---|
| 1008 | dissi(num_gp) = diss(k+1,j+1,i+1) |
---|
| 1009 | de_dxi(num_gp) = de_dx(k+1,j+1,i+1) |
---|
| 1010 | de_dyi(num_gp) = de_dy(k+1,j+1,i+1) |
---|
| 1011 | de_dzi(num_gp) = 0.0 |
---|
| 1012 | ENDIF |
---|
| 1013 | |
---|
| 1014 | ! |
---|
| 1015 | !-- Carry out the interpolation |
---|
| 1016 | IF ( num_gp == 1 ) THEN |
---|
| 1017 | ! |
---|
| 1018 | !-- If only one of the gridpoints is situated outside of the |
---|
| 1019 | !-- building, it follows that the values at the particle |
---|
| 1020 | !-- location are the same as the gridpoint values |
---|
| 1021 | e_int = ei(num_gp) |
---|
| 1022 | diss_int = dissi(num_gp) |
---|
| 1023 | de_dx_int = de_dxi(num_gp) |
---|
| 1024 | de_dy_int = de_dyi(num_gp) |
---|
| 1025 | de_dz_int = de_dzi(num_gp) |
---|
| 1026 | ELSE IF ( num_gp > 1 ) THEN |
---|
| 1027 | |
---|
| 1028 | d_sum = 0.0 |
---|
| 1029 | ! |
---|
| 1030 | !-- Evaluation of the distances between the gridpoints |
---|
| 1031 | !-- contributing to the interpolated values, and the particle |
---|
| 1032 | !-- location |
---|
| 1033 | DO agp = 1, num_gp |
---|
| 1034 | d_gp_pl(agp) = ( particles(n)%x-location(agp,1) )**2 & |
---|
| 1035 | + ( particles(n)%y-location(agp,2) )**2 & |
---|
| 1036 | + ( particles(n)%z-location(agp,3) )**2 |
---|
| 1037 | d_sum = d_sum + d_gp_pl(agp) |
---|
| 1038 | ENDDO |
---|
| 1039 | |
---|
| 1040 | ! |
---|
| 1041 | !-- Finally the interpolation can be carried out |
---|
| 1042 | e_int = 0.0 |
---|
| 1043 | diss_int = 0.0 |
---|
| 1044 | de_dx_int = 0.0 |
---|
| 1045 | de_dy_int = 0.0 |
---|
| 1046 | de_dz_int = 0.0 |
---|
| 1047 | DO agp = 1, num_gp |
---|
| 1048 | e_int = e_int + ( d_sum - d_gp_pl(agp) ) * & |
---|
| 1049 | ei(agp) / ( (num_gp-1) * d_sum ) |
---|
| 1050 | diss_int = diss_int + ( d_sum - d_gp_pl(agp) ) * & |
---|
| 1051 | dissi(agp) / ( (num_gp-1) * d_sum ) |
---|
| 1052 | de_dx_int = de_dx_int + ( d_sum - d_gp_pl(agp) ) * & |
---|
| 1053 | de_dxi(agp) / ( (num_gp-1) * d_sum ) |
---|
| 1054 | de_dy_int = de_dy_int + ( d_sum - d_gp_pl(agp) ) * & |
---|
| 1055 | de_dyi(agp) / ( (num_gp-1) * d_sum ) |
---|
| 1056 | de_dz_int = de_dz_int + ( d_sum - d_gp_pl(agp) ) * & |
---|
| 1057 | de_dzi(agp) / ( (num_gp-1) * d_sum ) |
---|
| 1058 | ENDDO |
---|
| 1059 | |
---|
| 1060 | ENDIF |
---|
| 1061 | |
---|
| 1062 | ENDIF |
---|
| 1063 | |
---|
| 1064 | ENDIF |
---|
| 1065 | |
---|
| 1066 | ! |
---|
| 1067 | !-- Vertically interpolate the horizontally averaged SGS TKE and |
---|
| 1068 | !-- resolved-scale velocity variances and use the interpolated values |
---|
| 1069 | !-- to calculate the coefficient fs, which is a measure of the ratio |
---|
| 1070 | !-- of the subgrid-scale turbulent kinetic energy to the total amount |
---|
| 1071 | !-- of turbulent kinetic energy. |
---|
| 1072 | IF ( k == 0 ) THEN |
---|
| 1073 | e_mean_int = hom(0,1,8,0) |
---|
| 1074 | ELSE |
---|
| 1075 | e_mean_int = hom(k,1,8,0) + & |
---|
| 1076 | ( hom(k+1,1,8,0) - hom(k,1,8,0) ) / & |
---|
| 1077 | ( zu(k+1) - zu(k) ) * & |
---|
| 1078 | ( particles(n)%z - zu(k) ) |
---|
| 1079 | ENDIF |
---|
| 1080 | |
---|
| 1081 | kw = particles(n)%z / dz |
---|
| 1082 | |
---|
| 1083 | IF ( k == 0 ) THEN |
---|
| 1084 | aa = hom(k+1,1,30,0) * ( particles(n)%z / & |
---|
| 1085 | ( 0.5 * ( zu(k+1) - zu(k) ) ) ) |
---|
| 1086 | bb = hom(k+1,1,31,0) * ( particles(n)%z / & |
---|
| 1087 | ( 0.5 * ( zu(k+1) - zu(k) ) ) ) |
---|
| 1088 | cc = hom(kw+1,1,32,0) * ( particles(n)%z / & |
---|
| 1089 | ( 1.0 * ( zw(kw+1) - zw(kw) ) ) ) |
---|
| 1090 | ELSE |
---|
| 1091 | aa = hom(k,1,30,0) + ( hom(k+1,1,30,0) - hom(k,1,30,0) ) * & |
---|
| 1092 | ( ( particles(n)%z - zu(k) ) / ( zu(k+1) - zu(k) ) ) |
---|
| 1093 | bb = hom(k,1,31,0) + ( hom(k+1,1,31,0) - hom(k,1,31,0) ) * & |
---|
| 1094 | ( ( particles(n)%z - zu(k) ) / ( zu(k+1) - zu(k) ) ) |
---|
| 1095 | cc = hom(kw,1,32,0) + ( hom(kw+1,1,32,0)-hom(kw,1,32,0) ) *& |
---|
| 1096 | ( ( particles(n)%z - zw(kw) ) / ( zw(kw+1)-zw(kw) ) ) |
---|
| 1097 | ENDIF |
---|
| 1098 | |
---|
[1322] | 1099 | vv_int = ( 1.0_wp / 3.0_wp ) * ( aa + bb + cc ) |
---|
[849] | 1100 | |
---|
[1322] | 1101 | fs_int = ( 2.0_wp / 3.0_wp ) * e_mean_int / & |
---|
| 1102 | ( vv_int + ( 2.0_wp / 3.0_wp ) * e_mean_int ) |
---|
[849] | 1103 | |
---|
| 1104 | ! |
---|
| 1105 | !-- Calculate the Lagrangian timescale according to Weil et al. (2004). |
---|
| 1106 | lagr_timescale = ( 4.0 * e_int ) / & |
---|
| 1107 | ( 3.0 * fs_int * c_0 * diss_int ) |
---|
| 1108 | |
---|
| 1109 | ! |
---|
| 1110 | !-- Calculate the next particle timestep. dt_gap is the time needed to |
---|
| 1111 | !-- complete the current LES timestep. |
---|
| 1112 | dt_gap = dt_3d - particles(n)%dt_sum |
---|
| 1113 | dt_particle = MIN( dt_3d, 0.025 * lagr_timescale, dt_gap ) |
---|
| 1114 | |
---|
| 1115 | ! |
---|
| 1116 | !-- The particle timestep should not be too small in order to prevent |
---|
| 1117 | !-- the number of particle timesteps of getting too large |
---|
| 1118 | IF ( dt_particle < dt_min_part .AND. dt_min_part < dt_gap ) & |
---|
| 1119 | THEN |
---|
| 1120 | dt_particle = dt_min_part |
---|
| 1121 | ENDIF |
---|
| 1122 | |
---|
| 1123 | ! |
---|
| 1124 | !-- Calculate the SGS velocity components |
---|
| 1125 | IF ( particles(n)%age == 0.0 ) THEN |
---|
| 1126 | ! |
---|
| 1127 | !-- For new particles the SGS components are derived from the SGS |
---|
| 1128 | !-- TKE. Limit the Gaussian random number to the interval |
---|
| 1129 | !-- [-5.0*sigma, 5.0*sigma] in order to prevent the SGS velocities |
---|
| 1130 | !-- from becoming unrealistically large. |
---|
| 1131 | particles(n)%rvar1 = SQRT( 2.0 * sgs_wfu_part * e_int ) * & |
---|
[1322] | 1132 | ( random_gauss( iran_part, 5.0_wp ) - 1.0_wp ) |
---|
[849] | 1133 | particles(n)%rvar2 = SQRT( 2.0 * sgs_wfv_part * e_int ) * & |
---|
[1322] | 1134 | ( random_gauss( iran_part, 5.0_wp ) - 1.0_wp ) |
---|
[849] | 1135 | particles(n)%rvar3 = SQRT( 2.0 * sgs_wfw_part * e_int ) * & |
---|
[1322] | 1136 | ( random_gauss( iran_part, 5.0_wp ) - 1.0_wp ) |
---|
[849] | 1137 | |
---|
| 1138 | ELSE |
---|
| 1139 | |
---|
| 1140 | ! |
---|
| 1141 | !-- Restriction of the size of the new timestep: compared to the |
---|
| 1142 | !-- previous timestep the increase must not exceed 200% |
---|
| 1143 | |
---|
| 1144 | dt_particle_m = particles(n)%age - particles(n)%age_m |
---|
| 1145 | IF ( dt_particle > 2.0 * dt_particle_m ) THEN |
---|
| 1146 | dt_particle = 2.0 * dt_particle_m |
---|
| 1147 | ENDIF |
---|
| 1148 | |
---|
| 1149 | ! |
---|
| 1150 | !-- For old particles the SGS components are correlated with the |
---|
| 1151 | !-- values from the previous timestep. Random numbers have also to |
---|
| 1152 | !-- be limited (see above). |
---|
| 1153 | !-- As negative values for the subgrid TKE are not allowed, the |
---|
| 1154 | !-- change of the subgrid TKE with time cannot be smaller than |
---|
| 1155 | !-- -e_int/dt_particle. This value is used as a lower boundary |
---|
| 1156 | !-- value for the change of TKE |
---|
| 1157 | |
---|
| 1158 | de_dt_min = - e_int / dt_particle |
---|
| 1159 | |
---|
| 1160 | de_dt = ( e_int - particles(n)%e_m ) / dt_particle_m |
---|
| 1161 | |
---|
| 1162 | IF ( de_dt < de_dt_min ) THEN |
---|
| 1163 | de_dt = de_dt_min |
---|
| 1164 | ENDIF |
---|
| 1165 | |
---|
| 1166 | particles(n)%rvar1 = particles(n)%rvar1 - fs_int * c_0 * & |
---|
| 1167 | diss_int * particles(n)%rvar1 * dt_particle /& |
---|
| 1168 | ( 4.0 * sgs_wfu_part * e_int ) + & |
---|
| 1169 | ( 2.0 * sgs_wfu_part * de_dt * & |
---|
| 1170 | particles(n)%rvar1 / & |
---|
| 1171 | ( 2.0 * sgs_wfu_part * e_int ) + de_dx_int & |
---|
| 1172 | ) * dt_particle / 2.0 + & |
---|
| 1173 | SQRT( fs_int * c_0 * diss_int ) * & |
---|
[1322] | 1174 | ( random_gauss( iran_part, 5.0_wp ) - 1.0_wp ) * & |
---|
[849] | 1175 | SQRT( dt_particle ) |
---|
| 1176 | |
---|
| 1177 | particles(n)%rvar2 = particles(n)%rvar2 - fs_int * c_0 * & |
---|
| 1178 | diss_int * particles(n)%rvar2 * dt_particle /& |
---|
| 1179 | ( 4.0 * sgs_wfv_part * e_int ) + & |
---|
| 1180 | ( 2.0 * sgs_wfv_part * de_dt * & |
---|
| 1181 | particles(n)%rvar2 / & |
---|
| 1182 | ( 2.0 * sgs_wfv_part * e_int ) + de_dy_int & |
---|
[1322] | 1183 | ) * dt_particle / 2.0_wp + & |
---|
[849] | 1184 | SQRT( fs_int * c_0 * diss_int ) * & |
---|
[1322] | 1185 | ( random_gauss( iran_part, 5.0_wp ) - 1.0_wp ) * & |
---|
[849] | 1186 | SQRT( dt_particle ) |
---|
| 1187 | |
---|
| 1188 | particles(n)%rvar3 = particles(n)%rvar3 - fs_int * c_0 * & |
---|
| 1189 | diss_int * particles(n)%rvar3 * dt_particle /& |
---|
| 1190 | ( 4.0 * sgs_wfw_part * e_int ) + & |
---|
| 1191 | ( 2.0 * sgs_wfw_part * de_dt * & |
---|
| 1192 | particles(n)%rvar3 / & |
---|
| 1193 | ( 2.0 * sgs_wfw_part * e_int ) + de_dz_int & |
---|
[1322] | 1194 | ) * dt_particle / 2.0_wp + & |
---|
[849] | 1195 | SQRT( fs_int * c_0 * diss_int ) * & |
---|
[1322] | 1196 | ( random_gauss( iran_part, 5.0_wp ) - 1.0_wp ) * & |
---|
[849] | 1197 | SQRT( dt_particle ) |
---|
| 1198 | |
---|
| 1199 | ENDIF |
---|
| 1200 | |
---|
| 1201 | u_int = u_int + particles(n)%rvar1 |
---|
| 1202 | v_int = v_int + particles(n)%rvar2 |
---|
| 1203 | w_int = w_int + particles(n)%rvar3 |
---|
| 1204 | |
---|
| 1205 | ! |
---|
| 1206 | !-- Store the SGS TKE of the current timelevel which is needed for |
---|
| 1207 | !-- for calculating the SGS particle velocities at the next timestep |
---|
| 1208 | particles(n)%e_m = e_int |
---|
| 1209 | |
---|
| 1210 | ELSE |
---|
| 1211 | ! |
---|
| 1212 | !-- If no SGS velocities are used, only the particle timestep has to |
---|
| 1213 | !-- be set |
---|
| 1214 | dt_particle = dt_3d |
---|
| 1215 | |
---|
| 1216 | ENDIF |
---|
| 1217 | |
---|
| 1218 | ! |
---|
| 1219 | !-- Store the old age of the particle ( needed to prevent that a |
---|
| 1220 | !-- particle crosses several PEs during one timestep, and for the |
---|
| 1221 | !-- evaluation of the subgrid particle velocity fluctuations ) |
---|
| 1222 | particles(n)%age_m = particles(n)%age |
---|
| 1223 | |
---|
| 1224 | |
---|
| 1225 | ! |
---|
| 1226 | !-- Particle advection |
---|
| 1227 | IF ( particle_groups(particles(n)%group)%density_ratio == 0.0 ) THEN |
---|
| 1228 | ! |
---|
| 1229 | !-- Pure passive transport (without particle inertia) |
---|
| 1230 | particles(n)%x = particles(n)%x + u_int * dt_particle |
---|
| 1231 | particles(n)%y = particles(n)%y + v_int * dt_particle |
---|
| 1232 | particles(n)%z = particles(n)%z + w_int * dt_particle |
---|
| 1233 | |
---|
| 1234 | particles(n)%speed_x = u_int |
---|
| 1235 | particles(n)%speed_y = v_int |
---|
| 1236 | particles(n)%speed_z = w_int |
---|
| 1237 | |
---|
| 1238 | ELSE |
---|
| 1239 | ! |
---|
| 1240 | !-- Transport of particles with inertia |
---|
| 1241 | particles(n)%x = particles(n)%x + particles(n)%speed_x * & |
---|
| 1242 | dt_particle |
---|
| 1243 | particles(n)%y = particles(n)%y + particles(n)%speed_y * & |
---|
| 1244 | dt_particle |
---|
| 1245 | particles(n)%z = particles(n)%z + particles(n)%speed_z * & |
---|
| 1246 | dt_particle |
---|
| 1247 | |
---|
| 1248 | ! |
---|
| 1249 | !-- Update of the particle velocity |
---|
| 1250 | dens_ratio = particle_groups(particles(n)%group)%density_ratio |
---|
| 1251 | IF ( cloud_droplets ) THEN |
---|
| 1252 | exp_arg = 4.5 * dens_ratio * molecular_viscosity / & |
---|
| 1253 | ( particles(n)%radius )**2 * & |
---|
| 1254 | ( 1.0 + 0.15 * ( 2.0 * particles(n)%radius * & |
---|
| 1255 | SQRT( ( u_int - particles(n)%speed_x )**2 + & |
---|
| 1256 | ( v_int - particles(n)%speed_y )**2 + & |
---|
| 1257 | ( w_int - particles(n)%speed_z )**2 ) / & |
---|
[1322] | 1258 | molecular_viscosity )**0.687_wp & |
---|
[849] | 1259 | ) |
---|
| 1260 | exp_term = EXP( -exp_arg * dt_particle ) |
---|
| 1261 | ELSEIF ( use_sgs_for_particles ) THEN |
---|
| 1262 | exp_arg = particle_groups(particles(n)%group)%exp_arg |
---|
| 1263 | exp_term = EXP( -exp_arg * dt_particle ) |
---|
| 1264 | ELSE |
---|
| 1265 | exp_arg = particle_groups(particles(n)%group)%exp_arg |
---|
| 1266 | exp_term = particle_groups(particles(n)%group)%exp_term |
---|
| 1267 | ENDIF |
---|
| 1268 | particles(n)%speed_x = particles(n)%speed_x * exp_term + & |
---|
| 1269 | u_int * ( 1.0 - exp_term ) |
---|
| 1270 | particles(n)%speed_y = particles(n)%speed_y * exp_term + & |
---|
| 1271 | v_int * ( 1.0 - exp_term ) |
---|
| 1272 | particles(n)%speed_z = particles(n)%speed_z * exp_term + & |
---|
| 1273 | ( w_int - ( 1.0 - dens_ratio ) * g / exp_arg )& |
---|
| 1274 | * ( 1.0 - exp_term ) |
---|
| 1275 | ENDIF |
---|
| 1276 | |
---|
| 1277 | ! |
---|
| 1278 | !-- Increment the particle age and the total time that the particle |
---|
| 1279 | !-- has advanced within the particle timestep procedure |
---|
| 1280 | particles(n)%age = particles(n)%age + dt_particle |
---|
| 1281 | particles(n)%dt_sum = particles(n)%dt_sum + dt_particle |
---|
| 1282 | |
---|
| 1283 | ! |
---|
| 1284 | !-- Check whether there is still a particle that has not yet completed |
---|
| 1285 | !-- the total LES timestep |
---|
| 1286 | IF ( ( dt_3d - particles(n)%dt_sum ) > 1E-8 ) THEN |
---|
| 1287 | dt_3d_reached_l = .FALSE. |
---|
| 1288 | ENDIF |
---|
| 1289 | |
---|
| 1290 | ENDDO |
---|
| 1291 | |
---|
| 1292 | |
---|
| 1293 | END SUBROUTINE lpm_advec |
---|