[1682] | 1 | !> @file land_surface_model.f90 |
---|
[1496] | 2 | !--------------------------------------------------------------------------------! |
---|
| 3 | ! This file is part of PALM. |
---|
| 4 | ! |
---|
| 5 | ! PALM is free software: you can redistribute it and/or modify it under the terms |
---|
| 6 | ! of the GNU General Public License as published by the Free Software Foundation, |
---|
| 7 | ! either version 3 of the License, or (at your option) any later version. |
---|
| 8 | ! |
---|
| 9 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 10 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 11 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 12 | ! |
---|
| 13 | ! You should have received a copy of the GNU General Public License along with |
---|
| 14 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 15 | ! |
---|
[1691] | 16 | ! Copyright 1997-2015 Leibniz Universitaet Hannover |
---|
[1496] | 17 | !--------------------------------------------------------------------------------! |
---|
| 18 | ! |
---|
| 19 | ! Current revisions: |
---|
| 20 | ! ----------------- |
---|
[1758] | 21 | ! |
---|
| 22 | ! |
---|
| 23 | ! Former revisions: |
---|
| 24 | ! ----------------- |
---|
| 25 | ! $Id: land_surface_model.f90 1758 2016-02-22 15:53:28Z raasch $ |
---|
| 26 | ! |
---|
| 27 | ! 1757 2016-02-22 15:49:32Z maronga |
---|
[1757] | 28 | ! Bugfix: set tm_soil_m to zero after allocation. Added parameter |
---|
| 29 | ! unscheduled_radiation_calls to control calls of the radiation model based on |
---|
| 30 | ! the skin temperature change during one time step (preliminary version). Set |
---|
| 31 | ! qsws_soil_eb to zero at model start (previously set to qsws_eb). Removed MAX |
---|
| 32 | ! function as it cannot be vectorized. |
---|
[1710] | 33 | ! |
---|
| 34 | ! 1709 2015-11-04 14:47:01Z maronga |
---|
[1709] | 35 | ! Renamed pt_1 and qv_1 to pt1 and qv1. |
---|
| 36 | ! Bugfix: set initial values for t_surface_p in case of restart runs |
---|
| 37 | ! Bugfix: zero resistance caused crash when using radiation_scheme = 'clear-sky' |
---|
| 38 | ! Bugfix: calculation of rad_net when using radiation_scheme = 'clear-sky' |
---|
| 39 | ! Added todo action |
---|
[1698] | 40 | ! |
---|
| 41 | ! 1697 2015-10-28 17:14:10Z raasch |
---|
| 42 | ! bugfix: misplaced cpp-directive |
---|
| 43 | ! |
---|
| 44 | ! 1695 2015-10-27 10:03:11Z maronga |
---|
[1692] | 45 | ! Bugfix: REAL constants provided with KIND-attribute in call of |
---|
[1696] | 46 | ! Replaced rif with ol |
---|
| 47 | ! |
---|
[1692] | 48 | ! 1691 2015-10-26 16:17:44Z maronga |
---|
[1691] | 49 | ! Added skip_time_do_lsm to allow for spin-ups without LSM. Various bugfixes: |
---|
| 50 | ! Soil temperatures are now defined at the edges of the layers, calculation of |
---|
| 51 | ! shb_eb corrected, prognostic equation for skin temperature corrected. Surface |
---|
| 52 | ! fluxes are now directly transfered to atmosphere |
---|
[1552] | 53 | ! |
---|
[1683] | 54 | ! 1682 2015-10-07 23:56:08Z knoop |
---|
| 55 | ! Code annotations made doxygen readable |
---|
| 56 | ! |
---|
[1591] | 57 | ! 1590 2015-05-08 13:56:27Z maronga |
---|
| 58 | ! Bugfix: definition of character strings requires same length for all elements |
---|
| 59 | ! |
---|
[1586] | 60 | ! 1585 2015-04-30 07:05:52Z maronga |
---|
| 61 | ! Modifications for RRTMG. Changed tables to PARAMETER type. |
---|
| 62 | ! |
---|
[1572] | 63 | ! 1571 2015-03-12 16:12:49Z maronga |
---|
| 64 | ! Removed upper-case variable names. Corrected distribution of precipitation to |
---|
| 65 | ! the liquid water reservoir and the bare soil fractions. |
---|
| 66 | ! |
---|
[1556] | 67 | ! 1555 2015-03-04 17:44:27Z maronga |
---|
| 68 | ! Added output of r_a and r_s |
---|
| 69 | ! |
---|
[1554] | 70 | ! 1553 2015-03-03 17:33:54Z maronga |
---|
| 71 | ! Improved better treatment of roughness lengths. Added default soil temperature |
---|
| 72 | ! profile |
---|
| 73 | ! |
---|
[1552] | 74 | ! 1551 2015-03-03 14:18:16Z maronga |
---|
[1551] | 75 | ! Flux calculation is now done in prandtl_fluxes. Added support for data output. |
---|
| 76 | ! Vertical indices have been replaced. Restart runs are now possible. Some |
---|
| 77 | ! variables have beem renamed. Bugfix in the prognostic equation for the surface |
---|
| 78 | ! temperature. Introduced z0_eb and z0h_eb, which overwrite the setting of |
---|
| 79 | ! roughness_length and z0_factor. Added Clapp & Hornberger parametrization for |
---|
| 80 | ! the hydraulic conductivity. Bugfix for root fraction and extraction |
---|
| 81 | ! calculation |
---|
[1496] | 82 | ! |
---|
[1514] | 83 | ! intrinsic function MAX and MIN |
---|
[1496] | 84 | ! |
---|
[1501] | 85 | ! 1500 2014-12-03 17:42:41Z maronga |
---|
| 86 | ! Corrected calculation of aerodynamic resistance (r_a). |
---|
| 87 | ! Precipitation is now added to liquid water reservoir using LE_liq. |
---|
| 88 | ! Added support for dry runs. |
---|
| 89 | ! |
---|
[1497] | 90 | ! 1496 2014-12-02 17:25:50Z maronga |
---|
| 91 | ! Initial revision |
---|
| 92 | ! |
---|
[1496] | 93 | ! |
---|
| 94 | ! Description: |
---|
| 95 | ! ------------ |
---|
[1682] | 96 | !> Land surface model, consisting of a solver for the energy balance at the |
---|
| 97 | !> surface and a four layer soil scheme. The scheme is similar to the TESSEL |
---|
| 98 | !> scheme implemented in the ECMWF IFS model, with modifications according to |
---|
| 99 | !> H-TESSEL. The implementation is based on the formulation implemented in the |
---|
| 100 | !> DALES and UCLA-LES models. |
---|
| 101 | !> |
---|
[1691] | 102 | !> @todo Consider partial absorption of the net shortwave radiation by the |
---|
[1709] | 103 | !> skin layer. |
---|
[1691] | 104 | !> @todo Allow for water surfaces |
---|
| 105 | !> @todo Invert indices (running from -3 to 0. Currently: nzb_soil=0, |
---|
| 106 | !> nzt_soil=3)). |
---|
| 107 | !> @todo Implement surface runoff model (required when performing long-term LES |
---|
| 108 | !> with considerable precipitation. |
---|
[1709] | 109 | !> @todo Fix crashes with radiation_scheme == 'constant' |
---|
[1682] | 110 | !> |
---|
[1709] | 111 | !> @note No time step criterion is required as long as the soil layers do not |
---|
| 112 | !> become too thin. |
---|
[1496] | 113 | !------------------------------------------------------------------------------! |
---|
[1682] | 114 | MODULE land_surface_model_mod |
---|
| 115 | |
---|
[1691] | 116 | USE arrays_3d, & |
---|
[1695] | 117 | ONLY: hyp, ol, pt, pt_p, q, q_p, ql, qsws, shf, ts, us, vpt, z0, z0h |
---|
[1496] | 118 | |
---|
[1691] | 119 | USE cloud_parameters, & |
---|
| 120 | ONLY: cp, hyrho, l_d_cp, l_d_r, l_v, prr, pt_d_t, rho_l, r_d, r_v |
---|
[1496] | 121 | |
---|
[1691] | 122 | USE control_parameters, & |
---|
| 123 | ONLY: cloud_physics, dt_3d, humidity, intermediate_timestep_count, & |
---|
| 124 | initializing_actions, intermediate_timestep_count_max, & |
---|
| 125 | max_masks, precipitation, pt_surface, rho_surface, & |
---|
| 126 | roughness_length, surface_pressure, timestep_scheme, tsc, & |
---|
| 127 | z0h_factor, time_since_reference_point |
---|
[1496] | 128 | |
---|
[1691] | 129 | USE indices, & |
---|
| 130 | ONLY: nbgp, nxlg, nxrg, nyng, nysg, nzb, nzb_s_inner |
---|
[1496] | 131 | |
---|
[1691] | 132 | USE kinds |
---|
[1496] | 133 | |
---|
[1551] | 134 | USE netcdf_control, & |
---|
| 135 | ONLY: dots_label, dots_num, dots_unit |
---|
| 136 | |
---|
[1691] | 137 | USE pegrid |
---|
[1496] | 138 | |
---|
[1691] | 139 | USE radiation_model_mod, & |
---|
| 140 | ONLY: force_radiation_call, radiation_scheme, rad_net, rad_sw_in, & |
---|
[1757] | 141 | rad_lw_out, rad_lw_out_change_0, sigma_sb, & |
---|
| 142 | unscheduled_radiation_calls |
---|
[1691] | 143 | |
---|
| 144 | #if defined ( __rrtmg ) |
---|
| 145 | USE radiation_model_mod, & |
---|
[1709] | 146 | ONLY: rrtm_idrv |
---|
[1691] | 147 | #endif |
---|
[1496] | 148 | |
---|
[1691] | 149 | USE statistics, & |
---|
| 150 | ONLY: hom, statistic_regions |
---|
| 151 | |
---|
[1496] | 152 | IMPLICIT NONE |
---|
| 153 | |
---|
| 154 | ! |
---|
| 155 | !-- LSM model constants |
---|
[1682] | 156 | INTEGER(iwp), PARAMETER :: nzb_soil = 0, & !< bottom of the soil model (to be switched) |
---|
| 157 | nzt_soil = 3, & !< top of the soil model (to be switched) |
---|
| 158 | nzs = 4 !< number of soil layers (fixed for now) |
---|
[1496] | 159 | |
---|
[1682] | 160 | INTEGER(iwp) :: dots_soil = 0 !< starting index for timeseries output |
---|
[1551] | 161 | |
---|
| 162 | INTEGER(iwp), DIMENSION(0:1) :: id_dim_zs_xy, id_dim_zs_xz, id_dim_zs_yz, & |
---|
| 163 | id_dim_zs_3d, id_var_zs_xy, & |
---|
| 164 | id_var_zs_xz, id_var_zs_yz, id_var_zs_3d |
---|
| 165 | |
---|
| 166 | INTEGER(iwp), DIMENSION(1:max_masks,0:1) :: id_dim_zs_mask, id_var_zs_mask |
---|
| 167 | |
---|
[1496] | 168 | REAL(wp), PARAMETER :: & |
---|
[1551] | 169 | b_ch = 6.04_wp, & ! Clapp & Hornberger exponent |
---|
| 170 | lambda_h_dry = 0.19_wp, & ! heat conductivity for dry soil |
---|
[1496] | 171 | lambda_h_sm = 3.44_wp, & ! heat conductivity of the soil matrix |
---|
| 172 | lambda_h_water = 0.57_wp, & ! heat conductivity of water |
---|
| 173 | psi_sat = -0.388_wp, & ! soil matrix potential at saturation |
---|
[1551] | 174 | rho_c_soil = 2.19E6_wp, & ! volumetric heat capacity of soil |
---|
| 175 | rho_c_water = 4.20E6_wp, & ! volumetric heat capacity of water |
---|
[1496] | 176 | m_max_depth = 0.0002_wp ! Maximum capacity of the water reservoir (m) |
---|
| 177 | |
---|
| 178 | |
---|
| 179 | ! |
---|
| 180 | !-- LSM variables |
---|
[1682] | 181 | INTEGER(iwp) :: veg_type = 2, & !< vegetation type, 0: user-defined, 1-19: generic (see list) |
---|
| 182 | soil_type = 3 !< soil type, 0: user-defined, 1-6: generic (see list) |
---|
[1496] | 183 | |
---|
[1691] | 184 | LOGICAL :: conserve_water_content = .TRUE., & !< open or closed bottom surface for the soil model |
---|
| 185 | dewfall = .TRUE., & !< allow/inhibit dewfall |
---|
| 186 | force_radiation_call_l = .FALSE., & !< flag parameter for unscheduled radiation model calls |
---|
| 187 | land_surface = .FALSE. !< flag parameter indicating wheather the lsm is used |
---|
[1496] | 188 | |
---|
| 189 | ! value 9999999.9_wp -> generic available or user-defined value must be set |
---|
| 190 | ! otherwise -> no generic variable and user setting is optional |
---|
[1682] | 191 | REAL(wp) :: alpha_vangenuchten = 9999999.9_wp, & !< NAMELIST alpha_vg |
---|
| 192 | canopy_resistance_coefficient = 9999999.9_wp, & !< NAMELIST g_d |
---|
| 193 | c_surface = 20000.0_wp, & !< Surface (skin) heat capacity |
---|
| 194 | drho_l_lv, & !< (rho_l * l_v)**-1 |
---|
| 195 | exn, & !< value of the Exner function |
---|
| 196 | e_s = 0.0_wp, & !< saturation water vapour pressure |
---|
| 197 | field_capacity = 9999999.9_wp, & !< NAMELIST m_fc |
---|
| 198 | f_shortwave_incoming = 9999999.9_wp, & !< NAMELIST f_sw_in |
---|
| 199 | hydraulic_conductivity = 9999999.9_wp, & !< NAMELIST gamma_w_sat |
---|
| 200 | ke = 0.0_wp, & !< Kersten number |
---|
[1691] | 201 | lambda_h_sat = 0.0_wp, & !< heat conductivity for saturated soil |
---|
[1682] | 202 | lambda_surface_stable = 9999999.9_wp, & !< NAMELIST lambda_surface_s |
---|
| 203 | lambda_surface_unstable = 9999999.9_wp, & !< NAMELIST lambda_surface_u |
---|
| 204 | leaf_area_index = 9999999.9_wp, & !< NAMELIST lai |
---|
| 205 | l_vangenuchten = 9999999.9_wp, & !< NAMELIST l_vg |
---|
| 206 | min_canopy_resistance = 9999999.9_wp, & !< NAMELIST r_canopy_min |
---|
| 207 | min_soil_resistance = 50.0_wp, & !< NAMELIST r_soil_min |
---|
| 208 | m_total = 0.0_wp, & !< weighted total water content of the soil (m3/m3) |
---|
| 209 | n_vangenuchten = 9999999.9_wp, & !< NAMELIST n_vg |
---|
| 210 | q_s = 0.0_wp, & !< saturation specific humidity |
---|
| 211 | residual_moisture = 9999999.9_wp, & !< NAMELIST m_res |
---|
| 212 | rho_cp, & !< rho_surface * cp |
---|
| 213 | rho_lv, & !< rho * l_v |
---|
| 214 | rd_d_rv, & !< r_d / r_v |
---|
| 215 | saturation_moisture = 9999999.9_wp, & !< NAMELIST m_sat |
---|
[1691] | 216 | skip_time_do_lsm = 0.0_wp, & !< LSM is not called before this time |
---|
[1682] | 217 | vegetation_coverage = 9999999.9_wp, & !< NAMELIST c_veg |
---|
| 218 | wilting_point = 9999999.9_wp, & !< NAMELIST m_wilt |
---|
| 219 | z0_eb = 9999999.9_wp, & !< NAMELIST z0 (lsm_par) |
---|
[1691] | 220 | z0h_eb = 9999999.9_wp !< NAMELIST z0h (lsm_par) |
---|
[1496] | 221 | |
---|
[1551] | 222 | REAL(wp), DIMENSION(nzb_soil:nzt_soil) :: & |
---|
[1691] | 223 | ddz_soil_stag, & !< 1/dz_soil_stag |
---|
| 224 | dz_soil_stag, & !< soil grid spacing (center-center) |
---|
| 225 | root_extr = 0.0_wp, & !< root extraction |
---|
[1551] | 226 | root_fraction = (/9999999.9_wp, 9999999.9_wp, & |
---|
[1682] | 227 | 9999999.9_wp, 9999999.9_wp /), & !< distribution of root surface area to the individual soil layers |
---|
| 228 | zs = (/0.07_wp, 0.28_wp, 1.00_wp, 2.89_wp/), & !< soil layer depths (m) |
---|
| 229 | soil_moisture = 0.0_wp !< soil moisture content (m3/m3) |
---|
[1496] | 230 | |
---|
[1551] | 231 | REAL(wp), DIMENSION(nzb_soil:nzt_soil+1) :: & |
---|
[1691] | 232 | soil_temperature = (/290.0_wp, 287.0_wp, 285.0_wp, 283.0_wp, & !< soil temperature (K) |
---|
| 233 | 283.0_wp /), & |
---|
| 234 | ddz_soil, & !< 1/dz_soil |
---|
| 235 | dz_soil !< soil grid spacing (edge-edge) |
---|
[1496] | 236 | |
---|
| 237 | #if defined( __nopointer ) |
---|
[1682] | 238 | REAL(wp), DIMENSION(:,:), ALLOCATABLE, TARGET :: t_surface, & !< surface temperature (K) |
---|
| 239 | t_surface_p, & !< progn. surface temperature (K) |
---|
| 240 | m_liq_eb, & !< liquid water reservoir (m) |
---|
| 241 | m_liq_eb_av, & !< liquid water reservoir (m) |
---|
| 242 | m_liq_eb_p !< progn. liquid water reservoir (m) |
---|
[1496] | 243 | #else |
---|
[1551] | 244 | REAL(wp), DIMENSION(:,:), POINTER :: t_surface, & |
---|
| 245 | t_surface_p, & |
---|
| 246 | m_liq_eb, & |
---|
| 247 | m_liq_eb_p |
---|
[1496] | 248 | |
---|
[1551] | 249 | REAL(wp), DIMENSION(:,:), ALLOCATABLE, TARGET :: t_surface_1, t_surface_2, & |
---|
| 250 | m_liq_eb_av, & |
---|
| 251 | m_liq_eb_1, m_liq_eb_2 |
---|
[1496] | 252 | #endif |
---|
| 253 | |
---|
| 254 | ! |
---|
| 255 | !-- Temporal tendencies for time stepping |
---|
[1682] | 256 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: tt_surface_m, & !< surface temperature tendency (K) |
---|
| 257 | tm_liq_eb_m !< liquid water reservoir tendency (m) |
---|
[1496] | 258 | |
---|
| 259 | ! |
---|
| 260 | !-- Energy balance variables |
---|
[1691] | 261 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: & |
---|
[1682] | 262 | alpha_vg, & !< coef. of Van Genuchten |
---|
| 263 | c_liq, & !< liquid water coverage (of vegetated area) |
---|
| 264 | c_liq_av, & !< average of c_liq |
---|
| 265 | c_soil_av, & !< average of c_soil |
---|
| 266 | c_veg, & !< vegetation coverage |
---|
| 267 | c_veg_av, & !< average of c_veg |
---|
| 268 | f_sw_in, & !< fraction of absorbed shortwave radiation by the surface layer (not implemented yet) |
---|
| 269 | ghf_eb, & !< ground heat flux |
---|
| 270 | ghf_eb_av, & !< average of ghf_eb |
---|
| 271 | gamma_w_sat, & !< hydraulic conductivity at saturation |
---|
| 272 | g_d, & !< coefficient for dependence of r_canopy on water vapour pressure deficit |
---|
| 273 | lai, & !< leaf area index |
---|
| 274 | lai_av, & !< average of lai |
---|
[1691] | 275 | lambda_surface_s, & !< coupling between surface and soil (depends on vegetation type) |
---|
| 276 | lambda_surface_u, & !< coupling between surface and soil (depends on vegetation type) |
---|
[1682] | 277 | l_vg, & !< coef. of Van Genuchten |
---|
| 278 | m_fc, & !< soil moisture at field capacity (m3/m3) |
---|
| 279 | m_res, & !< residual soil moisture |
---|
| 280 | m_sat, & !< saturation soil moisture (m3/m3) |
---|
| 281 | m_wilt, & !< soil moisture at permanent wilting point (m3/m3) |
---|
| 282 | n_vg, & !< coef. Van Genuchten |
---|
| 283 | qsws_eb, & !< surface flux of latent heat (total) |
---|
| 284 | qsws_eb_av, & !< average of qsws_eb |
---|
| 285 | qsws_liq_eb, & !< surface flux of latent heat (liquid water portion) |
---|
| 286 | qsws_liq_eb_av, & !< average of qsws_liq_eb |
---|
| 287 | qsws_soil_eb, & !< surface flux of latent heat (soil portion) |
---|
| 288 | qsws_soil_eb_av, & !< average of qsws_soil_eb |
---|
| 289 | qsws_veg_eb, & !< surface flux of latent heat (vegetation portion) |
---|
| 290 | qsws_veg_eb_av, & !< average of qsws_veg_eb |
---|
| 291 | rad_net_l, & !< local copy of rad_net (net radiation at surface) |
---|
| 292 | r_a, & !< aerodynamic resistance |
---|
[1709] | 293 | r_a_av, & !< average of r_a |
---|
[1682] | 294 | r_canopy, & !< canopy resistance |
---|
[1691] | 295 | r_soil, & !< soil resistance |
---|
[1682] | 296 | r_soil_min, & !< minimum soil resistance |
---|
| 297 | r_s, & !< total surface resistance (combination of r_soil and r_canopy) |
---|
[1691] | 298 | r_s_av, & !< average of r_s |
---|
[1682] | 299 | r_canopy_min, & !< minimum canopy (stomatal) resistance |
---|
| 300 | shf_eb, & !< surface flux of sensible heat |
---|
| 301 | shf_eb_av !< average of shf_eb |
---|
[1496] | 302 | |
---|
[1691] | 303 | |
---|
[1496] | 304 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: & |
---|
[1682] | 305 | lambda_h, & !< heat conductivity of soil (?) |
---|
| 306 | lambda_w, & !< hydraulic diffusivity of soil (?) |
---|
| 307 | gamma_w, & !< hydraulic conductivity of soil (?) |
---|
| 308 | rho_c_total !< volumetric heat capacity of the actual soil matrix (?) |
---|
[1496] | 309 | |
---|
| 310 | #if defined( __nopointer ) |
---|
| 311 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE, TARGET :: & |
---|
[1682] | 312 | t_soil, & !< Soil temperature (K) |
---|
| 313 | t_soil_av, & !< Average of t_soil |
---|
| 314 | t_soil_p, & !< Prog. soil temperature (K) |
---|
| 315 | m_soil, & !< Soil moisture (m3/m3) |
---|
| 316 | m_soil_av, & !< Average of m_soil |
---|
| 317 | m_soil_p !< Prog. soil moisture (m3/m3) |
---|
[1496] | 318 | #else |
---|
| 319 | REAL(wp), DIMENSION(:,:,:), POINTER :: & |
---|
[1551] | 320 | t_soil, t_soil_p, & |
---|
[1496] | 321 | m_soil, m_soil_p |
---|
| 322 | |
---|
| 323 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE, TARGET :: & |
---|
[1551] | 324 | t_soil_av, t_soil_1, t_soil_2, & |
---|
| 325 | m_soil_av, m_soil_1, m_soil_2 |
---|
[1496] | 326 | #endif |
---|
| 327 | |
---|
| 328 | |
---|
| 329 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: & |
---|
[1757] | 330 | tt_soil_m, & !< t_soil storage array |
---|
| 331 | tm_soil_m, & !< m_soil storage array |
---|
[1682] | 332 | root_fr !< root fraction (sum=1) |
---|
[1496] | 333 | |
---|
[1551] | 334 | |
---|
[1496] | 335 | ! |
---|
[1551] | 336 | !-- Predefined Land surface classes (veg_type) |
---|
[1585] | 337 | CHARACTER(26), DIMENSION(0:19), PARAMETER :: veg_type_name = (/ & |
---|
[1590] | 338 | 'user defined ', & ! 0 |
---|
| 339 | 'crops, mixed farming ', & ! 1 |
---|
| 340 | 'short grass ', & ! 2 |
---|
[1585] | 341 | 'evergreen needleleaf trees', & ! 3 |
---|
| 342 | 'deciduous needleleaf trees', & ! 4 |
---|
[1590] | 343 | 'evergreen broadleaf trees ', & ! 5 |
---|
| 344 | 'deciduous broadleaf trees ', & ! 6 |
---|
| 345 | 'tall grass ', & ! 7 |
---|
| 346 | 'desert ', & ! 8 |
---|
| 347 | 'tundra ', & ! 9 |
---|
| 348 | 'irrigated crops ', & ! 10 |
---|
| 349 | 'semidesert ', & ! 11 |
---|
| 350 | 'ice caps and glaciers ', & ! 12 |
---|
| 351 | 'bogs and marshes ', & ! 13 |
---|
| 352 | 'inland water ', & ! 14 |
---|
| 353 | 'ocean ', & ! 15 |
---|
| 354 | 'evergreen shrubs ', & ! 16 |
---|
| 355 | 'deciduous shrubs ', & ! 17 |
---|
| 356 | 'mixed forest/woodland ', & ! 18 |
---|
| 357 | 'interrupted forest ' & ! 19 |
---|
[1585] | 358 | /) |
---|
[1496] | 359 | |
---|
| 360 | ! |
---|
[1551] | 361 | !-- Soil model classes (soil_type) |
---|
[1585] | 362 | CHARACTER(12), DIMENSION(0:7), PARAMETER :: soil_type_name = (/ & |
---|
| 363 | 'user defined', & ! 0 |
---|
[1590] | 364 | 'coarse ', & ! 1 |
---|
| 365 | 'medium ', & ! 2 |
---|
| 366 | 'medium-fine ', & ! 3 |
---|
| 367 | 'fine ', & ! 4 |
---|
| 368 | 'very fine ', & ! 5 |
---|
| 369 | 'organic ', & ! 6 |
---|
| 370 | 'loamy (CH) ' & ! 7 |
---|
[1585] | 371 | /) |
---|
[1551] | 372 | ! |
---|
| 373 | !-- Land surface parameters according to the respective classes (veg_type) |
---|
| 374 | |
---|
| 375 | ! |
---|
| 376 | !-- Land surface parameters I |
---|
| 377 | !-- r_canopy_min, lai, c_veg, g_d |
---|
[1585] | 378 | REAL(wp), DIMENSION(0:3,1:19), PARAMETER :: veg_pars = RESHAPE( (/ & |
---|
| 379 | 180.0_wp, 3.00_wp, 0.90_wp, 0.00_wp, & ! 1 |
---|
| 380 | 110.0_wp, 2.00_wp, 0.85_wp, 0.00_wp, & ! 2 |
---|
| 381 | 500.0_wp, 5.00_wp, 0.90_wp, 0.03_wp, & ! 3 |
---|
| 382 | 500.0_wp, 5.00_wp, 0.90_wp, 0.03_wp, & ! 4 |
---|
| 383 | 175.0_wp, 5.00_wp, 0.90_wp, 0.03_wp, & ! 5 |
---|
| 384 | 240.0_wp, 6.00_wp, 0.99_wp, 0.13_wp, & ! 6 |
---|
| 385 | 100.0_wp, 2.00_wp, 0.70_wp, 0.00_wp, & ! 7 |
---|
| 386 | 250.0_wp, 0.05_wp, 0.00_wp, 0.00_wp, & ! 8 |
---|
| 387 | 80.0_wp, 1.00_wp, 0.50_wp, 0.00_wp, & ! 9 |
---|
| 388 | 180.0_wp, 3.00_wp, 0.90_wp, 0.00_wp, & ! 10 |
---|
| 389 | 150.0_wp, 0.50_wp, 0.10_wp, 0.00_wp, & ! 11 |
---|
| 390 | 0.0_wp, 0.00_wp, 0.00_wp, 0.00_wp, & ! 12 |
---|
| 391 | 240.0_wp, 4.00_wp, 0.60_wp, 0.00_wp, & ! 13 |
---|
| 392 | 0.0_wp, 0.00_wp, 0.00_wp, 0.00_wp, & ! 14 |
---|
| 393 | 0.0_wp, 0.00_wp, 0.00_wp, 0.00_wp, & ! 15 |
---|
| 394 | 225.0_wp, 3.00_wp, 0.50_wp, 0.00_wp, & ! 16 |
---|
| 395 | 225.0_wp, 1.50_wp, 0.50_wp, 0.00_wp, & ! 17 |
---|
| 396 | 250.0_wp, 5.00_wp, 0.90_wp, 0.03_wp, & ! 18 |
---|
| 397 | 175.0_wp, 2.50_wp, 0.90_wp, 0.03_wp & ! 19 |
---|
[1496] | 398 | /), (/ 4, 19 /) ) |
---|
| 399 | |
---|
| 400 | ! |
---|
| 401 | !-- Land surface parameters II z0, z0h |
---|
[1585] | 402 | REAL(wp), DIMENSION(0:1,1:19), PARAMETER :: roughness_par = RESHAPE( (/ & |
---|
| 403 | 0.25_wp, 0.25E-2_wp, & ! 1 |
---|
| 404 | 0.20_wp, 0.20E-2_wp, & ! 2 |
---|
| 405 | 2.00_wp, 2.00_wp, & ! 3 |
---|
| 406 | 2.00_wp, 2.00_wp, & ! 4 |
---|
| 407 | 2.00_wp, 2.00_wp, & ! 5 |
---|
| 408 | 2.00_wp, 2.00_wp, & ! 6 |
---|
| 409 | 0.47_wp, 0.47E-2_wp, & ! 7 |
---|
| 410 | 0.013_wp, 0.013E-2_wp, & ! 8 |
---|
| 411 | 0.034_wp, 0.034E-2_wp, & ! 9 |
---|
| 412 | 0.5_wp, 0.50E-2_wp, & ! 10 |
---|
| 413 | 0.17_wp, 0.17E-2_wp, & ! 11 |
---|
| 414 | 1.3E-3_wp, 1.3E-4_wp, & ! 12 |
---|
| 415 | 0.83_wp, 0.83E-2_wp, & ! 13 |
---|
| 416 | 0.00_wp, 0.00E-2_wp, & ! 14 |
---|
| 417 | 0.00_wp, 0.00E-2_wp, & ! 15 |
---|
| 418 | 0.10_wp, 0.10E-2_wp, & ! 16 |
---|
| 419 | 0.25_wp, 0.25E-2_wp, & ! 17 |
---|
| 420 | 2.00_wp, 2.00E-2_wp, & ! 18 |
---|
| 421 | 1.10_wp, 1.10E-2_wp & ! 19 |
---|
[1496] | 422 | /), (/ 2, 19 /) ) |
---|
| 423 | |
---|
| 424 | ! |
---|
[1551] | 425 | !-- Land surface parameters III lambda_surface_s, lambda_surface_u, f_sw_in |
---|
[1585] | 426 | REAL(wp), DIMENSION(0:2,1:19), PARAMETER :: surface_pars = RESHAPE( (/ & |
---|
| 427 | 10.0_wp, 10.0_wp, 0.05_wp, & ! 1 |
---|
| 428 | 10.0_wp, 10.0_wp, 0.05_wp, & ! 2 |
---|
| 429 | 20.0_wp, 15.0_wp, 0.03_wp, & ! 3 |
---|
| 430 | 20.0_wp, 15.0_wp, 0.03_wp, & ! 4 |
---|
| 431 | 20.0_wp, 15.0_wp, 0.03_wp, & ! 5 |
---|
| 432 | 20.0_wp, 15.0_wp, 0.03_wp, & ! 6 |
---|
| 433 | 10.0_wp, 10.0_wp, 0.05_wp, & ! 7 |
---|
| 434 | 15.0_wp, 15.0_wp, 0.00_wp, & ! 8 |
---|
| 435 | 10.0_wp, 10.0_wp, 0.05_wp, & ! 9 |
---|
| 436 | 10.0_wp, 10.0_wp, 0.05_wp, & ! 10 |
---|
| 437 | 10.0_wp, 10.0_wp, 0.05_wp, & ! 11 |
---|
| 438 | 58.0_wp, 58.0_wp, 0.00_wp, & ! 12 |
---|
| 439 | 10.0_wp, 10.0_wp, 0.05_wp, & ! 13 |
---|
| 440 | 1.0E20_wp, 1.0E20_wp, 0.00_wp, & ! 14 |
---|
| 441 | 1.0E20_wp, 1.0E20_wp, 0.00_wp, & ! 15 |
---|
| 442 | 10.0_wp, 10.0_wp, 0.05_wp, & ! 16 |
---|
| 443 | 10.0_wp, 10.0_wp, 0.05_wp, & ! 17 |
---|
| 444 | 20.0_wp, 15.0_wp, 0.03_wp, & ! 18 |
---|
| 445 | 20.0_wp, 15.0_wp, 0.03_wp & ! 19 |
---|
[1496] | 446 | /), (/ 3, 19 /) ) |
---|
| 447 | |
---|
| 448 | ! |
---|
| 449 | !-- Root distribution (sum = 1) level 1, level 2, level 3, level 4, |
---|
[1585] | 450 | REAL(wp), DIMENSION(0:3,1:19), PARAMETER :: root_distribution = RESHAPE( (/ & |
---|
| 451 | 0.24_wp, 0.41_wp, 0.31_wp, 0.04_wp, & ! 1 |
---|
| 452 | 0.35_wp, 0.38_wp, 0.23_wp, 0.04_wp, & ! 2 |
---|
| 453 | 0.26_wp, 0.39_wp, 0.29_wp, 0.06_wp, & ! 3 |
---|
| 454 | 0.26_wp, 0.38_wp, 0.29_wp, 0.07_wp, & ! 4 |
---|
| 455 | 0.24_wp, 0.38_wp, 0.31_wp, 0.07_wp, & ! 5 |
---|
| 456 | 0.25_wp, 0.34_wp, 0.27_wp, 0.14_wp, & ! 6 |
---|
| 457 | 0.27_wp, 0.27_wp, 0.27_wp, 0.09_wp, & ! 7 |
---|
| 458 | 1.00_wp, 0.00_wp, 0.00_wp, 0.00_wp, & ! 8 |
---|
| 459 | 0.47_wp, 0.45_wp, 0.08_wp, 0.00_wp, & ! 9 |
---|
| 460 | 0.24_wp, 0.41_wp, 0.31_wp, 0.04_wp, & ! 10 |
---|
| 461 | 0.17_wp, 0.31_wp, 0.33_wp, 0.19_wp, & ! 11 |
---|
| 462 | 0.00_wp, 0.00_wp, 0.00_wp, 0.00_wp, & ! 12 |
---|
| 463 | 0.25_wp, 0.34_wp, 0.27_wp, 0.11_wp, & ! 13 |
---|
| 464 | 0.00_wp, 0.00_wp, 0.00_wp, 0.00_wp, & ! 14 |
---|
| 465 | 0.00_wp, 0.00_wp, 0.00_wp, 0.00_wp, & ! 15 |
---|
| 466 | 0.23_wp, 0.36_wp, 0.30_wp, 0.11_wp, & ! 16 |
---|
| 467 | 0.23_wp, 0.36_wp, 0.30_wp, 0.11_wp, & ! 17 |
---|
| 468 | 0.19_wp, 0.35_wp, 0.36_wp, 0.10_wp, & ! 18 |
---|
| 469 | 0.19_wp, 0.35_wp, 0.36_wp, 0.10_wp & ! 19 |
---|
[1496] | 470 | /), (/ 4, 19 /) ) |
---|
| 471 | |
---|
| 472 | ! |
---|
| 473 | !-- Soil parameters according to the following porosity classes (soil_type) |
---|
[1551] | 474 | |
---|
[1496] | 475 | ! |
---|
[1551] | 476 | !-- Soil parameters I alpha_vg, l_vg, n_vg, gamma_w_sat |
---|
[1585] | 477 | REAL(wp), DIMENSION(0:3,1:7), PARAMETER :: soil_pars = RESHAPE( (/ & |
---|
[1496] | 478 | 3.83_wp, 1.250_wp, 1.38_wp, 6.94E-6_wp, & ! 1 |
---|
| 479 | 3.14_wp, -2.342_wp, 1.28_wp, 1.16E-6_wp, & ! 2 |
---|
| 480 | 0.83_wp, -0.588_wp, 1.25_wp, 0.26E-6_wp, & ! 3 |
---|
| 481 | 3.67_wp, -1.977_wp, 1.10_wp, 2.87E-6_wp, & ! 4 |
---|
| 482 | 2.65_wp, 2.500_wp, 1.10_wp, 1.74E-6_wp, & ! 5 |
---|
[1551] | 483 | 1.30_wp, 0.400_wp, 1.20_wp, 0.93E-6_wp, & ! 6 |
---|
| 484 | 0.00_wp, 0.00_wp, 0.00_wp, 0.57E-6_wp & ! 7 |
---|
| 485 | /), (/ 4, 7 /) ) |
---|
[1496] | 486 | |
---|
| 487 | ! |
---|
| 488 | !-- Soil parameters II m_sat, m_fc, m_wilt, m_res |
---|
[1585] | 489 | REAL(wp), DIMENSION(0:3,1:7), PARAMETER :: m_soil_pars = RESHAPE( (/ & |
---|
[1496] | 490 | 0.403_wp, 0.244_wp, 0.059_wp, 0.025_wp, & ! 1 |
---|
| 491 | 0.439_wp, 0.347_wp, 0.151_wp, 0.010_wp, & ! 2 |
---|
| 492 | 0.430_wp, 0.383_wp, 0.133_wp, 0.010_wp, & ! 3 |
---|
| 493 | 0.520_wp, 0.448_wp, 0.279_wp, 0.010_wp, & ! 4 |
---|
| 494 | 0.614_wp, 0.541_wp, 0.335_wp, 0.010_wp, & ! 5 |
---|
[1551] | 495 | 0.766_wp, 0.663_wp, 0.267_wp, 0.010_wp, & ! 6 |
---|
| 496 | 0.472_wp, 0.323_wp, 0.171_wp, 0.000_wp & ! 7 |
---|
| 497 | /), (/ 4, 7 /) ) |
---|
[1496] | 498 | |
---|
| 499 | |
---|
| 500 | SAVE |
---|
| 501 | |
---|
| 502 | |
---|
| 503 | PRIVATE |
---|
| 504 | |
---|
| 505 | |
---|
[1551] | 506 | ! |
---|
| 507 | !-- Public parameters, constants and initial values |
---|
| 508 | PUBLIC alpha_vangenuchten, c_surface, canopy_resistance_coefficient, & |
---|
| 509 | conserve_water_content, dewfall, field_capacity, & |
---|
| 510 | f_shortwave_incoming, hydraulic_conductivity, init_lsm, & |
---|
| 511 | init_lsm_arrays, lambda_surface_stable, lambda_surface_unstable, & |
---|
| 512 | land_surface, leaf_area_index, lsm_energy_balance, lsm_soil_model, & |
---|
| 513 | lsm_swap_timelevel, l_vangenuchten, min_canopy_resistance, & |
---|
| 514 | min_soil_resistance, n_vangenuchten, residual_moisture, rho_cp, & |
---|
[1691] | 515 | rho_lv, root_fraction, saturation_moisture, skip_time_do_lsm, & |
---|
| 516 | soil_moisture, soil_temperature, soil_type, soil_type_name, & |
---|
| 517 | vegetation_coverage, veg_type, veg_type_name, wilting_point, z0_eb, & |
---|
| 518 | z0h_eb |
---|
[1496] | 519 | |
---|
[1551] | 520 | ! |
---|
| 521 | !-- Public grid and NetCDF variables |
---|
| 522 | PUBLIC dots_soil, id_dim_zs_xy, id_dim_zs_xz, id_dim_zs_yz, & |
---|
| 523 | id_dim_zs_3d, id_dim_zs_mask, id_var_zs_xy, id_var_zs_xz, & |
---|
| 524 | id_var_zs_yz, id_var_zs_3d, id_var_zs_mask, nzb_soil, nzs, nzt_soil,& |
---|
| 525 | zs |
---|
[1496] | 526 | |
---|
[1551] | 527 | ! |
---|
| 528 | !-- Public 2D output variables |
---|
| 529 | PUBLIC c_liq, c_liq_av, c_soil_av, c_veg, c_veg_av, ghf_eb, ghf_eb_av, & |
---|
| 530 | lai, lai_av, qsws_eb, qsws_eb_av, qsws_liq_eb, qsws_liq_eb_av, & |
---|
| 531 | qsws_soil_eb, qsws_soil_eb_av, qsws_veg_eb, qsws_veg_eb_av, & |
---|
[1555] | 532 | r_a, r_a_av, r_s, r_s_av, shf_eb, shf_eb_av |
---|
[1551] | 533 | |
---|
| 534 | ! |
---|
| 535 | !-- Public prognostic variables |
---|
| 536 | PUBLIC m_liq_eb, m_liq_eb_av, m_soil, m_soil_av, t_soil, t_soil_av |
---|
| 537 | |
---|
[1496] | 538 | INTERFACE init_lsm |
---|
| 539 | MODULE PROCEDURE init_lsm |
---|
| 540 | END INTERFACE init_lsm |
---|
| 541 | |
---|
| 542 | INTERFACE lsm_energy_balance |
---|
| 543 | MODULE PROCEDURE lsm_energy_balance |
---|
| 544 | END INTERFACE lsm_energy_balance |
---|
| 545 | |
---|
| 546 | INTERFACE lsm_soil_model |
---|
| 547 | MODULE PROCEDURE lsm_soil_model |
---|
| 548 | END INTERFACE lsm_soil_model |
---|
| 549 | |
---|
[1551] | 550 | INTERFACE lsm_swap_timelevel |
---|
| 551 | MODULE PROCEDURE lsm_swap_timelevel |
---|
| 552 | END INTERFACE lsm_swap_timelevel |
---|
[1496] | 553 | |
---|
| 554 | CONTAINS |
---|
| 555 | |
---|
| 556 | |
---|
| 557 | !------------------------------------------------------------------------------! |
---|
| 558 | ! Description: |
---|
| 559 | ! ------------ |
---|
[1682] | 560 | !> Allocate land surface model arrays and define pointers |
---|
[1496] | 561 | !------------------------------------------------------------------------------! |
---|
[1551] | 562 | SUBROUTINE init_lsm_arrays |
---|
[1496] | 563 | |
---|
| 564 | |
---|
| 565 | IMPLICIT NONE |
---|
| 566 | |
---|
| 567 | ! |
---|
[1551] | 568 | !-- Allocate surface and soil temperature / humidity |
---|
[1496] | 569 | #if defined( __nopointer ) |
---|
[1551] | 570 | ALLOCATE ( m_liq_eb(nysg:nyng,nxlg:nxrg) ) |
---|
| 571 | ALLOCATE ( m_liq_eb_p(nysg:nyng,nxlg:nxrg) ) |
---|
| 572 | ALLOCATE ( m_soil(nzb_soil:nzt_soil,nysg:nyng,nxlg:nxrg) ) |
---|
| 573 | ALLOCATE ( m_soil_p(nzb_soil:nzt_soil,nysg:nyng,nxlg:nxrg) ) |
---|
| 574 | ALLOCATE ( t_surface(nysg:nyng,nxlg:nxrg) ) |
---|
| 575 | ALLOCATE ( t_surface_p(nysg:nyng,nxlg:nxrg) ) |
---|
| 576 | ALLOCATE ( t_soil(nzb_soil:nzt_soil+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 577 | ALLOCATE ( t_soil_p(nzb_soil:nzt_soil+1,nysg:nyng,nxlg:nxrg) ) |
---|
[1496] | 578 | #else |
---|
[1551] | 579 | ALLOCATE ( m_liq_eb_1(nysg:nyng,nxlg:nxrg) ) |
---|
| 580 | ALLOCATE ( m_liq_eb_2(nysg:nyng,nxlg:nxrg) ) |
---|
| 581 | ALLOCATE ( m_soil_1(nzb_soil:nzt_soil,nysg:nyng,nxlg:nxrg) ) |
---|
| 582 | ALLOCATE ( m_soil_2(nzb_soil:nzt_soil,nysg:nyng,nxlg:nxrg) ) |
---|
| 583 | ALLOCATE ( t_surface_1(nysg:nyng,nxlg:nxrg) ) |
---|
| 584 | ALLOCATE ( t_surface_2(nysg:nyng,nxlg:nxrg) ) |
---|
| 585 | ALLOCATE ( t_soil_1(nzb_soil:nzt_soil+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 586 | ALLOCATE ( t_soil_2(nzb_soil:nzt_soil+1,nysg:nyng,nxlg:nxrg) ) |
---|
[1496] | 587 | #endif |
---|
| 588 | |
---|
| 589 | ! |
---|
[1551] | 590 | !-- Allocate intermediate timestep arrays |
---|
| 591 | ALLOCATE ( tm_liq_eb_m(nysg:nyng,nxlg:nxrg) ) |
---|
| 592 | ALLOCATE ( tm_soil_m(nzb_soil:nzt_soil,nysg:nyng,nxlg:nxrg) ) |
---|
| 593 | ALLOCATE ( tt_surface_m(nysg:nyng,nxlg:nxrg) ) |
---|
| 594 | ALLOCATE ( tt_soil_m(nzb_soil:nzt_soil,nysg:nyng,nxlg:nxrg) ) |
---|
[1496] | 595 | |
---|
| 596 | ! |
---|
| 597 | !-- Allocate 2D vegetation model arrays |
---|
[1551] | 598 | ALLOCATE ( alpha_vg(nysg:nyng,nxlg:nxrg) ) |
---|
[1496] | 599 | ALLOCATE ( c_liq(nysg:nyng,nxlg:nxrg) ) |
---|
| 600 | ALLOCATE ( c_veg(nysg:nyng,nxlg:nxrg) ) |
---|
[1551] | 601 | ALLOCATE ( f_sw_in(nysg:nyng,nxlg:nxrg) ) |
---|
| 602 | ALLOCATE ( ghf_eb(nysg:nyng,nxlg:nxrg) ) |
---|
[1496] | 603 | ALLOCATE ( gamma_w_sat(nysg:nyng,nxlg:nxrg) ) |
---|
[1551] | 604 | ALLOCATE ( g_d(nysg:nyng,nxlg:nxrg) ) |
---|
| 605 | ALLOCATE ( lai(nysg:nyng,nxlg:nxrg) ) |
---|
| 606 | ALLOCATE ( l_vg(nysg:nyng,nxlg:nxrg) ) |
---|
| 607 | ALLOCATE ( lambda_surface_u(nysg:nyng,nxlg:nxrg) ) |
---|
| 608 | ALLOCATE ( lambda_surface_s(nysg:nyng,nxlg:nxrg) ) |
---|
[1496] | 609 | ALLOCATE ( m_fc(nysg:nyng,nxlg:nxrg) ) |
---|
| 610 | ALLOCATE ( m_res(nysg:nyng,nxlg:nxrg) ) |
---|
| 611 | ALLOCATE ( m_sat(nysg:nyng,nxlg:nxrg) ) |
---|
| 612 | ALLOCATE ( m_wilt(nysg:nyng,nxlg:nxrg) ) |
---|
[1551] | 613 | ALLOCATE ( n_vg(nysg:nyng,nxlg:nxrg) ) |
---|
| 614 | ALLOCATE ( qsws_eb(nysg:nyng,nxlg:nxrg) ) |
---|
| 615 | ALLOCATE ( qsws_soil_eb(nysg:nyng,nxlg:nxrg) ) |
---|
| 616 | ALLOCATE ( qsws_liq_eb(nysg:nyng,nxlg:nxrg) ) |
---|
| 617 | ALLOCATE ( qsws_veg_eb(nysg:nyng,nxlg:nxrg) ) |
---|
[1585] | 618 | ALLOCATE ( rad_net_l(nysg:nyng,nxlg:nxrg) ) |
---|
[1496] | 619 | ALLOCATE ( r_a(nysg:nyng,nxlg:nxrg) ) |
---|
| 620 | ALLOCATE ( r_canopy(nysg:nyng,nxlg:nxrg) ) |
---|
| 621 | ALLOCATE ( r_soil(nysg:nyng,nxlg:nxrg) ) |
---|
| 622 | ALLOCATE ( r_soil_min(nysg:nyng,nxlg:nxrg) ) |
---|
| 623 | ALLOCATE ( r_s(nysg:nyng,nxlg:nxrg) ) |
---|
[1551] | 624 | ALLOCATE ( r_canopy_min(nysg:nyng,nxlg:nxrg) ) |
---|
| 625 | ALLOCATE ( shf_eb(nysg:nyng,nxlg:nxrg) ) |
---|
[1496] | 626 | |
---|
[1551] | 627 | #if ! defined( __nopointer ) |
---|
[1496] | 628 | ! |
---|
[1585] | 629 | !-- Initial assignment of the pointers |
---|
[1551] | 630 | t_soil => t_soil_1; t_soil_p => t_soil_2 |
---|
| 631 | t_surface => t_surface_1; t_surface_p => t_surface_2 |
---|
| 632 | m_soil => m_soil_1; m_soil_p => m_soil_2 |
---|
| 633 | m_liq_eb => m_liq_eb_1; m_liq_eb_p => m_liq_eb_2 |
---|
| 634 | #endif |
---|
[1496] | 635 | |
---|
| 636 | |
---|
[1551] | 637 | END SUBROUTINE init_lsm_arrays |
---|
[1500] | 638 | |
---|
[1551] | 639 | !------------------------------------------------------------------------------! |
---|
| 640 | ! Description: |
---|
| 641 | ! ------------ |
---|
[1682] | 642 | !> Initialization of the land surface model |
---|
[1551] | 643 | !------------------------------------------------------------------------------! |
---|
| 644 | SUBROUTINE init_lsm |
---|
| 645 | |
---|
| 646 | |
---|
| 647 | IMPLICIT NONE |
---|
| 648 | |
---|
[1682] | 649 | INTEGER(iwp) :: i !< running index |
---|
| 650 | INTEGER(iwp) :: j !< running index |
---|
| 651 | INTEGER(iwp) :: k !< running index |
---|
[1551] | 652 | |
---|
[1709] | 653 | REAL(wp) :: pt1 !< potential temperature at first grid level |
---|
[1551] | 654 | |
---|
[1691] | 655 | |
---|
[1551] | 656 | ! |
---|
| 657 | !-- Calculate Exner function |
---|
[1691] | 658 | exn = ( surface_pressure / 1000.0_wp )**0.286_wp |
---|
[1551] | 659 | |
---|
| 660 | |
---|
| 661 | ! |
---|
| 662 | !-- If no cloud physics is used, rho_surface has not been calculated before |
---|
| 663 | IF ( .NOT. cloud_physics ) THEN |
---|
| 664 | rho_surface = surface_pressure * 100.0_wp / ( r_d * pt_surface * exn ) |
---|
| 665 | ENDIF |
---|
| 666 | |
---|
| 667 | ! |
---|
| 668 | !-- Calculate frequently used parameters |
---|
| 669 | rho_cp = cp * rho_surface |
---|
| 670 | rd_d_rv = r_d / r_v |
---|
| 671 | rho_lv = rho_surface * l_v |
---|
| 672 | drho_l_lv = 1.0_wp / (rho_l * l_v) |
---|
| 673 | |
---|
| 674 | ! |
---|
| 675 | !-- Set inital values for prognostic quantities |
---|
| 676 | tt_surface_m = 0.0_wp |
---|
| 677 | tt_soil_m = 0.0_wp |
---|
[1757] | 678 | tm_soil_m = 0.0_wp |
---|
[1551] | 679 | tm_liq_eb_m = 0.0_wp |
---|
| 680 | c_liq = 0.0_wp |
---|
| 681 | |
---|
| 682 | ghf_eb = 0.0_wp |
---|
| 683 | shf_eb = rho_cp * shf |
---|
| 684 | |
---|
[1500] | 685 | IF ( humidity ) THEN |
---|
[1551] | 686 | qsws_eb = rho_l * l_v * qsws |
---|
[1500] | 687 | ELSE |
---|
[1551] | 688 | qsws_eb = 0.0_wp |
---|
[1500] | 689 | ENDIF |
---|
| 690 | |
---|
[1551] | 691 | qsws_liq_eb = 0.0_wp |
---|
[1757] | 692 | qsws_soil_eb = 0.0_wp |
---|
[1551] | 693 | qsws_veg_eb = 0.0_wp |
---|
[1496] | 694 | |
---|
| 695 | r_a = 50.0_wp |
---|
[1551] | 696 | r_s = 50.0_wp |
---|
[1496] | 697 | r_canopy = 0.0_wp |
---|
| 698 | r_soil = 0.0_wp |
---|
| 699 | |
---|
| 700 | ! |
---|
| 701 | !-- Allocate 3D soil model arrays |
---|
[1551] | 702 | ALLOCATE ( root_fr(nzb_soil:nzt_soil,nysg:nyng,nxlg:nxrg) ) |
---|
| 703 | ALLOCATE ( lambda_h(nzb_soil:nzt_soil,nysg:nyng,nxlg:nxrg) ) |
---|
| 704 | ALLOCATE ( rho_c_total(nzb_soil:nzt_soil,nysg:nyng,nxlg:nxrg) ) |
---|
[1496] | 705 | |
---|
| 706 | lambda_h = 0.0_wp |
---|
| 707 | ! |
---|
| 708 | !-- If required, allocate humidity-related variables for the soil model |
---|
| 709 | IF ( humidity ) THEN |
---|
[1551] | 710 | ALLOCATE ( lambda_w(nzb_soil:nzt_soil,nysg:nyng,nxlg:nxrg) ) |
---|
| 711 | ALLOCATE ( gamma_w(nzb_soil:nzt_soil,nysg:nyng,nxlg:nxrg) ) |
---|
[1496] | 712 | |
---|
| 713 | lambda_w = 0.0_wp |
---|
| 714 | ENDIF |
---|
| 715 | |
---|
| 716 | ! |
---|
| 717 | !-- Calculate grid spacings. Temperature and moisture are defined at |
---|
[1691] | 718 | !-- the edges of the soil layers (_stag), whereas gradients/fluxes are defined |
---|
| 719 | !-- at the centers |
---|
| 720 | dz_soil(nzb_soil) = zs(nzb_soil) |
---|
[1496] | 721 | |
---|
[1691] | 722 | DO k = nzb_soil+1, nzt_soil |
---|
| 723 | dz_soil(k) = zs(k) - zs(k-1) |
---|
[1496] | 724 | ENDDO |
---|
[1691] | 725 | dz_soil(nzt_soil+1) = dz_soil(nzt_soil) |
---|
[1496] | 726 | |
---|
[1691] | 727 | DO k = nzb_soil, nzt_soil-1 |
---|
| 728 | dz_soil_stag(k) = 0.5_wp * (dz_soil(k+1) + dz_soil(k)) |
---|
[1496] | 729 | ENDDO |
---|
[1691] | 730 | dz_soil_stag(nzt_soil) = dz_soil(nzt_soil) |
---|
[1496] | 731 | |
---|
[1551] | 732 | ddz_soil = 1.0_wp / dz_soil |
---|
| 733 | ddz_soil_stag = 1.0_wp / dz_soil_stag |
---|
| 734 | |
---|
[1496] | 735 | ! |
---|
[1551] | 736 | !-- Initialize standard soil types. It is possible to overwrite each |
---|
| 737 | !-- parameter by setting the respecticy NAMELIST variable to a |
---|
| 738 | !-- value /= 9999999.9. |
---|
| 739 | IF ( soil_type /= 0 ) THEN |
---|
| 740 | |
---|
| 741 | IF ( alpha_vangenuchten == 9999999.9_wp ) THEN |
---|
| 742 | alpha_vangenuchten = soil_pars(0,soil_type) |
---|
| 743 | ENDIF |
---|
| 744 | |
---|
| 745 | IF ( l_vangenuchten == 9999999.9_wp ) THEN |
---|
| 746 | l_vangenuchten = soil_pars(1,soil_type) |
---|
| 747 | ENDIF |
---|
| 748 | |
---|
| 749 | IF ( n_vangenuchten == 9999999.9_wp ) THEN |
---|
| 750 | n_vangenuchten = soil_pars(2,soil_type) |
---|
| 751 | ENDIF |
---|
| 752 | |
---|
| 753 | IF ( hydraulic_conductivity == 9999999.9_wp ) THEN |
---|
| 754 | hydraulic_conductivity = soil_pars(3,soil_type) |
---|
| 755 | ENDIF |
---|
| 756 | |
---|
| 757 | IF ( saturation_moisture == 9999999.9_wp ) THEN |
---|
| 758 | saturation_moisture = m_soil_pars(0,soil_type) |
---|
| 759 | ENDIF |
---|
| 760 | |
---|
| 761 | IF ( field_capacity == 9999999.9_wp ) THEN |
---|
| 762 | field_capacity = m_soil_pars(1,soil_type) |
---|
| 763 | ENDIF |
---|
| 764 | |
---|
| 765 | IF ( wilting_point == 9999999.9_wp ) THEN |
---|
| 766 | wilting_point = m_soil_pars(2,soil_type) |
---|
| 767 | ENDIF |
---|
| 768 | |
---|
| 769 | IF ( residual_moisture == 9999999.9_wp ) THEN |
---|
| 770 | residual_moisture = m_soil_pars(3,soil_type) |
---|
| 771 | ENDIF |
---|
| 772 | |
---|
[1496] | 773 | ENDIF |
---|
| 774 | |
---|
[1551] | 775 | alpha_vg = alpha_vangenuchten |
---|
| 776 | l_vg = l_vangenuchten |
---|
| 777 | n_vg = n_vangenuchten |
---|
| 778 | gamma_w_sat = hydraulic_conductivity |
---|
| 779 | m_sat = saturation_moisture |
---|
| 780 | m_fc = field_capacity |
---|
| 781 | m_wilt = wilting_point |
---|
| 782 | m_res = residual_moisture |
---|
| 783 | r_soil_min = min_soil_resistance |
---|
| 784 | |
---|
[1496] | 785 | ! |
---|
[1551] | 786 | !-- Initial run actions |
---|
| 787 | IF ( TRIM( initializing_actions ) /= 'read_restart_data' ) THEN |
---|
[1496] | 788 | |
---|
[1551] | 789 | t_soil = 0.0_wp |
---|
| 790 | m_liq_eb = 0.0_wp |
---|
| 791 | m_soil = 0.0_wp |
---|
[1496] | 792 | |
---|
[1551] | 793 | ! |
---|
| 794 | !-- Map user settings of T and q for each soil layer |
---|
| 795 | !-- (make sure that the soil moisture does not drop below the permanent |
---|
| 796 | !-- wilting point) -> problems with devision by zero) |
---|
[1691] | 797 | DO k = nzb_soil, nzt_soil |
---|
[1551] | 798 | t_soil(k,:,:) = soil_temperature(k) |
---|
| 799 | m_soil(k,:,:) = MAX(soil_moisture(k),m_wilt(:,:)) |
---|
| 800 | soil_moisture(k) = MAX(soil_moisture(k),wilting_point) |
---|
| 801 | ENDDO |
---|
| 802 | t_soil(nzt_soil+1,:,:) = soil_temperature(nzt_soil+1) |
---|
[1496] | 803 | |
---|
[1551] | 804 | ! |
---|
| 805 | !-- Calculate surface temperature |
---|
[1691] | 806 | t_surface = pt_surface * exn |
---|
[1496] | 807 | |
---|
| 808 | ! |
---|
[1551] | 809 | !-- Set artifical values for ts and us so that r_a has its initial value for |
---|
| 810 | !-- the first time step |
---|
| 811 | DO i = nxlg, nxrg |
---|
| 812 | DO j = nysg, nyng |
---|
| 813 | k = nzb_s_inner(j,i) |
---|
| 814 | |
---|
[1691] | 815 | IF ( cloud_physics ) THEN |
---|
[1709] | 816 | pt1 = pt(k+1,j,i) + l_d_cp * pt_d_t(k+1) * ql(k+1,j,i) |
---|
[1691] | 817 | ELSE |
---|
[1709] | 818 | pt1 = pt(k+1,j,i) |
---|
[1691] | 819 | ENDIF |
---|
| 820 | |
---|
[1551] | 821 | ! |
---|
| 822 | !-- Assure that r_a cannot be zero at model start |
---|
[1709] | 823 | IF ( pt1 == pt(k,j,i) ) pt1 = pt1 + 1.0E-10_wp |
---|
[1551] | 824 | |
---|
[1691] | 825 | us(j,i) = 0.1_wp |
---|
[1709] | 826 | ts(j,i) = (pt1 - pt(k,j,i)) / r_a(j,i) |
---|
[1551] | 827 | shf(j,i) = - us(j,i) * ts(j,i) |
---|
| 828 | ENDDO |
---|
| 829 | ENDDO |
---|
| 830 | |
---|
| 831 | ! |
---|
| 832 | !-- Actions for restart runs |
---|
| 833 | ELSE |
---|
| 834 | |
---|
| 835 | DO i = nxlg, nxrg |
---|
| 836 | DO j = nysg, nyng |
---|
| 837 | k = nzb_s_inner(j,i) |
---|
| 838 | t_surface(j,i) = pt(k,j,i) * exn |
---|
| 839 | ENDDO |
---|
| 840 | ENDDO |
---|
| 841 | |
---|
| 842 | ENDIF |
---|
| 843 | |
---|
[1691] | 844 | DO k = nzb_soil, nzt_soil |
---|
[1551] | 845 | root_fr(k,:,:) = root_fraction(k) |
---|
| 846 | ENDDO |
---|
[1496] | 847 | |
---|
[1551] | 848 | IF ( veg_type /= 0 ) THEN |
---|
| 849 | IF ( min_canopy_resistance == 9999999.9_wp ) THEN |
---|
| 850 | min_canopy_resistance = veg_pars(0,veg_type) |
---|
| 851 | ENDIF |
---|
| 852 | IF ( leaf_area_index == 9999999.9_wp ) THEN |
---|
| 853 | leaf_area_index = veg_pars(1,veg_type) |
---|
| 854 | ENDIF |
---|
| 855 | IF ( vegetation_coverage == 9999999.9_wp ) THEN |
---|
| 856 | vegetation_coverage = veg_pars(2,veg_type) |
---|
| 857 | ENDIF |
---|
| 858 | IF ( canopy_resistance_coefficient == 9999999.9_wp ) THEN |
---|
| 859 | canopy_resistance_coefficient= veg_pars(3,veg_type) |
---|
| 860 | ENDIF |
---|
| 861 | IF ( lambda_surface_stable == 9999999.9_wp ) THEN |
---|
| 862 | lambda_surface_stable = surface_pars(0,veg_type) |
---|
| 863 | ENDIF |
---|
| 864 | IF ( lambda_surface_unstable == 9999999.9_wp ) THEN |
---|
| 865 | lambda_surface_unstable = surface_pars(1,veg_type) |
---|
| 866 | ENDIF |
---|
| 867 | IF ( f_shortwave_incoming == 9999999.9_wp ) THEN |
---|
| 868 | f_shortwave_incoming = surface_pars(2,veg_type) |
---|
| 869 | ENDIF |
---|
| 870 | IF ( z0_eb == 9999999.9_wp ) THEN |
---|
| 871 | roughness_length = roughness_par(0,veg_type) |
---|
| 872 | z0_eb = roughness_par(0,veg_type) |
---|
| 873 | ENDIF |
---|
| 874 | IF ( z0h_eb == 9999999.9_wp ) THEN |
---|
| 875 | z0h_eb = roughness_par(1,veg_type) |
---|
| 876 | ENDIF |
---|
| 877 | z0h_factor = z0h_eb / z0_eb |
---|
[1496] | 878 | |
---|
[1551] | 879 | IF ( ANY( root_fraction == 9999999.9_wp ) ) THEN |
---|
[1691] | 880 | DO k = nzb_soil, nzt_soil |
---|
[1551] | 881 | root_fr(k,:,:) = root_distribution(k,veg_type) |
---|
| 882 | root_fraction(k) = root_distribution(k,veg_type) |
---|
| 883 | ENDDO |
---|
| 884 | ENDIF |
---|
[1496] | 885 | |
---|
[1553] | 886 | ELSE |
---|
| 887 | |
---|
| 888 | IF ( z0_eb == 9999999.9_wp ) THEN |
---|
| 889 | z0_eb = roughness_length |
---|
| 890 | ENDIF |
---|
| 891 | IF ( z0h_eb == 9999999.9_wp ) THEN |
---|
| 892 | z0h_eb = z0_eb * z0h_factor |
---|
| 893 | ENDIF |
---|
| 894 | |
---|
[1496] | 895 | ENDIF |
---|
| 896 | |
---|
| 897 | ! |
---|
[1551] | 898 | !-- Initialize vegetation |
---|
| 899 | r_canopy_min = min_canopy_resistance |
---|
| 900 | lai = leaf_area_index |
---|
| 901 | c_veg = vegetation_coverage |
---|
| 902 | g_d = canopy_resistance_coefficient |
---|
| 903 | lambda_surface_s = lambda_surface_stable |
---|
| 904 | lambda_surface_u = lambda_surface_unstable |
---|
| 905 | f_sw_in = f_shortwave_incoming |
---|
| 906 | z0 = z0_eb |
---|
| 907 | z0h = z0h_eb |
---|
| 908 | |
---|
| 909 | ! |
---|
[1496] | 910 | !-- Possibly do user-defined actions (e.g. define heterogeneous land surface) |
---|
| 911 | CALL user_init_land_surface |
---|
| 912 | |
---|
[1500] | 913 | |
---|
[1551] | 914 | t_soil_p = t_soil |
---|
| 915 | m_soil_p = m_soil |
---|
| 916 | m_liq_eb_p = m_liq_eb |
---|
[1709] | 917 | t_surface_p = t_surface |
---|
[1496] | 918 | |
---|
[1709] | 919 | |
---|
| 920 | |
---|
[1551] | 921 | !-- Store initial profiles of t_soil and m_soil (assuming they are |
---|
| 922 | !-- horizontally homogeneous on this PE) |
---|
| 923 | hom(nzb_soil:nzt_soil,1,90,:) = SPREAD( t_soil(nzb_soil:nzt_soil, & |
---|
| 924 | nysg,nxlg), 2, & |
---|
| 925 | statistic_regions+1 ) |
---|
| 926 | hom(nzb_soil:nzt_soil,1,92,:) = SPREAD( m_soil(nzb_soil:nzt_soil, & |
---|
| 927 | nysg,nxlg), 2, & |
---|
| 928 | statistic_regions+1 ) |
---|
| 929 | |
---|
[1496] | 930 | ! |
---|
[1551] | 931 | !-- Add timeseries for land surface model |
---|
[1691] | 932 | dots_soil = dots_num + 1 |
---|
| 933 | dots_num = dots_num + 8 |
---|
[1585] | 934 | |
---|
[1691] | 935 | dots_label(dots_soil) = "ghf_eb" |
---|
| 936 | dots_label(dots_soil+1) = "shf_eb" |
---|
| 937 | dots_label(dots_soil+2) = "qsws_eb" |
---|
| 938 | dots_label(dots_soil+3) = "qsws_liq_eb" |
---|
| 939 | dots_label(dots_soil+4) = "qsws_soil_eb" |
---|
| 940 | dots_label(dots_soil+5) = "qsws_veg_eb" |
---|
| 941 | dots_label(dots_soil+6) = "r_a" |
---|
| 942 | dots_label(dots_soil+7) = "r_s" |
---|
[1551] | 943 | |
---|
[1691] | 944 | dots_unit(dots_soil:dots_soil+5) = "W/m2" |
---|
| 945 | dots_unit(dots_soil+6:dots_soil+7) = "s/m" |
---|
[1555] | 946 | |
---|
[1496] | 947 | |
---|
| 948 | END SUBROUTINE init_lsm |
---|
| 949 | |
---|
| 950 | |
---|
| 951 | |
---|
| 952 | !------------------------------------------------------------------------------! |
---|
| 953 | ! Description: |
---|
| 954 | ! ------------ |
---|
[1682] | 955 | !> Solver for the energy balance at the surface. |
---|
[1496] | 956 | !------------------------------------------------------------------------------! |
---|
| 957 | SUBROUTINE lsm_energy_balance |
---|
| 958 | |
---|
| 959 | |
---|
| 960 | IMPLICIT NONE |
---|
| 961 | |
---|
[1682] | 962 | INTEGER(iwp) :: i !< running index |
---|
| 963 | INTEGER(iwp) :: j !< running index |
---|
| 964 | INTEGER(iwp) :: k, ks !< running index |
---|
[1496] | 965 | |
---|
[1682] | 966 | REAL(wp) :: f1, & !< resistance correction term 1 |
---|
| 967 | f2, & !< resistance correction term 2 |
---|
| 968 | f3, & !< resistance correction term 3 |
---|
| 969 | m_min, & !< minimum soil moisture |
---|
| 970 | e, & !< water vapour pressure |
---|
| 971 | e_s, & !< water vapour saturation pressure |
---|
| 972 | e_s_dt, & !< derivate of e_s with respect to T |
---|
| 973 | tend, & !< tendency |
---|
| 974 | dq_s_dt, & !< derivate of q_s with respect to T |
---|
| 975 | coef_1, & !< coef. for prognostic equation |
---|
| 976 | coef_2, & !< coef. for prognostic equation |
---|
| 977 | f_qsws, & !< factor for qsws_eb |
---|
| 978 | f_qsws_veg, & !< factor for qsws_veg_eb |
---|
| 979 | f_qsws_soil, & !< factor for qsws_soil_eb |
---|
| 980 | f_qsws_liq, & !< factor for qsws_liq_eb |
---|
| 981 | f_shf, & !< factor for shf_eb |
---|
| 982 | lambda_surface, & !< Current value of lambda_surface |
---|
[1691] | 983 | m_liq_eb_max, & !< maxmimum value of the liq. water reservoir |
---|
[1709] | 984 | pt1, & !< potential temperature at first grid level |
---|
| 985 | qv1 !< specific humidity at first grid level |
---|
[1496] | 986 | |
---|
| 987 | ! |
---|
| 988 | !-- Calculate the exner function for the current time step |
---|
| 989 | exn = ( surface_pressure / 1000.0_wp )**0.286_wp |
---|
| 990 | |
---|
[1691] | 991 | DO i = nxlg, nxrg |
---|
| 992 | DO j = nysg, nyng |
---|
[1500] | 993 | k = nzb_s_inner(j,i) |
---|
[1496] | 994 | |
---|
| 995 | ! |
---|
[1551] | 996 | !-- Set lambda_surface according to stratification |
---|
[1695] | 997 | IF ( ol(j,i) >= 0.0_wp ) THEN |
---|
[1551] | 998 | lambda_surface = lambda_surface_s(j,i) |
---|
[1496] | 999 | ELSE |
---|
[1551] | 1000 | lambda_surface = lambda_surface_u(j,i) |
---|
[1496] | 1001 | ENDIF |
---|
[1500] | 1002 | |
---|
[1496] | 1003 | ! |
---|
[1500] | 1004 | !-- First step: calculate aerodyamic resistance. As pt, us, ts |
---|
| 1005 | !-- are not available for the prognostic time step, data from the last |
---|
| 1006 | !-- time step is used here. Note that this formulation is the |
---|
| 1007 | !-- equivalent to the ECMWF formulation using drag coefficients |
---|
[1691] | 1008 | IF ( cloud_physics ) THEN |
---|
[1709] | 1009 | pt1 = pt(k+1,j,i) + l_d_cp * pt_d_t(k+1) * ql(k+1,j,i) |
---|
| 1010 | qv1 = q(k+1,j,i) - ql(k+1,j,i) |
---|
[1691] | 1011 | ELSE |
---|
[1709] | 1012 | pt1 = pt(k+1,j,i) |
---|
| 1013 | qv1 = q(k+1,j,i) |
---|
[1691] | 1014 | ENDIF |
---|
[1496] | 1015 | |
---|
[1709] | 1016 | r_a(j,i) = (pt1 - pt(k,j,i)) / (ts(j,i) * us(j,i) + 1.0E-20_wp) |
---|
[1691] | 1017 | |
---|
[1496] | 1018 | ! |
---|
[1709] | 1019 | !-- Make sure that the resistance does not drop to zero |
---|
| 1020 | IF ( ABS(r_a(j,i)) < 1.0E-10_wp ) r_a(j,i) = 1.0E-10_wp |
---|
| 1021 | |
---|
| 1022 | ! |
---|
[1496] | 1023 | !-- Second step: calculate canopy resistance r_canopy |
---|
| 1024 | !-- f1-f3 here are defined as 1/f1-f3 as in ECMWF documentation |
---|
| 1025 | |
---|
[1551] | 1026 | !-- f1: correction for incoming shortwave radiation (stomata close at |
---|
| 1027 | !-- night) |
---|
[1585] | 1028 | IF ( radiation_scheme /= 'constant' ) THEN |
---|
[1709] | 1029 | f1 = MIN( 1.0_wp, ( 0.004_wp * rad_sw_in(k,j,i) + 0.05_wp ) / & |
---|
| 1030 | (0.81_wp * (0.004_wp * rad_sw_in(k,j,i) & |
---|
[1585] | 1031 | + 1.0_wp)) ) |
---|
[1551] | 1032 | ELSE |
---|
| 1033 | f1 = 1.0_wp |
---|
| 1034 | ENDIF |
---|
[1496] | 1035 | |
---|
[1709] | 1036 | |
---|
[1496] | 1037 | ! |
---|
[1551] | 1038 | !-- f2: correction for soil moisture availability to plants (the |
---|
| 1039 | !-- integrated soil moisture must thus be considered here) |
---|
| 1040 | !-- f2 = 0 for very dry soils |
---|
[1496] | 1041 | m_total = 0.0_wp |
---|
[1691] | 1042 | DO ks = nzb_soil, nzt_soil |
---|
[1551] | 1043 | m_total = m_total + root_fr(ks,j,i) & |
---|
| 1044 | * MAX(m_soil(ks,j,i),m_wilt(j,i)) |
---|
[1496] | 1045 | ENDDO |
---|
| 1046 | |
---|
[1691] | 1047 | IF ( m_total > m_wilt(j,i) .AND. m_total < m_fc(j,i) ) THEN |
---|
[1496] | 1048 | f2 = ( m_total - m_wilt(j,i) ) / (m_fc(j,i) - m_wilt(j,i) ) |
---|
[1691] | 1049 | ELSEIF ( m_total >= m_fc(j,i) ) THEN |
---|
[1551] | 1050 | f2 = 1.0_wp |
---|
[1496] | 1051 | ELSE |
---|
| 1052 | f2 = 1.0E-20_wp |
---|
| 1053 | ENDIF |
---|
| 1054 | |
---|
| 1055 | ! |
---|
| 1056 | !-- Calculate water vapour pressure at saturation |
---|
[1551] | 1057 | e_s = 0.01_wp * 610.78_wp * EXP( 17.269_wp * ( t_surface(j,i) & |
---|
| 1058 | - 273.16_wp ) / ( t_surface(j,i) - 35.86_wp ) ) |
---|
[1496] | 1059 | |
---|
| 1060 | ! |
---|
| 1061 | !-- f3: correction for vapour pressure deficit |
---|
[1551] | 1062 | IF ( g_d(j,i) /= 0.0_wp ) THEN |
---|
[1496] | 1063 | ! |
---|
| 1064 | !-- Calculate vapour pressure |
---|
[1709] | 1065 | e = qv1 * surface_pressure / 0.622_wp |
---|
[1551] | 1066 | f3 = EXP ( -g_d(j,i) * (e_s - e) ) |
---|
[1496] | 1067 | ELSE |
---|
| 1068 | f3 = 1.0_wp |
---|
| 1069 | ENDIF |
---|
| 1070 | |
---|
| 1071 | ! |
---|
[1551] | 1072 | !-- Calculate canopy resistance. In case that c_veg is 0 (bare soils), |
---|
| 1073 | !-- this calculation is obsolete, as r_canopy is not used below. |
---|
[1496] | 1074 | !-- To do: check for very dry soil -> r_canopy goes to infinity |
---|
[1551] | 1075 | r_canopy(j,i) = r_canopy_min(j,i) / (lai(j,i) * f1 * f2 * f3 & |
---|
| 1076 | + 1.0E-20_wp) |
---|
[1496] | 1077 | |
---|
| 1078 | ! |
---|
[1551] | 1079 | !-- Third step: calculate bare soil resistance r_soil. The Clapp & |
---|
| 1080 | !-- Hornberger parametrization does not consider c_veg. |
---|
| 1081 | IF ( soil_type /= 7 ) THEN |
---|
| 1082 | m_min = c_veg(j,i) * m_wilt(j,i) + (1.0_wp - c_veg(j,i)) * & |
---|
| 1083 | m_res(j,i) |
---|
| 1084 | ELSE |
---|
| 1085 | m_min = m_wilt(j,i) |
---|
| 1086 | ENDIF |
---|
[1496] | 1087 | |
---|
[1551] | 1088 | f2 = ( m_soil(nzb_soil,j,i) - m_min ) / ( m_fc(j,i) - m_min ) |
---|
[1513] | 1089 | f2 = MAX(f2,1.0E-20_wp) |
---|
[1551] | 1090 | f2 = MIN(f2,1.0_wp) |
---|
[1496] | 1091 | |
---|
| 1092 | r_soil(j,i) = r_soil_min(j,i) / f2 |
---|
| 1093 | |
---|
| 1094 | ! |
---|
| 1095 | !-- Calculate fraction of liquid water reservoir |
---|
[1551] | 1096 | m_liq_eb_max = m_max_depth * lai(j,i) |
---|
| 1097 | c_liq(j,i) = MIN(1.0_wp, m_liq_eb(j,i) / (m_liq_eb_max+1.0E-20_wp)) |
---|
| 1098 | |
---|
[1496] | 1099 | |
---|
[1551] | 1100 | ! |
---|
| 1101 | !-- Calculate saturation specific humidity |
---|
[1496] | 1102 | q_s = 0.622_wp * e_s / surface_pressure |
---|
[1500] | 1103 | |
---|
| 1104 | ! |
---|
[1551] | 1105 | !-- In case of dewfall, set evapotranspiration to zero |
---|
| 1106 | !-- All super-saturated water is then removed from the air |
---|
[1709] | 1107 | IF ( humidity .AND. q_s <= qv1 ) THEN |
---|
[1551] | 1108 | r_canopy(j,i) = 0.0_wp |
---|
| 1109 | r_soil(j,i) = 0.0_wp |
---|
[1691] | 1110 | ENDIF |
---|
[1496] | 1111 | |
---|
| 1112 | ! |
---|
| 1113 | !-- Calculate coefficients for the total evapotranspiration |
---|
[1551] | 1114 | f_qsws_veg = rho_lv * c_veg(j,i) * (1.0_wp - c_liq(j,i))/ & |
---|
| 1115 | (r_a(j,i) + r_canopy(j,i)) |
---|
[1496] | 1116 | |
---|
[1551] | 1117 | f_qsws_soil = rho_lv * (1.0_wp - c_veg(j,i)) / (r_a(j,i) + & |
---|
| 1118 | r_soil(j,i)) |
---|
| 1119 | f_qsws_liq = rho_lv * c_veg(j,i) * c_liq(j,i) / r_a(j,i) |
---|
[1496] | 1120 | |
---|
[1551] | 1121 | |
---|
[1500] | 1122 | ! |
---|
| 1123 | !-- If soil moisture is below wilting point, plants do no longer |
---|
| 1124 | !-- transpirate. |
---|
[1691] | 1125 | ! IF ( m_soil(k,j,i) < m_wilt(j,i) ) THEN |
---|
[1551] | 1126 | ! f_qsws_veg = 0.0_wp |
---|
| 1127 | ! ENDIF |
---|
[1496] | 1128 | |
---|
| 1129 | ! |
---|
[1551] | 1130 | !-- If dewfall is deactivated, vegetation, soil and liquid water |
---|
| 1131 | !-- reservoir are not allowed to take up water from the super-saturated |
---|
| 1132 | !-- air. |
---|
[1709] | 1133 | IF ( humidity .AND. q_s <= qv1 .AND. .NOT. dewfall ) THEN |
---|
| 1134 | f_qsws_veg = 0.0_wp |
---|
| 1135 | f_qsws_soil = 0.0_wp |
---|
| 1136 | f_qsws_liq = 0.0_wp |
---|
[1551] | 1137 | ENDIF |
---|
| 1138 | |
---|
| 1139 | f_shf = rho_cp / r_a(j,i) |
---|
| 1140 | f_qsws = f_qsws_veg + f_qsws_soil + f_qsws_liq |
---|
| 1141 | |
---|
| 1142 | ! |
---|
[1496] | 1143 | !-- Calculate derivative of q_s for Taylor series expansion |
---|
[1571] | 1144 | e_s_dt = e_s * ( 17.269_wp / (t_surface(j,i) - 35.86_wp) - & |
---|
[1551] | 1145 | 17.269_wp*(t_surface(j,i) - 273.16_wp) & |
---|
| 1146 | / (t_surface(j,i) - 35.86_wp)**2 ) |
---|
[1496] | 1147 | |
---|
[1571] | 1148 | dq_s_dt = 0.622_wp * e_s_dt / surface_pressure |
---|
[1496] | 1149 | |
---|
| 1150 | ! |
---|
| 1151 | !-- Add LW up so that it can be removed in prognostic equation |
---|
[1691] | 1152 | rad_net_l(j,i) = rad_net(j,i) + rad_lw_out(nzb,j,i) |
---|
[1496] | 1153 | |
---|
[1500] | 1154 | IF ( humidity ) THEN |
---|
[1691] | 1155 | #if defined ( __rrtmg ) |
---|
[1496] | 1156 | ! |
---|
[1500] | 1157 | !-- Numerator of the prognostic equation |
---|
[1709] | 1158 | coef_1 = rad_net_l(j,i) + rad_lw_out_change_0(j,i) & |
---|
[1691] | 1159 | * t_surface(j,i) - rad_lw_out(nzb,j,i) & |
---|
[1709] | 1160 | + f_shf * pt1 + f_qsws * ( qv1 - q_s & |
---|
[1571] | 1161 | + dq_s_dt * t_surface(j,i) ) + lambda_surface & |
---|
[1551] | 1162 | * t_soil(nzb_soil,j,i) |
---|
[1496] | 1163 | |
---|
| 1164 | ! |
---|
[1500] | 1165 | !-- Denominator of the prognostic equation |
---|
[1709] | 1166 | coef_2 = rad_lw_out_change_0(j,i) + f_qsws * dq_s_dt & |
---|
[1691] | 1167 | + lambda_surface + f_shf / exn |
---|
| 1168 | #else |
---|
[1496] | 1169 | |
---|
[1691] | 1170 | ! |
---|
| 1171 | !-- Numerator of the prognostic equation |
---|
| 1172 | coef_1 = rad_net_l(j,i) + 3.0_wp * sigma_sb & |
---|
| 1173 | * t_surface(j,i) ** 4 & |
---|
[1709] | 1174 | + f_shf * pt1 + f_qsws * ( qv1 & |
---|
[1691] | 1175 | - q_s + dq_s_dt * t_surface(j,i) ) & |
---|
| 1176 | + lambda_surface * t_soil(nzb_soil,j,i) |
---|
| 1177 | |
---|
| 1178 | ! |
---|
[1709] | 1179 | !-- Denominator of the prognostic equation |
---|
| 1180 | coef_2 = 4.0_wp * sigma_sb * t_surface(j,i) ** 3 + f_qsws & |
---|
| 1181 | * dq_s_dt + lambda_surface + f_shf / exn |
---|
[1691] | 1182 | |
---|
| 1183 | #endif |
---|
[1500] | 1184 | ELSE |
---|
| 1185 | |
---|
[1691] | 1186 | #if defined ( __rrtmg ) |
---|
[1500] | 1187 | ! |
---|
| 1188 | !-- Numerator of the prognostic equation |
---|
[1709] | 1189 | coef_1 = rad_net_l(j,i) + rad_lw_out_change_0(j,i) & |
---|
[1691] | 1190 | * t_surface(j,i) - rad_lw_out(nzb,j,i) & |
---|
[1709] | 1191 | + f_shf * pt1 + lambda_surface & |
---|
[1551] | 1192 | * t_soil(nzb_soil,j,i) |
---|
[1500] | 1193 | |
---|
| 1194 | ! |
---|
| 1195 | !-- Denominator of the prognostic equation |
---|
[1709] | 1196 | coef_2 = rad_lw_out_change_0(j,i) + lambda_surface + f_shf / exn |
---|
[1691] | 1197 | #else |
---|
| 1198 | |
---|
| 1199 | ! |
---|
| 1200 | !-- Numerator of the prognostic equation |
---|
| 1201 | coef_1 = rad_net_l(j,i) + 3.0_wp * sigma_sb & |
---|
[1709] | 1202 | * t_surface(j,i) ** 4 + f_shf * pt1 & |
---|
[1691] | 1203 | + lambda_surface * t_soil(nzb_soil,j,i) |
---|
| 1204 | |
---|
| 1205 | ! |
---|
| 1206 | !-- Denominator of the prognostic equation |
---|
[1571] | 1207 | coef_2 = 4.0_wp * sigma_sb * t_surface(j,i) ** 3 & |
---|
[1551] | 1208 | + lambda_surface + f_shf / exn |
---|
[1691] | 1209 | #endif |
---|
[1500] | 1210 | ENDIF |
---|
| 1211 | |
---|
[1496] | 1212 | tend = 0.0_wp |
---|
| 1213 | |
---|
| 1214 | ! |
---|
[1551] | 1215 | !-- Implicit solution when the surface layer has no heat capacity, |
---|
[1496] | 1216 | !-- otherwise use RK3 scheme. |
---|
[1551] | 1217 | t_surface_p(j,i) = ( coef_1 * dt_3d * tsc(2) + c_surface * & |
---|
| 1218 | t_surface(j,i) ) / ( c_surface + coef_2 * dt_3d& |
---|
| 1219 | * tsc(2) ) |
---|
[1496] | 1220 | ! |
---|
| 1221 | !-- Add RK3 term |
---|
[1691] | 1222 | IF ( c_surface /= 0.0_wp ) THEN |
---|
[1496] | 1223 | |
---|
[1691] | 1224 | t_surface_p(j,i) = t_surface_p(j,i) + dt_3d * tsc(3) & |
---|
| 1225 | * tt_surface_m(j,i) |
---|
| 1226 | |
---|
[1496] | 1227 | ! |
---|
[1691] | 1228 | !-- Calculate true tendency |
---|
| 1229 | tend = (t_surface_p(j,i) - t_surface(j,i) - dt_3d * tsc(3) & |
---|
| 1230 | * tt_surface_m(j,i)) / (dt_3d * tsc(2)) |
---|
[1496] | 1231 | ! |
---|
[1691] | 1232 | !-- Calculate t_surface tendencies for the next Runge-Kutta step |
---|
| 1233 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1234 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
| 1235 | tt_surface_m(j,i) = tend |
---|
| 1236 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1237 | intermediate_timestep_count_max ) THEN |
---|
| 1238 | tt_surface_m(j,i) = -9.5625_wp * tend + 5.3125_wp & |
---|
| 1239 | * tt_surface_m(j,i) |
---|
| 1240 | ENDIF |
---|
[1496] | 1241 | ENDIF |
---|
[1691] | 1242 | |
---|
[1496] | 1243 | ENDIF |
---|
| 1244 | |
---|
| 1245 | ! |
---|
[1757] | 1246 | !-- In case of fast changes in the skin temperature, it is possible to |
---|
| 1247 | !-- update the radiative fluxes independently from the prescribed |
---|
| 1248 | !-- radiation call frequency. This effectively prevents oscillations, |
---|
| 1249 | !-- especially when setting skip_time_do_radiation /= 0. The threshold |
---|
| 1250 | !-- value of 0.2 used here is just a first guess. This method should be |
---|
| 1251 | !-- revised in the future as tests have shown that the threshold is |
---|
| 1252 | !-- often reached, when no oscillations would occur (causes immense |
---|
| 1253 | !-- computing time for the radiation code). |
---|
| 1254 | IF ( ABS( t_surface_p(j,i) - t_surface(j,i) ) > 0.2_wp .AND. & |
---|
| 1255 | unscheduled_radiation_calls ) THEN |
---|
[1691] | 1256 | force_radiation_call_l = .TRUE. |
---|
| 1257 | ENDIF |
---|
| 1258 | |
---|
| 1259 | pt(k,j,i) = t_surface_p(j,i) / exn |
---|
| 1260 | |
---|
| 1261 | ! |
---|
[1496] | 1262 | !-- Calculate fluxes |
---|
[1691] | 1263 | #if defined ( __rrtmg ) |
---|
[1709] | 1264 | rad_net_l(j,i) = rad_net_l(j,i) + rad_lw_out_change_0(j,i) & |
---|
[1691] | 1265 | * t_surface(j,i) - rad_lw_out(nzb,j,i) & |
---|
[1709] | 1266 | - rad_lw_out_change_0(j,i) * t_surface_p(j,i) |
---|
[1691] | 1267 | |
---|
| 1268 | IF ( rrtm_idrv == 1 ) THEN |
---|
| 1269 | rad_net(j,i) = rad_net_l(j,i) |
---|
| 1270 | rad_lw_out(nzb,j,i) = rad_lw_out(nzb,j,i) & |
---|
[1709] | 1271 | + rad_lw_out_change_0(j,i) & |
---|
[1691] | 1272 | * ( t_surface_p(j,i) - t_surface(j,i) ) |
---|
| 1273 | ENDIF |
---|
| 1274 | #else |
---|
| 1275 | rad_net_l(j,i) = rad_net_l(j,i) + 3.0_wp * sigma_sb & |
---|
| 1276 | * t_surface(j,i)**4 - 4.0_wp * sigma_sb & |
---|
| 1277 | * t_surface(j,i)**3 * t_surface_p(j,i) |
---|
| 1278 | #endif |
---|
| 1279 | |
---|
[1709] | 1280 | |
---|
[1551] | 1281 | ghf_eb(j,i) = lambda_surface * (t_surface_p(j,i) & |
---|
| 1282 | - t_soil(nzb_soil,j,i)) |
---|
[1496] | 1283 | |
---|
[1709] | 1284 | shf_eb(j,i) = - f_shf * ( pt1 - pt(k,j,i) ) |
---|
[1691] | 1285 | |
---|
| 1286 | shf(j,i) = shf_eb(j,i) / rho_cp |
---|
| 1287 | |
---|
[1500] | 1288 | IF ( humidity ) THEN |
---|
[1709] | 1289 | qsws_eb(j,i) = - f_qsws * ( qv1 - q_s + dq_s_dt & |
---|
[1571] | 1290 | * t_surface(j,i) - dq_s_dt * t_surface_p(j,i) ) |
---|
[1496] | 1291 | |
---|
[1691] | 1292 | qsws(j,i) = qsws_eb(j,i) / rho_lv |
---|
| 1293 | |
---|
[1709] | 1294 | qsws_veg_eb(j,i) = - f_qsws_veg * ( qv1 - q_s & |
---|
[1571] | 1295 | + dq_s_dt * t_surface(j,i) - dq_s_dt & |
---|
[1551] | 1296 | * t_surface_p(j,i) ) |
---|
| 1297 | |
---|
[1709] | 1298 | qsws_soil_eb(j,i) = - f_qsws_soil * ( qv1 - q_s & |
---|
[1571] | 1299 | + dq_s_dt * t_surface(j,i) - dq_s_dt & |
---|
[1551] | 1300 | * t_surface_p(j,i) ) |
---|
| 1301 | |
---|
[1709] | 1302 | qsws_liq_eb(j,i) = - f_qsws_liq * ( qv1 - q_s & |
---|
[1571] | 1303 | + dq_s_dt * t_surface(j,i) - dq_s_dt & |
---|
[1551] | 1304 | * t_surface_p(j,i) ) |
---|
[1500] | 1305 | ENDIF |
---|
| 1306 | ! |
---|
| 1307 | !-- Calculate the true surface resistance |
---|
[1691] | 1308 | IF ( qsws_eb(j,i) == 0.0_wp ) THEN |
---|
[1551] | 1309 | r_s(j,i) = 1.0E10_wp |
---|
[1496] | 1310 | ELSE |
---|
[1709] | 1311 | r_s(j,i) = - rho_lv * ( qv1 - q_s + dq_s_dt & |
---|
[1571] | 1312 | * t_surface(j,i) - dq_s_dt * t_surface_p(j,i) ) & |
---|
[1551] | 1313 | / qsws_eb(j,i) - r_a(j,i) |
---|
[1496] | 1314 | ENDIF |
---|
| 1315 | |
---|
| 1316 | ! |
---|
| 1317 | !-- Calculate change in liquid water reservoir due to dew fall or |
---|
[1500] | 1318 | !-- evaporation of liquid water |
---|
| 1319 | IF ( humidity ) THEN |
---|
[1496] | 1320 | ! |
---|
[1571] | 1321 | !-- If precipitation is activated, add rain water to qsws_liq_eb |
---|
| 1322 | !-- and qsws_soil_eb according the the vegetation coverage. |
---|
[1500] | 1323 | !-- precipitation_rate is given in mm. |
---|
| 1324 | IF ( precipitation ) THEN |
---|
[1571] | 1325 | |
---|
| 1326 | ! |
---|
| 1327 | !-- Add precipitation to liquid water reservoir, if possible. |
---|
| 1328 | !-- Otherwise, add the water to bare soil fraction. |
---|
[1691] | 1329 | IF ( m_liq_eb(j,i) /= m_liq_eb_max ) THEN |
---|
[1571] | 1330 | qsws_liq_eb(j,i) = qsws_liq_eb(j,i) & |
---|
[1691] | 1331 | + c_veg(j,i) * prr(k,j,i) * hyrho(k) & |
---|
[1571] | 1332 | * 0.001_wp * rho_l * l_v |
---|
| 1333 | ELSE |
---|
| 1334 | qsws_soil_eb(j,i) = qsws_soil_eb(j,i) & |
---|
[1691] | 1335 | + c_veg(j,i) * prr(k,j,i) * hyrho(k) & |
---|
[1571] | 1336 | * 0.001_wp * rho_l * l_v |
---|
| 1337 | ENDIF |
---|
| 1338 | |
---|
| 1339 | !-- Add precipitation to bare soil according to the bare soil |
---|
| 1340 | !-- coverage. |
---|
| 1341 | qsws_soil_eb(j,i) = qsws_soil_eb(j,i) * (1.0_wp & |
---|
[1691] | 1342 | - c_veg(j,i)) * prr(k,j,i) * hyrho(k) & |
---|
[1571] | 1343 | * 0.001_wp * rho_l * l_v |
---|
[1496] | 1344 | ENDIF |
---|
[1691] | 1345 | |
---|
[1500] | 1346 | ! |
---|
| 1347 | !-- If the air is saturated, check the reservoir water level |
---|
[1691] | 1348 | IF ( qsws_eb(j,i) < 0.0_wp ) THEN |
---|
| 1349 | |
---|
[1500] | 1350 | ! |
---|
[1551] | 1351 | !-- Check if reservoir is full (avoid values > m_liq_eb_max) |
---|
| 1352 | !-- In that case, qsws_liq_eb goes to qsws_soil_eb. In this |
---|
| 1353 | !-- case qsws_veg_eb is zero anyway (because c_liq = 1), |
---|
| 1354 | !-- so that tend is zero and no further check is needed |
---|
[1691] | 1355 | IF ( m_liq_eb(j,i) == m_liq_eb_max ) THEN |
---|
[1551] | 1356 | qsws_soil_eb(j,i) = qsws_soil_eb(j,i) & |
---|
| 1357 | + qsws_liq_eb(j,i) |
---|
| 1358 | qsws_liq_eb(j,i) = 0.0_wp |
---|
[1500] | 1359 | ENDIF |
---|
[1496] | 1360 | |
---|
| 1361 | ! |
---|
[1551] | 1362 | !-- In case qsws_veg_eb becomes negative (unphysical behavior), |
---|
| 1363 | !-- let the water enter the liquid water reservoir as dew on the |
---|
[1500] | 1364 | !-- plant |
---|
[1691] | 1365 | IF ( qsws_veg_eb(j,i) < 0.0_wp ) THEN |
---|
[1551] | 1366 | qsws_liq_eb(j,i) = qsws_liq_eb(j,i) + qsws_veg_eb(j,i) |
---|
| 1367 | qsws_veg_eb(j,i) = 0.0_wp |
---|
[1500] | 1368 | ENDIF |
---|
| 1369 | ENDIF |
---|
[1496] | 1370 | |
---|
[1551] | 1371 | tend = - qsws_liq_eb(j,i) * drho_l_lv |
---|
[1496] | 1372 | |
---|
[1551] | 1373 | m_liq_eb_p(j,i) = m_liq_eb(j,i) + dt_3d * ( tsc(2) * tend & |
---|
| 1374 | + tsc(3) * tm_liq_eb_m(j,i) ) |
---|
[1496] | 1375 | |
---|
| 1376 | ! |
---|
[1500] | 1377 | !-- Check if reservoir is overfull -> reduce to maximum |
---|
| 1378 | !-- (conservation of water is violated here) |
---|
[1551] | 1379 | m_liq_eb_p(j,i) = MIN(m_liq_eb_p(j,i),m_liq_eb_max) |
---|
[1496] | 1380 | |
---|
| 1381 | ! |
---|
[1500] | 1382 | !-- Check if reservoir is empty (avoid values < 0.0) |
---|
| 1383 | !-- (conservation of water is violated here) |
---|
[1551] | 1384 | m_liq_eb_p(j,i) = MAX(m_liq_eb_p(j,i),0.0_wp) |
---|
[1496] | 1385 | |
---|
| 1386 | |
---|
| 1387 | ! |
---|
[1551] | 1388 | !-- Calculate m_liq_eb tendencies for the next Runge-Kutta step |
---|
[1500] | 1389 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1390 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
[1551] | 1391 | tm_liq_eb_m(j,i) = tend |
---|
[1500] | 1392 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1393 | intermediate_timestep_count_max ) THEN |
---|
[1551] | 1394 | tm_liq_eb_m(j,i) = -9.5625_wp * tend + 5.3125_wp & |
---|
| 1395 | * tm_liq_eb_m(j,i) |
---|
[1500] | 1396 | ENDIF |
---|
[1496] | 1397 | ENDIF |
---|
| 1398 | |
---|
[1500] | 1399 | ENDIF |
---|
| 1400 | |
---|
[1496] | 1401 | ENDDO |
---|
[1500] | 1402 | ENDDO |
---|
[1496] | 1403 | |
---|
[1691] | 1404 | ! |
---|
| 1405 | !-- Make a logical OR for all processes. Force radiation call if at |
---|
[1757] | 1406 | !-- least one processor reached the threshold change in skin temperature |
---|
| 1407 | IF ( unscheduled_radiation_calls .AND. intermediate_timestep_count & |
---|
| 1408 | == intermediate_timestep_count_max-1 ) THEN |
---|
[1697] | 1409 | #if defined( __parallel ) |
---|
[1691] | 1410 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
| 1411 | CALL MPI_ALLREDUCE( force_radiation_call_l, force_radiation_call, & |
---|
| 1412 | 1, MPI_LOGICAL, MPI_LOR, comm2d, ierr ) |
---|
| 1413 | #else |
---|
| 1414 | force_radiation_call = force_radiation_call_l |
---|
| 1415 | #endif |
---|
| 1416 | force_radiation_call_l = .FALSE. |
---|
| 1417 | ENDIF |
---|
| 1418 | |
---|
| 1419 | |
---|
[1496] | 1420 | END SUBROUTINE lsm_energy_balance |
---|
| 1421 | |
---|
| 1422 | |
---|
| 1423 | !------------------------------------------------------------------------------! |
---|
| 1424 | ! Description: |
---|
| 1425 | ! ------------ |
---|
[1682] | 1426 | !> Soil model as part of the land surface model. The model predicts soil |
---|
| 1427 | !> temperature and water content. |
---|
[1496] | 1428 | !------------------------------------------------------------------------------! |
---|
| 1429 | SUBROUTINE lsm_soil_model |
---|
| 1430 | |
---|
| 1431 | |
---|
| 1432 | IMPLICIT NONE |
---|
| 1433 | |
---|
[1682] | 1434 | INTEGER(iwp) :: i !< running index |
---|
| 1435 | INTEGER(iwp) :: j !< running index |
---|
| 1436 | INTEGER(iwp) :: k !< running index |
---|
[1496] | 1437 | |
---|
[1682] | 1438 | REAL(wp) :: h_vg !< Van Genuchten coef. h |
---|
[1496] | 1439 | |
---|
[1682] | 1440 | REAL(wp), DIMENSION(nzb_soil:nzt_soil) :: gamma_temp, & !< temp. gamma |
---|
[1691] | 1441 | lambda_temp, & !< temp. lambda |
---|
| 1442 | tend !< tendency |
---|
[1496] | 1443 | |
---|
[1691] | 1444 | DO i = nxlg, nxrg |
---|
| 1445 | DO j = nysg, nyng |
---|
| 1446 | DO k = nzb_soil, nzt_soil |
---|
[1496] | 1447 | ! |
---|
| 1448 | !-- Calculate volumetric heat capacity of the soil, taking into |
---|
| 1449 | !-- account water content |
---|
[1551] | 1450 | rho_c_total(k,j,i) = (rho_c_soil * (1.0_wp - m_sat(j,i)) & |
---|
| 1451 | + rho_c_water * m_soil(k,j,i)) |
---|
[1496] | 1452 | |
---|
| 1453 | ! |
---|
[1691] | 1454 | !-- Calculate soil heat conductivity at the center of the soil |
---|
[1496] | 1455 | !-- layers |
---|
[1691] | 1456 | lambda_h_sat = lambda_h_sm ** (1.0_wp - m_sat(j,i)) * & |
---|
| 1457 | lambda_h_water ** m_soil(k,j,i) |
---|
| 1458 | |
---|
[1551] | 1459 | ke = 1.0_wp + LOG10(MAX(0.1_wp,m_soil(k,j,i) / m_sat(j,i))) |
---|
[1691] | 1460 | |
---|
| 1461 | lambda_temp(k) = ke * (lambda_h_sat - lambda_h_dry) + & |
---|
[1496] | 1462 | lambda_h_dry |
---|
| 1463 | |
---|
| 1464 | ENDDO |
---|
| 1465 | |
---|
| 1466 | ! |
---|
| 1467 | !-- Calculate soil heat conductivity (lambda_h) at the _stag level |
---|
| 1468 | !-- using linear interpolation |
---|
[1691] | 1469 | DO k = nzb_soil, nzt_soil-1 |
---|
| 1470 | lambda_h(k,j,i) = ( lambda_temp(k+1) + lambda_temp(k) ) * 0.5_wp |
---|
[1496] | 1471 | ENDDO |
---|
[1551] | 1472 | lambda_h(nzt_soil,j,i) = lambda_temp(nzt_soil) |
---|
[1496] | 1473 | |
---|
| 1474 | ! |
---|
[1551] | 1475 | !-- Prognostic equation for soil temperature t_soil |
---|
[1496] | 1476 | tend(:) = 0.0_wp |
---|
[1691] | 1477 | tend(nzb_soil) = (1.0_wp/rho_c_total(nzb_soil,j,i)) * & |
---|
[1551] | 1478 | ( lambda_h(nzb_soil,j,i) * ( t_soil(nzb_soil+1,j,i) & |
---|
[1691] | 1479 | - t_soil(nzb_soil,j,i) ) * ddz_soil(nzb_soil+1) & |
---|
[1551] | 1480 | + ghf_eb(j,i) ) * ddz_soil_stag(nzb_soil) |
---|
[1496] | 1481 | |
---|
[1691] | 1482 | |
---|
| 1483 | |
---|
| 1484 | |
---|
| 1485 | DO k = nzb_soil+1, nzt_soil |
---|
[1551] | 1486 | tend(k) = (1.0_wp/rho_c_total(k,j,i)) & |
---|
[1496] | 1487 | * ( lambda_h(k,j,i) & |
---|
[1551] | 1488 | * ( t_soil(k+1,j,i) - t_soil(k,j,i) ) & |
---|
[1691] | 1489 | * ddz_soil(k+1) & |
---|
[1496] | 1490 | - lambda_h(k-1,j,i) & |
---|
[1551] | 1491 | * ( t_soil(k,j,i) - t_soil(k-1,j,i) ) & |
---|
[1691] | 1492 | * ddz_soil(k) & |
---|
[1496] | 1493 | ) * ddz_soil_stag(k) |
---|
| 1494 | ENDDO |
---|
| 1495 | |
---|
[1551] | 1496 | t_soil_p(nzb_soil:nzt_soil,j,i) = t_soil(nzb_soil:nzt_soil,j,i) & |
---|
[1496] | 1497 | + dt_3d * ( tsc(2) & |
---|
| 1498 | * tend(:) + tsc(3) & |
---|
[1551] | 1499 | * tt_soil_m(:,j,i) ) |
---|
[1496] | 1500 | |
---|
| 1501 | ! |
---|
[1551] | 1502 | !-- Calculate t_soil tendencies for the next Runge-Kutta step |
---|
[1496] | 1503 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1504 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
[1551] | 1505 | DO k = nzb_soil, nzt_soil |
---|
| 1506 | tt_soil_m(k,j,i) = tend(k) |
---|
[1496] | 1507 | ENDDO |
---|
| 1508 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1509 | intermediate_timestep_count_max ) THEN |
---|
[1551] | 1510 | DO k = nzb_soil, nzt_soil |
---|
| 1511 | tt_soil_m(k,j,i) = -9.5625_wp * tend(k) + 5.3125_wp & |
---|
| 1512 | * tt_soil_m(k,j,i) |
---|
[1496] | 1513 | ENDDO |
---|
| 1514 | ENDIF |
---|
| 1515 | ENDIF |
---|
| 1516 | |
---|
| 1517 | |
---|
[1691] | 1518 | DO k = nzb_soil, nzt_soil |
---|
[1551] | 1519 | |
---|
[1496] | 1520 | ! |
---|
| 1521 | !-- Calculate soil diffusivity at the center of the soil layers |
---|
[1551] | 1522 | lambda_temp(k) = (- b_ch * gamma_w_sat(j,i) * psi_sat & |
---|
[1496] | 1523 | / m_sat(j,i) ) * ( MAX(m_soil(k,j,i), & |
---|
[1551] | 1524 | m_wilt(j,i)) / m_sat(j,i) )**(b_ch + 2.0_wp) |
---|
[1496] | 1525 | |
---|
| 1526 | ! |
---|
[1551] | 1527 | !-- Parametrization of Van Genuchten |
---|
| 1528 | IF ( soil_type /= 7 ) THEN |
---|
| 1529 | ! |
---|
| 1530 | !-- Calculate the hydraulic conductivity after Van Genuchten |
---|
| 1531 | !-- (1980) |
---|
| 1532 | h_vg = ( ( (m_res(j,i) - m_sat(j,i)) / ( m_res(j,i) - & |
---|
| 1533 | MAX(m_soil(k,j,i),m_wilt(j,i)) ) )**(n_vg(j,i) & |
---|
| 1534 | / (n_vg(j,i)-1.0_wp)) - 1.0_wp & |
---|
| 1535 | )**(1.0_wp/n_vg(j,i)) / alpha_vg(j,i) |
---|
[1496] | 1536 | |
---|
[1691] | 1537 | |
---|
[1551] | 1538 | gamma_temp(k) = gamma_w_sat(j,i) * ( ( (1.0_wp + & |
---|
| 1539 | (alpha_vg(j,i)*h_vg)**n_vg(j,i))**(1.0_wp & |
---|
| 1540 | -1.0_wp/n_vg(j,i)) - (alpha_vg(j,i)*h_vg & |
---|
| 1541 | )**(n_vg(j,i)-1.0_wp))**2 ) & |
---|
| 1542 | / ( (1.0_wp + (alpha_vg(j,i)*h_vg & |
---|
| 1543 | )**n_vg(j,i))**((1.0_wp - 1.0_wp/n_vg(j,i)) & |
---|
| 1544 | *(l_vg(j,i) + 2.0_wp)) ) |
---|
[1496] | 1545 | |
---|
[1551] | 1546 | ! |
---|
| 1547 | !-- Parametrization of Clapp & Hornberger |
---|
| 1548 | ELSE |
---|
| 1549 | gamma_temp(k) = gamma_w_sat(j,i) * (m_soil(k,j,i) & |
---|
| 1550 | / m_sat(j,i) )**(2.0_wp * b_ch + 3.0_wp) |
---|
| 1551 | ENDIF |
---|
| 1552 | |
---|
[1496] | 1553 | ENDDO |
---|
| 1554 | |
---|
| 1555 | |
---|
| 1556 | IF ( humidity ) THEN |
---|
| 1557 | ! |
---|
| 1558 | !-- Calculate soil diffusivity (lambda_w) at the _stag level |
---|
[1551] | 1559 | !-- using linear interpolation. To do: replace this with |
---|
| 1560 | !-- ECMWF-IFS Eq. 8.81 |
---|
[1691] | 1561 | DO k = nzb_soil, nzt_soil-1 |
---|
[1496] | 1562 | |
---|
[1691] | 1563 | lambda_w(k,j,i) = ( lambda_temp(k+1) + lambda_temp(k) ) & |
---|
| 1564 | * 0.5_wp |
---|
| 1565 | gamma_w(k,j,i) = ( gamma_temp(k+1) + gamma_temp(k) ) & |
---|
| 1566 | * 0.5_wp |
---|
[1496] | 1567 | |
---|
| 1568 | ENDDO |
---|
| 1569 | |
---|
| 1570 | ! |
---|
| 1571 | ! |
---|
| 1572 | !-- In case of a closed bottom (= water content is conserved), set |
---|
| 1573 | !-- hydraulic conductivity to zero to that no water will be lost |
---|
| 1574 | !-- in the bottom layer. |
---|
| 1575 | IF ( conserve_water_content ) THEN |
---|
[1551] | 1576 | gamma_w(nzt_soil,j,i) = 0.0_wp |
---|
[1496] | 1577 | ELSE |
---|
[1691] | 1578 | gamma_w(nzt_soil,j,i) = gamma_temp(nzt_soil) |
---|
[1496] | 1579 | ENDIF |
---|
| 1580 | |
---|
[1551] | 1581 | !-- The root extraction (= root_extr * qsws_veg_eb / (rho_l * l_v)) |
---|
[1496] | 1582 | !-- ensures the mass conservation for water. The transpiration of |
---|
| 1583 | !-- plants equals the cumulative withdrawals by the roots in the |
---|
| 1584 | !-- soil. The scheme takes into account the availability of water |
---|
| 1585 | !-- in the soil layers as well as the root fraction in the |
---|
[1551] | 1586 | !-- respective layer. Layer with moisture below wilting point will |
---|
| 1587 | !-- not contribute, which reflects the preference of plants to |
---|
| 1588 | !-- take water from moister layers. |
---|
[1496] | 1589 | |
---|
| 1590 | ! |
---|
[1691] | 1591 | !-- Calculate the root extraction (ECMWF 7.69, the sum of root_extr |
---|
| 1592 | !-- = 1). The energy balance solver guarantees a positive |
---|
| 1593 | !-- transpiration, so that there is no need for an additional check. |
---|
| 1594 | DO k = nzb_soil, nzt_soil |
---|
| 1595 | IF ( m_soil(k,j,i) > m_wilt(j,i) ) THEN |
---|
[1551] | 1596 | m_total = m_total + root_fr(k,j,i) * m_soil(k,j,i) |
---|
| 1597 | ENDIF |
---|
[1496] | 1598 | ENDDO |
---|
| 1599 | |
---|
[1691] | 1600 | IF ( m_total > 0.0_wp ) THEN |
---|
| 1601 | DO k = nzb_soil, nzt_soil |
---|
| 1602 | IF ( m_soil(k,j,i) > m_wilt(j,i) ) THEN |
---|
| 1603 | root_extr(k) = root_fr(k,j,i) * m_soil(k,j,i) / m_total |
---|
| 1604 | ELSE |
---|
| 1605 | root_extr(k) = 0.0_wp |
---|
| 1606 | ENDIF |
---|
| 1607 | ENDDO |
---|
| 1608 | ENDIF |
---|
[1496] | 1609 | |
---|
| 1610 | ! |
---|
| 1611 | !-- Prognostic equation for soil water content m_soil |
---|
| 1612 | tend(:) = 0.0_wp |
---|
[1551] | 1613 | tend(nzb_soil) = ( lambda_w(nzb_soil,j,i) * ( & |
---|
| 1614 | m_soil(nzb_soil+1,j,i) - m_soil(nzb_soil,j,i) ) & |
---|
[1691] | 1615 | * ddz_soil(nzb_soil+1) - gamma_w(nzb_soil,j,i) - ( & |
---|
[1551] | 1616 | root_extr(nzb_soil) * qsws_veg_eb(j,i) & |
---|
| 1617 | + qsws_soil_eb(j,i) ) * drho_l_lv ) & |
---|
| 1618 | * ddz_soil_stag(nzb_soil) |
---|
[1496] | 1619 | |
---|
[1551] | 1620 | DO k = nzb_soil+1, nzt_soil-1 |
---|
[1496] | 1621 | tend(k) = ( lambda_w(k,j,i) * ( m_soil(k+1,j,i) & |
---|
[1691] | 1622 | - m_soil(k,j,i) ) * ddz_soil(k+1) - gamma_w(k,j,i)& |
---|
| 1623 | - lambda_w(k-1,j,i) * (m_soil(k,j,i) - & |
---|
| 1624 | m_soil(k-1,j,i)) * ddz_soil(k) & |
---|
| 1625 | + gamma_w(k-1,j,i) - (root_extr(k) & |
---|
| 1626 | * qsws_veg_eb(j,i) * drho_l_lv) & |
---|
[1496] | 1627 | ) * ddz_soil_stag(k) |
---|
| 1628 | |
---|
| 1629 | ENDDO |
---|
[1551] | 1630 | tend(nzt_soil) = ( - gamma_w(nzt_soil,j,i) & |
---|
| 1631 | - lambda_w(nzt_soil-1,j,i) & |
---|
| 1632 | * (m_soil(nzt_soil,j,i) & |
---|
| 1633 | - m_soil(nzt_soil-1,j,i)) & |
---|
[1691] | 1634 | * ddz_soil(nzt_soil) & |
---|
[1551] | 1635 | + gamma_w(nzt_soil-1,j,i) - ( & |
---|
| 1636 | root_extr(nzt_soil) & |
---|
| 1637 | * qsws_veg_eb(j,i) * drho_l_lv ) & |
---|
| 1638 | ) * ddz_soil_stag(nzt_soil) |
---|
[1496] | 1639 | |
---|
[1551] | 1640 | m_soil_p(nzb_soil:nzt_soil,j,i) = m_soil(nzb_soil:nzt_soil,j,i)& |
---|
[1496] | 1641 | + dt_3d * ( tsc(2) * tend(:) & |
---|
| 1642 | + tsc(3) * tm_soil_m(:,j,i) ) |
---|
| 1643 | |
---|
| 1644 | ! |
---|
| 1645 | !-- Account for dry soils (find a better solution here!) |
---|
[1757] | 1646 | DO k = nzb_soil, nzt_soil |
---|
| 1647 | IF ( m_soil_p(k,j,i) < 0.0_wp ) m_soil_p(k,j,i) = 0.0_wp |
---|
| 1648 | ENDDO |
---|
[1496] | 1649 | |
---|
[1757] | 1650 | |
---|
| 1651 | |
---|
| 1652 | |
---|
[1496] | 1653 | ! |
---|
| 1654 | !-- Calculate m_soil tendencies for the next Runge-Kutta step |
---|
| 1655 | IF ( timestep_scheme(1:5) == 'runge' ) THEN |
---|
| 1656 | IF ( intermediate_timestep_count == 1 ) THEN |
---|
[1551] | 1657 | DO k = nzb_soil, nzt_soil |
---|
[1496] | 1658 | tm_soil_m(k,j,i) = tend(k) |
---|
| 1659 | ENDDO |
---|
| 1660 | ELSEIF ( intermediate_timestep_count < & |
---|
| 1661 | intermediate_timestep_count_max ) THEN |
---|
[1551] | 1662 | DO k = nzb_soil, nzt_soil |
---|
[1496] | 1663 | tm_soil_m(k,j,i) = -9.5625_wp * tend(k) + 5.3125_wp & |
---|
| 1664 | * tm_soil_m(k,j,i) |
---|
| 1665 | ENDDO |
---|
| 1666 | ENDIF |
---|
| 1667 | ENDIF |
---|
| 1668 | |
---|
| 1669 | ENDIF |
---|
| 1670 | |
---|
| 1671 | ENDDO |
---|
| 1672 | ENDDO |
---|
| 1673 | |
---|
| 1674 | ! |
---|
| 1675 | !-- Calculate surface specific humidity |
---|
| 1676 | IF ( humidity ) THEN |
---|
[1551] | 1677 | CALL calc_q_surface |
---|
[1496] | 1678 | ENDIF |
---|
| 1679 | |
---|
| 1680 | |
---|
| 1681 | END SUBROUTINE lsm_soil_model |
---|
| 1682 | |
---|
| 1683 | |
---|
| 1684 | !------------------------------------------------------------------------------! |
---|
| 1685 | ! Description: |
---|
| 1686 | ! ------------ |
---|
[1682] | 1687 | !> Calculation of specific humidity of the surface layer (surface) |
---|
[1496] | 1688 | !------------------------------------------------------------------------------! |
---|
[1551] | 1689 | SUBROUTINE calc_q_surface |
---|
[1496] | 1690 | |
---|
| 1691 | IMPLICIT NONE |
---|
| 1692 | |
---|
[1682] | 1693 | INTEGER :: i !< running index |
---|
| 1694 | INTEGER :: j !< running index |
---|
| 1695 | INTEGER :: k !< running index |
---|
| 1696 | REAL(wp) :: resistance !< aerodynamic and soil resistance term |
---|
[1496] | 1697 | |
---|
[1691] | 1698 | DO i = nxlg, nxrg |
---|
| 1699 | DO j = nysg, nyng |
---|
[1496] | 1700 | k = nzb_s_inner(j,i) |
---|
| 1701 | |
---|
| 1702 | ! |
---|
| 1703 | !-- Calculate water vapour pressure at saturation |
---|
[1691] | 1704 | e_s = 0.01_wp * 610.78_wp * EXP( 17.269_wp * ( t_surface_p(j,i) & |
---|
| 1705 | - 273.16_wp ) / ( t_surface_p(j,i) - 35.86_wp ) ) |
---|
[1496] | 1706 | |
---|
| 1707 | ! |
---|
| 1708 | !-- Calculate specific humidity at saturation |
---|
| 1709 | q_s = 0.622_wp * e_s / surface_pressure |
---|
| 1710 | |
---|
| 1711 | resistance = r_a(j,i) / (r_a(j,i) + r_s(j,i)) |
---|
| 1712 | |
---|
| 1713 | ! |
---|
| 1714 | !-- Calculate specific humidity at surface |
---|
[1691] | 1715 | IF ( cloud_physics ) THEN |
---|
| 1716 | q(k,j,i) = resistance * q_s + (1.0_wp - resistance) & |
---|
| 1717 | * ( q(k+1,j,i) - ql(k+1,j,i) ) |
---|
| 1718 | ELSE |
---|
| 1719 | q(k,j,i) = resistance * q_s + (1.0_wp - resistance) & |
---|
| 1720 | * q(k+1,j,i) |
---|
| 1721 | ENDIF |
---|
[1496] | 1722 | |
---|
[1691] | 1723 | ! |
---|
| 1724 | !-- Update virtual potential temperature |
---|
| 1725 | vpt(k,j,i) = pt(k,j,i) * ( 1.0_wp + 0.61_wp * q(k,j,i) ) |
---|
| 1726 | |
---|
[1496] | 1727 | ENDDO |
---|
| 1728 | ENDDO |
---|
| 1729 | |
---|
[1551] | 1730 | END SUBROUTINE calc_q_surface |
---|
[1496] | 1731 | |
---|
[1551] | 1732 | !------------------------------------------------------------------------------! |
---|
| 1733 | ! Description: |
---|
| 1734 | ! ------------ |
---|
[1682] | 1735 | !> Swapping of timelevels |
---|
[1551] | 1736 | !------------------------------------------------------------------------------! |
---|
| 1737 | SUBROUTINE lsm_swap_timelevel ( mod_count ) |
---|
[1496] | 1738 | |
---|
[1551] | 1739 | IMPLICIT NONE |
---|
| 1740 | |
---|
| 1741 | INTEGER, INTENT(IN) :: mod_count |
---|
| 1742 | |
---|
| 1743 | #if defined( __nopointer ) |
---|
| 1744 | |
---|
| 1745 | t_surface = t_surface_p |
---|
| 1746 | t_soil = t_soil_p |
---|
| 1747 | IF ( humidity ) THEN |
---|
| 1748 | m_soil = m_soil_p |
---|
| 1749 | m_liq_eb = m_liq_eb_p |
---|
| 1750 | ENDIF |
---|
| 1751 | |
---|
| 1752 | #else |
---|
| 1753 | |
---|
| 1754 | SELECT CASE ( mod_count ) |
---|
| 1755 | |
---|
| 1756 | CASE ( 0 ) |
---|
| 1757 | |
---|
[1585] | 1758 | t_surface => t_surface_1; t_surface_p => t_surface_2 |
---|
| 1759 | t_soil => t_soil_1; t_soil_p => t_soil_2 |
---|
[1551] | 1760 | IF ( humidity ) THEN |
---|
[1585] | 1761 | m_soil => m_soil_1; m_soil_p => m_soil_2 |
---|
| 1762 | m_liq_eb => m_liq_eb_1; m_liq_eb_p => m_liq_eb_2 |
---|
[1551] | 1763 | ENDIF |
---|
| 1764 | |
---|
| 1765 | |
---|
| 1766 | CASE ( 1 ) |
---|
| 1767 | |
---|
[1585] | 1768 | t_surface => t_surface_2; t_surface_p => t_surface_1 |
---|
| 1769 | t_soil => t_soil_2; t_soil_p => t_soil_1 |
---|
[1551] | 1770 | IF ( humidity ) THEN |
---|
[1585] | 1771 | m_soil => m_soil_2; m_soil_p => m_soil_1 |
---|
| 1772 | m_liq_eb => m_liq_eb_2; m_liq_eb_p => m_liq_eb_1 |
---|
[1551] | 1773 | ENDIF |
---|
| 1774 | |
---|
| 1775 | END SELECT |
---|
| 1776 | #endif |
---|
| 1777 | |
---|
| 1778 | END SUBROUTINE lsm_swap_timelevel |
---|
| 1779 | |
---|
| 1780 | |
---|
[1496] | 1781 | END MODULE land_surface_model_mod |
---|