1 | !> @file lagrangian_particle_model_mod.f90 |
---|
2 | !------------------------------------------------------------------------------! |
---|
3 | ! This file is part of the PALM model system. |
---|
4 | ! |
---|
5 | ! PALM is free software: you can redistribute it and/or modify it under the |
---|
6 | ! terms of the GNU General Public License as published by the Free Software |
---|
7 | ! Foundation, either version 3 of the License, or (at your option) any later |
---|
8 | ! version. |
---|
9 | ! |
---|
10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
13 | ! |
---|
14 | ! You should have received a copy of the GNU General Public License along with |
---|
15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
16 | ! |
---|
17 | ! Copyright 1997-2019 Leibniz Universitaet Hannover |
---|
18 | !------------------------------------------------------------------------------! |
---|
19 | ! |
---|
20 | ! Current revisions: |
---|
21 | ! ------------------ |
---|
22 | ! |
---|
23 | ! |
---|
24 | ! Former revisions: |
---|
25 | ! ----------------- |
---|
26 | ! $Id: lagrangian_particle_model_mod.f90 4054 2019-06-27 07:42:18Z suehring $ |
---|
27 | ! bugfix for calculating the minimum particle time step |
---|
28 | ! |
---|
29 | ! 4044 2019-06-19 12:28:27Z schwenkel |
---|
30 | ! Bugfix in case of grid strecting: corrected calculation of k-Index |
---|
31 | ! |
---|
32 | ! 4043 2019-06-18 16:59:00Z schwenkel |
---|
33 | ! Remove min_nr_particle, Add lpm_droplet_interactions_ptq into module |
---|
34 | ! |
---|
35 | ! 4028 2019-06-13 12:21:37Z schwenkel |
---|
36 | ! Further modularization of particle code components |
---|
37 | ! |
---|
38 | ! 4020 2019-06-06 14:57:48Z schwenkel |
---|
39 | ! Removing submodules |
---|
40 | ! |
---|
41 | ! 4018 2019-06-06 13:41:50Z eckhard |
---|
42 | ! Bugfix for former revision |
---|
43 | ! |
---|
44 | ! 4017 2019-06-06 12:16:46Z schwenkel |
---|
45 | ! Modularization of all lagrangian particle model code components |
---|
46 | ! |
---|
47 | ! 3655 2019-01-07 16:51:22Z knoop |
---|
48 | ! bugfix to guarantee correct particle releases in case that the release |
---|
49 | ! interval is smaller than the model timestep |
---|
50 | ! |
---|
51 | ! 2801 2018-02-14 16:01:55Z thiele |
---|
52 | ! Changed lpm from subroutine to module. |
---|
53 | ! Introduce particle transfer in nested models. |
---|
54 | ! |
---|
55 | ! 2718 2018-01-02 08:49:38Z maronga |
---|
56 | ! Corrected "Former revisions" section |
---|
57 | ! |
---|
58 | ! 2701 2017-12-15 15:40:50Z suehring |
---|
59 | ! Changes from last commit documented |
---|
60 | ! |
---|
61 | ! 2698 2017-12-14 18:46:24Z suehring |
---|
62 | ! Grid indices passed to lpm_boundary_conds. (responsible Philipp Thiele) |
---|
63 | ! |
---|
64 | ! 2696 2017-12-14 17:12:51Z kanani |
---|
65 | ! Change in file header (GPL part) |
---|
66 | ! |
---|
67 | ! 2606 2017-11-10 10:36:31Z schwenkel |
---|
68 | ! Changed particle box locations: center of particle box now coincides |
---|
69 | ! with scalar grid point of same index. |
---|
70 | ! Renamed module and subroutines: lpm_pack_arrays_mod -> lpm_pack_and_sort_mod |
---|
71 | ! lpm_pack_all_arrays -> lpm_sort_in_subboxes, lpm_pack_arrays -> lpm_pack |
---|
72 | ! lpm_sort -> lpm_sort_timeloop_done |
---|
73 | ! |
---|
74 | ! 2418 2017-09-06 15:24:24Z suehring |
---|
75 | ! Major bugfixes in modeling SGS particle speeds (since revision 1359). |
---|
76 | ! Particle sorting added to distinguish between already completed and |
---|
77 | ! non-completed particles. |
---|
78 | ! |
---|
79 | ! 2263 2017-06-08 14:59:01Z schwenkel |
---|
80 | ! Implemented splitting and merging algorithm |
---|
81 | ! |
---|
82 | ! 2233 2017-05-30 18:08:54Z suehring |
---|
83 | ! |
---|
84 | ! 2232 2017-05-30 17:47:52Z suehring |
---|
85 | ! Adjustments to new topography concept |
---|
86 | ! |
---|
87 | ! 2000 2016-08-20 18:09:15Z knoop |
---|
88 | ! Forced header and separation lines into 80 columns |
---|
89 | ! |
---|
90 | ! 1936 2016-06-13 13:37:44Z suehring |
---|
91 | ! Call routine for deallocation of unused memory. |
---|
92 | ! Formatting adjustments |
---|
93 | ! |
---|
94 | ! 1929 2016-06-09 16:25:25Z suehring |
---|
95 | ! Call wall boundary conditions only if particles are in the vertical range of |
---|
96 | ! topography. |
---|
97 | ! |
---|
98 | ! 1822 2016-04-07 07:49:42Z hoffmann |
---|
99 | ! Tails removed. |
---|
100 | ! |
---|
101 | ! Initialization of sgs model not necessary for the use of cloud_droplets and |
---|
102 | ! use_sgs_for_particles. |
---|
103 | ! |
---|
104 | ! lpm_release_set integrated. |
---|
105 | ! |
---|
106 | ! Unused variabled removed. |
---|
107 | ! |
---|
108 | ! 1682 2015-10-07 23:56:08Z knoop |
---|
109 | ! Code annotations made doxygen readable |
---|
110 | ! |
---|
111 | ! 1416 2014-06-04 16:04:03Z suehring |
---|
112 | ! user_lpm_advec is called for each gridpoint. |
---|
113 | ! Bugfix: in order to prevent an infinite loop, time_loop_done is set .TRUE. |
---|
114 | ! at the head of the do-loop. |
---|
115 | ! |
---|
116 | ! 1359 2014-04-11 17:15:14Z hoffmann |
---|
117 | ! New particle structure integrated. |
---|
118 | ! Kind definition added to all floating point numbers. |
---|
119 | ! |
---|
120 | ! 1320 2014-03-20 08:40:49Z raasch |
---|
121 | ! ONLY-attribute added to USE-statements, |
---|
122 | ! kind-parameters added to all INTEGER and REAL declaration statements, |
---|
123 | ! kinds are defined in new module kinds, |
---|
124 | ! revision history before 2012 removed, |
---|
125 | ! comment fields (!:) to be used for variable explanations added to |
---|
126 | ! all variable declaration statements |
---|
127 | ! |
---|
128 | ! 1318 2014-03-17 13:35:16Z raasch |
---|
129 | ! module interfaces removed |
---|
130 | ! |
---|
131 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
132 | ! code put under GPL (PALM 3.9) |
---|
133 | ! |
---|
134 | ! 851 2012-03-15 14:32:58Z raasch |
---|
135 | ! Bugfix: resetting of particle_mask and tail mask moved from routine |
---|
136 | ! lpm_exchange_horiz to here (end of sub-timestep loop) |
---|
137 | ! |
---|
138 | ! 849 2012-03-15 10:35:09Z raasch |
---|
139 | ! original routine advec_particles split into several subroutines and renamed |
---|
140 | ! lpm |
---|
141 | ! |
---|
142 | ! 831 2012-02-22 00:29:39Z raasch |
---|
143 | ! thermal_conductivity_l and diff_coeff_l now depend on temperature and |
---|
144 | ! pressure |
---|
145 | ! |
---|
146 | ! 828 2012-02-21 12:00:36Z raasch |
---|
147 | ! fast hall/wang kernels with fixed radius/dissipation classes added, |
---|
148 | ! particle feature color renamed class, routine colker renamed |
---|
149 | ! recalculate_kernel, |
---|
150 | ! lower limit for droplet radius changed from 1E-7 to 1E-8 |
---|
151 | ! |
---|
152 | ! Bugfix: transformation factor for dissipation changed from 1E5 to 1E4 |
---|
153 | ! |
---|
154 | ! 825 2012-02-19 03:03:44Z raasch |
---|
155 | ! droplet growth by condensation may include curvature and solution effects, |
---|
156 | ! initialisation of temporary particle array for resorting removed, |
---|
157 | ! particle attributes speed_x|y|z_sgs renamed rvar1|2|3, |
---|
158 | ! module wang_kernel_mod renamed lpm_collision_kernels_mod, |
---|
159 | ! wang_collision_kernel renamed wang_kernel |
---|
160 | ! |
---|
161 | ! |
---|
162 | ! Revision 1.1 1999/11/25 16:16:06 raasch |
---|
163 | ! Initial revision |
---|
164 | ! |
---|
165 | ! |
---|
166 | ! Description: |
---|
167 | ! ------------ |
---|
168 | !> |
---|
169 | !------------------------------------------------------------------------------! |
---|
170 | MODULE lagrangian_particle_model_mod |
---|
171 | |
---|
172 | USE, INTRINSIC :: ISO_C_BINDING |
---|
173 | |
---|
174 | USE arrays_3d, & |
---|
175 | ONLY: de_dx, de_dy, de_dz, dzw, zu, zw, ql_c, ql_v, ql_vp, hyp, & |
---|
176 | pt, q, exner, ql, diss, e, u, v, w, km, ql_1, ql_2, pt_p, q_p, & |
---|
177 | d_exner |
---|
178 | |
---|
179 | USE averaging, & |
---|
180 | ONLY: ql_c_av, pr_av, pc_av, ql_vp_av, ql_v_av |
---|
181 | |
---|
182 | USE basic_constants_and_equations_mod, & |
---|
183 | ONLY: molecular_weight_of_solute, molecular_weight_of_water, magnus, & |
---|
184 | pi, rd_d_rv, rho_l, r_v, rho_s, vanthoff, l_v, kappa, g, lv_d_cp |
---|
185 | |
---|
186 | USE control_parameters, & |
---|
187 | ONLY: bc_dirichlet_l, bc_dirichlet_n, bc_dirichlet_r, bc_dirichlet_s, & |
---|
188 | cloud_droplets, constant_flux_layer, current_timestep_number, & |
---|
189 | dt_3d, dt_3d_reached, humidity, & |
---|
190 | dt_3d_reached_l, dt_dopts, dz, initializing_actions, & |
---|
191 | message_string, molecular_viscosity, ocean_mode, & |
---|
192 | particle_maximum_age, iran, & |
---|
193 | simulated_time, topography, dopts_time_count, & |
---|
194 | time_since_reference_point, rho_surface, u_gtrans, v_gtrans, & |
---|
195 | dz_stretch_level, dz_stretch_level_start |
---|
196 | |
---|
197 | USE cpulog, & |
---|
198 | ONLY: cpu_log, log_point, log_point_s |
---|
199 | |
---|
200 | USE indices, & |
---|
201 | ONLY: nx, nxl, nxlg, nxrg, nxr, ny, nyn, nys, nyng, nysg, nz, nzb, & |
---|
202 | nzb_max, nzt, wall_flags_0,nbgp, ngp_2dh_outer |
---|
203 | |
---|
204 | USE kinds |
---|
205 | |
---|
206 | USE pegrid |
---|
207 | |
---|
208 | USE particle_attributes |
---|
209 | |
---|
210 | USE pmc_particle_interface, & |
---|
211 | ONLY: pmcp_c_get_particle_from_parent, pmcp_p_fill_particle_win, & |
---|
212 | pmcp_c_send_particle_to_parent, pmcp_p_empty_particle_win, & |
---|
213 | pmcp_p_delete_particles_in_fine_grid_area, pmcp_g_init, & |
---|
214 | pmcp_g_print_number_of_particles |
---|
215 | |
---|
216 | USE pmc_interface, & |
---|
217 | ONLY: nested_run |
---|
218 | |
---|
219 | USE grid_variables, & |
---|
220 | ONLY: ddx, dx, ddy, dy |
---|
221 | |
---|
222 | USE netcdf_interface, & |
---|
223 | ONLY: netcdf_data_format, netcdf_deflate, dopts_num, id_set_pts, & |
---|
224 | id_var_dopts, id_var_time_pts, nc_stat, & |
---|
225 | netcdf_handle_error |
---|
226 | |
---|
227 | USE random_function_mod, & |
---|
228 | ONLY: random_function |
---|
229 | |
---|
230 | USE statistics, & |
---|
231 | ONLY: hom |
---|
232 | |
---|
233 | USE surface_mod, & |
---|
234 | ONLY: get_topography_top_index_ji, surf_def_h, surf_lsm_h, surf_usm_h,& |
---|
235 | bc_h |
---|
236 | |
---|
237 | #if defined( __parallel ) && !defined( __mpifh ) |
---|
238 | USE MPI |
---|
239 | #endif |
---|
240 | |
---|
241 | #if defined( __parallel ) && defined( __mpifh ) |
---|
242 | INCLUDE "mpif.h" |
---|
243 | #endif |
---|
244 | |
---|
245 | #if defined( __netcdf ) |
---|
246 | USE NETCDF |
---|
247 | #endif |
---|
248 | |
---|
249 | |
---|
250 | USE arrays_3d, & |
---|
251 | ONLY: |
---|
252 | |
---|
253 | USE indices, & |
---|
254 | ONLY: nxl, nxr, nyn, nys, nzb, nzt, wall_flags_0 |
---|
255 | |
---|
256 | USE kinds |
---|
257 | |
---|
258 | USE pegrid |
---|
259 | |
---|
260 | IMPLICIT NONE |
---|
261 | |
---|
262 | CHARACTER(LEN=15) :: aero_species = 'nacl' !< aerosol species |
---|
263 | CHARACTER(LEN=15) :: aero_type = 'maritime' !< aerosol type |
---|
264 | CHARACTER(LEN=15) :: bc_par_lr = 'cyclic' !< left/right boundary condition |
---|
265 | CHARACTER(LEN=15) :: bc_par_ns = 'cyclic' !< north/south boundary condition |
---|
266 | CHARACTER(LEN=15) :: bc_par_b = 'reflect' !< bottom boundary condition |
---|
267 | CHARACTER(LEN=15) :: bc_par_t = 'absorb' !< top boundary condition |
---|
268 | CHARACTER(LEN=15) :: collision_kernel = 'none' !< collision kernel |
---|
269 | |
---|
270 | CHARACTER(LEN=5) :: splitting_function = 'gamma' !< function for calculation critical weighting factor |
---|
271 | CHARACTER(LEN=5) :: splitting_mode = 'const' !< splitting mode |
---|
272 | |
---|
273 | INTEGER(iwp) :: deleted_particles = 0 !< number of deleted particles per time step |
---|
274 | INTEGER(iwp) :: i_splitting_mode !< dummy for splitting mode |
---|
275 | INTEGER(iwp) :: iran_part = -1234567 !< number for random generator |
---|
276 | INTEGER(iwp) :: max_number_particles_per_gridbox = 100 !< namelist parameter (see documentation) |
---|
277 | INTEGER(iwp) :: isf !< dummy for splitting function |
---|
278 | INTEGER(iwp) :: number_particles_per_gridbox = -1 !< namelist parameter (see documentation) |
---|
279 | INTEGER(iwp) :: number_of_sublayers = 20 !< number of sublayers for particle velocities betwenn surface and first grid level |
---|
280 | INTEGER(iwp) :: offset_ocean_nzt = 0 !< in case of oceans runs, the vertical index calculations need an offset |
---|
281 | INTEGER(iwp) :: offset_ocean_nzt_m1 = 0 !< in case of oceans runs, the vertical index calculations need an offset |
---|
282 | INTEGER(iwp) :: particles_per_point = 1 !< namelist parameter (see documentation) |
---|
283 | INTEGER(iwp) :: radius_classes = 20 !< namelist parameter (see documentation) |
---|
284 | INTEGER(iwp) :: splitting_factor = 2 !< namelist parameter (see documentation) |
---|
285 | INTEGER(iwp) :: splitting_factor_max = 5 !< namelist parameter (see documentation) |
---|
286 | INTEGER(iwp) :: step_dealloc = 100 !< namelist parameter (see documentation) |
---|
287 | INTEGER(iwp) :: total_number_of_particles !< total number of particles in the whole model domain |
---|
288 | INTEGER(iwp) :: trlp_count_sum !< parameter for particle exchange of PEs |
---|
289 | INTEGER(iwp) :: trlp_count_recv_sum !< parameter for particle exchange of PEs |
---|
290 | INTEGER(iwp) :: trrp_count_sum !< parameter for particle exchange of PEs |
---|
291 | INTEGER(iwp) :: trrp_count_recv_sum !< parameter for particle exchange of PEs |
---|
292 | INTEGER(iwp) :: trsp_count_sum !< parameter for particle exchange of PEs |
---|
293 | INTEGER(iwp) :: trsp_count_recv_sum !< parameter for particle exchange of PEs |
---|
294 | INTEGER(iwp) :: trnp_count_sum !< parameter for particle exchange of PEs |
---|
295 | INTEGER(iwp) :: trnp_count_recv_sum !< parameter for particle exchange of PEs |
---|
296 | |
---|
297 | LOGICAL :: lagrangian_particle_model = .FALSE. !< namelist parameter (see documentation) |
---|
298 | LOGICAL :: curvature_solution_effects = .FALSE. !< namelist parameter (see documentation) |
---|
299 | LOGICAL :: deallocate_memory = .TRUE. !< namelist parameter (see documentation) |
---|
300 | LOGICAL :: hall_kernel = .FALSE. !< flag for collision kernel |
---|
301 | LOGICAL :: merging = .FALSE. !< namelist parameter (see documentation) |
---|
302 | LOGICAL :: random_start_position = .FALSE. !< namelist parameter (see documentation) |
---|
303 | LOGICAL :: read_particles_from_restartfile = .TRUE. !< namelist parameter (see documentation) |
---|
304 | LOGICAL :: seed_follows_topography = .FALSE. !< namelist parameter (see documentation) |
---|
305 | LOGICAL :: splitting = .FALSE. !< namelist parameter (see documentation) |
---|
306 | LOGICAL :: use_kernel_tables = .FALSE. !< parameter, which turns on the use of precalculated collision kernels |
---|
307 | LOGICAL :: write_particle_statistics = .FALSE. !< namelist parameter (see documentation) |
---|
308 | |
---|
309 | LOGICAL, DIMENSION(max_number_of_particle_groups) :: vertical_particle_advection = .TRUE. !< Switch for vertical particle transport |
---|
310 | |
---|
311 | REAL(wp) :: aero_weight = 1.0_wp !< namelist parameter (see documentation) |
---|
312 | REAL(wp) :: dt_min_part = 0.0002_wp !< minimum particle time step when SGS velocities are used (s) |
---|
313 | REAL(wp) :: dt_prel = 9999999.9_wp !< namelist parameter (see documentation) |
---|
314 | REAL(wp) :: dt_write_particle_data = 9999999.9_wp !< namelist parameter (see documentation) |
---|
315 | REAL(wp) :: end_time_prel = 9999999.9_wp !< namelist parameter (see documentation) |
---|
316 | REAL(wp) :: initial_weighting_factor = 1.0_wp !< namelist parameter (see documentation) |
---|
317 | REAL(wp) :: last_particle_release_time = 0.0_wp !< last time of particle release |
---|
318 | REAL(wp) :: log_sigma(3) = 1.0_wp !< namelist parameter (see documentation) |
---|
319 | REAL(wp) :: na(3) = 0.0_wp !< namelist parameter (see documentation) |
---|
320 | REAL(wp) :: number_concentration = -1.0_wp !< namelist parameter (see documentation) |
---|
321 | REAL(wp) :: radius_merge = 1.0E-7_wp !< namelist parameter (see documentation) |
---|
322 | REAL(wp) :: radius_split = 40.0E-6_wp !< namelist parameter (see documentation) |
---|
323 | REAL(wp) :: rm(3) = 1.0E-6_wp !< namelist parameter (see documentation) |
---|
324 | REAL(wp) :: sgs_wf_part !< parameter for sgs |
---|
325 | REAL(wp) :: time_write_particle_data = 0.0_wp !< write particle data at current time on file |
---|
326 | REAL(wp) :: weight_factor_merge = -1.0_wp !< namelist parameter (see documentation) |
---|
327 | REAL(wp) :: weight_factor_split = -1.0_wp !< namelist parameter (see documentation) |
---|
328 | REAL(wp) :: z0_av_global !< horizontal mean value of z0 |
---|
329 | |
---|
330 | REAL(wp) :: rclass_lbound !< |
---|
331 | REAL(wp) :: rclass_ubound !< |
---|
332 | |
---|
333 | REAL(wp), PARAMETER :: c_0 = 3.0_wp !< parameter for lagrangian timescale |
---|
334 | |
---|
335 | REAL(wp), DIMENSION(max_number_of_particle_groups) :: density_ratio = 9999999.9_wp !< namelist parameter (see documentation) |
---|
336 | REAL(wp), DIMENSION(max_number_of_particle_groups) :: pdx = 9999999.9_wp !< namelist parameter (see documentation) |
---|
337 | REAL(wp), DIMENSION(max_number_of_particle_groups) :: pdy = 9999999.9_wp !< namelist parameter (see documentation) |
---|
338 | REAL(wp), DIMENSION(max_number_of_particle_groups) :: pdz = 9999999.9_wp !< namelist parameter (see documentation) |
---|
339 | REAL(wp), DIMENSION(max_number_of_particle_groups) :: psb = 9999999.9_wp !< namelist parameter (see documentation) |
---|
340 | REAL(wp), DIMENSION(max_number_of_particle_groups) :: psl = 9999999.9_wp !< namelist parameter (see documentation) |
---|
341 | REAL(wp), DIMENSION(max_number_of_particle_groups) :: psn = 9999999.9_wp !< namelist parameter (see documentation) |
---|
342 | REAL(wp), DIMENSION(max_number_of_particle_groups) :: psr = 9999999.9_wp !< namelist parameter (see documentation) |
---|
343 | REAL(wp), DIMENSION(max_number_of_particle_groups) :: pss = 9999999.9_wp !< namelist parameter (see documentation) |
---|
344 | REAL(wp), DIMENSION(max_number_of_particle_groups) :: pst = 9999999.9_wp !< namelist parameter (see documentation). |
---|
345 | REAL(wp), DIMENSION(max_number_of_particle_groups) :: radius = 9999999.9_wp !< namelist parameter (see documentation) |
---|
346 | |
---|
347 | REAL(wp), DIMENSION(:), ALLOCATABLE :: log_z_z0 !< Precalculate LOG(z/z0) |
---|
348 | |
---|
349 | INTEGER(iwp), PARAMETER :: NR_2_direction_move = 10000 !< |
---|
350 | INTEGER(iwp) :: nr_move_north !< |
---|
351 | INTEGER(iwp) :: nr_move_south !< |
---|
352 | |
---|
353 | TYPE(particle_type), DIMENSION(:), ALLOCATABLE :: move_also_north |
---|
354 | TYPE(particle_type), DIMENSION(:), ALLOCATABLE :: move_also_south |
---|
355 | |
---|
356 | REAL(wp) :: epsilon_collision !< |
---|
357 | REAL(wp) :: urms !< |
---|
358 | |
---|
359 | REAL(wp), DIMENSION(:), ALLOCATABLE :: epsclass !< dissipation rate class |
---|
360 | REAL(wp), DIMENSION(:), ALLOCATABLE :: radclass !< radius class |
---|
361 | REAL(wp), DIMENSION(:), ALLOCATABLE :: winf !< |
---|
362 | |
---|
363 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: ec !< |
---|
364 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: ecf !< |
---|
365 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: gck !< |
---|
366 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: hkernel !< |
---|
367 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: hwratio !< |
---|
368 | |
---|
369 | REAL(wp), DIMENSION(:,:,:), ALLOCATABLE :: ckernel !< |
---|
370 | |
---|
371 | INTEGER(iwp), PARAMETER :: PHASE_INIT = 1 !< |
---|
372 | INTEGER(iwp), PARAMETER, PUBLIC :: PHASE_RELEASE = 2 !< |
---|
373 | |
---|
374 | SAVE |
---|
375 | |
---|
376 | PRIVATE |
---|
377 | |
---|
378 | PUBLIC lpm_parin, & |
---|
379 | lpm_header, & |
---|
380 | lpm_init_arrays,& |
---|
381 | lpm_init, & |
---|
382 | lpm_actions, & |
---|
383 | lpm_data_output_ptseries, & |
---|
384 | lpm_interaction_droplets_ptq, & |
---|
385 | lpm_rrd_local_particles, & |
---|
386 | lpm_wrd_local, & |
---|
387 | lpm_rrd_global, & |
---|
388 | lpm_wrd_global, & |
---|
389 | lpm_rrd_local, & |
---|
390 | lpm_check_parameters |
---|
391 | |
---|
392 | PUBLIC lagrangian_particle_model |
---|
393 | |
---|
394 | INTERFACE lpm_check_parameters |
---|
395 | MODULE PROCEDURE lpm_check_parameters |
---|
396 | END INTERFACE lpm_check_parameters |
---|
397 | |
---|
398 | INTERFACE lpm_parin |
---|
399 | MODULE PROCEDURE lpm_parin |
---|
400 | END INTERFACE lpm_parin |
---|
401 | |
---|
402 | INTERFACE lpm_header |
---|
403 | MODULE PROCEDURE lpm_header |
---|
404 | END INTERFACE lpm_header |
---|
405 | |
---|
406 | INTERFACE lpm_init_arrays |
---|
407 | MODULE PROCEDURE lpm_init_arrays |
---|
408 | END INTERFACE lpm_init_arrays |
---|
409 | |
---|
410 | INTERFACE lpm_init |
---|
411 | MODULE PROCEDURE lpm_init |
---|
412 | END INTERFACE lpm_init |
---|
413 | |
---|
414 | INTERFACE lpm_actions |
---|
415 | MODULE PROCEDURE lpm_actions |
---|
416 | END INTERFACE lpm_actions |
---|
417 | |
---|
418 | INTERFACE lpm_data_output_ptseries |
---|
419 | MODULE PROCEDURE lpm_data_output_ptseries |
---|
420 | END INTERFACE |
---|
421 | |
---|
422 | INTERFACE lpm_rrd_local_particles |
---|
423 | MODULE PROCEDURE lpm_rrd_local_particles |
---|
424 | END INTERFACE lpm_rrd_local_particles |
---|
425 | |
---|
426 | INTERFACE lpm_rrd_global |
---|
427 | MODULE PROCEDURE lpm_rrd_global |
---|
428 | END INTERFACE lpm_rrd_global |
---|
429 | |
---|
430 | INTERFACE lpm_rrd_local |
---|
431 | MODULE PROCEDURE lpm_rrd_local |
---|
432 | END INTERFACE lpm_rrd_local |
---|
433 | |
---|
434 | INTERFACE lpm_wrd_local |
---|
435 | MODULE PROCEDURE lpm_wrd_local |
---|
436 | END INTERFACE lpm_wrd_local |
---|
437 | |
---|
438 | INTERFACE lpm_wrd_global |
---|
439 | MODULE PROCEDURE lpm_wrd_global |
---|
440 | END INTERFACE lpm_wrd_global |
---|
441 | |
---|
442 | INTERFACE lpm_advec |
---|
443 | MODULE PROCEDURE lpm_advec |
---|
444 | END INTERFACE lpm_advec |
---|
445 | |
---|
446 | INTERFACE lpm_calc_liquid_water_content |
---|
447 | MODULE PROCEDURE lpm_calc_liquid_water_content |
---|
448 | END INTERFACE |
---|
449 | |
---|
450 | INTERFACE lpm_interaction_droplets_ptq |
---|
451 | MODULE PROCEDURE lpm_interaction_droplets_ptq |
---|
452 | MODULE PROCEDURE lpm_interaction_droplets_ptq_ij |
---|
453 | END INTERFACE lpm_interaction_droplets_ptq |
---|
454 | |
---|
455 | INTERFACE lpm_boundary_conds |
---|
456 | MODULE PROCEDURE lpm_boundary_conds |
---|
457 | END INTERFACE lpm_boundary_conds |
---|
458 | |
---|
459 | INTERFACE lpm_droplet_condensation |
---|
460 | MODULE PROCEDURE lpm_droplet_condensation |
---|
461 | END INTERFACE |
---|
462 | |
---|
463 | INTERFACE lpm_droplet_collision |
---|
464 | MODULE PROCEDURE lpm_droplet_collision |
---|
465 | END INTERFACE lpm_droplet_collision |
---|
466 | |
---|
467 | INTERFACE lpm_init_kernels |
---|
468 | MODULE PROCEDURE lpm_init_kernels |
---|
469 | END INTERFACE lpm_init_kernels |
---|
470 | |
---|
471 | INTERFACE lpm_splitting |
---|
472 | MODULE PROCEDURE lpm_splitting |
---|
473 | END INTERFACE lpm_splitting |
---|
474 | |
---|
475 | INTERFACE lpm_merging |
---|
476 | MODULE PROCEDURE lpm_merging |
---|
477 | END INTERFACE lpm_merging |
---|
478 | |
---|
479 | INTERFACE lpm_exchange_horiz |
---|
480 | MODULE PROCEDURE lpm_exchange_horiz |
---|
481 | END INTERFACE lpm_exchange_horiz |
---|
482 | |
---|
483 | INTERFACE lpm_move_particle |
---|
484 | MODULE PROCEDURE lpm_move_particle |
---|
485 | END INTERFACE lpm_move_particle |
---|
486 | |
---|
487 | INTERFACE realloc_particles_array |
---|
488 | MODULE PROCEDURE realloc_particles_array |
---|
489 | END INTERFACE realloc_particles_array |
---|
490 | |
---|
491 | INTERFACE dealloc_particles_array |
---|
492 | MODULE PROCEDURE dealloc_particles_array |
---|
493 | END INTERFACE dealloc_particles_array |
---|
494 | |
---|
495 | INTERFACE lpm_sort_in_subboxes |
---|
496 | MODULE PROCEDURE lpm_sort_in_subboxes |
---|
497 | END INTERFACE lpm_sort_in_subboxes |
---|
498 | |
---|
499 | INTERFACE lpm_sort_timeloop_done |
---|
500 | MODULE PROCEDURE lpm_sort_timeloop_done |
---|
501 | END INTERFACE lpm_sort_timeloop_done |
---|
502 | |
---|
503 | INTERFACE lpm_pack |
---|
504 | MODULE PROCEDURE lpm_pack |
---|
505 | END INTERFACE lpm_pack |
---|
506 | |
---|
507 | CONTAINS |
---|
508 | |
---|
509 | |
---|
510 | !------------------------------------------------------------------------------! |
---|
511 | ! Description: |
---|
512 | ! ------------ |
---|
513 | !> Parin for &particle_parameters for the Lagrangian particle model |
---|
514 | !------------------------------------------------------------------------------! |
---|
515 | SUBROUTINE lpm_parin |
---|
516 | |
---|
517 | CHARACTER (LEN=80) :: line !< |
---|
518 | |
---|
519 | NAMELIST /particles_par/ & |
---|
520 | aero_species, & |
---|
521 | aero_type, & |
---|
522 | aero_weight, & |
---|
523 | alloc_factor, & |
---|
524 | bc_par_b, & |
---|
525 | bc_par_lr, & |
---|
526 | bc_par_ns, & |
---|
527 | bc_par_t, & |
---|
528 | collision_kernel, & |
---|
529 | curvature_solution_effects, & |
---|
530 | deallocate_memory, & |
---|
531 | density_ratio, & |
---|
532 | dissipation_classes, & |
---|
533 | dt_dopts, & |
---|
534 | dt_min_part, & |
---|
535 | dt_prel, & |
---|
536 | dt_write_particle_data, & |
---|
537 | end_time_prel, & |
---|
538 | initial_weighting_factor, & |
---|
539 | log_sigma, & |
---|
540 | max_number_particles_per_gridbox, & |
---|
541 | merging, & |
---|
542 | na, & |
---|
543 | number_concentration, & |
---|
544 | number_of_particle_groups, & |
---|
545 | number_particles_per_gridbox, & |
---|
546 | particles_per_point, & |
---|
547 | particle_advection_start, & |
---|
548 | particle_maximum_age, & |
---|
549 | pdx, & |
---|
550 | pdy, & |
---|
551 | pdz, & |
---|
552 | psb, & |
---|
553 | psl, & |
---|
554 | psn, & |
---|
555 | psr, & |
---|
556 | pss, & |
---|
557 | pst, & |
---|
558 | radius, & |
---|
559 | radius_classes, & |
---|
560 | radius_merge, & |
---|
561 | radius_split, & |
---|
562 | random_start_position, & |
---|
563 | read_particles_from_restartfile, & |
---|
564 | rm, & |
---|
565 | seed_follows_topography, & |
---|
566 | splitting, & |
---|
567 | splitting_factor, & |
---|
568 | splitting_factor_max, & |
---|
569 | splitting_function, & |
---|
570 | splitting_mode, & |
---|
571 | step_dealloc, & |
---|
572 | use_sgs_for_particles, & |
---|
573 | vertical_particle_advection, & |
---|
574 | weight_factor_merge, & |
---|
575 | weight_factor_split, & |
---|
576 | write_particle_statistics |
---|
577 | |
---|
578 | NAMELIST /particle_parameters/ & |
---|
579 | aero_species, & |
---|
580 | aero_type, & |
---|
581 | aero_weight, & |
---|
582 | alloc_factor, & |
---|
583 | bc_par_b, & |
---|
584 | bc_par_lr, & |
---|
585 | bc_par_ns, & |
---|
586 | bc_par_t, & |
---|
587 | collision_kernel, & |
---|
588 | curvature_solution_effects, & |
---|
589 | deallocate_memory, & |
---|
590 | density_ratio, & |
---|
591 | dissipation_classes, & |
---|
592 | dt_dopts, & |
---|
593 | dt_min_part, & |
---|
594 | dt_prel, & |
---|
595 | dt_write_particle_data, & |
---|
596 | end_time_prel, & |
---|
597 | initial_weighting_factor, & |
---|
598 | log_sigma, & |
---|
599 | max_number_particles_per_gridbox, & |
---|
600 | merging, & |
---|
601 | na, & |
---|
602 | number_concentration, & |
---|
603 | number_of_particle_groups, & |
---|
604 | number_particles_per_gridbox, & |
---|
605 | particles_per_point, & |
---|
606 | particle_advection_start, & |
---|
607 | particle_maximum_age, & |
---|
608 | pdx, & |
---|
609 | pdy, & |
---|
610 | pdz, & |
---|
611 | psb, & |
---|
612 | psl, & |
---|
613 | psn, & |
---|
614 | psr, & |
---|
615 | pss, & |
---|
616 | pst, & |
---|
617 | radius, & |
---|
618 | radius_classes, & |
---|
619 | radius_merge, & |
---|
620 | radius_split, & |
---|
621 | random_start_position, & |
---|
622 | read_particles_from_restartfile, & |
---|
623 | rm, & |
---|
624 | seed_follows_topography, & |
---|
625 | splitting, & |
---|
626 | splitting_factor, & |
---|
627 | splitting_factor_max, & |
---|
628 | splitting_function, & |
---|
629 | splitting_mode, & |
---|
630 | step_dealloc, & |
---|
631 | use_sgs_for_particles, & |
---|
632 | vertical_particle_advection, & |
---|
633 | weight_factor_merge, & |
---|
634 | weight_factor_split, & |
---|
635 | write_particle_statistics |
---|
636 | |
---|
637 | ! |
---|
638 | !-- Position the namelist-file at the beginning (it was already opened in |
---|
639 | !-- parin), search for the namelist-group of the package and position the |
---|
640 | !-- file at this line. Do the same for each optionally used package. |
---|
641 | line = ' ' |
---|
642 | |
---|
643 | ! |
---|
644 | !-- Try to find particles package |
---|
645 | REWIND ( 11 ) |
---|
646 | line = ' ' |
---|
647 | DO WHILE ( INDEX( line, '&particle_parameters' ) == 0 ) |
---|
648 | READ ( 11, '(A)', END=12 ) line |
---|
649 | ENDDO |
---|
650 | BACKSPACE ( 11 ) |
---|
651 | ! |
---|
652 | !-- Read user-defined namelist |
---|
653 | READ ( 11, particle_parameters, ERR = 10 ) |
---|
654 | ! |
---|
655 | !-- Set flag that indicates that particles are switched on |
---|
656 | particle_advection = .TRUE. |
---|
657 | |
---|
658 | GOTO 14 |
---|
659 | |
---|
660 | 10 BACKSPACE( 11 ) |
---|
661 | READ( 11 , '(A)') line |
---|
662 | CALL parin_fail_message( 'particle_parameters', line ) |
---|
663 | ! |
---|
664 | !-- Try to find particles package (old namelist) |
---|
665 | 12 REWIND ( 11 ) |
---|
666 | line = ' ' |
---|
667 | DO WHILE ( INDEX( line, '&particles_par' ) == 0 ) |
---|
668 | READ ( 11, '(A)', END=14 ) line |
---|
669 | ENDDO |
---|
670 | BACKSPACE ( 11 ) |
---|
671 | ! |
---|
672 | !-- Read user-defined namelist |
---|
673 | READ ( 11, particles_par, ERR = 13, END = 14 ) |
---|
674 | |
---|
675 | message_string = 'namelist particles_par is deprecated and will be ' // & |
---|
676 | 'removed in near future. Please use namelist ' // & |
---|
677 | 'particle_parameters instead' |
---|
678 | CALL message( 'package_parin', 'PA0487', 0, 1, 0, 6, 0 ) |
---|
679 | |
---|
680 | ! |
---|
681 | !-- Set flag that indicates that particles are switched on |
---|
682 | particle_advection = .TRUE. |
---|
683 | |
---|
684 | GOTO 14 |
---|
685 | |
---|
686 | 13 BACKSPACE( 11 ) |
---|
687 | READ( 11 , '(A)') line |
---|
688 | CALL parin_fail_message( 'particles_par', line ) |
---|
689 | |
---|
690 | 14 CONTINUE |
---|
691 | |
---|
692 | END SUBROUTINE lpm_parin |
---|
693 | |
---|
694 | !------------------------------------------------------------------------------! |
---|
695 | ! Description: |
---|
696 | ! ------------ |
---|
697 | !> Writes used particle attributes in header file. |
---|
698 | !------------------------------------------------------------------------------! |
---|
699 | SUBROUTINE lpm_header ( io ) |
---|
700 | |
---|
701 | CHARACTER (LEN=40) :: output_format !< netcdf format |
---|
702 | |
---|
703 | INTEGER(iwp) :: i !< |
---|
704 | INTEGER(iwp), INTENT(IN) :: io !< Unit of the output file |
---|
705 | |
---|
706 | |
---|
707 | IF ( humidity .AND. cloud_droplets ) THEN |
---|
708 | WRITE ( io, 433 ) |
---|
709 | IF ( curvature_solution_effects ) WRITE ( io, 434 ) |
---|
710 | IF ( collision_kernel /= 'none' ) THEN |
---|
711 | WRITE ( io, 435 ) TRIM( collision_kernel ) |
---|
712 | IF ( collision_kernel(6:9) == 'fast' ) THEN |
---|
713 | WRITE ( io, 436 ) radius_classes, dissipation_classes |
---|
714 | ENDIF |
---|
715 | ELSE |
---|
716 | WRITE ( io, 437 ) |
---|
717 | ENDIF |
---|
718 | ENDIF |
---|
719 | |
---|
720 | IF ( particle_advection ) THEN |
---|
721 | ! |
---|
722 | !-- Particle attributes |
---|
723 | WRITE ( io, 480 ) particle_advection_start, dt_prel, bc_par_lr, & |
---|
724 | bc_par_ns, bc_par_b, bc_par_t, particle_maximum_age, & |
---|
725 | end_time_prel |
---|
726 | IF ( use_sgs_for_particles ) WRITE ( io, 488 ) dt_min_part |
---|
727 | IF ( random_start_position ) WRITE ( io, 481 ) |
---|
728 | IF ( seed_follows_topography ) WRITE ( io, 496 ) |
---|
729 | IF ( particles_per_point > 1 ) WRITE ( io, 489 ) particles_per_point |
---|
730 | WRITE ( io, 495 ) total_number_of_particles |
---|
731 | IF ( dt_write_particle_data /= 9999999.9_wp ) THEN |
---|
732 | WRITE ( io, 485 ) dt_write_particle_data |
---|
733 | IF ( netcdf_data_format > 1 ) THEN |
---|
734 | output_format = 'netcdf (64 bit offset) and binary' |
---|
735 | ELSE |
---|
736 | output_format = 'netcdf and binary' |
---|
737 | ENDIF |
---|
738 | IF ( netcdf_deflate == 0 ) THEN |
---|
739 | WRITE ( io, 344 ) output_format |
---|
740 | ELSE |
---|
741 | WRITE ( io, 354 ) TRIM( output_format ), netcdf_deflate |
---|
742 | ENDIF |
---|
743 | ENDIF |
---|
744 | IF ( dt_dopts /= 9999999.9_wp ) WRITE ( io, 494 ) dt_dopts |
---|
745 | IF ( write_particle_statistics ) WRITE ( io, 486 ) |
---|
746 | |
---|
747 | WRITE ( io, 487 ) number_of_particle_groups |
---|
748 | |
---|
749 | DO i = 1, number_of_particle_groups |
---|
750 | IF ( i == 1 .AND. density_ratio(i) == 9999999.9_wp ) THEN |
---|
751 | WRITE ( io, 490 ) i, 0.0_wp |
---|
752 | WRITE ( io, 492 ) |
---|
753 | ELSE |
---|
754 | WRITE ( io, 490 ) i, radius(i) |
---|
755 | IF ( density_ratio(i) /= 0.0_wp ) THEN |
---|
756 | WRITE ( io, 491 ) density_ratio(i) |
---|
757 | ELSE |
---|
758 | WRITE ( io, 492 ) |
---|
759 | ENDIF |
---|
760 | ENDIF |
---|
761 | WRITE ( io, 493 ) psl(i), psr(i), pss(i), psn(i), psb(i), pst(i), & |
---|
762 | pdx(i), pdy(i), pdz(i) |
---|
763 | IF ( .NOT. vertical_particle_advection(i) ) WRITE ( io, 482 ) |
---|
764 | ENDDO |
---|
765 | |
---|
766 | ENDIF |
---|
767 | |
---|
768 | 344 FORMAT (' Output format: ',A/) |
---|
769 | 354 FORMAT (' Output format: ',A, ' compressed with level: ',I1/) |
---|
770 | |
---|
771 | 433 FORMAT (' Cloud droplets treated explicitly using the Lagrangian part', & |
---|
772 | 'icle model') |
---|
773 | 434 FORMAT (' Curvature and solution effecs are considered for growth of', & |
---|
774 | ' droplets < 1.0E-6 m') |
---|
775 | 435 FORMAT (' Droplet collision is handled by ',A,'-kernel') |
---|
776 | 436 FORMAT (' Fast kernel with fixed radius- and dissipation classes ', & |
---|
777 | 'are used'/ & |
---|
778 | ' number of radius classes: ',I3,' interval ', & |
---|
779 | '[1.0E-6,2.0E-4] m'/ & |
---|
780 | ' number of dissipation classes: ',I2,' interval ', & |
---|
781 | '[0,1000] cm**2/s**3') |
---|
782 | 437 FORMAT (' Droplet collision is switched off') |
---|
783 | |
---|
784 | 480 FORMAT (' Particles:'/ & |
---|
785 | ' ---------'// & |
---|
786 | ' Particle advection is active (switched on at t = ', F7.1, & |
---|
787 | ' s)'/ & |
---|
788 | ' Start of new particle generations every ',F6.1,' s'/ & |
---|
789 | ' Boundary conditions: left/right: ', A, ' north/south: ', A/& |
---|
790 | ' bottom: ', A, ' top: ', A/& |
---|
791 | ' Maximum particle age: ',F9.1,' s'/ & |
---|
792 | ' Advection stopped at t = ',F9.1,' s'/) |
---|
793 | 481 FORMAT (' Particles have random start positions'/) |
---|
794 | 482 FORMAT (' Particles are advected only horizontally'/) |
---|
795 | 485 FORMAT (' Particle data are written on file every ', F9.1, ' s') |
---|
796 | 486 FORMAT (' Particle statistics are written on file'/) |
---|
797 | 487 FORMAT (' Number of particle groups: ',I2/) |
---|
798 | 488 FORMAT (' SGS velocity components are used for particle advection'/ & |
---|
799 | ' minimum timestep for advection:', F8.5/) |
---|
800 | 489 FORMAT (' Number of particles simultaneously released at each ', & |
---|
801 | 'point: ', I5/) |
---|
802 | 490 FORMAT (' Particle group ',I2,':'/ & |
---|
803 | ' Particle radius: ',E10.3, 'm') |
---|
804 | 491 FORMAT (' Particle inertia is activated'/ & |
---|
805 | ' density_ratio (rho_fluid/rho_particle) =',F6.3/) |
---|
806 | 492 FORMAT (' Particles are advected only passively (no inertia)'/) |
---|
807 | 493 FORMAT (' Boundaries of particle source: x:',F8.1,' - ',F8.1,' m'/& |
---|
808 | ' y:',F8.1,' - ',F8.1,' m'/& |
---|
809 | ' z:',F8.1,' - ',F8.1,' m'/& |
---|
810 | ' Particle distances: dx = ',F8.1,' m dy = ',F8.1, & |
---|
811 | ' m dz = ',F8.1,' m'/) |
---|
812 | 494 FORMAT (' Output of particle time series in NetCDF format every ', & |
---|
813 | F8.2,' s'/) |
---|
814 | 495 FORMAT (' Number of particles in total domain: ',I10/) |
---|
815 | 496 FORMAT (' Initial vertical particle positions are interpreted ', & |
---|
816 | 'as relative to the given topography') |
---|
817 | |
---|
818 | END SUBROUTINE lpm_header |
---|
819 | |
---|
820 | !------------------------------------------------------------------------------! |
---|
821 | ! Description: |
---|
822 | ! ------------ |
---|
823 | !> Writes used particle attributes in header file. |
---|
824 | !------------------------------------------------------------------------------! |
---|
825 | SUBROUTINE lpm_check_parameters |
---|
826 | |
---|
827 | ! |
---|
828 | !-- Collision kernels: |
---|
829 | SELECT CASE ( TRIM( collision_kernel ) ) |
---|
830 | |
---|
831 | CASE ( 'hall', 'hall_fast' ) |
---|
832 | hall_kernel = .TRUE. |
---|
833 | |
---|
834 | CASE ( 'wang', 'wang_fast' ) |
---|
835 | wang_kernel = .TRUE. |
---|
836 | |
---|
837 | CASE ( 'none' ) |
---|
838 | |
---|
839 | |
---|
840 | CASE DEFAULT |
---|
841 | message_string = 'unknown collision kernel: collision_kernel = "' // & |
---|
842 | TRIM( collision_kernel ) // '"' |
---|
843 | CALL message( 'check_parameters', 'PA0350', 1, 2, 0, 6, 0 ) |
---|
844 | |
---|
845 | END SELECT |
---|
846 | IF ( collision_kernel(6:9) == 'fast' ) use_kernel_tables = .TRUE. |
---|
847 | |
---|
848 | END SUBROUTINE |
---|
849 | |
---|
850 | !------------------------------------------------------------------------------! |
---|
851 | ! Description: |
---|
852 | ! ------------ |
---|
853 | !> Initialize arrays for lpm |
---|
854 | !------------------------------------------------------------------------------! |
---|
855 | SUBROUTINE lpm_init_arrays |
---|
856 | |
---|
857 | IF ( cloud_droplets ) THEN |
---|
858 | ! |
---|
859 | !-- Liquid water content, change in liquid water content |
---|
860 | ALLOCATE ( ql_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
861 | ql_2(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
862 | ! |
---|
863 | !-- Real volume of particles (with weighting), volume of particles |
---|
864 | ALLOCATE ( ql_v(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
865 | ql_vp(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
866 | ENDIF |
---|
867 | |
---|
868 | ! |
---|
869 | !-- Initial assignment of the pointers |
---|
870 | IF ( cloud_droplets ) THEN |
---|
871 | ql => ql_1 |
---|
872 | ql_c => ql_2 |
---|
873 | ENDIF |
---|
874 | |
---|
875 | END SUBROUTINE lpm_init_arrays |
---|
876 | |
---|
877 | !------------------------------------------------------------------------------! |
---|
878 | ! Description: |
---|
879 | ! ------------ |
---|
880 | !> Initialize Lagrangian particle model |
---|
881 | !------------------------------------------------------------------------------! |
---|
882 | SUBROUTINE lpm_init |
---|
883 | |
---|
884 | INTEGER(iwp) :: i !< |
---|
885 | INTEGER(iwp) :: j !< |
---|
886 | INTEGER(iwp) :: k !< |
---|
887 | |
---|
888 | REAL(wp) :: div !< |
---|
889 | REAL(wp) :: height_int !< |
---|
890 | REAL(wp) :: height_p !< |
---|
891 | REAL(wp) :: z_p !< |
---|
892 | REAL(wp) :: z0_av_local !< |
---|
893 | |
---|
894 | ! |
---|
895 | !-- In case of oceans runs, the vertical index calculations need an offset, |
---|
896 | !-- because otherwise the k indices will become negative |
---|
897 | IF ( ocean_mode ) THEN |
---|
898 | offset_ocean_nzt = nzt |
---|
899 | offset_ocean_nzt_m1 = nzt - 1 |
---|
900 | ENDIF |
---|
901 | |
---|
902 | ! |
---|
903 | !-- Define block offsets for dividing a gridcell in 8 sub cells |
---|
904 | !-- See documentation for List of subgrid boxes |
---|
905 | !-- See pack_and_sort in lpm_pack_arrays.f90 for assignment of the subgrid boxes |
---|
906 | block_offset(0) = block_offset_def ( 0, 0, 0) |
---|
907 | block_offset(1) = block_offset_def ( 0, 0,-1) |
---|
908 | block_offset(2) = block_offset_def ( 0,-1, 0) |
---|
909 | block_offset(3) = block_offset_def ( 0,-1,-1) |
---|
910 | block_offset(4) = block_offset_def (-1, 0, 0) |
---|
911 | block_offset(5) = block_offset_def (-1, 0,-1) |
---|
912 | block_offset(6) = block_offset_def (-1,-1, 0) |
---|
913 | block_offset(7) = block_offset_def (-1,-1,-1) |
---|
914 | ! |
---|
915 | !-- Check the number of particle groups. |
---|
916 | IF ( number_of_particle_groups > max_number_of_particle_groups ) THEN |
---|
917 | WRITE( message_string, * ) 'max_number_of_particle_groups =', & |
---|
918 | max_number_of_particle_groups , & |
---|
919 | '&number_of_particle_groups reset to ', & |
---|
920 | max_number_of_particle_groups |
---|
921 | CALL message( 'lpm_init', 'PA0213', 0, 1, 0, 6, 0 ) |
---|
922 | number_of_particle_groups = max_number_of_particle_groups |
---|
923 | ENDIF |
---|
924 | ! |
---|
925 | !-- Check if downward-facing walls exist. This case, reflection boundary |
---|
926 | !-- conditions (as well as subgrid-scale velocities) may do not work |
---|
927 | !-- propably (not realized so far). |
---|
928 | IF ( surf_def_h(1)%ns >= 1 ) THEN |
---|
929 | WRITE( message_string, * ) 'Overhanging topography do not work '// & |
---|
930 | 'with particles' |
---|
931 | CALL message( 'lpm_init', 'PA0212', 0, 1, 0, 6, 0 ) |
---|
932 | |
---|
933 | ENDIF |
---|
934 | |
---|
935 | ! |
---|
936 | !-- Set default start positions, if necessary |
---|
937 | IF ( psl(1) == 9999999.9_wp ) psl(1) = 0.0_wp |
---|
938 | IF ( psr(1) == 9999999.9_wp ) psr(1) = ( nx +1 ) * dx |
---|
939 | IF ( pss(1) == 9999999.9_wp ) pss(1) = 0.0_wp |
---|
940 | IF ( psn(1) == 9999999.9_wp ) psn(1) = ( ny +1 ) * dy |
---|
941 | IF ( psb(1) == 9999999.9_wp ) psb(1) = zu(nz/2) |
---|
942 | IF ( pst(1) == 9999999.9_wp ) pst(1) = psb(1) |
---|
943 | |
---|
944 | IF ( pdx(1) == 9999999.9_wp .OR. pdx(1) == 0.0_wp ) pdx(1) = dx |
---|
945 | IF ( pdy(1) == 9999999.9_wp .OR. pdy(1) == 0.0_wp ) pdy(1) = dy |
---|
946 | IF ( pdz(1) == 9999999.9_wp .OR. pdz(1) == 0.0_wp ) pdz(1) = zu(2) - zu(1) |
---|
947 | |
---|
948 | ! |
---|
949 | !-- If number_particles_per_gridbox is set, the parametres pdx, pdy and pdz are |
---|
950 | !-- calculated diagnostically. Therfore an isotropic distribution is prescribed. |
---|
951 | IF ( number_particles_per_gridbox /= -1 .AND. & |
---|
952 | number_particles_per_gridbox >= 1 ) THEN |
---|
953 | pdx(1) = (( dx * dy * ( zu(2) - zu(1) ) ) / & |
---|
954 | REAL(number_particles_per_gridbox))**0.3333333_wp |
---|
955 | ! |
---|
956 | !-- Ensure a smooth value (two significant digits) of distance between |
---|
957 | !-- particles (pdx, pdy, pdz). |
---|
958 | div = 1000.0_wp |
---|
959 | DO WHILE ( pdx(1) < div ) |
---|
960 | div = div / 10.0_wp |
---|
961 | ENDDO |
---|
962 | pdx(1) = NINT( pdx(1) * 100.0_wp / div ) * div / 100.0_wp |
---|
963 | pdy(1) = pdx(1) |
---|
964 | pdz(1) = pdx(1) |
---|
965 | |
---|
966 | ENDIF |
---|
967 | |
---|
968 | DO j = 2, number_of_particle_groups |
---|
969 | IF ( psl(j) == 9999999.9_wp ) psl(j) = psl(j-1) |
---|
970 | IF ( psr(j) == 9999999.9_wp ) psr(j) = psr(j-1) |
---|
971 | IF ( pss(j) == 9999999.9_wp ) pss(j) = pss(j-1) |
---|
972 | IF ( psn(j) == 9999999.9_wp ) psn(j) = psn(j-1) |
---|
973 | IF ( psb(j) == 9999999.9_wp ) psb(j) = psb(j-1) |
---|
974 | IF ( pst(j) == 9999999.9_wp ) pst(j) = pst(j-1) |
---|
975 | IF ( pdx(j) == 9999999.9_wp .OR. pdx(j) == 0.0_wp ) pdx(j) = pdx(j-1) |
---|
976 | IF ( pdy(j) == 9999999.9_wp .OR. pdy(j) == 0.0_wp ) pdy(j) = pdy(j-1) |
---|
977 | IF ( pdz(j) == 9999999.9_wp .OR. pdz(j) == 0.0_wp ) pdz(j) = pdz(j-1) |
---|
978 | ENDDO |
---|
979 | |
---|
980 | ! |
---|
981 | !-- Allocate arrays required for calculating particle SGS velocities. |
---|
982 | !-- Initialize prefactor required for stoachastic Weil equation. |
---|
983 | IF ( use_sgs_for_particles .AND. .NOT. cloud_droplets ) THEN |
---|
984 | ALLOCATE( de_dx(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
985 | de_dy(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
986 | de_dz(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
987 | |
---|
988 | de_dx = 0.0_wp |
---|
989 | de_dy = 0.0_wp |
---|
990 | de_dz = 0.0_wp |
---|
991 | |
---|
992 | sgs_wf_part = 1.0_wp / 3.0_wp |
---|
993 | ENDIF |
---|
994 | |
---|
995 | ! |
---|
996 | !-- Allocate array required for logarithmic vertical interpolation of |
---|
997 | !-- horizontal particle velocities between the surface and the first vertical |
---|
998 | !-- grid level. In order to avoid repeated CPU cost-intensive CALLS of |
---|
999 | !-- intrinsic FORTRAN procedure LOG(z/z0), LOG(z/z0) is precalculated for |
---|
1000 | !-- several heights. Splitting into 20 sublayers turned out to be sufficient. |
---|
1001 | !-- To obtain exact height levels of particles, linear interpolation is applied |
---|
1002 | !-- (see lpm_advec.f90). |
---|
1003 | IF ( constant_flux_layer ) THEN |
---|
1004 | |
---|
1005 | ALLOCATE ( log_z_z0(0:number_of_sublayers) ) |
---|
1006 | z_p = zu(nzb+1) - zw(nzb) |
---|
1007 | |
---|
1008 | ! |
---|
1009 | !-- Calculate horizontal mean value of z0 used for logartihmic |
---|
1010 | !-- interpolation. Note: this is not exact for heterogeneous z0. |
---|
1011 | !-- However, sensitivity studies showed that the effect is |
---|
1012 | !-- negligible. |
---|
1013 | z0_av_local = SUM( surf_def_h(0)%z0 ) + SUM( surf_lsm_h%z0 ) + & |
---|
1014 | SUM( surf_usm_h%z0 ) |
---|
1015 | z0_av_global = 0.0_wp |
---|
1016 | |
---|
1017 | #if defined( __parallel ) |
---|
1018 | CALL MPI_ALLREDUCE(z0_av_local, z0_av_global, 1, MPI_REAL, MPI_SUM, & |
---|
1019 | comm2d, ierr ) |
---|
1020 | #else |
---|
1021 | z0_av_global = z0_av_local |
---|
1022 | #endif |
---|
1023 | |
---|
1024 | z0_av_global = z0_av_global / ( ( ny + 1 ) * ( nx + 1 ) ) |
---|
1025 | ! |
---|
1026 | !-- Horizontal wind speed is zero below and at z0 |
---|
1027 | log_z_z0(0) = 0.0_wp |
---|
1028 | ! |
---|
1029 | !-- Calculate vertical depth of the sublayers |
---|
1030 | height_int = ( z_p - z0_av_global ) / REAL( number_of_sublayers, KIND=wp ) |
---|
1031 | ! |
---|
1032 | !-- Precalculate LOG(z/z0) |
---|
1033 | height_p = z0_av_global |
---|
1034 | DO k = 1, number_of_sublayers |
---|
1035 | |
---|
1036 | height_p = height_p + height_int |
---|
1037 | log_z_z0(k) = LOG( height_p / z0_av_global ) |
---|
1038 | |
---|
1039 | ENDDO |
---|
1040 | |
---|
1041 | ENDIF |
---|
1042 | |
---|
1043 | ! |
---|
1044 | !-- Check boundary condition and set internal variables |
---|
1045 | SELECT CASE ( bc_par_b ) |
---|
1046 | |
---|
1047 | CASE ( 'absorb' ) |
---|
1048 | ibc_par_b = 1 |
---|
1049 | |
---|
1050 | CASE ( 'reflect' ) |
---|
1051 | ibc_par_b = 2 |
---|
1052 | |
---|
1053 | CASE DEFAULT |
---|
1054 | WRITE( message_string, * ) 'unknown boundary condition ', & |
---|
1055 | 'bc_par_b = "', TRIM( bc_par_b ), '"' |
---|
1056 | CALL message( 'lpm_init', 'PA0217', 1, 2, 0, 6, 0 ) |
---|
1057 | |
---|
1058 | END SELECT |
---|
1059 | SELECT CASE ( bc_par_t ) |
---|
1060 | |
---|
1061 | CASE ( 'absorb' ) |
---|
1062 | ibc_par_t = 1 |
---|
1063 | |
---|
1064 | CASE ( 'reflect' ) |
---|
1065 | ibc_par_t = 2 |
---|
1066 | |
---|
1067 | CASE ( 'nested' ) |
---|
1068 | ibc_par_t = 3 |
---|
1069 | |
---|
1070 | CASE DEFAULT |
---|
1071 | WRITE( message_string, * ) 'unknown boundary condition ', & |
---|
1072 | 'bc_par_t = "', TRIM( bc_par_t ), '"' |
---|
1073 | CALL message( 'lpm_init', 'PA0218', 1, 2, 0, 6, 0 ) |
---|
1074 | |
---|
1075 | END SELECT |
---|
1076 | SELECT CASE ( bc_par_lr ) |
---|
1077 | |
---|
1078 | CASE ( 'cyclic' ) |
---|
1079 | ibc_par_lr = 0 |
---|
1080 | |
---|
1081 | CASE ( 'absorb' ) |
---|
1082 | ibc_par_lr = 1 |
---|
1083 | |
---|
1084 | CASE ( 'reflect' ) |
---|
1085 | ibc_par_lr = 2 |
---|
1086 | |
---|
1087 | CASE ( 'nested' ) |
---|
1088 | ibc_par_lr = 3 |
---|
1089 | |
---|
1090 | CASE DEFAULT |
---|
1091 | WRITE( message_string, * ) 'unknown boundary condition ', & |
---|
1092 | 'bc_par_lr = "', TRIM( bc_par_lr ), '"' |
---|
1093 | CALL message( 'lpm_init', 'PA0219', 1, 2, 0, 6, 0 ) |
---|
1094 | |
---|
1095 | END SELECT |
---|
1096 | SELECT CASE ( bc_par_ns ) |
---|
1097 | |
---|
1098 | CASE ( 'cyclic' ) |
---|
1099 | ibc_par_ns = 0 |
---|
1100 | |
---|
1101 | CASE ( 'absorb' ) |
---|
1102 | ibc_par_ns = 1 |
---|
1103 | |
---|
1104 | CASE ( 'reflect' ) |
---|
1105 | ibc_par_ns = 2 |
---|
1106 | |
---|
1107 | CASE ( 'nested' ) |
---|
1108 | ibc_par_ns = 3 |
---|
1109 | |
---|
1110 | CASE DEFAULT |
---|
1111 | WRITE( message_string, * ) 'unknown boundary condition ', & |
---|
1112 | 'bc_par_ns = "', TRIM( bc_par_ns ), '"' |
---|
1113 | CALL message( 'lpm_init', 'PA0220', 1, 2, 0, 6, 0 ) |
---|
1114 | |
---|
1115 | END SELECT |
---|
1116 | SELECT CASE ( splitting_mode ) |
---|
1117 | |
---|
1118 | CASE ( 'const' ) |
---|
1119 | i_splitting_mode = 1 |
---|
1120 | |
---|
1121 | CASE ( 'cl_av' ) |
---|
1122 | i_splitting_mode = 2 |
---|
1123 | |
---|
1124 | CASE ( 'gb_av' ) |
---|
1125 | i_splitting_mode = 3 |
---|
1126 | |
---|
1127 | CASE DEFAULT |
---|
1128 | WRITE( message_string, * ) 'unknown splitting_mode = "', & |
---|
1129 | TRIM( splitting_mode ), '"' |
---|
1130 | CALL message( 'lpm_init', 'PA0146', 1, 2, 0, 6, 0 ) |
---|
1131 | |
---|
1132 | END SELECT |
---|
1133 | SELECT CASE ( splitting_function ) |
---|
1134 | |
---|
1135 | CASE ( 'gamma' ) |
---|
1136 | isf = 1 |
---|
1137 | |
---|
1138 | CASE ( 'log' ) |
---|
1139 | isf = 2 |
---|
1140 | |
---|
1141 | CASE ( 'exp' ) |
---|
1142 | isf = 3 |
---|
1143 | |
---|
1144 | CASE DEFAULT |
---|
1145 | WRITE( message_string, * ) 'unknown splitting function = "', & |
---|
1146 | TRIM( splitting_function ), '"' |
---|
1147 | CALL message( 'lpm_init', 'PA0147', 1, 2, 0, 6, 0 ) |
---|
1148 | |
---|
1149 | END SELECT |
---|
1150 | ! |
---|
1151 | !-- Initialize collision kernels |
---|
1152 | IF ( collision_kernel /= 'none' ) CALL lpm_init_kernels |
---|
1153 | ! |
---|
1154 | !-- For the first model run of a possible job chain initialize the |
---|
1155 | !-- particles, otherwise read the particle data from restart file. |
---|
1156 | IF ( TRIM( initializing_actions ) == 'read_restart_data' & |
---|
1157 | .AND. read_particles_from_restartfile ) THEN |
---|
1158 | CALL lpm_rrd_local_particles |
---|
1159 | ELSE |
---|
1160 | ! |
---|
1161 | !-- Allocate particle arrays and set attributes of the initial set of |
---|
1162 | !-- particles, which can be also periodically released at later times. |
---|
1163 | ALLOCATE( prt_count(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
1164 | grid_particles(nzb+1:nzt,nys:nyn,nxl:nxr) ) |
---|
1165 | |
---|
1166 | number_of_particles = 0 |
---|
1167 | prt_count = 0 |
---|
1168 | ! |
---|
1169 | !-- initialize counter for particle IDs |
---|
1170 | grid_particles%id_counter = 1 |
---|
1171 | ! |
---|
1172 | !-- Initialize all particles with dummy values (otherwise errors may |
---|
1173 | !-- occur within restart runs). The reason for this is still not clear |
---|
1174 | !-- and may be presumably caused by errors in the respective user-interface. |
---|
1175 | zero_particle = particle_type( 0.0_wp, 0.0_wp, 0.0_wp, 0.0_wp, 0.0_wp, & |
---|
1176 | 0.0_wp, 0.0_wp, 0.0_wp, 0.0_wp, 0.0_wp, & |
---|
1177 | 0.0_wp, 0.0_wp, 0.0_wp, 0.0_wp, 0.0_wp, & |
---|
1178 | 0.0_wp, 0.0_wp, 0.0_wp, 0.0_wp, 0.0_wp, & |
---|
1179 | 0, 0, 0_idp, .FALSE., -1 ) |
---|
1180 | |
---|
1181 | particle_groups = particle_groups_type( 0.0_wp, 0.0_wp, 0.0_wp, 0.0_wp ) |
---|
1182 | ! |
---|
1183 | !-- Set values for the density ratio and radius for all particle |
---|
1184 | !-- groups, if necessary |
---|
1185 | IF ( density_ratio(1) == 9999999.9_wp ) density_ratio(1) = 0.0_wp |
---|
1186 | IF ( radius(1) == 9999999.9_wp ) radius(1) = 0.0_wp |
---|
1187 | DO i = 2, number_of_particle_groups |
---|
1188 | IF ( density_ratio(i) == 9999999.9_wp ) THEN |
---|
1189 | density_ratio(i) = density_ratio(i-1) |
---|
1190 | ENDIF |
---|
1191 | IF ( radius(i) == 9999999.9_wp ) radius(i) = radius(i-1) |
---|
1192 | ENDDO |
---|
1193 | |
---|
1194 | DO i = 1, number_of_particle_groups |
---|
1195 | IF ( density_ratio(i) /= 0.0_wp .AND. radius(i) == 0 ) THEN |
---|
1196 | WRITE( message_string, * ) 'particle group #', i, ' has a', & |
---|
1197 | 'density ratio /= 0 but radius = 0' |
---|
1198 | CALL message( 'lpm_init', 'PA0215', 1, 2, 0, 6, 0 ) |
---|
1199 | ENDIF |
---|
1200 | particle_groups(i)%density_ratio = density_ratio(i) |
---|
1201 | particle_groups(i)%radius = radius(i) |
---|
1202 | ENDDO |
---|
1203 | ! |
---|
1204 | !-- Set a seed value for the random number generator to be exclusively |
---|
1205 | !-- used for the particle code. The generated random numbers should be |
---|
1206 | !-- different on the different PEs. |
---|
1207 | iran_part = iran_part + myid |
---|
1208 | ! |
---|
1209 | !-- Create the particle set, and set the initial particles |
---|
1210 | CALL lpm_create_particle( phase_init ) |
---|
1211 | last_particle_release_time = particle_advection_start |
---|
1212 | ! |
---|
1213 | !-- User modification of initial particles |
---|
1214 | CALL user_lpm_init |
---|
1215 | ! |
---|
1216 | !-- Open file for statistical informations about particle conditions |
---|
1217 | IF ( write_particle_statistics ) THEN |
---|
1218 | CALL check_open( 80 ) |
---|
1219 | WRITE ( 80, 8000 ) current_timestep_number, simulated_time, & |
---|
1220 | number_of_particles |
---|
1221 | CALL close_file( 80 ) |
---|
1222 | ENDIF |
---|
1223 | |
---|
1224 | ENDIF |
---|
1225 | |
---|
1226 | IF ( nested_run ) CALL pmcp_g_init |
---|
1227 | ! |
---|
1228 | !-- To avoid programm abort, assign particles array to the local version of |
---|
1229 | !-- first grid cell |
---|
1230 | number_of_particles = prt_count(nzb+1,nys,nxl) |
---|
1231 | particles => grid_particles(nzb+1,nys,nxl)%particles(1:number_of_particles) |
---|
1232 | ! |
---|
1233 | !-- Formats |
---|
1234 | 8000 FORMAT (I6,1X,F7.2,4X,I10,71X,I10) |
---|
1235 | |
---|
1236 | END SUBROUTINE lpm_init |
---|
1237 | |
---|
1238 | !------------------------------------------------------------------------------! |
---|
1239 | ! Description: |
---|
1240 | ! ------------ |
---|
1241 | !> Create Lagrangian particles |
---|
1242 | !------------------------------------------------------------------------------! |
---|
1243 | SUBROUTINE lpm_create_particle (phase) |
---|
1244 | |
---|
1245 | INTEGER(iwp) :: alloc_size !< relative increase of allocated memory for particles |
---|
1246 | INTEGER(iwp) :: i !< loop variable ( particle groups ) |
---|
1247 | INTEGER(iwp) :: ip !< index variable along x |
---|
1248 | INTEGER(iwp) :: j !< loop variable ( particles per point ) |
---|
1249 | INTEGER(iwp) :: jp !< index variable along y |
---|
1250 | INTEGER(iwp) :: k !< index variable along z |
---|
1251 | INTEGER(iwp) :: k_surf !< index of surface grid point |
---|
1252 | INTEGER(iwp) :: kp !< index variable along z |
---|
1253 | INTEGER(iwp) :: loop_stride !< loop variable for initialization |
---|
1254 | INTEGER(iwp) :: n !< loop variable ( number of particles ) |
---|
1255 | INTEGER(iwp) :: new_size !< new size of allocated memory for particles |
---|
1256 | |
---|
1257 | INTEGER(iwp), INTENT(IN) :: phase !< mode of inititialization |
---|
1258 | |
---|
1259 | INTEGER(iwp), DIMENSION(nzb:nzt+1,nysg:nyng,nxlg:nxrg) :: local_count !< start address of new particle |
---|
1260 | INTEGER(iwp), DIMENSION(nzb:nzt+1,nysg:nyng,nxlg:nxrg) :: local_start !< start address of new particle |
---|
1261 | |
---|
1262 | LOGICAL :: first_stride !< flag for initialization |
---|
1263 | |
---|
1264 | REAL(wp) :: pos_x !< increment for particle position in x |
---|
1265 | REAL(wp) :: pos_y !< increment for particle position in y |
---|
1266 | REAL(wp) :: pos_z !< increment for particle position in z |
---|
1267 | REAL(wp) :: rand_contr !< dummy argument for random position |
---|
1268 | |
---|
1269 | TYPE(particle_type),TARGET :: tmp_particle !< temporary particle used for initialization |
---|
1270 | |
---|
1271 | ! |
---|
1272 | !-- Calculate particle positions and store particle attributes, if |
---|
1273 | !-- particle is situated on this PE |
---|
1274 | DO loop_stride = 1, 2 |
---|
1275 | first_stride = (loop_stride == 1) |
---|
1276 | IF ( first_stride ) THEN |
---|
1277 | local_count = 0 ! count number of particles |
---|
1278 | ELSE |
---|
1279 | local_count = prt_count ! Start address of new particles |
---|
1280 | ENDIF |
---|
1281 | |
---|
1282 | ! |
---|
1283 | !-- Calculate initial_weighting_factor diagnostically |
---|
1284 | IF ( number_concentration /= -1.0_wp .AND. number_concentration > 0.0_wp ) THEN |
---|
1285 | initial_weighting_factor = number_concentration * & |
---|
1286 | pdx(1) * pdy(1) * pdz(1) |
---|
1287 | END IF |
---|
1288 | |
---|
1289 | n = 0 |
---|
1290 | DO i = 1, number_of_particle_groups |
---|
1291 | pos_z = psb(i) |
---|
1292 | DO WHILE ( pos_z <= pst(i) ) |
---|
1293 | IF ( pos_z >= zw(0) .AND. pos_z < zw(nzt) ) THEN |
---|
1294 | pos_y = pss(i) |
---|
1295 | DO WHILE ( pos_y <= psn(i) ) |
---|
1296 | IF ( pos_y >= nys * dy .AND. & |
---|
1297 | pos_y < ( nyn + 1 ) * dy ) THEN |
---|
1298 | pos_x = psl(i) |
---|
1299 | xloop: DO WHILE ( pos_x <= psr(i) ) |
---|
1300 | IF ( pos_x >= nxl * dx .AND. & |
---|
1301 | pos_x < ( nxr + 1) * dx ) THEN |
---|
1302 | DO j = 1, particles_per_point |
---|
1303 | n = n + 1 |
---|
1304 | tmp_particle%x = pos_x |
---|
1305 | tmp_particle%y = pos_y |
---|
1306 | tmp_particle%z = pos_z |
---|
1307 | tmp_particle%age = 0.0_wp |
---|
1308 | tmp_particle%age_m = 0.0_wp |
---|
1309 | tmp_particle%dt_sum = 0.0_wp |
---|
1310 | tmp_particle%e_m = 0.0_wp |
---|
1311 | tmp_particle%rvar1 = 0.0_wp |
---|
1312 | tmp_particle%rvar2 = 0.0_wp |
---|
1313 | tmp_particle%rvar3 = 0.0_wp |
---|
1314 | tmp_particle%speed_x = 0.0_wp |
---|
1315 | tmp_particle%speed_y = 0.0_wp |
---|
1316 | tmp_particle%speed_z = 0.0_wp |
---|
1317 | tmp_particle%origin_x = pos_x |
---|
1318 | tmp_particle%origin_y = pos_y |
---|
1319 | tmp_particle%origin_z = pos_z |
---|
1320 | IF ( curvature_solution_effects ) THEN |
---|
1321 | tmp_particle%aux1 = 0.0_wp ! dry aerosol radius |
---|
1322 | tmp_particle%aux2 = dt_3d ! last Rosenbrock timestep |
---|
1323 | ELSE |
---|
1324 | tmp_particle%aux1 = 0.0_wp ! free to use |
---|
1325 | tmp_particle%aux2 = 0.0_wp ! free to use |
---|
1326 | ENDIF |
---|
1327 | tmp_particle%radius = particle_groups(i)%radius |
---|
1328 | tmp_particle%weight_factor = initial_weighting_factor |
---|
1329 | tmp_particle%class = 1 |
---|
1330 | tmp_particle%group = i |
---|
1331 | tmp_particle%id = 0_idp |
---|
1332 | tmp_particle%particle_mask = .TRUE. |
---|
1333 | tmp_particle%block_nr = -1 |
---|
1334 | ! |
---|
1335 | !-- Determine the grid indices of the particle position |
---|
1336 | ip = INT( tmp_particle%x * ddx ) |
---|
1337 | jp = INT( tmp_particle%y * ddy ) |
---|
1338 | ! |
---|
1339 | !-- In case of stretching the actual k index is found iteratively |
---|
1340 | IF ( dz_stretch_level .NE. -9999999.9 .OR. & |
---|
1341 | dz_stretch_level_start(1) .NE. -9999999.9 ) THEN |
---|
1342 | kp = MINLOC( ABS( tmp_particle%z - zu ), DIM = 1 ) - 1 |
---|
1343 | ELSE |
---|
1344 | kp = INT( tmp_particle%z / dz(1) + 1 + offset_ocean_nzt ) |
---|
1345 | ENDIF |
---|
1346 | ! |
---|
1347 | !-- Determine surface level. Therefore, check for |
---|
1348 | !-- upward-facing wall on w-grid. |
---|
1349 | k_surf = get_topography_top_index_ji( jp, ip, 'w' ) |
---|
1350 | IF ( seed_follows_topography ) THEN |
---|
1351 | ! |
---|
1352 | !-- Particle height is given relative to topography |
---|
1353 | kp = kp + k_surf |
---|
1354 | tmp_particle%z = tmp_particle%z + zw(k_surf) |
---|
1355 | !-- Skip particle release if particle position is |
---|
1356 | !-- above model top, or within topography in case |
---|
1357 | !-- of overhanging structures. |
---|
1358 | IF ( kp > nzt .OR. & |
---|
1359 | .NOT. BTEST( wall_flags_0(kp,jp,ip), 0 ) ) THEN |
---|
1360 | pos_x = pos_x + pdx(i) |
---|
1361 | CYCLE xloop |
---|
1362 | ENDIF |
---|
1363 | ! |
---|
1364 | !-- Skip particle release if particle position is |
---|
1365 | !-- below surface, or within topography in case |
---|
1366 | !-- of overhanging structures. |
---|
1367 | ELSEIF ( .NOT. seed_follows_topography .AND. & |
---|
1368 | tmp_particle%z <= zw(k_surf) .OR. & |
---|
1369 | .NOT. BTEST( wall_flags_0(kp,jp,ip), 0 ) )& |
---|
1370 | THEN |
---|
1371 | pos_x = pos_x + pdx(i) |
---|
1372 | CYCLE xloop |
---|
1373 | ENDIF |
---|
1374 | |
---|
1375 | local_count(kp,jp,ip) = local_count(kp,jp,ip) + 1 |
---|
1376 | |
---|
1377 | IF ( .NOT. first_stride ) THEN |
---|
1378 | IF ( ip < nxl .OR. jp < nys .OR. kp < nzb+1 ) THEN |
---|
1379 | write(6,*) 'xl ',ip,jp,kp,nxl,nys,nzb+1 |
---|
1380 | ENDIF |
---|
1381 | IF ( ip > nxr .OR. jp > nyn .OR. kp > nzt ) THEN |
---|
1382 | write(6,*) 'xu ',ip,jp,kp,nxr,nyn,nzt |
---|
1383 | ENDIF |
---|
1384 | grid_particles(kp,jp,ip)%particles(local_count(kp,jp,ip)) = tmp_particle |
---|
1385 | ENDIF |
---|
1386 | ENDDO |
---|
1387 | ENDIF |
---|
1388 | pos_x = pos_x + pdx(i) |
---|
1389 | ENDDO xloop |
---|
1390 | ENDIF |
---|
1391 | pos_y = pos_y + pdy(i) |
---|
1392 | ENDDO |
---|
1393 | ENDIF |
---|
1394 | |
---|
1395 | pos_z = pos_z + pdz(i) |
---|
1396 | ENDDO |
---|
1397 | ENDDO |
---|
1398 | |
---|
1399 | IF ( first_stride ) THEN |
---|
1400 | DO ip = nxl, nxr |
---|
1401 | DO jp = nys, nyn |
---|
1402 | DO kp = nzb+1, nzt |
---|
1403 | IF ( phase == PHASE_INIT ) THEN |
---|
1404 | IF ( local_count(kp,jp,ip) > 0 ) THEN |
---|
1405 | alloc_size = MAX( INT( local_count(kp,jp,ip) * & |
---|
1406 | ( 1.0_wp + alloc_factor / 100.0_wp ) ), & |
---|
1407 | 1 ) |
---|
1408 | ELSE |
---|
1409 | alloc_size = 1 |
---|
1410 | ENDIF |
---|
1411 | ALLOCATE(grid_particles(kp,jp,ip)%particles(1:alloc_size)) |
---|
1412 | DO n = 1, alloc_size |
---|
1413 | grid_particles(kp,jp,ip)%particles(n) = zero_particle |
---|
1414 | ENDDO |
---|
1415 | ELSEIF ( phase == PHASE_RELEASE ) THEN |
---|
1416 | IF ( local_count(kp,jp,ip) > 0 ) THEN |
---|
1417 | new_size = local_count(kp,jp,ip) + prt_count(kp,jp,ip) |
---|
1418 | alloc_size = MAX( INT( new_size * ( 1.0_wp + & |
---|
1419 | alloc_factor / 100.0_wp ) ), 1 ) |
---|
1420 | IF( alloc_size > SIZE( grid_particles(kp,jp,ip)%particles) ) THEN |
---|
1421 | CALL realloc_particles_array(ip,jp,kp,alloc_size) |
---|
1422 | ENDIF |
---|
1423 | ENDIF |
---|
1424 | ENDIF |
---|
1425 | ENDDO |
---|
1426 | ENDDO |
---|
1427 | ENDDO |
---|
1428 | ENDIF |
---|
1429 | |
---|
1430 | ENDDO |
---|
1431 | |
---|
1432 | local_start = prt_count+1 |
---|
1433 | prt_count = local_count |
---|
1434 | ! |
---|
1435 | !-- Calculate particle IDs |
---|
1436 | DO ip = nxl, nxr |
---|
1437 | DO jp = nys, nyn |
---|
1438 | DO kp = nzb+1, nzt |
---|
1439 | number_of_particles = prt_count(kp,jp,ip) |
---|
1440 | IF ( number_of_particles <= 0 ) CYCLE |
---|
1441 | particles => grid_particles(kp,jp,ip)%particles(1:number_of_particles) |
---|
1442 | |
---|
1443 | DO n = local_start(kp,jp,ip), number_of_particles !only new particles |
---|
1444 | |
---|
1445 | particles(n)%id = 10000_idp**3 * grid_particles(kp,jp,ip)%id_counter + & |
---|
1446 | 10000_idp**2 * kp + 10000_idp * jp + ip |
---|
1447 | ! |
---|
1448 | !-- Count the number of particles that have been released before |
---|
1449 | grid_particles(kp,jp,ip)%id_counter = & |
---|
1450 | grid_particles(kp,jp,ip)%id_counter + 1 |
---|
1451 | |
---|
1452 | ENDDO |
---|
1453 | |
---|
1454 | ENDDO |
---|
1455 | ENDDO |
---|
1456 | ENDDO |
---|
1457 | ! |
---|
1458 | !-- Initialize aerosol background spectrum |
---|
1459 | IF ( curvature_solution_effects ) THEN |
---|
1460 | CALL lpm_init_aerosols(local_start) |
---|
1461 | ENDIF |
---|
1462 | ! |
---|
1463 | !-- Add random fluctuation to particle positions. |
---|
1464 | IF ( random_start_position ) THEN |
---|
1465 | DO ip = nxl, nxr |
---|
1466 | DO jp = nys, nyn |
---|
1467 | DO kp = nzb+1, nzt |
---|
1468 | number_of_particles = prt_count(kp,jp,ip) |
---|
1469 | IF ( number_of_particles <= 0 ) CYCLE |
---|
1470 | particles => grid_particles(kp,jp,ip)%particles(1:number_of_particles) |
---|
1471 | ! |
---|
1472 | !-- Move only new particles. Moreover, limit random fluctuation |
---|
1473 | !-- in order to prevent that particles move more than one grid box, |
---|
1474 | !-- which would lead to problems concerning particle exchange |
---|
1475 | !-- between processors in case pdx/pdy are larger than dx/dy, |
---|
1476 | !-- respectively. |
---|
1477 | DO n = local_start(kp,jp,ip), number_of_particles |
---|
1478 | IF ( psl(particles(n)%group) /= psr(particles(n)%group) ) THEN |
---|
1479 | rand_contr = ( random_function( iran_part ) - 0.5_wp ) * & |
---|
1480 | pdx(particles(n)%group) |
---|
1481 | particles(n)%x = particles(n)%x + & |
---|
1482 | MERGE( rand_contr, SIGN( dx, rand_contr ), & |
---|
1483 | ABS( rand_contr ) < dx & |
---|
1484 | ) |
---|
1485 | ENDIF |
---|
1486 | IF ( pss(particles(n)%group) /= psn(particles(n)%group) ) THEN |
---|
1487 | rand_contr = ( random_function( iran_part ) - 0.5_wp ) * & |
---|
1488 | pdy(particles(n)%group) |
---|
1489 | particles(n)%y = particles(n)%y + & |
---|
1490 | MERGE( rand_contr, SIGN( dy, rand_contr ), & |
---|
1491 | ABS( rand_contr ) < dy & |
---|
1492 | ) |
---|
1493 | ENDIF |
---|
1494 | IF ( psb(particles(n)%group) /= pst(particles(n)%group) ) THEN |
---|
1495 | rand_contr = ( random_function( iran_part ) - 0.5_wp ) * & |
---|
1496 | pdz(particles(n)%group) |
---|
1497 | particles(n)%z = particles(n)%z + & |
---|
1498 | MERGE( rand_contr, SIGN( dzw(kp), rand_contr ), & |
---|
1499 | ABS( rand_contr ) < dzw(kp) & |
---|
1500 | ) |
---|
1501 | ENDIF |
---|
1502 | ENDDO |
---|
1503 | ! |
---|
1504 | !-- Identify particles located outside the model domain and reflect |
---|
1505 | !-- or absorb them if necessary. |
---|
1506 | CALL lpm_boundary_conds( 'bottom/top', i, j, k ) |
---|
1507 | ! |
---|
1508 | !-- Furthermore, remove particles located in topography. Note, as |
---|
1509 | !-- the particle speed is still zero at this point, wall |
---|
1510 | !-- reflection boundary conditions will not work in this case. |
---|
1511 | particles => & |
---|
1512 | grid_particles(kp,jp,ip)%particles(1:number_of_particles) |
---|
1513 | DO n = local_start(kp,jp,ip), number_of_particles |
---|
1514 | i = particles(n)%x * ddx |
---|
1515 | j = particles(n)%y * ddy |
---|
1516 | k = particles(n)%z / dz(1) + 1 + offset_ocean_nzt |
---|
1517 | DO WHILE( zw(k) < particles(n)%z ) |
---|
1518 | k = k + 1 |
---|
1519 | ENDDO |
---|
1520 | DO WHILE( zw(k-1) > particles(n)%z ) |
---|
1521 | k = k - 1 |
---|
1522 | ENDDO |
---|
1523 | ! |
---|
1524 | !-- Check if particle is within topography |
---|
1525 | IF ( .NOT. BTEST( wall_flags_0(k,j,i), 0 ) ) THEN |
---|
1526 | particles(n)%particle_mask = .FALSE. |
---|
1527 | deleted_particles = deleted_particles + 1 |
---|
1528 | ENDIF |
---|
1529 | |
---|
1530 | ENDDO |
---|
1531 | ENDDO |
---|
1532 | ENDDO |
---|
1533 | ENDDO |
---|
1534 | ! |
---|
1535 | !-- Exchange particles between grid cells and processors |
---|
1536 | CALL lpm_move_particle |
---|
1537 | CALL lpm_exchange_horiz |
---|
1538 | |
---|
1539 | ENDIF |
---|
1540 | ! |
---|
1541 | !-- In case of random_start_position, delete particles identified by |
---|
1542 | !-- lpm_exchange_horiz and lpm_boundary_conds. Then sort particles into blocks, |
---|
1543 | !-- which is needed for a fast interpolation of the LES fields on the particle |
---|
1544 | !-- position. |
---|
1545 | CALL lpm_sort_in_subboxes |
---|
1546 | ! |
---|
1547 | !-- Determine the current number of particles |
---|
1548 | DO ip = nxl, nxr |
---|
1549 | DO jp = nys, nyn |
---|
1550 | DO kp = nzb+1, nzt |
---|
1551 | number_of_particles = number_of_particles & |
---|
1552 | + prt_count(kp,jp,ip) |
---|
1553 | ENDDO |
---|
1554 | ENDDO |
---|
1555 | ENDDO |
---|
1556 | ! |
---|
1557 | !-- Calculate the number of particles of the total domain |
---|
1558 | #if defined( __parallel ) |
---|
1559 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
1560 | CALL MPI_ALLREDUCE( number_of_particles, total_number_of_particles, 1, & |
---|
1561 | MPI_INTEGER, MPI_SUM, comm2d, ierr ) |
---|
1562 | #else |
---|
1563 | total_number_of_particles = number_of_particles |
---|
1564 | #endif |
---|
1565 | |
---|
1566 | RETURN |
---|
1567 | |
---|
1568 | END SUBROUTINE lpm_create_particle |
---|
1569 | |
---|
1570 | |
---|
1571 | !------------------------------------------------------------------------------! |
---|
1572 | ! Description: |
---|
1573 | ! ------------ |
---|
1574 | !> This routine initialize the particles as aerosols with physio-chemical |
---|
1575 | !> properties. |
---|
1576 | !------------------------------------------------------------------------------! |
---|
1577 | SUBROUTINE lpm_init_aerosols(local_start) |
---|
1578 | |
---|
1579 | REAL(wp) :: afactor !< curvature effects |
---|
1580 | REAL(wp) :: bfactor !< solute effects |
---|
1581 | REAL(wp) :: dlogr !< logarithmic width of radius bin |
---|
1582 | REAL(wp) :: e_a !< vapor pressure |
---|
1583 | REAL(wp) :: e_s !< saturation vapor pressure |
---|
1584 | REAL(wp) :: rmin = 0.005e-6_wp !< minimum aerosol radius |
---|
1585 | REAL(wp) :: rmax = 10.0e-6_wp !< maximum aerosol radius |
---|
1586 | REAL(wp) :: r_mid !< mean radius of bin |
---|
1587 | REAL(wp) :: r_l !< left radius of bin |
---|
1588 | REAL(wp) :: r_r !< right radius of bin |
---|
1589 | REAL(wp) :: sigma !< surface tension |
---|
1590 | REAL(wp) :: t_int !< temperature |
---|
1591 | |
---|
1592 | INTEGER(iwp), DIMENSION(nzb:nzt+1,nysg:nyng,nxlg:nxrg), INTENT(IN) :: local_start !< |
---|
1593 | |
---|
1594 | INTEGER(iwp) :: n !< |
---|
1595 | INTEGER(iwp) :: ip !< |
---|
1596 | INTEGER(iwp) :: jp !< |
---|
1597 | INTEGER(iwp) :: kp !< |
---|
1598 | |
---|
1599 | ! |
---|
1600 | !-- Set constants for different aerosol species |
---|
1601 | IF ( TRIM(aero_species) .EQ. 'nacl' ) THEN |
---|
1602 | molecular_weight_of_solute = 0.05844_wp |
---|
1603 | rho_s = 2165.0_wp |
---|
1604 | vanthoff = 2.0_wp |
---|
1605 | ELSEIF ( TRIM(aero_species) .EQ. 'c3h4o4' ) THEN |
---|
1606 | molecular_weight_of_solute = 0.10406_wp |
---|
1607 | rho_s = 1600.0_wp |
---|
1608 | vanthoff = 1.37_wp |
---|
1609 | ELSEIF ( TRIM(aero_species) .EQ. 'nh4o3' ) THEN |
---|
1610 | molecular_weight_of_solute = 0.08004_wp |
---|
1611 | rho_s = 1720.0_wp |
---|
1612 | vanthoff = 2.31_wp |
---|
1613 | ELSE |
---|
1614 | WRITE( message_string, * ) 'unknown aerosol species ', & |
---|
1615 | 'aero_species = "', TRIM( aero_species ), '"' |
---|
1616 | CALL message( 'lpm_init', 'PA0470', 1, 2, 0, 6, 0 ) |
---|
1617 | ENDIF |
---|
1618 | ! |
---|
1619 | !-- The following typical aerosol spectra are taken from Jaenicke (1993): |
---|
1620 | !-- Tropospheric aerosols. Published in Aerosol-Cloud-Climate Interactions. |
---|
1621 | IF ( TRIM(aero_type) .EQ. 'polar' ) THEN |
---|
1622 | na = (/ 2.17e1, 1.86e-1, 3.04e-4 /) * 1.0E6 |
---|
1623 | rm = (/ 0.0689, 0.375, 4.29 /) * 1.0E-6 |
---|
1624 | log_sigma = (/ 0.245, 0.300, 0.291 /) |
---|
1625 | ELSEIF ( TRIM(aero_type) .EQ. 'background' ) THEN |
---|
1626 | na = (/ 1.29e2, 5.97e1, 6.35e1 /) * 1.0E6 |
---|
1627 | rm = (/ 0.0036, 0.127, 0.259 /) * 1.0E-6 |
---|
1628 | log_sigma = (/ 0.645, 0.253, 0.425 /) |
---|
1629 | ELSEIF ( TRIM(aero_type) .EQ. 'maritime' ) THEN |
---|
1630 | na = (/ 1.33e2, 6.66e1, 3.06e0 /) * 1.0E6 |
---|
1631 | rm = (/ 0.0039, 0.133, 0.29 /) * 1.0E-6 |
---|
1632 | log_sigma = (/ 0.657, 0.210, 0.396 /) |
---|
1633 | ELSEIF ( TRIM(aero_type) .EQ. 'continental' ) THEN |
---|
1634 | na = (/ 3.20e3, 2.90e3, 3.00e-1 /) * 1.0E6 |
---|
1635 | rm = (/ 0.01, 0.058, 0.9 /) * 1.0E-6 |
---|
1636 | log_sigma = (/ 0.161, 0.217, 0.380 /) |
---|
1637 | ELSEIF ( TRIM(aero_type) .EQ. 'desert' ) THEN |
---|
1638 | na = (/ 7.26e2, 1.14e3, 1.78e-1 /) * 1.0E6 |
---|
1639 | rm = (/ 0.001, 0.0188, 10.8 /) * 1.0E-6 |
---|
1640 | log_sigma = (/ 0.247, 0.770, 0.438 /) |
---|
1641 | ELSEIF ( TRIM(aero_type) .EQ. 'rural' ) THEN |
---|
1642 | na = (/ 6.65e3, 1.47e2, 1.99e3 /) * 1.0E6 |
---|
1643 | rm = (/ 0.00739, 0.0269, 0.0419 /) * 1.0E-6 |
---|
1644 | log_sigma = (/ 0.225, 0.557, 0.266 /) |
---|
1645 | ELSEIF ( TRIM(aero_type) .EQ. 'urban' ) THEN |
---|
1646 | na = (/ 9.93e4, 1.11e3, 3.64e4 /) * 1.0E6 |
---|
1647 | rm = (/ 0.00651, 0.00714, 0.0248 /) * 1.0E-6 |
---|
1648 | log_sigma = (/ 0.245, 0.666, 0.337 /) |
---|
1649 | ELSEIF ( TRIM(aero_type) .EQ. 'user' ) THEN |
---|
1650 | CONTINUE |
---|
1651 | ELSE |
---|
1652 | WRITE( message_string, * ) 'unknown aerosol type ', & |
---|
1653 | 'aero_type = "', TRIM( aero_type ), '"' |
---|
1654 | CALL message( 'lpm_init', 'PA0459', 1, 2, 0, 6, 0 ) |
---|
1655 | ENDIF |
---|
1656 | |
---|
1657 | DO ip = nxl, nxr |
---|
1658 | DO jp = nys, nyn |
---|
1659 | DO kp = nzb+1, nzt |
---|
1660 | |
---|
1661 | number_of_particles = prt_count(kp,jp,ip) |
---|
1662 | IF ( number_of_particles <= 0 ) CYCLE |
---|
1663 | particles => grid_particles(kp,jp,ip)%particles(1:number_of_particles) |
---|
1664 | |
---|
1665 | dlogr = ( LOG10(rmax) - LOG10(rmin) ) / ( number_of_particles - local_start(kp,jp,ip) + 1 ) |
---|
1666 | ! |
---|
1667 | !-- Initialize the aerosols with a predefined spectral distribution |
---|
1668 | !-- of the dry radius (logarithmically increasing bins) and a varying |
---|
1669 | !-- weighting factor |
---|
1670 | DO n = local_start(kp,jp,ip), number_of_particles !only new particles |
---|
1671 | |
---|
1672 | r_l = 10.0**( LOG10( rmin ) + (n-1) * dlogr ) |
---|
1673 | r_r = 10.0**( LOG10( rmin ) + n * dlogr ) |
---|
1674 | r_mid = SQRT( r_l * r_r ) |
---|
1675 | |
---|
1676 | particles(n)%aux1 = r_mid |
---|
1677 | particles(n)%weight_factor = & |
---|
1678 | ( na(1) / ( SQRT( 2.0 * pi ) * log_sigma(1) ) * & |
---|
1679 | EXP( - LOG10( r_mid / rm(1) )**2 / ( 2.0 * log_sigma(1)**2 ) ) + & |
---|
1680 | na(2) / ( SQRT( 2.0 * pi ) * log_sigma(2) ) * & |
---|
1681 | EXP( - LOG10( r_mid / rm(2) )**2 / ( 2.0 * log_sigma(2)**2 ) ) + & |
---|
1682 | na(3) / ( SQRT( 2.0 * pi ) * log_sigma(3) ) * & |
---|
1683 | EXP( - LOG10( r_mid / rm(3) )**2 / ( 2.0 * log_sigma(3)**2 ) ) & |
---|
1684 | ) * ( LOG10(r_r) - LOG10(r_l) ) * ( dx * dy * dzw(kp) ) |
---|
1685 | |
---|
1686 | ! |
---|
1687 | !-- Multiply weight_factor with the namelist parameter aero_weight |
---|
1688 | !-- to increase or decrease the number of simulated aerosols |
---|
1689 | particles(n)%weight_factor = particles(n)%weight_factor * aero_weight |
---|
1690 | |
---|
1691 | IF ( particles(n)%weight_factor - FLOOR(particles(n)%weight_factor,KIND=wp) & |
---|
1692 | .GT. random_function( iran_part ) ) THEN |
---|
1693 | particles(n)%weight_factor = FLOOR(particles(n)%weight_factor,KIND=wp) + 1.0_wp |
---|
1694 | ELSE |
---|
1695 | particles(n)%weight_factor = FLOOR(particles(n)%weight_factor,KIND=wp) |
---|
1696 | ENDIF |
---|
1697 | ! |
---|
1698 | !-- Unnecessary particles will be deleted |
---|
1699 | IF ( particles(n)%weight_factor .LE. 0.0 ) particles(n)%particle_mask = .FALSE. |
---|
1700 | |
---|
1701 | ENDDO |
---|
1702 | ! |
---|
1703 | !-- Set particle radius to equilibrium radius based on the environmental |
---|
1704 | !-- supersaturation (Khvorostyanov and Curry, 2007, JGR). This avoids |
---|
1705 | !-- the sometimes lengthy growth toward their equilibrium radius within |
---|
1706 | !-- the simulation. |
---|
1707 | t_int = pt(kp,jp,ip) * exner(kp) |
---|
1708 | |
---|
1709 | e_s = magnus( t_int ) |
---|
1710 | e_a = q(kp,jp,ip) * hyp(kp) / ( q(kp,jp,ip) + rd_d_rv ) |
---|
1711 | |
---|
1712 | sigma = 0.0761_wp - 0.000155_wp * ( t_int - 273.15_wp ) |
---|
1713 | afactor = 2.0_wp * sigma / ( rho_l * r_v * t_int ) |
---|
1714 | |
---|
1715 | bfactor = vanthoff * molecular_weight_of_water * & |
---|
1716 | rho_s / ( molecular_weight_of_solute * rho_l ) |
---|
1717 | ! |
---|
1718 | !-- The formula is only valid for subsaturated environments. For |
---|
1719 | !-- supersaturations higher than -5 %, the supersaturation is set to -5%. |
---|
1720 | IF ( e_a / e_s >= 0.95_wp ) e_a = 0.95_wp * e_s |
---|
1721 | |
---|
1722 | DO n = local_start(kp,jp,ip), number_of_particles !only new particles |
---|
1723 | ! |
---|
1724 | !-- For details on this equation, see Eq. (14) of Khvorostyanov and |
---|
1725 | !-- Curry (2007, JGR) |
---|
1726 | particles(n)%radius = bfactor**0.3333333_wp * & |
---|
1727 | particles(n)%aux1 / ( 1.0_wp - e_a / e_s )**0.3333333_wp / & |
---|
1728 | ( 1.0_wp + ( afactor / ( 3.0_wp * bfactor**0.3333333_wp * & |
---|
1729 | particles(n)%aux1 ) ) / & |
---|
1730 | ( 1.0_wp - e_a / e_s )**0.6666666_wp & |
---|
1731 | ) |
---|
1732 | |
---|
1733 | ENDDO |
---|
1734 | |
---|
1735 | ENDDO |
---|
1736 | ENDDO |
---|
1737 | ENDDO |
---|
1738 | |
---|
1739 | END SUBROUTINE lpm_init_aerosols |
---|
1740 | |
---|
1741 | |
---|
1742 | !------------------------------------------------------------------------------! |
---|
1743 | ! Description: |
---|
1744 | ! ------------ |
---|
1745 | !> Calculates quantities required for considering the SGS velocity fluctuations |
---|
1746 | !> in the particle transport by a stochastic approach. The respective |
---|
1747 | !> quantities are: SGS-TKE gradients and horizontally averaged profiles of the |
---|
1748 | !> SGS TKE and the resolved-scale velocity variances. |
---|
1749 | !------------------------------------------------------------------------------! |
---|
1750 | SUBROUTINE lpm_init_sgs_tke |
---|
1751 | |
---|
1752 | USE statistics, & |
---|
1753 | ONLY: flow_statistics_called, hom, sums, sums_l |
---|
1754 | |
---|
1755 | INTEGER(iwp) :: i !< index variable along x |
---|
1756 | INTEGER(iwp) :: j !< index variable along y |
---|
1757 | INTEGER(iwp) :: k !< index variable along z |
---|
1758 | INTEGER(iwp) :: m !< running index for the surface elements |
---|
1759 | |
---|
1760 | REAL(wp) :: flag1 !< flag to mask topography |
---|
1761 | |
---|
1762 | ! |
---|
1763 | !-- TKE gradient along x and y |
---|
1764 | DO i = nxl, nxr |
---|
1765 | DO j = nys, nyn |
---|
1766 | DO k = nzb, nzt+1 |
---|
1767 | |
---|
1768 | IF ( .NOT. BTEST( wall_flags_0(k,j,i-1), 0 ) .AND. & |
---|
1769 | BTEST( wall_flags_0(k,j,i), 0 ) .AND. & |
---|
1770 | BTEST( wall_flags_0(k,j,i+1), 0 ) ) & |
---|
1771 | THEN |
---|
1772 | de_dx(k,j,i) = 2.0_wp * sgs_wf_part * & |
---|
1773 | ( e(k,j,i+1) - e(k,j,i) ) * ddx |
---|
1774 | ELSEIF ( BTEST( wall_flags_0(k,j,i-1), 0 ) .AND. & |
---|
1775 | BTEST( wall_flags_0(k,j,i), 0 ) .AND. & |
---|
1776 | .NOT. BTEST( wall_flags_0(k,j,i+1), 0 ) ) & |
---|
1777 | THEN |
---|
1778 | de_dx(k,j,i) = 2.0_wp * sgs_wf_part * & |
---|
1779 | ( e(k,j,i) - e(k,j,i-1) ) * ddx |
---|
1780 | ELSEIF ( .NOT. BTEST( wall_flags_0(k,j,i), 22 ) .AND. & |
---|
1781 | .NOT. BTEST( wall_flags_0(k,j,i+1), 22 ) ) & |
---|
1782 | THEN |
---|
1783 | de_dx(k,j,i) = 0.0_wp |
---|
1784 | ELSEIF ( .NOT. BTEST( wall_flags_0(k,j,i-1), 22 ) .AND. & |
---|
1785 | .NOT. BTEST( wall_flags_0(k,j,i), 22 ) ) & |
---|
1786 | THEN |
---|
1787 | de_dx(k,j,i) = 0.0_wp |
---|
1788 | ELSE |
---|
1789 | de_dx(k,j,i) = sgs_wf_part * ( e(k,j,i+1) - e(k,j,i-1) ) * ddx |
---|
1790 | ENDIF |
---|
1791 | |
---|
1792 | IF ( .NOT. BTEST( wall_flags_0(k,j-1,i), 0 ) .AND. & |
---|
1793 | BTEST( wall_flags_0(k,j,i), 0 ) .AND. & |
---|
1794 | BTEST( wall_flags_0(k,j+1,i), 0 ) ) & |
---|
1795 | THEN |
---|
1796 | de_dy(k,j,i) = 2.0_wp * sgs_wf_part * & |
---|
1797 | ( e(k,j+1,i) - e(k,j,i) ) * ddy |
---|
1798 | ELSEIF ( BTEST( wall_flags_0(k,j-1,i), 0 ) .AND. & |
---|
1799 | BTEST( wall_flags_0(k,j,i), 0 ) .AND. & |
---|
1800 | .NOT. BTEST( wall_flags_0(k,j+1,i), 0 ) ) & |
---|
1801 | THEN |
---|
1802 | de_dy(k,j,i) = 2.0_wp * sgs_wf_part * & |
---|
1803 | ( e(k,j,i) - e(k,j-1,i) ) * ddy |
---|
1804 | ELSEIF ( .NOT. BTEST( wall_flags_0(k,j,i), 22 ) .AND. & |
---|
1805 | .NOT. BTEST( wall_flags_0(k,j+1,i), 22 ) ) & |
---|
1806 | THEN |
---|
1807 | de_dy(k,j,i) = 0.0_wp |
---|
1808 | ELSEIF ( .NOT. BTEST( wall_flags_0(k,j-1,i), 22 ) .AND. & |
---|
1809 | .NOT. BTEST( wall_flags_0(k,j,i), 22 ) ) & |
---|
1810 | THEN |
---|
1811 | de_dy(k,j,i) = 0.0_wp |
---|
1812 | ELSE |
---|
1813 | de_dy(k,j,i) = sgs_wf_part * ( e(k,j+1,i) - e(k,j-1,i) ) * ddy |
---|
1814 | ENDIF |
---|
1815 | |
---|
1816 | ENDDO |
---|
1817 | ENDDO |
---|
1818 | ENDDO |
---|
1819 | |
---|
1820 | ! |
---|
1821 | !-- TKE gradient along z at topograhy and including bottom and top boundary conditions |
---|
1822 | DO i = nxl, nxr |
---|
1823 | DO j = nys, nyn |
---|
1824 | DO k = nzb+1, nzt-1 |
---|
1825 | ! |
---|
1826 | !-- Flag to mask topography |
---|
1827 | flag1 = MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
1828 | |
---|
1829 | de_dz(k,j,i) = 2.0_wp * sgs_wf_part * & |
---|
1830 | ( e(k+1,j,i) - e(k-1,j,i) ) / ( zu(k+1) - zu(k-1) ) & |
---|
1831 | * flag1 |
---|
1832 | ENDDO |
---|
1833 | ! |
---|
1834 | !-- upward-facing surfaces |
---|
1835 | DO m = bc_h(0)%start_index(j,i), bc_h(0)%end_index(j,i) |
---|
1836 | k = bc_h(0)%k(m) |
---|
1837 | de_dz(k,j,i) = 2.0_wp * sgs_wf_part * & |
---|
1838 | ( e(k+1,j,i) - e(k,j,i) ) / ( zu(k+1) - zu(k) ) |
---|
1839 | ENDDO |
---|
1840 | ! |
---|
1841 | !-- downward-facing surfaces |
---|
1842 | DO m = bc_h(1)%start_index(j,i), bc_h(1)%end_index(j,i) |
---|
1843 | k = bc_h(1)%k(m) |
---|
1844 | de_dz(k,j,i) = 2.0_wp * sgs_wf_part * & |
---|
1845 | ( e(k,j,i) - e(k-1,j,i) ) / ( zu(k) - zu(k-1) ) |
---|
1846 | ENDDO |
---|
1847 | |
---|
1848 | de_dz(nzb,j,i) = 0.0_wp |
---|
1849 | de_dz(nzt,j,i) = 0.0_wp |
---|
1850 | de_dz(nzt+1,j,i) = 0.0_wp |
---|
1851 | ENDDO |
---|
1852 | ENDDO |
---|
1853 | ! |
---|
1854 | !-- Ghost point exchange |
---|
1855 | CALL exchange_horiz( de_dx, nbgp ) |
---|
1856 | CALL exchange_horiz( de_dy, nbgp ) |
---|
1857 | CALL exchange_horiz( de_dz, nbgp ) |
---|
1858 | CALL exchange_horiz( diss, nbgp ) |
---|
1859 | ! |
---|
1860 | !-- Set boundary conditions at non-periodic boundaries. Note, at non-period |
---|
1861 | !-- boundaries zero-gradient boundary conditions are set for the subgrid TKE. |
---|
1862 | !-- Thus, TKE gradients normal to the respective lateral boundaries are zero, |
---|
1863 | !-- while tangetial TKE gradients then must be the same as within the prognostic |
---|
1864 | !-- domain. |
---|
1865 | IF ( bc_dirichlet_l ) THEN |
---|
1866 | de_dx(:,:,-1) = 0.0_wp |
---|
1867 | de_dy(:,:,-1) = de_dy(:,:,0) |
---|
1868 | de_dz(:,:,-1) = de_dz(:,:,0) |
---|
1869 | ENDIF |
---|
1870 | IF ( bc_dirichlet_r ) THEN |
---|
1871 | de_dx(:,:,nxr+1) = 0.0_wp |
---|
1872 | de_dy(:,:,nxr+1) = de_dy(:,:,nxr) |
---|
1873 | de_dz(:,:,nxr+1) = de_dz(:,:,nxr) |
---|
1874 | ENDIF |
---|
1875 | IF ( bc_dirichlet_n ) THEN |
---|
1876 | de_dx(:,nyn+1,:) = de_dx(:,nyn,:) |
---|
1877 | de_dy(:,nyn+1,:) = 0.0_wp |
---|
1878 | de_dz(:,nyn+1,:) = de_dz(:,nyn,:) |
---|
1879 | ENDIF |
---|
1880 | IF ( bc_dirichlet_s ) THEN |
---|
1881 | de_dx(:,nys-1,:) = de_dx(:,nys,:) |
---|
1882 | de_dy(:,nys-1,:) = 0.0_wp |
---|
1883 | de_dz(:,nys-1,:) = de_dz(:,nys,:) |
---|
1884 | ENDIF |
---|
1885 | ! |
---|
1886 | !-- Calculate the horizontally averaged profiles of SGS TKE and resolved |
---|
1887 | !-- velocity variances (they may have been already calculated in routine |
---|
1888 | !-- flow_statistics). |
---|
1889 | IF ( .NOT. flow_statistics_called ) THEN |
---|
1890 | |
---|
1891 | ! |
---|
1892 | !-- First calculate horizontally averaged profiles of the horizontal |
---|
1893 | !-- velocities. |
---|
1894 | sums_l(:,1,0) = 0.0_wp |
---|
1895 | sums_l(:,2,0) = 0.0_wp |
---|
1896 | |
---|
1897 | DO i = nxl, nxr |
---|
1898 | DO j = nys, nyn |
---|
1899 | DO k = nzb, nzt+1 |
---|
1900 | ! |
---|
1901 | !-- Flag indicating vicinity of wall |
---|
1902 | flag1 = MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_0(k,j,i), 24 ) ) |
---|
1903 | |
---|
1904 | sums_l(k,1,0) = sums_l(k,1,0) + u(k,j,i) * flag1 |
---|
1905 | sums_l(k,2,0) = sums_l(k,2,0) + v(k,j,i) * flag1 |
---|
1906 | ENDDO |
---|
1907 | ENDDO |
---|
1908 | ENDDO |
---|
1909 | |
---|
1910 | #if defined( __parallel ) |
---|
1911 | ! |
---|
1912 | !-- Compute total sum from local sums |
---|
1913 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
1914 | CALL MPI_ALLREDUCE( sums_l(nzb,1,0), sums(nzb,1), nzt+2-nzb, & |
---|
1915 | MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
1916 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
1917 | CALL MPI_ALLREDUCE( sums_l(nzb,2,0), sums(nzb,2), nzt+2-nzb, & |
---|
1918 | MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
1919 | #else |
---|
1920 | sums(:,1) = sums_l(:,1,0) |
---|
1921 | sums(:,2) = sums_l(:,2,0) |
---|
1922 | #endif |
---|
1923 | |
---|
1924 | ! |
---|
1925 | !-- Final values are obtained by division by the total number of grid |
---|
1926 | !-- points used for the summation. |
---|
1927 | hom(:,1,1,0) = sums(:,1) / ngp_2dh_outer(:,0) ! u |
---|
1928 | hom(:,1,2,0) = sums(:,2) / ngp_2dh_outer(:,0) ! v |
---|
1929 | |
---|
1930 | ! |
---|
1931 | !-- Now calculate the profiles of SGS TKE and the resolved-scale |
---|
1932 | !-- velocity variances |
---|
1933 | sums_l(:,8,0) = 0.0_wp |
---|
1934 | sums_l(:,30,0) = 0.0_wp |
---|
1935 | sums_l(:,31,0) = 0.0_wp |
---|
1936 | sums_l(:,32,0) = 0.0_wp |
---|
1937 | DO i = nxl, nxr |
---|
1938 | DO j = nys, nyn |
---|
1939 | DO k = nzb, nzt+1 |
---|
1940 | ! |
---|
1941 | !-- Flag indicating vicinity of wall |
---|
1942 | flag1 = MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_0(k,j,i), 24 ) ) |
---|
1943 | |
---|
1944 | sums_l(k,8,0) = sums_l(k,8,0) + e(k,j,i) * flag1 |
---|
1945 | sums_l(k,30,0) = sums_l(k,30,0) + ( u(k,j,i) - hom(k,1,1,0) )**2 * flag1 |
---|
1946 | sums_l(k,31,0) = sums_l(k,31,0) + ( v(k,j,i) - hom(k,1,2,0) )**2 * flag1 |
---|
1947 | sums_l(k,32,0) = sums_l(k,32,0) + w(k,j,i)**2 * flag1 |
---|
1948 | ENDDO |
---|
1949 | ENDDO |
---|
1950 | ENDDO |
---|
1951 | |
---|
1952 | #if defined( __parallel ) |
---|
1953 | ! |
---|
1954 | !-- Compute total sum from local sums |
---|
1955 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
1956 | CALL MPI_ALLREDUCE( sums_l(nzb,8,0), sums(nzb,8), nzt+2-nzb, & |
---|
1957 | MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
1958 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
1959 | CALL MPI_ALLREDUCE( sums_l(nzb,30,0), sums(nzb,30), nzt+2-nzb, & |
---|
1960 | MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
1961 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
1962 | CALL MPI_ALLREDUCE( sums_l(nzb,31,0), sums(nzb,31), nzt+2-nzb, & |
---|
1963 | MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
1964 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
1965 | CALL MPI_ALLREDUCE( sums_l(nzb,32,0), sums(nzb,32), nzt+2-nzb, & |
---|
1966 | MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
1967 | |
---|
1968 | #else |
---|
1969 | sums(:,8) = sums_l(:,8,0) |
---|
1970 | sums(:,30) = sums_l(:,30,0) |
---|
1971 | sums(:,31) = sums_l(:,31,0) |
---|
1972 | sums(:,32) = sums_l(:,32,0) |
---|
1973 | #endif |
---|
1974 | |
---|
1975 | ! |
---|
1976 | !-- Final values are obtained by division by the total number of grid |
---|
1977 | !-- points used for the summation. |
---|
1978 | hom(:,1,8,0) = sums(:,8) / ngp_2dh_outer(:,0) ! e |
---|
1979 | hom(:,1,30,0) = sums(:,30) / ngp_2dh_outer(:,0) ! u*2 |
---|
1980 | hom(:,1,31,0) = sums(:,31) / ngp_2dh_outer(:,0) ! v*2 |
---|
1981 | hom(:,1,32,0) = sums(:,32) / ngp_2dh_outer(:,0) ! w*2 |
---|
1982 | |
---|
1983 | ENDIF |
---|
1984 | |
---|
1985 | END SUBROUTINE lpm_init_sgs_tke |
---|
1986 | |
---|
1987 | |
---|
1988 | !------------------------------------------------------------------------------! |
---|
1989 | ! Description: |
---|
1990 | ! ------------ |
---|
1991 | !> Sobroutine control lpm actions, i.e. all actions during one time step. |
---|
1992 | !------------------------------------------------------------------------------! |
---|
1993 | SUBROUTINE lpm_actions( location ) |
---|
1994 | |
---|
1995 | CHARACTER (LEN=*), INTENT(IN) :: location !< call location string |
---|
1996 | |
---|
1997 | INTEGER(iwp) :: i !< |
---|
1998 | INTEGER(iwp) :: ie !< |
---|
1999 | INTEGER(iwp) :: is !< |
---|
2000 | INTEGER(iwp) :: j !< |
---|
2001 | INTEGER(iwp) :: je !< |
---|
2002 | INTEGER(iwp) :: js !< |
---|
2003 | INTEGER(iwp), SAVE :: lpm_count = 0 !< |
---|
2004 | INTEGER(iwp) :: k !< |
---|
2005 | INTEGER(iwp) :: ke !< |
---|
2006 | INTEGER(iwp) :: ks !< |
---|
2007 | INTEGER(iwp) :: m !< |
---|
2008 | INTEGER(iwp), SAVE :: steps = 0 !< |
---|
2009 | |
---|
2010 | LOGICAL :: first_loop_stride !< |
---|
2011 | |
---|
2012 | |
---|
2013 | SELECT CASE ( location ) |
---|
2014 | |
---|
2015 | CASE ( 'after_prognostic_equations' ) |
---|
2016 | |
---|
2017 | CALL cpu_log( log_point(25), 'lpm', 'start' ) |
---|
2018 | ! |
---|
2019 | !-- Write particle data at current time on file. |
---|
2020 | !-- This has to be done here, before particles are further processed, |
---|
2021 | !-- because they may be deleted within this timestep (in case that |
---|
2022 | !-- dt_write_particle_data = dt_prel = particle_maximum_age). |
---|
2023 | time_write_particle_data = time_write_particle_data + dt_3d |
---|
2024 | IF ( time_write_particle_data >= dt_write_particle_data ) THEN |
---|
2025 | |
---|
2026 | CALL lpm_data_output_particles |
---|
2027 | ! |
---|
2028 | !-- The MOD function allows for changes in the output interval with restart |
---|
2029 | !-- runs. |
---|
2030 | time_write_particle_data = MOD( time_write_particle_data, & |
---|
2031 | MAX( dt_write_particle_data, dt_3d ) ) |
---|
2032 | ENDIF |
---|
2033 | |
---|
2034 | ! |
---|
2035 | !-- Initialize arrays for marking those particles to be deleted after the |
---|
2036 | !-- (sub-) timestep |
---|
2037 | deleted_particles = 0 |
---|
2038 | |
---|
2039 | ! |
---|
2040 | !-- Initialize variables used for accumulating the number of particles |
---|
2041 | !-- xchanged between the subdomains during all sub-timesteps (if sgs |
---|
2042 | !-- velocities are included). These data are output further below on the |
---|
2043 | !-- particle statistics file. |
---|
2044 | trlp_count_sum = 0 |
---|
2045 | trlp_count_recv_sum = 0 |
---|
2046 | trrp_count_sum = 0 |
---|
2047 | trrp_count_recv_sum = 0 |
---|
2048 | trsp_count_sum = 0 |
---|
2049 | trsp_count_recv_sum = 0 |
---|
2050 | trnp_count_sum = 0 |
---|
2051 | trnp_count_recv_sum = 0 |
---|
2052 | ! |
---|
2053 | !-- Calculate exponential term used in case of particle inertia for each |
---|
2054 | !-- of the particle groups |
---|
2055 | DO m = 1, number_of_particle_groups |
---|
2056 | IF ( particle_groups(m)%density_ratio /= 0.0_wp ) THEN |
---|
2057 | particle_groups(m)%exp_arg = & |
---|
2058 | 4.5_wp * particle_groups(m)%density_ratio * & |
---|
2059 | molecular_viscosity / ( particle_groups(m)%radius )**2 |
---|
2060 | |
---|
2061 | particle_groups(m)%exp_term = EXP( -particle_groups(m)%exp_arg * & |
---|
2062 | dt_3d ) |
---|
2063 | ENDIF |
---|
2064 | ENDDO |
---|
2065 | ! |
---|
2066 | !-- If necessary, release new set of particles |
---|
2067 | IF ( ( simulated_time - last_particle_release_time ) >= dt_prel .AND. end_time_prel > simulated_time ) & |
---|
2068 | THEN |
---|
2069 | DO WHILE ( ( simulated_time - last_particle_release_time ) >= dt_prel ) |
---|
2070 | CALL lpm_create_particle( PHASE_RELEASE ) |
---|
2071 | last_particle_release_time = last_particle_release_time + dt_prel |
---|
2072 | ENDDO |
---|
2073 | ENDIF |
---|
2074 | ! |
---|
2075 | !-- Reset summation arrays |
---|
2076 | IF ( cloud_droplets ) THEN |
---|
2077 | ql_c = 0.0_wp |
---|
2078 | ql_v = 0.0_wp |
---|
2079 | ql_vp = 0.0_wp |
---|
2080 | ENDIF |
---|
2081 | |
---|
2082 | first_loop_stride = .TRUE. |
---|
2083 | grid_particles(:,:,:)%time_loop_done = .TRUE. |
---|
2084 | ! |
---|
2085 | !-- Timestep loop for particle advection. |
---|
2086 | !-- This loop has to be repeated until the advection time of every particle |
---|
2087 | !-- (within the total domain!) has reached the LES timestep (dt_3d). |
---|
2088 | !-- In case of including the SGS velocities, the particle timestep may be |
---|
2089 | !-- smaller than the LES timestep (because of the Lagrangian timescale |
---|
2090 | !-- restriction) and particles may require to undergo several particle |
---|
2091 | !-- timesteps, before the LES timestep is reached. Because the number of these |
---|
2092 | !-- particle timesteps to be carried out is unknown at first, these steps are |
---|
2093 | !-- carried out in the following infinite loop with exit condition. |
---|
2094 | DO |
---|
2095 | CALL cpu_log( log_point_s(44), 'lpm_advec', 'start' ) |
---|
2096 | CALL cpu_log( log_point_s(44), 'lpm_advec', 'pause' ) |
---|
2097 | |
---|
2098 | ! |
---|
2099 | !-- If particle advection includes SGS velocity components, calculate the |
---|
2100 | !-- required SGS quantities (i.e. gradients of the TKE, as well as |
---|
2101 | !-- horizontally averaged profiles of the SGS TKE and the resolved-scale |
---|
2102 | !-- velocity variances) |
---|
2103 | IF ( use_sgs_for_particles .AND. .NOT. cloud_droplets ) THEN |
---|
2104 | CALL lpm_init_sgs_tke |
---|
2105 | ENDIF |
---|
2106 | ! |
---|
2107 | !-- In case SGS-particle speed is considered, particles may carry out |
---|
2108 | !-- several particle timesteps. In order to prevent unnecessary |
---|
2109 | !-- treatment of particles that already reached the final time level, |
---|
2110 | !-- particles are sorted into contiguous blocks of finished and |
---|
2111 | !-- not-finished particles, in addition to their already sorting |
---|
2112 | !-- according to their sub-boxes. |
---|
2113 | IF ( .NOT. first_loop_stride .AND. use_sgs_for_particles ) & |
---|
2114 | CALL lpm_sort_timeloop_done |
---|
2115 | |
---|
2116 | DO i = nxl, nxr |
---|
2117 | DO j = nys, nyn |
---|
2118 | DO k = nzb+1, nzt |
---|
2119 | |
---|
2120 | number_of_particles = prt_count(k,j,i) |
---|
2121 | ! |
---|
2122 | !-- If grid cell gets empty, flag must be true |
---|
2123 | IF ( number_of_particles <= 0 ) THEN |
---|
2124 | grid_particles(k,j,i)%time_loop_done = .TRUE. |
---|
2125 | CYCLE |
---|
2126 | ENDIF |
---|
2127 | |
---|
2128 | IF ( .NOT. first_loop_stride .AND. & |
---|
2129 | grid_particles(k,j,i)%time_loop_done ) CYCLE |
---|
2130 | |
---|
2131 | particles => grid_particles(k,j,i)%particles(1:number_of_particles) |
---|
2132 | |
---|
2133 | particles(1:number_of_particles)%particle_mask = .TRUE. |
---|
2134 | ! |
---|
2135 | !-- Initialize the variable storing the total time that a particle |
---|
2136 | !-- has advanced within the timestep procedure |
---|
2137 | IF ( first_loop_stride ) THEN |
---|
2138 | particles(1:number_of_particles)%dt_sum = 0.0_wp |
---|
2139 | ENDIF |
---|
2140 | ! |
---|
2141 | !-- Particle (droplet) growth by condensation/evaporation and |
---|
2142 | !-- collision |
---|
2143 | IF ( cloud_droplets .AND. first_loop_stride) THEN |
---|
2144 | ! |
---|
2145 | !-- Droplet growth by condensation / evaporation |
---|
2146 | CALL lpm_droplet_condensation(i,j,k) |
---|
2147 | ! |
---|
2148 | !-- Particle growth by collision |
---|
2149 | IF ( collision_kernel /= 'none' ) THEN |
---|
2150 | CALL lpm_droplet_collision(i,j,k) |
---|
2151 | ENDIF |
---|
2152 | |
---|
2153 | ENDIF |
---|
2154 | ! |
---|
2155 | !-- Initialize the switch used for the loop exit condition checked |
---|
2156 | !-- at the end of this loop. If at least one particle has failed to |
---|
2157 | !-- reach the LES timestep, this switch will be set false in |
---|
2158 | !-- lpm_advec. |
---|
2159 | dt_3d_reached_l = .TRUE. |
---|
2160 | |
---|
2161 | ! |
---|
2162 | !-- Particle advection |
---|
2163 | CALL lpm_advec(i,j,k) |
---|
2164 | ! |
---|
2165 | !-- Particle reflection from walls. Only applied if the particles |
---|
2166 | !-- are in the vertical range of the topography. (Here, some |
---|
2167 | !-- optimization is still possible.) |
---|
2168 | IF ( topography /= 'flat' .AND. k < nzb_max + 2 ) THEN |
---|
2169 | CALL lpm_boundary_conds( 'walls', i, j, k ) |
---|
2170 | ENDIF |
---|
2171 | ! |
---|
2172 | !-- User-defined actions after the calculation of the new particle |
---|
2173 | !-- position |
---|
2174 | CALL user_lpm_advec(i,j,k) |
---|
2175 | ! |
---|
2176 | !-- Apply boundary conditions to those particles that have crossed |
---|
2177 | !-- the top or bottom boundary and delete those particles, which are |
---|
2178 | !-- older than allowed |
---|
2179 | CALL lpm_boundary_conds( 'bottom/top', i, j, k ) |
---|
2180 | ! |
---|
2181 | !--- If not all particles of the actual grid cell have reached the |
---|
2182 | !-- LES timestep, this cell has to do another loop iteration. Due to |
---|
2183 | !-- the fact that particles can move into neighboring grid cells, |
---|
2184 | !-- these neighbor cells also have to perform another loop iteration. |
---|
2185 | !-- Please note, this realization does not work properly if |
---|
2186 | !-- particles move into another subdomain. |
---|
2187 | IF ( .NOT. dt_3d_reached_l ) THEN |
---|
2188 | ks = MAX(nzb+1,k-1) |
---|
2189 | ke = MIN(nzt,k+1) |
---|
2190 | js = MAX(nys,j-1) |
---|
2191 | je = MIN(nyn,j+1) |
---|
2192 | is = MAX(nxl,i-1) |
---|
2193 | ie = MIN(nxr,i+1) |
---|
2194 | grid_particles(ks:ke,js:je,is:ie)%time_loop_done = .FALSE. |
---|
2195 | ELSE |
---|
2196 | grid_particles(k,j,i)%time_loop_done = .TRUE. |
---|
2197 | ENDIF |
---|
2198 | |
---|
2199 | ENDDO |
---|
2200 | ENDDO |
---|
2201 | ENDDO |
---|
2202 | |
---|
2203 | steps = steps + 1 |
---|
2204 | dt_3d_reached_l = ALL(grid_particles(:,:,:)%time_loop_done) |
---|
2205 | ! |
---|
2206 | !-- Find out, if all particles on every PE have completed the LES timestep |
---|
2207 | !-- and set the switch corespondingly |
---|
2208 | #if defined( __parallel ) |
---|
2209 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
2210 | CALL MPI_ALLREDUCE( dt_3d_reached_l, dt_3d_reached, 1, MPI_LOGICAL, & |
---|
2211 | MPI_LAND, comm2d, ierr ) |
---|
2212 | #else |
---|
2213 | dt_3d_reached = dt_3d_reached_l |
---|
2214 | #endif |
---|
2215 | |
---|
2216 | CALL cpu_log( log_point_s(44), 'lpm_advec', 'stop' ) |
---|
2217 | |
---|
2218 | ! |
---|
2219 | !-- Apply splitting and merging algorithm |
---|
2220 | IF ( cloud_droplets ) THEN |
---|
2221 | IF ( splitting ) THEN |
---|
2222 | CALL lpm_splitting |
---|
2223 | ENDIF |
---|
2224 | IF ( merging ) THEN |
---|
2225 | CALL lpm_merging |
---|
2226 | ENDIF |
---|
2227 | ENDIF |
---|
2228 | ! |
---|
2229 | !-- Move Particles local to PE to a different grid cell |
---|
2230 | CALL lpm_move_particle |
---|
2231 | ! |
---|
2232 | !-- Horizontal boundary conditions including exchange between subdmains |
---|
2233 | CALL lpm_exchange_horiz |
---|
2234 | |
---|
2235 | ! |
---|
2236 | !-- IF .FALSE., lpm_sort_in_subboxes is done inside pcmp |
---|
2237 | IF ( .NOT. dt_3d_reached .OR. .NOT. nested_run ) THEN |
---|
2238 | ! |
---|
2239 | !-- Pack particles (eliminate those marked for deletion), |
---|
2240 | !-- determine new number of particles |
---|
2241 | CALL lpm_sort_in_subboxes |
---|
2242 | ! |
---|
2243 | !-- Initialize variables for the next (sub-) timestep, i.e., for marking |
---|
2244 | !-- those particles to be deleted after the timestep |
---|
2245 | deleted_particles = 0 |
---|
2246 | ENDIF |
---|
2247 | |
---|
2248 | IF ( dt_3d_reached ) EXIT |
---|
2249 | |
---|
2250 | first_loop_stride = .FALSE. |
---|
2251 | ENDDO ! timestep loop |
---|
2252 | ! |
---|
2253 | !-- in case of nested runs do the transfer of particles after every full model time step |
---|
2254 | IF ( nested_run ) THEN |
---|
2255 | CALL particles_from_parent_to_child |
---|
2256 | CALL particles_from_child_to_parent |
---|
2257 | CALL pmcp_p_delete_particles_in_fine_grid_area |
---|
2258 | |
---|
2259 | CALL lpm_sort_in_subboxes |
---|
2260 | |
---|
2261 | deleted_particles = 0 |
---|
2262 | ENDIF |
---|
2263 | |
---|
2264 | ! |
---|
2265 | !-- Calculate the new liquid water content for each grid box |
---|
2266 | IF ( cloud_droplets ) CALL lpm_calc_liquid_water_content |
---|
2267 | |
---|
2268 | ! |
---|
2269 | !-- Deallocate unused memory |
---|
2270 | IF ( deallocate_memory .AND. lpm_count == step_dealloc ) THEN |
---|
2271 | CALL dealloc_particles_array |
---|
2272 | lpm_count = 0 |
---|
2273 | ELSEIF ( deallocate_memory ) THEN |
---|
2274 | lpm_count = lpm_count + 1 |
---|
2275 | ENDIF |
---|
2276 | |
---|
2277 | ! |
---|
2278 | !-- Write particle statistics (in particular the number of particles |
---|
2279 | !-- exchanged between the subdomains) on file |
---|
2280 | IF ( write_particle_statistics ) CALL lpm_write_exchange_statistics |
---|
2281 | |
---|
2282 | CALL cpu_log( log_point(25), 'lpm', 'stop' ) |
---|
2283 | |
---|
2284 | ! ! |
---|
2285 | ! !-- Output of particle time series |
---|
2286 | ! IF ( particle_advection ) THEN |
---|
2287 | ! IF ( time_dopts >= dt_dopts .OR. & |
---|
2288 | ! ( time_since_reference_point >= particle_advection_start .AND. & |
---|
2289 | ! first_call_lpm ) ) THEN |
---|
2290 | ! CALL lpm_data_output_ptseries |
---|
2291 | ! time_dopts = MOD( time_dopts, MAX( dt_dopts, dt_3d ) ) |
---|
2292 | ! ENDIF |
---|
2293 | ! ENDIF |
---|
2294 | |
---|
2295 | CASE DEFAULT |
---|
2296 | CONTINUE |
---|
2297 | |
---|
2298 | END SELECT |
---|
2299 | |
---|
2300 | END SUBROUTINE lpm_actions |
---|
2301 | |
---|
2302 | |
---|
2303 | !------------------------------------------------------------------------------! |
---|
2304 | ! Description: |
---|
2305 | ! ------------ |
---|
2306 | ! |
---|
2307 | !------------------------------------------------------------------------------! |
---|
2308 | SUBROUTINE particles_from_parent_to_child |
---|
2309 | IMPLICIT NONE |
---|
2310 | |
---|
2311 | CALL pmcp_c_get_particle_from_parent ! Child actions |
---|
2312 | CALL pmcp_p_fill_particle_win ! Parent actions |
---|
2313 | |
---|
2314 | RETURN |
---|
2315 | END SUBROUTINE particles_from_parent_to_child |
---|
2316 | |
---|
2317 | |
---|
2318 | !------------------------------------------------------------------------------! |
---|
2319 | ! Description: |
---|
2320 | ! ------------ |
---|
2321 | ! |
---|
2322 | !------------------------------------------------------------------------------! |
---|
2323 | SUBROUTINE particles_from_child_to_parent |
---|
2324 | IMPLICIT NONE |
---|
2325 | |
---|
2326 | CALL pmcp_c_send_particle_to_parent ! Child actions |
---|
2327 | CALL pmcp_p_empty_particle_win ! Parent actions |
---|
2328 | |
---|
2329 | RETURN |
---|
2330 | END SUBROUTINE particles_from_child_to_parent |
---|
2331 | |
---|
2332 | !------------------------------------------------------------------------------! |
---|
2333 | ! Description: |
---|
2334 | ! ------------ |
---|
2335 | !> This routine write exchange statistics of the lpm in a ascii file. |
---|
2336 | !------------------------------------------------------------------------------! |
---|
2337 | SUBROUTINE lpm_write_exchange_statistics |
---|
2338 | |
---|
2339 | INTEGER(iwp) :: ip !< |
---|
2340 | INTEGER(iwp) :: jp !< |
---|
2341 | INTEGER(iwp) :: kp !< |
---|
2342 | INTEGER(iwp) :: tot_number_of_particles |
---|
2343 | |
---|
2344 | ! |
---|
2345 | !-- Determine the current number of particles |
---|
2346 | number_of_particles = 0 |
---|
2347 | DO ip = nxl, nxr |
---|
2348 | DO jp = nys, nyn |
---|
2349 | DO kp = nzb+1, nzt |
---|
2350 | number_of_particles = number_of_particles & |
---|
2351 | + prt_count(kp,jp,ip) |
---|
2352 | ENDDO |
---|
2353 | ENDDO |
---|
2354 | ENDDO |
---|
2355 | |
---|
2356 | CALL check_open( 80 ) |
---|
2357 | #if defined( __parallel ) |
---|
2358 | WRITE ( 80, 8000 ) current_timestep_number+1, simulated_time+dt_3d, & |
---|
2359 | number_of_particles, pleft, trlp_count_sum, & |
---|
2360 | trlp_count_recv_sum, pright, trrp_count_sum, & |
---|
2361 | trrp_count_recv_sum, psouth, trsp_count_sum, & |
---|
2362 | trsp_count_recv_sum, pnorth, trnp_count_sum, & |
---|
2363 | trnp_count_recv_sum |
---|
2364 | #else |
---|
2365 | WRITE ( 80, 8000 ) current_timestep_number+1, simulated_time+dt_3d, & |
---|
2366 | number_of_particles |
---|
2367 | #endif |
---|
2368 | CALL close_file( 80 ) |
---|
2369 | |
---|
2370 | IF ( number_of_particles > 0 ) THEN |
---|
2371 | WRITE(9,*) 'number_of_particles ', number_of_particles, & |
---|
2372 | current_timestep_number + 1, simulated_time + dt_3d |
---|
2373 | ENDIF |
---|
2374 | |
---|
2375 | #if defined( __parallel ) |
---|
2376 | CALL MPI_ALLREDUCE( number_of_particles, tot_number_of_particles, 1, & |
---|
2377 | MPI_INTEGER, MPI_SUM, comm2d, ierr ) |
---|
2378 | #else |
---|
2379 | tot_number_of_particles = number_of_particles |
---|
2380 | #endif |
---|
2381 | |
---|
2382 | IF ( nested_run ) THEN |
---|
2383 | CALL pmcp_g_print_number_of_particles( simulated_time+dt_3d, & |
---|
2384 | tot_number_of_particles) |
---|
2385 | ENDIF |
---|
2386 | |
---|
2387 | ! |
---|
2388 | !-- Formats |
---|
2389 | 8000 FORMAT (I6,1X,F7.2,4X,I10,5X,4(I3,1X,I4,'/',I4,2X),6X,I10) |
---|
2390 | |
---|
2391 | |
---|
2392 | END SUBROUTINE lpm_write_exchange_statistics |
---|
2393 | |
---|
2394 | |
---|
2395 | !------------------------------------------------------------------------------! |
---|
2396 | ! Description: |
---|
2397 | ! ------------ |
---|
2398 | !> Write particle data in FORTRAN binary and/or netCDF format |
---|
2399 | !------------------------------------------------------------------------------! |
---|
2400 | SUBROUTINE lpm_data_output_particles |
---|
2401 | |
---|
2402 | INTEGER(iwp) :: ip !< |
---|
2403 | INTEGER(iwp) :: jp !< |
---|
2404 | INTEGER(iwp) :: kp !< |
---|
2405 | |
---|
2406 | CALL cpu_log( log_point_s(40), 'lpm_data_output', 'start' ) |
---|
2407 | |
---|
2408 | ! |
---|
2409 | !-- Attention: change version number for unit 85 (in routine check_open) |
---|
2410 | !-- whenever the output format for this unit is changed! |
---|
2411 | CALL check_open( 85 ) |
---|
2412 | |
---|
2413 | WRITE ( 85 ) simulated_time |
---|
2414 | WRITE ( 85 ) prt_count |
---|
2415 | |
---|
2416 | DO ip = nxl, nxr |
---|
2417 | DO jp = nys, nyn |
---|
2418 | DO kp = nzb+1, nzt |
---|
2419 | number_of_particles = prt_count(kp,jp,ip) |
---|
2420 | particles => grid_particles(kp,jp,ip)%particles(1:number_of_particles) |
---|
2421 | IF ( number_of_particles <= 0 ) CYCLE |
---|
2422 | WRITE ( 85 ) particles |
---|
2423 | ENDDO |
---|
2424 | ENDDO |
---|
2425 | ENDDO |
---|
2426 | |
---|
2427 | CALL close_file( 85 ) |
---|
2428 | |
---|
2429 | |
---|
2430 | #if defined( __netcdf ) |
---|
2431 | ! ! |
---|
2432 | ! !-- Output in netCDF format |
---|
2433 | ! CALL check_open( 108 ) |
---|
2434 | ! |
---|
2435 | ! ! |
---|
2436 | ! !-- Update the NetCDF time axis |
---|
2437 | ! prt_time_count = prt_time_count + 1 |
---|
2438 | ! |
---|
2439 | ! nc_stat = NF90_PUT_VAR( id_set_prt, id_var_time_prt, & |
---|
2440 | ! (/ simulated_time /), & |
---|
2441 | ! start = (/ prt_time_count /), count = (/ 1 /) ) |
---|
2442 | ! CALL netcdf_handle_error( 'lpm_data_output_particles', 1 ) |
---|
2443 | ! |
---|
2444 | ! ! |
---|
2445 | ! !-- Output the real number of particles used |
---|
2446 | ! nc_stat = NF90_PUT_VAR( id_set_prt, id_var_rnop_prt, & |
---|
2447 | ! (/ number_of_particles /), & |
---|
2448 | ! start = (/ prt_time_count /), count = (/ 1 /) ) |
---|
2449 | ! CALL netcdf_handle_error( 'lpm_data_output_particles', 2 ) |
---|
2450 | ! |
---|
2451 | ! ! |
---|
2452 | ! !-- Output all particle attributes |
---|
2453 | ! nc_stat = NF90_PUT_VAR( id_set_prt, id_var_prt(1), particles%age, & |
---|
2454 | ! start = (/ 1, prt_time_count /), & |
---|
2455 | ! count = (/ maximum_number_of_particles /) ) |
---|
2456 | ! CALL netcdf_handle_error( 'lpm_data_output_particles', 3 ) |
---|
2457 | ! |
---|
2458 | ! nc_stat = NF90_PUT_VAR( id_set_prt, id_var_prt(2), particles%user, & |
---|
2459 | ! start = (/ 1, prt_time_count /), & |
---|
2460 | ! count = (/ maximum_number_of_particles /) ) |
---|
2461 | ! CALL netcdf_handle_error( 'lpm_data_output_particles', 4 ) |
---|
2462 | ! |
---|
2463 | ! nc_stat = NF90_PUT_VAR( id_set_prt, id_var_prt(3), particles%origin_x, & |
---|
2464 | ! start = (/ 1, prt_time_count /), & |
---|
2465 | ! count = (/ maximum_number_of_particles /) ) |
---|
2466 | ! CALL netcdf_handle_error( 'lpm_data_output_particles', 5 ) |
---|
2467 | ! |
---|
2468 | ! nc_stat = NF90_PUT_VAR( id_set_prt, id_var_prt(4), particles%origin_y, & |
---|
2469 | ! start = (/ 1, prt_time_count /), & |
---|
2470 | ! count = (/ maximum_number_of_particles /) ) |
---|
2471 | ! CALL netcdf_handle_error( 'lpm_data_output_particles', 6 ) |
---|
2472 | ! |
---|
2473 | ! nc_stat = NF90_PUT_VAR( id_set_prt, id_var_prt(5), particles%origin_z, & |
---|
2474 | ! start = (/ 1, prt_time_count /), & |
---|
2475 | ! count = (/ maximum_number_of_particles /) ) |
---|
2476 | ! CALL netcdf_handle_error( 'lpm_data_output_particles', 7 ) |
---|
2477 | ! |
---|
2478 | ! nc_stat = NF90_PUT_VAR( id_set_prt, id_var_prt(6), particles%radius, & |
---|
2479 | ! start = (/ 1, prt_time_count /), & |
---|
2480 | ! count = (/ maximum_number_of_particles /) ) |
---|
2481 | ! CALL netcdf_handle_error( 'lpm_data_output_particles', 8 ) |
---|
2482 | ! |
---|
2483 | ! nc_stat = NF90_PUT_VAR( id_set_prt, id_var_prt(7), particles%speed_x, & |
---|
2484 | ! start = (/ 1, prt_time_count /), & |
---|
2485 | ! count = (/ maximum_number_of_particles /) ) |
---|
2486 | ! CALL netcdf_handle_error( 'lpm_data_output_particles', 9 ) |
---|
2487 | ! |
---|
2488 | ! nc_stat = NF90_PUT_VAR( id_set_prt, id_var_prt(8), particles%speed_y, & |
---|
2489 | ! start = (/ 1, prt_time_count /), & |
---|
2490 | ! count = (/ maximum_number_of_particles /) ) |
---|
2491 | ! CALL netcdf_handle_error( 'lpm_data_output_particles', 10 ) |
---|
2492 | ! |
---|
2493 | ! nc_stat = NF90_PUT_VAR( id_set_prt, id_var_prt(9), particles%speed_z, & |
---|
2494 | ! start = (/ 1, prt_time_count /), & |
---|
2495 | ! count = (/ maximum_number_of_particles /) ) |
---|
2496 | ! CALL netcdf_handle_error( 'lpm_data_output_particles', 11 ) |
---|
2497 | ! |
---|
2498 | ! nc_stat = NF90_PUT_VAR( id_set_prt,id_var_prt(10), & |
---|
2499 | ! particles%weight_factor, & |
---|
2500 | ! start = (/ 1, prt_time_count /), & |
---|
2501 | ! count = (/ maximum_number_of_particles /) ) |
---|
2502 | ! CALL netcdf_handle_error( 'lpm_data_output_particles', 12 ) |
---|
2503 | ! |
---|
2504 | ! nc_stat = NF90_PUT_VAR( id_set_prt, id_var_prt(11), particles%x, & |
---|
2505 | ! start = (/ 1, prt_time_count /), & |
---|
2506 | ! count = (/ maximum_number_of_particles /) ) |
---|
2507 | ! CALL netcdf_handle_error( 'lpm_data_output_particles', 13 ) |
---|
2508 | ! |
---|
2509 | ! nc_stat = NF90_PUT_VAR( id_set_prt, id_var_prt(12), particles%y, & |
---|
2510 | ! start = (/ 1, prt_time_count /), & |
---|
2511 | ! count = (/ maximum_number_of_particles /) ) |
---|
2512 | ! CALL netcdf_handle_error( 'lpm_data_output_particles', 14 ) |
---|
2513 | ! |
---|
2514 | ! nc_stat = NF90_PUT_VAR( id_set_prt, id_var_prt(13), particles%z, & |
---|
2515 | ! start = (/ 1, prt_time_count /), & |
---|
2516 | ! count = (/ maximum_number_of_particles /) ) |
---|
2517 | ! CALL netcdf_handle_error( 'lpm_data_output_particles', 15 ) |
---|
2518 | ! |
---|
2519 | ! nc_stat = NF90_PUT_VAR( id_set_prt, id_var_prt(14), particles%class, & |
---|
2520 | ! start = (/ 1, prt_time_count /), & |
---|
2521 | ! count = (/ maximum_number_of_particles /) ) |
---|
2522 | ! CALL netcdf_handle_error( 'lpm_data_output_particles', 16 ) |
---|
2523 | ! |
---|
2524 | ! nc_stat = NF90_PUT_VAR( id_set_prt, id_var_prt(15), particles%group, & |
---|
2525 | ! start = (/ 1, prt_time_count /), & |
---|
2526 | ! count = (/ maximum_number_of_particles /) ) |
---|
2527 | ! CALL netcdf_handle_error( 'lpm_data_output_particles', 17 ) |
---|
2528 | ! |
---|
2529 | ! nc_stat = NF90_PUT_VAR( id_set_prt, id_var_prt(16), & |
---|
2530 | ! particles%id2, & |
---|
2531 | ! start = (/ 1, prt_time_count /), & |
---|
2532 | ! count = (/ maximum_number_of_particles /) ) |
---|
2533 | ! CALL netcdf_handle_error( 'lpm_data_output_particles', 18 ) |
---|
2534 | ! |
---|
2535 | ! nc_stat = NF90_PUT_VAR( id_set_prt, id_var_prt(17), particles%id1, & |
---|
2536 | ! start = (/ 1, prt_time_count /), & |
---|
2537 | ! count = (/ maximum_number_of_particles /) ) |
---|
2538 | ! CALL netcdf_handle_error( 'lpm_data_output_particles', 19 ) |
---|
2539 | ! |
---|
2540 | #endif |
---|
2541 | |
---|
2542 | CALL cpu_log( log_point_s(40), 'lpm_data_output', 'stop' ) |
---|
2543 | |
---|
2544 | END SUBROUTINE lpm_data_output_particles |
---|
2545 | |
---|
2546 | !------------------------------------------------------------------------------! |
---|
2547 | ! Description: |
---|
2548 | ! ------------ |
---|
2549 | !> This routine calculates and provide particle timeseries output. |
---|
2550 | !------------------------------------------------------------------------------! |
---|
2551 | SUBROUTINE lpm_data_output_ptseries |
---|
2552 | |
---|
2553 | INTEGER(iwp) :: i !< |
---|
2554 | INTEGER(iwp) :: inum !< |
---|
2555 | INTEGER(iwp) :: j !< |
---|
2556 | INTEGER(iwp) :: jg !< |
---|
2557 | INTEGER(iwp) :: k !< |
---|
2558 | INTEGER(iwp) :: n !< |
---|
2559 | |
---|
2560 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: pts_value !< |
---|
2561 | REAL(wp), DIMENSION(:,:), ALLOCATABLE :: pts_value_l !< |
---|
2562 | |
---|
2563 | |
---|
2564 | CALL cpu_log( log_point(36), 'data_output_ptseries', 'start' ) |
---|
2565 | |
---|
2566 | IF ( myid == 0 ) THEN |
---|
2567 | ! |
---|
2568 | !-- Open file for time series output in NetCDF format |
---|
2569 | dopts_time_count = dopts_time_count + 1 |
---|
2570 | CALL check_open( 109 ) |
---|
2571 | #if defined( __netcdf ) |
---|
2572 | ! |
---|
2573 | !-- Update the particle time series time axis |
---|
2574 | nc_stat = NF90_PUT_VAR( id_set_pts, id_var_time_pts, & |
---|
2575 | (/ time_since_reference_point /), & |
---|
2576 | start = (/ dopts_time_count /), count = (/ 1 /) ) |
---|
2577 | CALL netcdf_handle_error( 'data_output_ptseries', 391 ) |
---|
2578 | #endif |
---|
2579 | |
---|
2580 | ENDIF |
---|
2581 | |
---|
2582 | ALLOCATE( pts_value(0:number_of_particle_groups,dopts_num), & |
---|
2583 | pts_value_l(0:number_of_particle_groups,dopts_num) ) |
---|
2584 | |
---|
2585 | pts_value_l = 0.0_wp |
---|
2586 | pts_value_l(:,16) = 9999999.9_wp ! for calculation of minimum radius |
---|
2587 | |
---|
2588 | ! |
---|
2589 | !-- Calculate or collect the particle time series quantities for all particles |
---|
2590 | !-- and seperately for each particle group (if there is more than one group) |
---|
2591 | DO i = nxl, nxr |
---|
2592 | DO j = nys, nyn |
---|
2593 | DO k = nzb, nzt |
---|
2594 | number_of_particles = prt_count(k,j,i) |
---|
2595 | IF (number_of_particles <= 0) CYCLE |
---|
2596 | particles => grid_particles(k,j,i)%particles(1:number_of_particles) |
---|
2597 | DO n = 1, number_of_particles |
---|
2598 | |
---|
2599 | IF ( particles(n)%particle_mask ) THEN ! Restrict analysis to active particles |
---|
2600 | |
---|
2601 | pts_value_l(0,1) = pts_value_l(0,1) + 1.0_wp ! total # of particles |
---|
2602 | pts_value_l(0,2) = pts_value_l(0,2) + & |
---|
2603 | ( particles(n)%x - particles(n)%origin_x ) ! mean x |
---|
2604 | pts_value_l(0,3) = pts_value_l(0,3) + & |
---|
2605 | ( particles(n)%y - particles(n)%origin_y ) ! mean y |
---|
2606 | pts_value_l(0,4) = pts_value_l(0,4) + & |
---|
2607 | ( particles(n)%z - particles(n)%origin_z ) ! mean z |
---|
2608 | pts_value_l(0,5) = pts_value_l(0,5) + particles(n)%z ! mean z (absolute) |
---|
2609 | pts_value_l(0,6) = pts_value_l(0,6) + particles(n)%speed_x ! mean u |
---|
2610 | pts_value_l(0,7) = pts_value_l(0,7) + particles(n)%speed_y ! mean v |
---|
2611 | pts_value_l(0,8) = pts_value_l(0,8) + particles(n)%speed_z ! mean w |
---|
2612 | pts_value_l(0,9) = pts_value_l(0,9) + particles(n)%rvar1 ! mean sgsu |
---|
2613 | pts_value_l(0,10) = pts_value_l(0,10) + particles(n)%rvar2 ! mean sgsv |
---|
2614 | pts_value_l(0,11) = pts_value_l(0,11) + particles(n)%rvar3 ! mean sgsw |
---|
2615 | IF ( particles(n)%speed_z > 0.0_wp ) THEN |
---|
2616 | pts_value_l(0,12) = pts_value_l(0,12) + 1.0_wp ! # of upward moving prts |
---|
2617 | pts_value_l(0,13) = pts_value_l(0,13) + & |
---|
2618 | particles(n)%speed_z ! mean w upw. |
---|
2619 | ELSE |
---|
2620 | pts_value_l(0,14) = pts_value_l(0,14) + & |
---|
2621 | particles(n)%speed_z ! mean w down |
---|
2622 | ENDIF |
---|
2623 | pts_value_l(0,15) = pts_value_l(0,15) + particles(n)%radius ! mean rad |
---|
2624 | pts_value_l(0,16) = MIN( pts_value_l(0,16), particles(n)%radius ) ! minrad |
---|
2625 | pts_value_l(0,17) = MAX( pts_value_l(0,17), particles(n)%radius ) ! maxrad |
---|
2626 | pts_value_l(0,18) = pts_value_l(0,18) + 1.0_wp |
---|
2627 | pts_value_l(0,19) = pts_value_l(0,18) + 1.0_wp |
---|
2628 | ! |
---|
2629 | !-- Repeat the same for the respective particle group |
---|
2630 | IF ( number_of_particle_groups > 1 ) THEN |
---|
2631 | jg = particles(n)%group |
---|
2632 | |
---|
2633 | pts_value_l(jg,1) = pts_value_l(jg,1) + 1.0_wp |
---|
2634 | pts_value_l(jg,2) = pts_value_l(jg,2) + & |
---|
2635 | ( particles(n)%x - particles(n)%origin_x ) |
---|
2636 | pts_value_l(jg,3) = pts_value_l(jg,3) + & |
---|
2637 | ( particles(n)%y - particles(n)%origin_y ) |
---|
2638 | pts_value_l(jg,4) = pts_value_l(jg,4) + & |
---|
2639 | ( particles(n)%z - particles(n)%origin_z ) |
---|
2640 | pts_value_l(jg,5) = pts_value_l(jg,5) + particles(n)%z |
---|
2641 | pts_value_l(jg,6) = pts_value_l(jg,6) + particles(n)%speed_x |
---|
2642 | pts_value_l(jg,7) = pts_value_l(jg,7) + particles(n)%speed_y |
---|
2643 | pts_value_l(jg,8) = pts_value_l(jg,8) + particles(n)%speed_z |
---|
2644 | pts_value_l(jg,9) = pts_value_l(jg,9) + particles(n)%rvar1 |
---|
2645 | pts_value_l(jg,10) = pts_value_l(jg,10) + particles(n)%rvar2 |
---|
2646 | pts_value_l(jg,11) = pts_value_l(jg,11) + particles(n)%rvar3 |
---|
2647 | IF ( particles(n)%speed_z > 0.0_wp ) THEN |
---|
2648 | pts_value_l(jg,12) = pts_value_l(jg,12) + 1.0_wp |
---|
2649 | pts_value_l(jg,13) = pts_value_l(jg,13) + particles(n)%speed_z |
---|
2650 | ELSE |
---|
2651 | pts_value_l(jg,14) = pts_value_l(jg,14) + particles(n)%speed_z |
---|
2652 | ENDIF |
---|
2653 | pts_value_l(jg,15) = pts_value_l(jg,15) + particles(n)%radius |
---|
2654 | pts_value_l(jg,16) = MIN( pts_value(jg,16), particles(n)%radius ) |
---|
2655 | pts_value_l(jg,17) = MAX( pts_value(jg,17), particles(n)%radius ) |
---|
2656 | pts_value_l(jg,18) = pts_value_l(jg,18) + 1.0_wp |
---|
2657 | pts_value_l(jg,19) = pts_value_l(jg,19) + 1.0_wp |
---|
2658 | ENDIF |
---|
2659 | |
---|
2660 | ENDIF |
---|
2661 | |
---|
2662 | ENDDO |
---|
2663 | |
---|
2664 | ENDDO |
---|
2665 | ENDDO |
---|
2666 | ENDDO |
---|
2667 | |
---|
2668 | |
---|
2669 | #if defined( __parallel ) |
---|
2670 | ! |
---|
2671 | !-- Sum values of the subdomains |
---|
2672 | inum = number_of_particle_groups + 1 |
---|
2673 | |
---|
2674 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
2675 | CALL MPI_ALLREDUCE( pts_value_l(0,1), pts_value(0,1), 15*inum, MPI_REAL, & |
---|
2676 | MPI_SUM, comm2d, ierr ) |
---|
2677 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
2678 | CALL MPI_ALLREDUCE( pts_value_l(0,16), pts_value(0,16), inum, MPI_REAL, & |
---|
2679 | MPI_MIN, comm2d, ierr ) |
---|
2680 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
2681 | CALL MPI_ALLREDUCE( pts_value_l(0,17), pts_value(0,17), inum, MPI_REAL, & |
---|
2682 | MPI_MAX, comm2d, ierr ) |
---|
2683 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
2684 | CALL MPI_ALLREDUCE( pts_value_l(0,18), pts_value(0,18), inum, MPI_REAL, & |
---|
2685 | MPI_MAX, comm2d, ierr ) |
---|
2686 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
2687 | CALL MPI_ALLREDUCE( pts_value_l(0,19), pts_value(0,19), inum, MPI_REAL, & |
---|
2688 | MPI_MIN, comm2d, ierr ) |
---|
2689 | #else |
---|
2690 | pts_value(:,1:19) = pts_value_l(:,1:19) |
---|
2691 | #endif |
---|
2692 | |
---|
2693 | ! |
---|
2694 | !-- Normalize the above calculated quantities (except min/max values) with the |
---|
2695 | !-- total number of particles |
---|
2696 | IF ( number_of_particle_groups > 1 ) THEN |
---|
2697 | inum = number_of_particle_groups |
---|
2698 | ELSE |
---|
2699 | inum = 0 |
---|
2700 | ENDIF |
---|
2701 | |
---|
2702 | DO j = 0, inum |
---|
2703 | |
---|
2704 | IF ( pts_value(j,1) > 0.0_wp ) THEN |
---|
2705 | |
---|
2706 | pts_value(j,2:15) = pts_value(j,2:15) / pts_value(j,1) |
---|
2707 | IF ( pts_value(j,12) > 0.0_wp .AND. pts_value(j,12) < 1.0_wp ) THEN |
---|
2708 | pts_value(j,13) = pts_value(j,13) / pts_value(j,12) |
---|
2709 | pts_value(j,14) = pts_value(j,14) / ( 1.0_wp - pts_value(j,12) ) |
---|
2710 | ELSEIF ( pts_value(j,12) == 0.0_wp ) THEN |
---|
2711 | pts_value(j,13) = -1.0_wp |
---|
2712 | ELSE |
---|
2713 | pts_value(j,14) = -1.0_wp |
---|
2714 | ENDIF |
---|
2715 | |
---|
2716 | ENDIF |
---|
2717 | |
---|
2718 | ENDDO |
---|
2719 | |
---|
2720 | ! |
---|
2721 | !-- Calculate higher order moments of particle time series quantities, |
---|
2722 | !-- seperately for each particle group (if there is more than one group) |
---|
2723 | DO i = nxl, nxr |
---|
2724 | DO j = nys, nyn |
---|
2725 | DO k = nzb, nzt |
---|
2726 | number_of_particles = prt_count(k,j,i) |
---|
2727 | IF (number_of_particles <= 0) CYCLE |
---|
2728 | particles => grid_particles(k,j,i)%particles(1:number_of_particles) |
---|
2729 | DO n = 1, number_of_particles |
---|
2730 | |
---|
2731 | pts_value_l(0,20) = pts_value_l(0,20) + ( particles(n)%x - & |
---|
2732 | particles(n)%origin_x - pts_value(0,2) )**2 ! x*2 |
---|
2733 | pts_value_l(0,21) = pts_value_l(0,21) + ( particles(n)%y - & |
---|
2734 | particles(n)%origin_y - pts_value(0,3) )**2 ! y*2 |
---|
2735 | pts_value_l(0,22) = pts_value_l(0,22) + ( particles(n)%z - & |
---|
2736 | particles(n)%origin_z - pts_value(0,4) )**2 ! z*2 |
---|
2737 | pts_value_l(0,23) = pts_value_l(0,23) + ( particles(n)%speed_x - & |
---|
2738 | pts_value(0,6) )**2 ! u*2 |
---|
2739 | pts_value_l(0,24) = pts_value_l(0,24) + ( particles(n)%speed_y - & |
---|
2740 | pts_value(0,7) )**2 ! v*2 |
---|
2741 | pts_value_l(0,25) = pts_value_l(0,25) + ( particles(n)%speed_z - & |
---|
2742 | pts_value(0,8) )**2 ! w*2 |
---|
2743 | pts_value_l(0,26) = pts_value_l(0,26) + ( particles(n)%rvar1 - & |
---|
2744 | pts_value(0,9) )**2 ! u"2 |
---|
2745 | pts_value_l(0,27) = pts_value_l(0,27) + ( particles(n)%rvar2 - & |
---|
2746 | pts_value(0,10) )**2 ! v"2 |
---|
2747 | pts_value_l(0,28) = pts_value_l(0,28) + ( particles(n)%rvar3 - & |
---|
2748 | pts_value(0,11) )**2 ! w"2 |
---|
2749 | ! |
---|
2750 | !-- Repeat the same for the respective particle group |
---|
2751 | IF ( number_of_particle_groups > 1 ) THEN |
---|
2752 | jg = particles(n)%group |
---|
2753 | |
---|
2754 | pts_value_l(jg,20) = pts_value_l(jg,20) + ( particles(n)%x - & |
---|
2755 | particles(n)%origin_x - pts_value(jg,2) )**2 |
---|
2756 | pts_value_l(jg,21) = pts_value_l(jg,21) + ( particles(n)%y - & |
---|
2757 | particles(n)%origin_y - pts_value(jg,3) )**2 |
---|
2758 | pts_value_l(jg,22) = pts_value_l(jg,22) + ( particles(n)%z - & |
---|
2759 | particles(n)%origin_z - pts_value(jg,4) )**2 |
---|
2760 | pts_value_l(jg,23) = pts_value_l(jg,23) + ( particles(n)%speed_x - & |
---|
2761 | pts_value(jg,6) )**2 |
---|
2762 | pts_value_l(jg,24) = pts_value_l(jg,24) + ( particles(n)%speed_y - & |
---|
2763 | pts_value(jg,7) )**2 |
---|
2764 | pts_value_l(jg,25) = pts_value_l(jg,25) + ( particles(n)%speed_z - & |
---|
2765 | pts_value(jg,8) )**2 |
---|
2766 | pts_value_l(jg,26) = pts_value_l(jg,26) + ( particles(n)%rvar1 - & |
---|
2767 | pts_value(jg,9) )**2 |
---|
2768 | pts_value_l(jg,27) = pts_value_l(jg,27) + ( particles(n)%rvar2 - & |
---|
2769 | pts_value(jg,10) )**2 |
---|
2770 | pts_value_l(jg,28) = pts_value_l(jg,28) + ( particles(n)%rvar3 - & |
---|
2771 | pts_value(jg,11) )**2 |
---|
2772 | ENDIF |
---|
2773 | |
---|
2774 | ENDDO |
---|
2775 | ENDDO |
---|
2776 | ENDDO |
---|
2777 | ENDDO |
---|
2778 | |
---|
2779 | pts_value_l(0,29) = ( number_of_particles - pts_value(0,1) / numprocs )**2 |
---|
2780 | ! variance of particle numbers |
---|
2781 | IF ( number_of_particle_groups > 1 ) THEN |
---|
2782 | DO j = 1, number_of_particle_groups |
---|
2783 | pts_value_l(j,29) = ( pts_value_l(j,1) - & |
---|
2784 | pts_value(j,1) / numprocs )**2 |
---|
2785 | ENDDO |
---|
2786 | ENDIF |
---|
2787 | |
---|
2788 | #if defined( __parallel ) |
---|
2789 | ! |
---|
2790 | !-- Sum values of the subdomains |
---|
2791 | inum = number_of_particle_groups + 1 |
---|
2792 | |
---|
2793 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
2794 | CALL MPI_ALLREDUCE( pts_value_l(0,20), pts_value(0,20), inum*10, MPI_REAL, & |
---|
2795 | MPI_SUM, comm2d, ierr ) |
---|
2796 | #else |
---|
2797 | pts_value(:,20:29) = pts_value_l(:,20:29) |
---|
2798 | #endif |
---|
2799 | |
---|
2800 | ! |
---|
2801 | !-- Normalize the above calculated quantities with the total number of |
---|
2802 | !-- particles |
---|
2803 | IF ( number_of_particle_groups > 1 ) THEN |
---|
2804 | inum = number_of_particle_groups |
---|
2805 | ELSE |
---|
2806 | inum = 0 |
---|
2807 | ENDIF |
---|
2808 | |
---|
2809 | DO j = 0, inum |
---|
2810 | |
---|
2811 | IF ( pts_value(j,1) > 0.0_wp ) THEN |
---|
2812 | pts_value(j,20:28) = pts_value(j,20:28) / pts_value(j,1) |
---|
2813 | ENDIF |
---|
2814 | pts_value(j,29) = pts_value(j,29) / numprocs |
---|
2815 | |
---|
2816 | ENDDO |
---|
2817 | |
---|
2818 | #if defined( __netcdf ) |
---|
2819 | ! |
---|
2820 | !-- Output particle time series quantities in NetCDF format |
---|
2821 | IF ( myid == 0 ) THEN |
---|
2822 | DO j = 0, inum |
---|
2823 | DO i = 1, dopts_num |
---|
2824 | nc_stat = NF90_PUT_VAR( id_set_pts, id_var_dopts(i,j), & |
---|
2825 | (/ pts_value(j,i) /), & |
---|
2826 | start = (/ dopts_time_count /), & |
---|
2827 | count = (/ 1 /) ) |
---|
2828 | CALL netcdf_handle_error( 'data_output_ptseries', 392 ) |
---|
2829 | ENDDO |
---|
2830 | ENDDO |
---|
2831 | ENDIF |
---|
2832 | #endif |
---|
2833 | |
---|
2834 | DEALLOCATE( pts_value, pts_value_l ) |
---|
2835 | |
---|
2836 | CALL cpu_log( log_point(36), 'data_output_ptseries', 'stop' ) |
---|
2837 | |
---|
2838 | END SUBROUTINE lpm_data_output_ptseries |
---|
2839 | |
---|
2840 | |
---|
2841 | !------------------------------------------------------------------------------! |
---|
2842 | ! Description: |
---|
2843 | ! ------------ |
---|
2844 | !> This routine reads the respective restart data for the lpm. |
---|
2845 | !------------------------------------------------------------------------------! |
---|
2846 | SUBROUTINE lpm_rrd_local_particles |
---|
2847 | |
---|
2848 | CHARACTER (LEN=10) :: particle_binary_version !< |
---|
2849 | CHARACTER (LEN=10) :: version_on_file !< |
---|
2850 | |
---|
2851 | INTEGER(iwp) :: alloc_size !< |
---|
2852 | INTEGER(iwp) :: ip !< |
---|
2853 | INTEGER(iwp) :: jp !< |
---|
2854 | INTEGER(iwp) :: kp !< |
---|
2855 | |
---|
2856 | TYPE(particle_type), DIMENSION(:), ALLOCATABLE :: tmp_particles !< |
---|
2857 | |
---|
2858 | ! |
---|
2859 | !-- Read particle data from previous model run. |
---|
2860 | !-- First open the input unit. |
---|
2861 | IF ( myid_char == '' ) THEN |
---|
2862 | OPEN ( 90, FILE='PARTICLE_RESTART_DATA_IN'//myid_char, & |
---|
2863 | FORM='UNFORMATTED' ) |
---|
2864 | ELSE |
---|
2865 | OPEN ( 90, FILE='PARTICLE_RESTART_DATA_IN/'//myid_char, & |
---|
2866 | FORM='UNFORMATTED' ) |
---|
2867 | ENDIF |
---|
2868 | |
---|
2869 | ! |
---|
2870 | !-- First compare the version numbers |
---|
2871 | READ ( 90 ) version_on_file |
---|
2872 | particle_binary_version = '4.0' |
---|
2873 | IF ( TRIM( version_on_file ) /= TRIM( particle_binary_version ) ) THEN |
---|
2874 | message_string = 'version mismatch concerning data from prior ' // & |
---|
2875 | 'run &version on file = "' // & |
---|
2876 | TRIM( version_on_file ) // & |
---|
2877 | '&version in program = "' // & |
---|
2878 | TRIM( particle_binary_version ) // '"' |
---|
2879 | CALL message( 'lpm_read_restart_file', 'PA0214', 1, 2, 0, 6, 0 ) |
---|
2880 | ENDIF |
---|
2881 | |
---|
2882 | ! |
---|
2883 | !-- If less particles are stored on the restart file than prescribed by |
---|
2884 | !-- 1, the remainder is initialized by zero_particle to avoid |
---|
2885 | !-- errors. |
---|
2886 | zero_particle = particle_type( 0.0_wp, 0.0_wp, 0.0_wp, 0.0_wp, 0.0_wp, & |
---|
2887 | 0.0_wp, 0.0_wp, 0.0_wp, 0.0_wp, 0.0_wp, & |
---|
2888 | 0.0_wp, 0.0_wp, 0.0_wp, 0.0_wp, 0.0_wp, & |
---|
2889 | 0.0_wp, 0.0_wp, 0.0_wp, 0.0_wp, 0.0_wp, & |
---|
2890 | 0, 0, 0_idp, .FALSE., -1 ) |
---|
2891 | ! |
---|
2892 | !-- Read some particle parameters and the size of the particle arrays, |
---|
2893 | !-- allocate them and read their contents. |
---|
2894 | READ ( 90 ) bc_par_b, bc_par_lr, bc_par_ns, bc_par_t, & |
---|
2895 | last_particle_release_time, number_of_particle_groups, & |
---|
2896 | particle_groups, time_write_particle_data |
---|
2897 | |
---|
2898 | ALLOCATE( prt_count(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
2899 | grid_particles(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
2900 | |
---|
2901 | READ ( 90 ) prt_count |
---|
2902 | |
---|
2903 | DO ip = nxl, nxr |
---|
2904 | DO jp = nys, nyn |
---|
2905 | DO kp = nzb+1, nzt |
---|
2906 | |
---|
2907 | number_of_particles = prt_count(kp,jp,ip) |
---|
2908 | IF ( number_of_particles > 0 ) THEN |
---|
2909 | alloc_size = MAX( INT( number_of_particles * & |
---|
2910 | ( 1.0_wp + alloc_factor / 100.0_wp ) ), & |
---|
2911 | 1 ) |
---|
2912 | ELSE |
---|
2913 | alloc_size = 1 |
---|
2914 | ENDIF |
---|
2915 | |
---|
2916 | ALLOCATE( grid_particles(kp,jp,ip)%particles(1:alloc_size) ) |
---|
2917 | |
---|
2918 | IF ( number_of_particles > 0 ) THEN |
---|
2919 | ALLOCATE( tmp_particles(1:number_of_particles) ) |
---|
2920 | READ ( 90 ) tmp_particles |
---|
2921 | grid_particles(kp,jp,ip)%particles(1:number_of_particles) = tmp_particles |
---|
2922 | DEALLOCATE( tmp_particles ) |
---|
2923 | IF ( number_of_particles < alloc_size ) THEN |
---|
2924 | grid_particles(kp,jp,ip)%particles(number_of_particles+1:alloc_size) & |
---|
2925 | = zero_particle |
---|
2926 | ENDIF |
---|
2927 | ELSE |
---|
2928 | grid_particles(kp,jp,ip)%particles(1:alloc_size) = zero_particle |
---|
2929 | ENDIF |
---|
2930 | |
---|
2931 | ENDDO |
---|
2932 | ENDDO |
---|
2933 | ENDDO |
---|
2934 | |
---|
2935 | CLOSE ( 90 ) |
---|
2936 | ! |
---|
2937 | !-- Must be called to sort particles into blocks, which is needed for a fast |
---|
2938 | !-- interpolation of the LES fields on the particle position. |
---|
2939 | CALL lpm_sort_in_subboxes |
---|
2940 | |
---|
2941 | |
---|
2942 | END SUBROUTINE lpm_rrd_local_particles |
---|
2943 | |
---|
2944 | |
---|
2945 | SUBROUTINE lpm_rrd_local( k, nxlf, nxlc, nxl_on_file, nxrf, nxrc, & |
---|
2946 | nxr_on_file, nynf, nync, nyn_on_file, nysf, & |
---|
2947 | nysc, nys_on_file, tmp_3d, found ) |
---|
2948 | |
---|
2949 | |
---|
2950 | USE control_parameters, & |
---|
2951 | ONLY: length, restart_string |
---|
2952 | |
---|
2953 | INTEGER(iwp) :: k !< |
---|
2954 | INTEGER(iwp) :: nxlc !< |
---|
2955 | INTEGER(iwp) :: nxlf !< |
---|
2956 | INTEGER(iwp) :: nxl_on_file !< |
---|
2957 | INTEGER(iwp) :: nxrc !< |
---|
2958 | INTEGER(iwp) :: nxrf !< |
---|
2959 | INTEGER(iwp) :: nxr_on_file !< |
---|
2960 | INTEGER(iwp) :: nync !< |
---|
2961 | INTEGER(iwp) :: nynf !< |
---|
2962 | INTEGER(iwp) :: nyn_on_file !< |
---|
2963 | INTEGER(iwp) :: nysc !< |
---|
2964 | INTEGER(iwp) :: nysf !< |
---|
2965 | INTEGER(iwp) :: nys_on_file !< |
---|
2966 | |
---|
2967 | LOGICAL, INTENT(OUT) :: found |
---|
2968 | |
---|
2969 | REAL(wp), DIMENSION(nzb:nzt+1,nys_on_file-nbgp:nyn_on_file+nbgp,nxl_on_file-nbgp:nxr_on_file+nbgp) :: tmp_3d !< |
---|
2970 | |
---|
2971 | |
---|
2972 | found = .TRUE. |
---|
2973 | |
---|
2974 | SELECT CASE ( restart_string(1:length) ) |
---|
2975 | |
---|
2976 | CASE ( 'iran' ) ! matching random numbers is still unresolved issue |
---|
2977 | IF ( k == 1 ) READ ( 13 ) iran, iran_part |
---|
2978 | |
---|
2979 | CASE ( 'pc_av' ) |
---|
2980 | IF ( .NOT. ALLOCATED( pc_av ) ) THEN |
---|
2981 | ALLOCATE( pc_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
2982 | ENDIF |
---|
2983 | IF ( k == 1 ) READ ( 13 ) tmp_3d |
---|
2984 | pc_av(:,nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = & |
---|
2985 | tmp_3d(:,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp) |
---|
2986 | |
---|
2987 | CASE ( 'pr_av' ) |
---|
2988 | IF ( .NOT. ALLOCATED( pr_av ) ) THEN |
---|
2989 | ALLOCATE( pr_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
2990 | ENDIF |
---|
2991 | IF ( k == 1 ) READ ( 13 ) tmp_3d |
---|
2992 | pr_av(:,nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = & |
---|
2993 | tmp_3d(:,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp) |
---|
2994 | |
---|
2995 | CASE ( 'ql_c_av' ) |
---|
2996 | IF ( .NOT. ALLOCATED( ql_c_av ) ) THEN |
---|
2997 | ALLOCATE( ql_c_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
2998 | ENDIF |
---|
2999 | IF ( k == 1 ) READ ( 13 ) tmp_3d |
---|
3000 | ql_c_av(:,nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = & |
---|
3001 | tmp_3d(:,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp) |
---|
3002 | |
---|
3003 | CASE ( 'ql_v_av' ) |
---|
3004 | IF ( .NOT. ALLOCATED( ql_v_av ) ) THEN |
---|
3005 | ALLOCATE( ql_v_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
3006 | ENDIF |
---|
3007 | IF ( k == 1 ) READ ( 13 ) tmp_3d |
---|
3008 | ql_v_av(:,nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = & |
---|
3009 | tmp_3d(:,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp) |
---|
3010 | |
---|
3011 | CASE ( 'ql_vp_av' ) |
---|
3012 | IF ( .NOT. ALLOCATED( ql_vp_av ) ) THEN |
---|
3013 | ALLOCATE( ql_vp_av(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
3014 | ENDIF |
---|
3015 | IF ( k == 1 ) READ ( 13 ) tmp_3d |
---|
3016 | ql_vp_av(:,nysc-nbgp:nync+nbgp,nxlc-nbgp:nxrc+nbgp) = & |
---|
3017 | tmp_3d(:,nysf-nbgp:nynf+nbgp,nxlf-nbgp:nxrf+nbgp) |
---|
3018 | |
---|
3019 | CASE DEFAULT |
---|
3020 | |
---|
3021 | found = .FALSE. |
---|
3022 | |
---|
3023 | END SELECT |
---|
3024 | |
---|
3025 | |
---|
3026 | END SUBROUTINE lpm_rrd_local |
---|
3027 | |
---|
3028 | !------------------------------------------------------------------------------! |
---|
3029 | ! Description: |
---|
3030 | ! ------------ |
---|
3031 | !> This routine writes the respective restart data for the lpm. |
---|
3032 | !------------------------------------------------------------------------------! |
---|
3033 | SUBROUTINE lpm_wrd_local |
---|
3034 | |
---|
3035 | CHARACTER (LEN=10) :: particle_binary_version !< |
---|
3036 | |
---|
3037 | INTEGER(iwp) :: ip !< |
---|
3038 | INTEGER(iwp) :: jp !< |
---|
3039 | INTEGER(iwp) :: kp !< |
---|
3040 | ! |
---|
3041 | !-- First open the output unit. |
---|
3042 | IF ( myid_char == '' ) THEN |
---|
3043 | OPEN ( 90, FILE='PARTICLE_RESTART_DATA_OUT'//myid_char, & |
---|
3044 | FORM='UNFORMATTED') |
---|
3045 | ELSE |
---|
3046 | IF ( myid == 0 ) CALL local_system( 'mkdir PARTICLE_RESTART_DATA_OUT' ) |
---|
3047 | #if defined( __parallel ) |
---|
3048 | ! |
---|
3049 | !-- Set a barrier in order to allow that thereafter all other processors |
---|
3050 | !-- in the directory created by PE0 can open their file |
---|
3051 | CALL MPI_BARRIER( comm2d, ierr ) |
---|
3052 | #endif |
---|
3053 | OPEN ( 90, FILE='PARTICLE_RESTART_DATA_OUT/'//myid_char, & |
---|
3054 | FORM='UNFORMATTED' ) |
---|
3055 | ENDIF |
---|
3056 | |
---|
3057 | ! |
---|
3058 | !-- Write the version number of the binary format. |
---|
3059 | !-- Attention: After changes to the following output commands the version |
---|
3060 | !-- --------- number of the variable particle_binary_version must be |
---|
3061 | !-- changed! Also, the version number and the list of arrays |
---|
3062 | !-- to be read in lpm_read_restart_file must be adjusted |
---|
3063 | !-- accordingly. |
---|
3064 | particle_binary_version = '4.0' |
---|
3065 | WRITE ( 90 ) particle_binary_version |
---|
3066 | |
---|
3067 | ! |
---|
3068 | !-- Write some particle parameters, the size of the particle arrays |
---|
3069 | WRITE ( 90 ) bc_par_b, bc_par_lr, bc_par_ns, bc_par_t, & |
---|
3070 | last_particle_release_time, number_of_particle_groups, & |
---|
3071 | particle_groups, time_write_particle_data |
---|
3072 | |
---|
3073 | WRITE ( 90 ) prt_count |
---|
3074 | |
---|
3075 | DO ip = nxl, nxr |
---|
3076 | DO jp = nys, nyn |
---|
3077 | DO kp = nzb+1, nzt |
---|
3078 | number_of_particles = prt_count(kp,jp,ip) |
---|
3079 | particles => grid_particles(kp,jp,ip)%particles(1:number_of_particles) |
---|
3080 | IF ( number_of_particles <= 0 ) CYCLE |
---|
3081 | WRITE ( 90 ) particles |
---|
3082 | ENDDO |
---|
3083 | ENDDO |
---|
3084 | ENDDO |
---|
3085 | |
---|
3086 | CLOSE ( 90 ) |
---|
3087 | |
---|
3088 | #if defined( __parallel ) |
---|
3089 | CALL MPI_BARRIER( comm2d, ierr ) |
---|
3090 | #endif |
---|
3091 | |
---|
3092 | CALL wrd_write_string( 'iran' ) |
---|
3093 | WRITE ( 14 ) iran, iran_part |
---|
3094 | |
---|
3095 | |
---|
3096 | END SUBROUTINE lpm_wrd_local |
---|
3097 | |
---|
3098 | |
---|
3099 | !------------------------------------------------------------------------------! |
---|
3100 | ! Description: |
---|
3101 | ! ------------ |
---|
3102 | !> This routine writes the respective restart data for the lpm. |
---|
3103 | !------------------------------------------------------------------------------! |
---|
3104 | SUBROUTINE lpm_wrd_global |
---|
3105 | |
---|
3106 | CALL wrd_write_string( 'curvature_solution_effects' ) |
---|
3107 | WRITE ( 14 ) curvature_solution_effects |
---|
3108 | |
---|
3109 | END SUBROUTINE lpm_wrd_global |
---|
3110 | |
---|
3111 | |
---|
3112 | !------------------------------------------------------------------------------! |
---|
3113 | ! Description: |
---|
3114 | ! ------------ |
---|
3115 | !> This routine writes the respective restart data for the lpm. |
---|
3116 | !------------------------------------------------------------------------------! |
---|
3117 | SUBROUTINE lpm_rrd_global( found ) |
---|
3118 | |
---|
3119 | USE control_parameters, & |
---|
3120 | ONLY: length, restart_string |
---|
3121 | |
---|
3122 | LOGICAL, INTENT(OUT) :: found |
---|
3123 | |
---|
3124 | found = .TRUE. |
---|
3125 | |
---|
3126 | SELECT CASE ( restart_string(1:length) ) |
---|
3127 | |
---|
3128 | CASE ( 'curvature_solution_effects' ) |
---|
3129 | READ ( 13 ) curvature_solution_effects |
---|
3130 | |
---|
3131 | ! CASE ( 'global_paramter' ) |
---|
3132 | ! READ ( 13 ) global_parameter |
---|
3133 | ! CASE ( 'global_array' ) |
---|
3134 | ! IF ( .NOT. ALLOCATED( global_array ) ) ALLOCATE( global_array(1:10) ) |
---|
3135 | ! READ ( 13 ) global_array |
---|
3136 | |
---|
3137 | CASE DEFAULT |
---|
3138 | |
---|
3139 | found = .FALSE. |
---|
3140 | |
---|
3141 | END SELECT |
---|
3142 | |
---|
3143 | END SUBROUTINE lpm_rrd_global |
---|
3144 | |
---|
3145 | |
---|
3146 | !------------------------------------------------------------------------------! |
---|
3147 | ! Description: |
---|
3148 | ! ------------ |
---|
3149 | !> This is a submodule of the lagrangian particle model. It contains all |
---|
3150 | !> dynamic processes of the lpm. This includes the advection (resolved and sub- |
---|
3151 | !> grid scale) as well as the boundary conditions of particles. As a next step |
---|
3152 | !> this submodule should be excluded as an own file. |
---|
3153 | !------------------------------------------------------------------------------! |
---|
3154 | SUBROUTINE lpm_advec (ip,jp,kp) |
---|
3155 | |
---|
3156 | LOGICAL :: subbox_at_wall !< flag to see if the current subgridbox is adjacent to a wall |
---|
3157 | |
---|
3158 | INTEGER(iwp) :: i !< index variable along x |
---|
3159 | INTEGER(iwp) :: ip !< index variable along x |
---|
3160 | INTEGER(iwp) :: j !< index variable along y |
---|
3161 | INTEGER(iwp) :: jp !< index variable along y |
---|
3162 | INTEGER(iwp) :: k !< index variable along z |
---|
3163 | INTEGER(iwp) :: k_wall !< vertical index of topography top |
---|
3164 | INTEGER(iwp) :: kp !< index variable along z |
---|
3165 | INTEGER(iwp) :: kw !< index variable along z |
---|
3166 | INTEGER(iwp) :: n !< loop variable over all particles in a grid box |
---|
3167 | INTEGER(iwp) :: nb !< block number particles are sorted in |
---|
3168 | INTEGER(iwp) :: surf_start !< Index on surface data-type for current grid box |
---|
3169 | |
---|
3170 | INTEGER(iwp), DIMENSION(0:7) :: start_index !< start particle index for current block |
---|
3171 | INTEGER(iwp), DIMENSION(0:7) :: end_index !< start particle index for current block |
---|
3172 | |
---|
3173 | REAL(wp) :: aa !< dummy argument for horizontal particle interpolation |
---|
3174 | REAL(wp) :: bb !< dummy argument for horizontal particle interpolation |
---|
3175 | REAL(wp) :: cc !< dummy argument for horizontal particle interpolation |
---|
3176 | REAL(wp) :: d_z_p_z0 !< inverse of interpolation length for logarithmic interpolation |
---|
3177 | REAL(wp) :: dd !< dummy argument for horizontal particle interpolation |
---|
3178 | REAL(wp) :: de_dx_int_l !< x/y-interpolated TKE gradient (x) at particle position at lower vertical level |
---|
3179 | REAL(wp) :: de_dx_int_u !< x/y-interpolated TKE gradient (x) at particle position at upper vertical level |
---|
3180 | REAL(wp) :: de_dy_int_l !< x/y-interpolated TKE gradient (y) at particle position at lower vertical level |
---|
3181 | REAL(wp) :: de_dy_int_u !< x/y-interpolated TKE gradient (y) at particle position at upper vertical level |
---|
3182 | REAL(wp) :: de_dt !< temporal derivative of TKE experienced by the particle |
---|
3183 | REAL(wp) :: de_dt_min !< lower level for temporal TKE derivative |
---|
3184 | REAL(wp) :: de_dz_int_l !< x/y-interpolated TKE gradient (z) at particle position at lower vertical level |
---|
3185 | REAL(wp) :: de_dz_int_u !< x/y-interpolated TKE gradient (z) at particle position at upper vertical level |
---|
3186 | REAL(wp) :: diameter !< diamter of droplet |
---|
3187 | REAL(wp) :: diss_int_l !< x/y-interpolated dissipation at particle position at lower vertical level |
---|
3188 | REAL(wp) :: diss_int_u !< x/y-interpolated dissipation at particle position at upper vertical level |
---|
3189 | REAL(wp) :: dt_particle_m !< previous particle time step |
---|
3190 | REAL(wp) :: dz_temp !< dummy for the vertical grid spacing |
---|
3191 | REAL(wp) :: e_int_l !< x/y-interpolated TKE at particle position at lower vertical level |
---|
3192 | REAL(wp) :: e_int_u !< x/y-interpolated TKE at particle position at upper vertical level |
---|
3193 | REAL(wp) :: e_mean_int !< horizontal mean TKE at particle height |
---|
3194 | REAL(wp) :: exp_arg !< argument in the exponent - particle radius |
---|
3195 | REAL(wp) :: exp_term !< exponent term |
---|
3196 | REAL(wp) :: gg !< dummy argument for horizontal particle interpolation |
---|
3197 | REAL(wp) :: height_p !< dummy argument for logarithmic interpolation |
---|
3198 | REAL(wp) :: log_z_z0_int !< logarithmus used for surface_layer interpolation |
---|
3199 | REAL(wp) :: random_gauss !< Gaussian-distributed random number used for SGS particle advection |
---|
3200 | REAL(wp) :: RL !< Lagrangian autocorrelation coefficient |
---|
3201 | REAL(wp) :: rg1 !< Gaussian distributed random number |
---|
3202 | REAL(wp) :: rg2 !< Gaussian distributed random number |
---|
3203 | REAL(wp) :: rg3 !< Gaussian distributed random number |
---|
3204 | REAL(wp) :: sigma !< velocity standard deviation |
---|
3205 | REAL(wp) :: u_int_l !< x/y-interpolated u-component at particle position at lower vertical level |
---|
3206 | REAL(wp) :: u_int_u !< x/y-interpolated u-component at particle position at upper vertical level |
---|
3207 | REAL(wp) :: us_int !< friction velocity at particle grid box |
---|
3208 | REAL(wp) :: usws_int !< surface momentum flux (u component) at particle grid box |
---|
3209 | REAL(wp) :: v_int_l !< x/y-interpolated v-component at particle position at lower vertical level |
---|
3210 | REAL(wp) :: v_int_u !< x/y-interpolated v-component at particle position at upper vertical level |
---|
3211 | REAL(wp) :: vsws_int !< surface momentum flux (u component) at particle grid box |
---|
3212 | REAL(wp) :: vv_int !< dummy to compute interpolated mean SGS TKE, used to scale SGS advection |
---|
3213 | REAL(wp) :: w_int_l !< x/y-interpolated w-component at particle position at lower vertical level |
---|
3214 | REAL(wp) :: w_int_u !< x/y-interpolated w-component at particle position at upper vertical level |
---|
3215 | REAL(wp) :: w_s !< terminal velocity of droplets |
---|
3216 | REAL(wp) :: x !< dummy argument for horizontal particle interpolation |
---|
3217 | REAL(wp) :: y !< dummy argument for horizontal particle interpolation |
---|
3218 | REAL(wp) :: z_p !< surface layer height (0.5 dz) |
---|
3219 | |
---|
3220 | REAL(wp), PARAMETER :: a_rog = 9.65_wp !< parameter for fall velocity |
---|
3221 | REAL(wp), PARAMETER :: b_rog = 10.43_wp !< parameter for fall velocity |
---|
3222 | REAL(wp), PARAMETER :: c_rog = 0.6_wp !< parameter for fall velocity |
---|
3223 | REAL(wp), PARAMETER :: k_cap_rog = 4.0_wp !< parameter for fall velocity |
---|
3224 | REAL(wp), PARAMETER :: k_low_rog = 12.0_wp !< parameter for fall velocity |
---|
3225 | REAL(wp), PARAMETER :: d0_rog = 0.745_wp !< separation diameter |
---|
3226 | |
---|
3227 | REAL(wp), DIMENSION(number_of_particles) :: term_1_2 !< flag to communicate whether a particle is near topography or not |
---|
3228 | REAL(wp), DIMENSION(number_of_particles) :: dens_ratio !< ratio between the density of the fluid and the density of the particles |
---|
3229 | REAL(wp), DIMENSION(number_of_particles) :: de_dx_int !< horizontal TKE gradient along x at particle position |
---|
3230 | REAL(wp), DIMENSION(number_of_particles) :: de_dy_int !< horizontal TKE gradient along y at particle position |
---|
3231 | REAL(wp), DIMENSION(number_of_particles) :: de_dz_int !< horizontal TKE gradient along z at particle position |
---|
3232 | REAL(wp), DIMENSION(number_of_particles) :: diss_int !< dissipation at particle position |
---|
3233 | REAL(wp), DIMENSION(number_of_particles) :: dt_gap !< remaining time until particle time integration reaches LES time |
---|
3234 | REAL(wp), DIMENSION(number_of_particles) :: dt_particle !< particle time step |
---|
3235 | REAL(wp), DIMENSION(number_of_particles) :: e_int !< TKE at particle position |
---|
3236 | REAL(wp), DIMENSION(number_of_particles) :: fs_int !< weighting factor for subgrid-scale particle speed |
---|
3237 | REAL(wp), DIMENSION(number_of_particles) :: lagr_timescale !< Lagrangian timescale |
---|
3238 | REAL(wp), DIMENSION(number_of_particles) :: rvar1_temp !< SGS particle velocity - u-component |
---|
3239 | REAL(wp), DIMENSION(number_of_particles) :: rvar2_temp !< SGS particle velocity - v-component |
---|
3240 | REAL(wp), DIMENSION(number_of_particles) :: rvar3_temp !< SGS particle velocity - w-component |
---|
3241 | REAL(wp), DIMENSION(number_of_particles) :: u_int !< u-component of particle speed |
---|
3242 | REAL(wp), DIMENSION(number_of_particles) :: v_int !< v-component of particle speed |
---|
3243 | REAL(wp), DIMENSION(number_of_particles) :: w_int !< w-component of particle speed |
---|
3244 | REAL(wp), DIMENSION(number_of_particles) :: xv !< x-position |
---|
3245 | REAL(wp), DIMENSION(number_of_particles) :: yv !< y-position |
---|
3246 | REAL(wp), DIMENSION(number_of_particles) :: zv !< z-position |
---|
3247 | |
---|
3248 | REAL(wp), DIMENSION(number_of_particles, 3) :: rg !< vector of Gaussian distributed random numbers |
---|
3249 | |
---|
3250 | CALL cpu_log( log_point_s(44), 'lpm_advec', 'continue' ) |
---|
3251 | |
---|
3252 | ! |
---|
3253 | !-- Determine height of Prandtl layer and distance between Prandtl-layer |
---|
3254 | !-- height and horizontal mean roughness height, which are required for |
---|
3255 | !-- vertical logarithmic interpolation of horizontal particle speeds |
---|
3256 | !-- (for particles below first vertical grid level). |
---|
3257 | z_p = zu(nzb+1) - zw(nzb) |
---|
3258 | d_z_p_z0 = 1.0_wp / ( z_p - z0_av_global ) |
---|
3259 | |
---|
3260 | start_index = grid_particles(kp,jp,ip)%start_index |
---|
3261 | end_index = grid_particles(kp,jp,ip)%end_index |
---|
3262 | |
---|
3263 | xv = particles(1:number_of_particles)%x |
---|
3264 | yv = particles(1:number_of_particles)%y |
---|
3265 | zv = particles(1:number_of_particles)%z |
---|
3266 | |
---|
3267 | DO nb = 0, 7 |
---|
3268 | ! |
---|
3269 | !-- Interpolate u velocity-component |
---|
3270 | i = ip |
---|
3271 | j = jp + block_offset(nb)%j_off |
---|
3272 | k = kp + block_offset(nb)%k_off |
---|
3273 | |
---|
3274 | DO n = start_index(nb), end_index(nb) |
---|
3275 | ! |
---|
3276 | !-- Interpolation of the u velocity component onto particle position. |
---|
3277 | !-- Particles are interpolation bi-linearly in the horizontal and a |
---|
3278 | !-- linearly in the vertical. An exception is made for particles below |
---|
3279 | !-- the first vertical grid level in case of a prandtl layer. In this |
---|
3280 | !-- case the horizontal particle velocity components are determined using |
---|
3281 | !-- Monin-Obukhov relations (if branch). |
---|
3282 | !-- First, check if particle is located below first vertical grid level |
---|
3283 | !-- above topography (Prandtl-layer height) |
---|
3284 | !-- Determine vertical index of topography top |
---|
3285 | k_wall = get_topography_top_index_ji( jp, ip, 's' ) |
---|
3286 | |
---|
3287 | IF ( constant_flux_layer .AND. zv(n) - zw(k_wall) < z_p ) THEN |
---|
3288 | ! |
---|
3289 | !-- Resolved-scale horizontal particle velocity is zero below z0. |
---|
3290 | IF ( zv(n) - zw(k_wall) < z0_av_global ) THEN |
---|
3291 | u_int(n) = 0.0_wp |
---|
3292 | ELSE |
---|
3293 | ! |
---|
3294 | !-- Determine the sublayer. Further used as index. |
---|
3295 | height_p = ( zv(n) - zw(k_wall) - z0_av_global ) & |
---|
3296 | * REAL( number_of_sublayers, KIND=wp ) & |
---|
3297 | * d_z_p_z0 |
---|
3298 | ! |
---|
3299 | !-- Calculate LOG(z/z0) for exact particle height. Therefore, |
---|
3300 | !-- interpolate linearly between precalculated logarithm. |
---|
3301 | log_z_z0_int = log_z_z0(INT(height_p)) & |
---|
3302 | + ( height_p - INT(height_p) ) & |
---|
3303 | * ( log_z_z0(INT(height_p)+1) & |
---|
3304 | - log_z_z0(INT(height_p)) & |
---|
3305 | ) |
---|
3306 | ! |
---|
3307 | !-- Get friction velocity and momentum flux from new surface data |
---|
3308 | !-- types. |
---|
3309 | IF ( surf_def_h(0)%start_index(jp,ip) <= & |
---|
3310 | surf_def_h(0)%end_index(jp,ip) ) THEN |
---|
3311 | surf_start = surf_def_h(0)%start_index(jp,ip) |
---|
3312 | !-- Limit friction velocity. In narrow canyons or holes the |
---|
3313 | !-- friction velocity can become very small, resulting in a too |
---|
3314 | !-- large particle speed. |
---|
3315 | us_int = MAX( surf_def_h(0)%us(surf_start), 0.01_wp ) |
---|
3316 | usws_int = surf_def_h(0)%usws(surf_start) |
---|
3317 | ELSEIF ( surf_lsm_h%start_index(jp,ip) <= & |
---|
3318 | surf_lsm_h%end_index(jp,ip) ) THEN |
---|
3319 | surf_start = surf_lsm_h%start_index(jp,ip) |
---|
3320 | us_int = MAX( surf_lsm_h%us(surf_start), 0.01_wp ) |
---|
3321 | usws_int = surf_lsm_h%usws(surf_start) |
---|
3322 | ELSEIF ( surf_usm_h%start_index(jp,ip) <= & |
---|
3323 | surf_usm_h%end_index(jp,ip) ) THEN |
---|
3324 | surf_start = surf_usm_h%start_index(jp,ip) |
---|
3325 | us_int = MAX( surf_usm_h%us(surf_start), 0.01_wp ) |
---|
3326 | usws_int = surf_usm_h%usws(surf_start) |
---|
3327 | ENDIF |
---|
3328 | |
---|
3329 | ! |
---|
3330 | !-- Neutral solution is applied for all situations, e.g. also for |
---|
3331 | !-- unstable and stable situations. Even though this is not exact |
---|
3332 | !-- this saves a lot of CPU time since several calls of intrinsic |
---|
3333 | !-- FORTRAN procedures (LOG, ATAN) are avoided, This is justified |
---|
3334 | !-- as sensitivity studies revealed no significant effect of |
---|
3335 | !-- using the neutral solution also for un/stable situations. |
---|
3336 | u_int(n) = -usws_int / ( us_int * kappa + 1E-10_wp ) & |
---|
3337 | * log_z_z0_int - u_gtrans |
---|
3338 | |
---|
3339 | ENDIF |
---|
3340 | ! |
---|
3341 | !-- Particle above the first grid level. Bi-linear interpolation in the |
---|
3342 | !-- horizontal and linear interpolation in the vertical direction. |
---|
3343 | ELSE |
---|
3344 | |
---|
3345 | x = xv(n) - i * dx |
---|
3346 | y = yv(n) + ( 0.5_wp - j ) * dy |
---|
3347 | aa = x**2 + y**2 |
---|
3348 | bb = ( dx - x )**2 + y**2 |
---|
3349 | cc = x**2 + ( dy - y )**2 |
---|
3350 | dd = ( dx - x )**2 + ( dy - y )**2 |
---|
3351 | gg = aa + bb + cc + dd |
---|
3352 | |
---|
3353 | u_int_l = ( ( gg - aa ) * u(k,j,i) + ( gg - bb ) * u(k,j,i+1) & |
---|
3354 | + ( gg - cc ) * u(k,j+1,i) + ( gg - dd ) * & |
---|
3355 | u(k,j+1,i+1) ) / ( 3.0_wp * gg ) - u_gtrans |
---|
3356 | |
---|
3357 | IF ( k == nzt ) THEN |
---|
3358 | u_int(n) = u_int_l |
---|
3359 | ELSE |
---|
3360 | u_int_u = ( ( gg-aa ) * u(k+1,j,i) + ( gg-bb ) * u(k+1,j,i+1) & |
---|
3361 | + ( gg-cc ) * u(k+1,j+1,i) + ( gg-dd ) * & |
---|
3362 | u(k+1,j+1,i+1) ) / ( 3.0_wp * gg ) - u_gtrans |
---|
3363 | u_int(n) = u_int_l + ( zv(n) - zu(k) ) / dzw(k+1) * & |
---|
3364 | ( u_int_u - u_int_l ) |
---|
3365 | ENDIF |
---|
3366 | |
---|
3367 | ENDIF |
---|
3368 | |
---|
3369 | ENDDO |
---|
3370 | ! |
---|
3371 | !-- Same procedure for interpolation of the v velocity-component |
---|
3372 | i = ip + block_offset(nb)%i_off |
---|
3373 | j = jp |
---|
3374 | k = kp + block_offset(nb)%k_off |
---|
3375 | |
---|
3376 | DO n = start_index(nb), end_index(nb) |
---|
3377 | |
---|
3378 | ! |
---|
3379 | !-- Determine vertical index of topography top |
---|
3380 | k_wall = get_topography_top_index_ji( jp,ip, 's' ) |
---|
3381 | |
---|
3382 | IF ( constant_flux_layer .AND. zv(n) - zw(k_wall) < z_p ) THEN |
---|
3383 | IF ( zv(n) - zw(k_wall) < z0_av_global ) THEN |
---|
3384 | ! |
---|
3385 | !-- Resolved-scale horizontal particle velocity is zero below z0. |
---|
3386 | v_int(n) = 0.0_wp |
---|
3387 | ELSE |
---|
3388 | ! |
---|
3389 | !-- Determine the sublayer. Further used as index. Please note, |
---|
3390 | !-- logarithmus can not be reused from above, as in in case of |
---|
3391 | !-- topography particle on u-grid can be above surface-layer height, |
---|
3392 | !-- whereas it can be below on v-grid. |
---|
3393 | height_p = ( zv(n) - zw(k_wall) - z0_av_global ) & |
---|
3394 | * REAL( number_of_sublayers, KIND=wp ) & |
---|
3395 | * d_z_p_z0 |
---|
3396 | ! |
---|
3397 | !-- Calculate LOG(z/z0) for exact particle height. Therefore, |
---|
3398 | !-- interpolate linearly between precalculated logarithm. |
---|
3399 | log_z_z0_int = log_z_z0(INT(height_p)) & |
---|
3400 | + ( height_p - INT(height_p) ) & |
---|
3401 | * ( log_z_z0(INT(height_p)+1) & |
---|
3402 | - log_z_z0(INT(height_p)) & |
---|
3403 | ) |
---|
3404 | ! |
---|
3405 | !-- Get friction velocity and momentum flux from new surface data |
---|
3406 | !-- types. |
---|
3407 | IF ( surf_def_h(0)%start_index(jp,ip) <= & |
---|
3408 | surf_def_h(0)%end_index(jp,ip) ) THEN |
---|
3409 | surf_start = surf_def_h(0)%start_index(jp,ip) |
---|
3410 | !-- Limit friction velocity. In narrow canyons or holes the |
---|
3411 | !-- friction velocity can become very small, resulting in a too |
---|
3412 | !-- large particle speed. |
---|
3413 | us_int = MAX( surf_def_h(0)%us(surf_start), 0.01_wp ) |
---|
3414 | vsws_int = surf_def_h(0)%vsws(surf_start) |
---|
3415 | ELSEIF ( surf_lsm_h%start_index(jp,ip) <= & |
---|
3416 | surf_lsm_h%end_index(jp,ip) ) THEN |
---|
3417 | surf_start = surf_lsm_h%start_index(jp,ip) |
---|
3418 | us_int = MAX( surf_lsm_h%us(surf_start), 0.01_wp ) |
---|
3419 | vsws_int = surf_lsm_h%vsws(surf_start) |
---|
3420 | ELSEIF ( surf_usm_h%start_index(jp,ip) <= & |
---|
3421 | surf_usm_h%end_index(jp,ip) ) THEN |
---|
3422 | surf_start = surf_usm_h%start_index(jp,ip) |
---|
3423 | us_int = MAX( surf_usm_h%us(surf_start), 0.01_wp ) |
---|
3424 | vsws_int = surf_usm_h%vsws(surf_start) |
---|
3425 | ENDIF |
---|
3426 | ! |
---|
3427 | !-- Neutral solution is applied for all situations, e.g. also for |
---|
3428 | !-- unstable and stable situations. Even though this is not exact |
---|
3429 | !-- this saves a lot of CPU time since several calls of intrinsic |
---|
3430 | !-- FORTRAN procedures (LOG, ATAN) are avoided, This is justified |
---|
3431 | !-- as sensitivity studies revealed no significant effect of |
---|
3432 | !-- using the neutral solution also for un/stable situations. |
---|
3433 | v_int(n) = -vsws_int / ( us_int * kappa + 1E-10_wp ) & |
---|
3434 | * log_z_z0_int - v_gtrans |
---|
3435 | |
---|
3436 | ENDIF |
---|
3437 | |
---|
3438 | ELSE |
---|
3439 | x = xv(n) + ( 0.5_wp - i ) * dx |
---|
3440 | y = yv(n) - j * dy |
---|
3441 | aa = x**2 + y**2 |
---|
3442 | bb = ( dx - x )**2 + y**2 |
---|
3443 | cc = x**2 + ( dy - y )**2 |
---|
3444 | dd = ( dx - x )**2 + ( dy - y )**2 |
---|
3445 | gg = aa + bb + cc + dd |
---|
3446 | |
---|
3447 | v_int_l = ( ( gg - aa ) * v(k,j,i) + ( gg - bb ) * v(k,j,i+1) & |
---|
3448 | + ( gg - cc ) * v(k,j+1,i) + ( gg - dd ) * v(k,j+1,i+1) & |
---|
3449 | ) / ( 3.0_wp * gg ) - v_gtrans |
---|
3450 | |
---|
3451 | IF ( k == nzt ) THEN |
---|
3452 | v_int(n) = v_int_l |
---|
3453 | ELSE |
---|
3454 | v_int_u = ( ( gg-aa ) * v(k+1,j,i) + ( gg-bb ) * v(k+1,j,i+1) & |
---|
3455 | + ( gg-cc ) * v(k+1,j+1,i) + ( gg-dd ) * v(k+1,j+1,i+1) & |
---|
3456 | ) / ( 3.0_wp * gg ) - v_gtrans |
---|
3457 | v_int(n) = v_int_l + ( zv(n) - zu(k) ) / dzw(k+1) * & |
---|
3458 | ( v_int_u - v_int_l ) |
---|
3459 | ENDIF |
---|
3460 | |
---|
3461 | ENDIF |
---|
3462 | |
---|
3463 | ENDDO |
---|
3464 | ! |
---|
3465 | !-- Same procedure for interpolation of the w velocity-component |
---|
3466 | i = ip + block_offset(nb)%i_off |
---|
3467 | j = jp + block_offset(nb)%j_off |
---|
3468 | k = kp - 1 |
---|
3469 | |
---|
3470 | DO n = start_index(nb), end_index(nb) |
---|
3471 | |
---|
3472 | IF ( vertical_particle_advection(particles(n)%group) ) THEN |
---|
3473 | |
---|
3474 | x = xv(n) + ( 0.5_wp - i ) * dx |
---|
3475 | y = yv(n) + ( 0.5_wp - j ) * dy |
---|
3476 | aa = x**2 + y**2 |
---|
3477 | bb = ( dx - x )**2 + y**2 |
---|
3478 | cc = x**2 + ( dy - y )**2 |
---|
3479 | dd = ( dx - x )**2 + ( dy - y )**2 |
---|
3480 | gg = aa + bb + cc + dd |
---|
3481 | |
---|
3482 | w_int_l = ( ( gg - aa ) * w(k,j,i) + ( gg - bb ) * w(k,j,i+1) & |
---|
3483 | + ( gg - cc ) * w(k,j+1,i) + ( gg - dd ) * w(k,j+1,i+1) & |
---|
3484 | ) / ( 3.0_wp * gg ) |
---|
3485 | |
---|
3486 | IF ( k == nzt ) THEN |
---|
3487 | w_int(n) = w_int_l |
---|
3488 | ELSE |
---|
3489 | w_int_u = ( ( gg-aa ) * w(k+1,j,i) + & |
---|
3490 | ( gg-bb ) * w(k+1,j,i+1) + & |
---|
3491 | ( gg-cc ) * w(k+1,j+1,i) + & |
---|
3492 | ( gg-dd ) * w(k+1,j+1,i+1) & |
---|
3493 | ) / ( 3.0_wp * gg ) |
---|
3494 | w_int(n) = w_int_l + ( zv(n) - zw(k) ) / dzw(k+1) * & |
---|
3495 | ( w_int_u - w_int_l ) |
---|
3496 | ENDIF |
---|
3497 | |
---|
3498 | ELSE |
---|
3499 | |
---|
3500 | w_int(n) = 0.0_wp |
---|
3501 | |
---|
3502 | ENDIF |
---|
3503 | |
---|
3504 | ENDDO |
---|
3505 | |
---|
3506 | ENDDO |
---|
3507 | |
---|
3508 | !-- Interpolate and calculate quantities needed for calculating the SGS |
---|
3509 | !-- velocities |
---|
3510 | IF ( use_sgs_for_particles .AND. .NOT. cloud_droplets ) THEN |
---|
3511 | |
---|
3512 | DO nb = 0,7 |
---|
3513 | |
---|
3514 | subbox_at_wall = .FALSE. |
---|
3515 | ! |
---|
3516 | !-- In case of topography check if subbox is adjacent to a wall |
---|
3517 | IF ( .NOT. topography == 'flat' ) THEN |
---|
3518 | i = ip + MERGE( -1_iwp , 1_iwp, BTEST( nb, 2 ) ) |
---|
3519 | j = jp + MERGE( -1_iwp , 1_iwp, BTEST( nb, 1 ) ) |
---|
3520 | k = kp + MERGE( -1_iwp , 1_iwp, BTEST( nb, 0 ) ) |
---|
3521 | IF ( .NOT. BTEST(wall_flags_0(k, jp, ip), 0) .OR. & |
---|
3522 | .NOT. BTEST(wall_flags_0(kp, j, ip), 0) .OR. & |
---|
3523 | .NOT. BTEST(wall_flags_0(kp, jp, i ), 0) ) & |
---|
3524 | THEN |
---|
3525 | subbox_at_wall = .TRUE. |
---|
3526 | ENDIF |
---|
3527 | ENDIF |
---|
3528 | IF ( subbox_at_wall ) THEN |
---|
3529 | e_int(start_index(nb):end_index(nb)) = e(kp,jp,ip) |
---|
3530 | diss_int(start_index(nb):end_index(nb)) = diss(kp,jp,ip) |
---|
3531 | de_dx_int(start_index(nb):end_index(nb)) = de_dx(kp,jp,ip) |
---|
3532 | de_dy_int(start_index(nb):end_index(nb)) = de_dy(kp,jp,ip) |
---|
3533 | de_dz_int(start_index(nb):end_index(nb)) = de_dz(kp,jp,ip) |
---|
3534 | ! |
---|
3535 | !-- Set flag for stochastic equation. |
---|
3536 | term_1_2(start_index(nb):end_index(nb)) = 0.0_wp |
---|
3537 | ELSE |
---|
3538 | i = ip + block_offset(nb)%i_off |
---|
3539 | j = jp + block_offset(nb)%j_off |
---|
3540 | k = kp + block_offset(nb)%k_off |
---|
3541 | |
---|
3542 | DO n = start_index(nb), end_index(nb) |
---|
3543 | ! |
---|
3544 | !-- Interpolate TKE |
---|
3545 | x = xv(n) + ( 0.5_wp - i ) * dx |
---|
3546 | y = yv(n) + ( 0.5_wp - j ) * dy |
---|
3547 | aa = x**2 + y**2 |
---|
3548 | bb = ( dx - x )**2 + y**2 |
---|
3549 | cc = x**2 + ( dy - y )**2 |
---|
3550 | dd = ( dx - x )**2 + ( dy - y )**2 |
---|
3551 | gg = aa + bb + cc + dd |
---|
3552 | |
---|
3553 | e_int_l = ( ( gg-aa ) * e(k,j,i) + ( gg-bb ) * e(k,j,i+1) & |
---|
3554 | + ( gg-cc ) * e(k,j+1,i) + ( gg-dd ) * e(k,j+1,i+1) & |
---|
3555 | ) / ( 3.0_wp * gg ) |
---|
3556 | |
---|
3557 | IF ( k+1 == nzt+1 ) THEN |
---|
3558 | e_int(n) = e_int_l |
---|
3559 | ELSE |
---|
3560 | e_int_u = ( ( gg - aa ) * e(k+1,j,i) + & |
---|
3561 | ( gg - bb ) * e(k+1,j,i+1) + & |
---|
3562 | ( gg - cc ) * e(k+1,j+1,i) + & |
---|
3563 | ( gg - dd ) * e(k+1,j+1,i+1) & |
---|
3564 | ) / ( 3.0_wp * gg ) |
---|
3565 | e_int(n) = e_int_l + ( zv(n) - zu(k) ) / dzw(k+1) * & |
---|
3566 | ( e_int_u - e_int_l ) |
---|
3567 | ENDIF |
---|
3568 | ! |
---|
3569 | !-- Needed to avoid NaN particle velocities (this might not be |
---|
3570 | !-- required any more) |
---|
3571 | IF ( e_int(n) <= 0.0_wp ) THEN |
---|
3572 | e_int(n) = 1.0E-20_wp |
---|
3573 | ENDIF |
---|
3574 | ! |
---|
3575 | !-- Interpolate the TKE gradient along x (adopt incides i,j,k and |
---|
3576 | !-- all position variables from above (TKE)) |
---|
3577 | de_dx_int_l = ( ( gg - aa ) * de_dx(k,j,i) + & |
---|
3578 | ( gg - bb ) * de_dx(k,j,i+1) + & |
---|
3579 | ( gg - cc ) * de_dx(k,j+1,i) + & |
---|
3580 | ( gg - dd ) * de_dx(k,j+1,i+1) & |
---|
3581 | ) / ( 3.0_wp * gg ) |
---|
3582 | |
---|
3583 | IF ( ( k+1 == nzt+1 ) .OR. ( k == nzb ) ) THEN |
---|
3584 | de_dx_int(n) = de_dx_int_l |
---|
3585 | ELSE |
---|
3586 | de_dx_int_u = ( ( gg - aa ) * de_dx(k+1,j,i) + & |
---|
3587 | ( gg - bb ) * de_dx(k+1,j,i+1) + & |
---|
3588 | ( gg - cc ) * de_dx(k+1,j+1,i) + & |
---|
3589 | ( gg - dd ) * de_dx(k+1,j+1,i+1) & |
---|
3590 | ) / ( 3.0_wp * gg ) |
---|
3591 | de_dx_int(n) = de_dx_int_l + ( zv(n) - zu(k) ) / dzw(k+1) * & |
---|
3592 | ( de_dx_int_u - de_dx_int_l ) |
---|
3593 | ENDIF |
---|
3594 | ! |
---|
3595 | !-- Interpolate the TKE gradient along y |
---|
3596 | de_dy_int_l = ( ( gg - aa ) * de_dy(k,j,i) + & |
---|
3597 | ( gg - bb ) * de_dy(k,j,i+1) + & |
---|
3598 | ( gg - cc ) * de_dy(k,j+1,i) + & |
---|
3599 | ( gg - dd ) * de_dy(k,j+1,i+1) & |
---|
3600 | ) / ( 3.0_wp * gg ) |
---|
3601 | IF ( ( k+1 == nzt+1 ) .OR. ( k == nzb ) ) THEN |
---|
3602 | de_dy_int(n) = de_dy_int_l |
---|
3603 | ELSE |
---|
3604 | de_dy_int_u = ( ( gg - aa ) * de_dy(k+1,j,i) + & |
---|
3605 | ( gg - bb ) * de_dy(k+1,j,i+1) + & |
---|
3606 | ( gg - cc ) * de_dy(k+1,j+1,i) + & |
---|
3607 | ( gg - dd ) * de_dy(k+1,j+1,i+1) & |
---|
3608 | ) / ( 3.0_wp * gg ) |
---|
3609 | de_dy_int(n) = de_dy_int_l + ( zv(n) - zu(k) ) / dzw(k+1) * & |
---|
3610 | ( de_dy_int_u - de_dy_int_l ) |
---|
3611 | ENDIF |
---|
3612 | |
---|
3613 | ! |
---|
3614 | !-- Interpolate the TKE gradient along z |
---|
3615 | IF ( zv(n) < 0.5_wp * dz(1) ) THEN |
---|
3616 | de_dz_int(n) = 0.0_wp |
---|
3617 | ELSE |
---|
3618 | de_dz_int_l = ( ( gg - aa ) * de_dz(k,j,i) + & |
---|
3619 | ( gg - bb ) * de_dz(k,j,i+1) + & |
---|
3620 | ( gg - cc ) * de_dz(k,j+1,i) + & |
---|
3621 | ( gg - dd ) * de_dz(k,j+1,i+1) & |
---|
3622 | ) / ( 3.0_wp * gg ) |
---|
3623 | |
---|
3624 | IF ( ( k+1 == nzt+1 ) .OR. ( k == nzb ) ) THEN |
---|
3625 | de_dz_int(n) = de_dz_int_l |
---|
3626 | ELSE |
---|
3627 | de_dz_int_u = ( ( gg - aa ) * de_dz(k+1,j,i) + & |
---|
3628 | ( gg - bb ) * de_dz(k+1,j,i+1) + & |
---|
3629 | ( gg - cc ) * de_dz(k+1,j+1,i) + & |
---|
3630 | ( gg - dd ) * de_dz(k+1,j+1,i+1) & |
---|
3631 | ) / ( 3.0_wp * gg ) |
---|
3632 | de_dz_int(n) = de_dz_int_l + ( zv(n) - zu(k) ) / dzw(k+1) * & |
---|
3633 | ( de_dz_int_u - de_dz_int_l ) |
---|
3634 | ENDIF |
---|
3635 | ENDIF |
---|
3636 | |
---|
3637 | ! |
---|
3638 | !-- Interpolate the dissipation of TKE |
---|
3639 | diss_int_l = ( ( gg - aa ) * diss(k,j,i) + & |
---|
3640 | ( gg - bb ) * diss(k,j,i+1) + & |
---|
3641 | ( gg - cc ) * diss(k,j+1,i) + & |
---|
3642 | ( gg - dd ) * diss(k,j+1,i+1) & |
---|
3643 | ) / ( 3.0_wp * gg ) |
---|
3644 | |
---|
3645 | IF ( k == nzt ) THEN |
---|
3646 | diss_int(n) = diss_int_l |
---|
3647 | ELSE |
---|
3648 | diss_int_u = ( ( gg - aa ) * diss(k+1,j,i) + & |
---|
3649 | ( gg - bb ) * diss(k+1,j,i+1) + & |
---|
3650 | ( gg - cc ) * diss(k+1,j+1,i) + & |
---|
3651 | ( gg - dd ) * diss(k+1,j+1,i+1) & |
---|
3652 | ) / ( 3.0_wp * gg ) |
---|
3653 | diss_int(n) = diss_int_l + ( zv(n) - zu(k) ) / dzw(k+1) * & |
---|
3654 | ( diss_int_u - diss_int_l ) |
---|
3655 | ENDIF |
---|
3656 | |
---|
3657 | ! |
---|
3658 | !-- Set flag for stochastic equation. |
---|
3659 | term_1_2(n) = 1.0_wp |
---|
3660 | ENDDO |
---|
3661 | ENDIF |
---|
3662 | ENDDO |
---|
3663 | |
---|
3664 | DO nb = 0,7 |
---|
3665 | i = ip + block_offset(nb)%i_off |
---|
3666 | j = jp + block_offset(nb)%j_off |
---|
3667 | k = kp + block_offset(nb)%k_off |
---|
3668 | |
---|
3669 | DO n = start_index(nb), end_index(nb) |
---|
3670 | ! |
---|
3671 | !-- Vertical interpolation of the horizontally averaged SGS TKE and |
---|
3672 | !-- resolved-scale velocity variances and use the interpolated values |
---|
3673 | !-- to calculate the coefficient fs, which is a measure of the ratio |
---|
3674 | !-- of the subgrid-scale turbulent kinetic energy to the total amount |
---|
3675 | !-- of turbulent kinetic energy. |
---|
3676 | IF ( k == 0 ) THEN |
---|
3677 | e_mean_int = hom(0,1,8,0) |
---|
3678 | ELSE |
---|
3679 | e_mean_int = hom(k,1,8,0) + & |
---|
3680 | ( hom(k+1,1,8,0) - hom(k,1,8,0) ) / & |
---|
3681 | ( zu(k+1) - zu(k) ) * & |
---|
3682 | ( zv(n) - zu(k) ) |
---|
3683 | ENDIF |
---|
3684 | |
---|
3685 | kw = kp - 1 |
---|
3686 | |
---|
3687 | IF ( k == 0 ) THEN |
---|
3688 | aa = hom(k+1,1,30,0) * ( zv(n) / & |
---|
3689 | ( 0.5_wp * ( zu(k+1) - zu(k) ) ) ) |
---|
3690 | bb = hom(k+1,1,31,0) * ( zv(n) / & |
---|
3691 | ( 0.5_wp * ( zu(k+1) - zu(k) ) ) ) |
---|
3692 | cc = hom(kw+1,1,32,0) * ( zv(n) / & |
---|
3693 | ( 1.0_wp * ( zw(kw+1) - zw(kw) ) ) ) |
---|
3694 | ELSE |
---|
3695 | aa = hom(k,1,30,0) + ( hom(k+1,1,30,0) - hom(k,1,30,0) ) * & |
---|
3696 | ( ( zv(n) - zu(k) ) / ( zu(k+1) - zu(k) ) ) |
---|
3697 | bb = hom(k,1,31,0) + ( hom(k+1,1,31,0) - hom(k,1,31,0) ) * & |
---|
3698 | ( ( zv(n) - zu(k) ) / ( zu(k+1) - zu(k) ) ) |
---|
3699 | cc = hom(kw,1,32,0) + ( hom(kw+1,1,32,0)-hom(kw,1,32,0) ) * & |
---|
3700 | ( ( zv(n) - zw(kw) ) / ( zw(kw+1)-zw(kw) ) ) |
---|
3701 | ENDIF |
---|
3702 | |
---|
3703 | vv_int = ( 1.0_wp / 3.0_wp ) * ( aa + bb + cc ) |
---|
3704 | ! |
---|
3705 | !-- Needed to avoid NaN particle velocities. The value of 1.0 is just |
---|
3706 | !-- an educated guess for the given case. |
---|
3707 | IF ( vv_int + ( 2.0_wp / 3.0_wp ) * e_mean_int == 0.0_wp ) THEN |
---|
3708 | fs_int(n) = 1.0_wp |
---|
3709 | ELSE |
---|
3710 | fs_int(n) = ( 2.0_wp / 3.0_wp ) * e_mean_int / & |
---|
3711 | ( vv_int + ( 2.0_wp / 3.0_wp ) * e_mean_int ) |
---|
3712 | ENDIF |
---|
3713 | |
---|
3714 | ENDDO |
---|
3715 | ENDDO |
---|
3716 | |
---|
3717 | DO nb = 0, 7 |
---|
3718 | DO n = start_index(nb), end_index(nb) |
---|
3719 | rg(n,1) = random_gauss( iran_part, 5.0_wp ) |
---|
3720 | rg(n,2) = random_gauss( iran_part, 5.0_wp ) |
---|
3721 | rg(n,3) = random_gauss( iran_part, 5.0_wp ) |
---|
3722 | ENDDO |
---|
3723 | ENDDO |
---|
3724 | |
---|
3725 | DO nb = 0, 7 |
---|
3726 | DO n = start_index(nb), end_index(nb) |
---|
3727 | |
---|
3728 | ! |
---|
3729 | !-- Calculate the Lagrangian timescale according to Weil et al. (2004). |
---|
3730 | lagr_timescale(n) = ( 4.0_wp * e_int(n) + 1E-20_wp ) / & |
---|
3731 | ( 3.0_wp * fs_int(n) * c_0 * diss_int(n) + 1E-20_wp ) |
---|
3732 | |
---|
3733 | ! |
---|
3734 | !-- Calculate the next particle timestep. dt_gap is the time needed to |
---|
3735 | !-- complete the current LES timestep. |
---|
3736 | dt_gap(n) = dt_3d - particles(n)%dt_sum |
---|
3737 | dt_particle(n) = MIN( dt_3d, 0.025_wp * lagr_timescale(n), dt_gap(n) ) |
---|
3738 | particles(n)%aux1 = lagr_timescale(n) |
---|
3739 | particles(n)%aux2 = dt_gap(n) |
---|
3740 | ! |
---|
3741 | !-- The particle timestep should not be too small in order to prevent |
---|
3742 | !-- the number of particle timesteps of getting too large |
---|
3743 | IF ( dt_particle(n) < dt_min_part ) THEN |
---|
3744 | IF ( dt_min_part < dt_gap(n) ) THEN |
---|
3745 | dt_particle(n) = dt_min_part |
---|
3746 | ELSE |
---|
3747 | dt_particle(n) = dt_gap(n) |
---|
3748 | ENDIF |
---|
3749 | ENDIF |
---|
3750 | rvar1_temp(n) = particles(n)%rvar1 |
---|
3751 | rvar2_temp(n) = particles(n)%rvar2 |
---|
3752 | rvar3_temp(n) = particles(n)%rvar3 |
---|
3753 | ! |
---|
3754 | !-- Calculate the SGS velocity components |
---|
3755 | IF ( particles(n)%age == 0.0_wp ) THEN |
---|
3756 | ! |
---|
3757 | !-- For new particles the SGS components are derived from the SGS |
---|
3758 | !-- TKE. Limit the Gaussian random number to the interval |
---|
3759 | !-- [-5.0*sigma, 5.0*sigma] in order to prevent the SGS velocities |
---|
3760 | !-- from becoming unrealistically large. |
---|
3761 | rvar1_temp(n) = SQRT( 2.0_wp * sgs_wf_part * e_int(n) & |
---|
3762 | + 1E-20_wp ) * ( rg(n,1) - 1.0_wp ) |
---|
3763 | rvar2_temp(n) = SQRT( 2.0_wp * sgs_wf_part * e_int(n) & |
---|
3764 | + 1E-20_wp ) * ( rg(n,2) - 1.0_wp ) |
---|
3765 | rvar3_temp(n) = SQRT( 2.0_wp * sgs_wf_part * e_int(n) & |
---|
3766 | + 1E-20_wp ) * ( rg(n,3) - 1.0_wp ) |
---|
3767 | |
---|
3768 | ELSE |
---|
3769 | ! |
---|
3770 | !-- Restriction of the size of the new timestep: compared to the |
---|
3771 | !-- previous timestep the increase must not exceed 200%. First, |
---|
3772 | !-- check if age > age_m, in order to prevent that particles get zero |
---|
3773 | !-- timestep. |
---|
3774 | dt_particle_m = MERGE( dt_particle(n), & |
---|
3775 | particles(n)%age - particles(n)%age_m, & |
---|
3776 | particles(n)%age - particles(n)%age_m < & |
---|
3777 | 1E-8_wp ) |
---|
3778 | IF ( dt_particle(n) > 2.0_wp * dt_particle_m ) THEN |
---|
3779 | dt_particle(n) = 2.0_wp * dt_particle_m |
---|
3780 | ENDIF |
---|
3781 | |
---|
3782 | !-- For old particles the SGS components are correlated with the |
---|
3783 | !-- values from the previous timestep. Random numbers have also to |
---|
3784 | !-- be limited (see above). |
---|
3785 | !-- As negative values for the subgrid TKE are not allowed, the |
---|
3786 | !-- change of the subgrid TKE with time cannot be smaller than |
---|
3787 | !-- -e_int(n)/dt_particle. This value is used as a lower boundary |
---|
3788 | !-- value for the change of TKE |
---|
3789 | de_dt_min = - e_int(n) / dt_particle(n) |
---|
3790 | |
---|
3791 | de_dt = ( e_int(n) - particles(n)%e_m ) / dt_particle_m |
---|
3792 | |
---|
3793 | IF ( de_dt < de_dt_min ) THEN |
---|
3794 | de_dt = de_dt_min |
---|
3795 | ENDIF |
---|
3796 | |
---|
3797 | CALL weil_stochastic_eq(rvar1_temp(n), fs_int(n), e_int(n),& |
---|
3798 | de_dx_int(n), de_dt, diss_int(n), & |
---|
3799 | dt_particle(n), rg(n,1), term_1_2(n) ) |
---|
3800 | |
---|
3801 | CALL weil_stochastic_eq(rvar2_temp(n), fs_int(n), e_int(n),& |
---|
3802 | de_dy_int(n), de_dt, diss_int(n), & |
---|
3803 | dt_particle(n), rg(n,2), term_1_2(n) ) |
---|
3804 | |
---|
3805 | CALL weil_stochastic_eq(rvar3_temp(n), fs_int(n), e_int(n),& |
---|
3806 | de_dz_int(n), de_dt, diss_int(n), & |
---|
3807 | dt_particle(n), rg(n,3), term_1_2(n) ) |
---|
3808 | |
---|
3809 | ENDIF |
---|
3810 | |
---|
3811 | ENDDO |
---|
3812 | ENDDO |
---|
3813 | ! |
---|
3814 | !-- Check if the added SGS velocities result in a violation of the CFL- |
---|
3815 | !-- criterion. If yes choose a smaller timestep based on the new velocities |
---|
3816 | !-- and calculate SGS velocities again |
---|
3817 | dz_temp = zw(kp)-zw(kp-1) |
---|
3818 | |
---|
3819 | DO nb = 0, 7 |
---|
3820 | DO n = start_index(nb), end_index(nb) |
---|
3821 | IF ( .NOT. particles(n)%age == 0.0_wp .AND. & |
---|
3822 | (ABS( u_int(n) + rvar1_temp(n) ) > (dx/dt_particle(n)) .OR. & |
---|
3823 | ABS( v_int(n) + rvar2_temp(n) ) > (dy/dt_particle(n)) .OR. & |
---|
3824 | ABS( w_int(n) + rvar3_temp(n) ) > (dz_temp/dt_particle(n)))) THEN |
---|
3825 | |
---|
3826 | dt_particle(n) = 0.9_wp * MIN( & |
---|
3827 | ( dx / ABS( u_int(n) + rvar1_temp(n) ) ), & |
---|
3828 | ( dy / ABS( v_int(n) + rvar2_temp(n) ) ), & |
---|
3829 | ( dz_temp / ABS( w_int(n) + rvar3_temp(n) ) ) ) |
---|
3830 | |
---|
3831 | ! |
---|
3832 | !-- Reset temporary SGS velocites to "current" ones |
---|
3833 | rvar1_temp(n) = particles(n)%rvar1 |
---|
3834 | rvar2_temp(n) = particles(n)%rvar2 |
---|
3835 | rvar3_temp(n) = particles(n)%rvar3 |
---|
3836 | |
---|
3837 | de_dt_min = - e_int(n) / dt_particle(n) |
---|
3838 | |
---|
3839 | de_dt = ( e_int(n) - particles(n)%e_m ) / dt_particle_m |
---|
3840 | |
---|
3841 | IF ( de_dt < de_dt_min ) THEN |
---|
3842 | de_dt = de_dt_min |
---|
3843 | ENDIF |
---|
3844 | |
---|
3845 | CALL weil_stochastic_eq(rvar1_temp(n), fs_int(n), e_int(n),& |
---|
3846 | de_dx_int(n), de_dt, diss_int(n), & |
---|
3847 | dt_particle(n), rg(n,1), term_1_2(n) ) |
---|
3848 | |
---|
3849 | CALL weil_stochastic_eq(rvar2_temp(n), fs_int(n), e_int(n),& |
---|
3850 | de_dy_int(n), de_dt, diss_int(n), & |
---|
3851 | dt_particle(n), rg(n,2), term_1_2(n) ) |
---|
3852 | |
---|
3853 | CALL weil_stochastic_eq(rvar3_temp(n), fs_int(n), e_int(n),& |
---|
3854 | de_dz_int(n), de_dt, diss_int(n), & |
---|
3855 | dt_particle(n), rg(n,3), term_1_2(n) ) |
---|
3856 | ENDIF |
---|
3857 | |
---|
3858 | ! |
---|
3859 | !-- Update particle velocites |
---|
3860 | particles(n)%rvar1 = rvar1_temp(n) |
---|
3861 | particles(n)%rvar2 = rvar2_temp(n) |
---|
3862 | particles(n)%rvar3 = rvar3_temp(n) |
---|
3863 | u_int(n) = u_int(n) + particles(n)%rvar1 |
---|
3864 | v_int(n) = v_int(n) + particles(n)%rvar2 |
---|
3865 | w_int(n) = w_int(n) + particles(n)%rvar3 |
---|
3866 | ! |
---|
3867 | !-- Store the SGS TKE of the current timelevel which is needed for |
---|
3868 | !-- for calculating the SGS particle velocities at the next timestep |
---|
3869 | particles(n)%e_m = e_int(n) |
---|
3870 | ENDDO |
---|
3871 | ENDDO |
---|
3872 | |
---|
3873 | ELSE |
---|
3874 | ! |
---|
3875 | !-- If no SGS velocities are used, only the particle timestep has to |
---|
3876 | !-- be set |
---|
3877 | dt_particle = dt_3d |
---|
3878 | |
---|
3879 | ENDIF |
---|
3880 | |
---|
3881 | dens_ratio = particle_groups(particles(1:number_of_particles)%group)%density_ratio |
---|
3882 | |
---|
3883 | IF ( ANY( dens_ratio == 0.0_wp ) ) THEN |
---|
3884 | DO nb = 0, 7 |
---|
3885 | DO n = start_index(nb), end_index(nb) |
---|
3886 | |
---|
3887 | ! |
---|
3888 | !-- Particle advection |
---|
3889 | IF ( dens_ratio(n) == 0.0_wp ) THEN |
---|
3890 | ! |
---|
3891 | !-- Pure passive transport (without particle inertia) |
---|
3892 | particles(n)%x = xv(n) + u_int(n) * dt_particle(n) |
---|
3893 | particles(n)%y = yv(n) + v_int(n) * dt_particle(n) |
---|
3894 | particles(n)%z = zv(n) + w_int(n) * dt_particle(n) |
---|
3895 | |
---|
3896 | particles(n)%speed_x = u_int(n) |
---|
3897 | particles(n)%speed_y = v_int(n) |
---|
3898 | particles(n)%speed_z = w_int(n) |
---|
3899 | |
---|
3900 | ELSE |
---|
3901 | ! |
---|
3902 | !-- Transport of particles with inertia |
---|
3903 | particles(n)%x = particles(n)%x + particles(n)%speed_x * & |
---|
3904 | dt_particle(n) |
---|
3905 | particles(n)%y = particles(n)%y + particles(n)%speed_y * & |
---|
3906 | dt_particle(n) |
---|
3907 | particles(n)%z = particles(n)%z + particles(n)%speed_z * & |
---|
3908 | dt_particle(n) |
---|
3909 | |
---|
3910 | ! |
---|
3911 | !-- Update of the particle velocity |
---|
3912 | IF ( cloud_droplets ) THEN |
---|
3913 | ! |
---|
3914 | !-- Terminal velocity is computed for vertical direction (Rogers et |
---|
3915 | !-- al., 1993, J. Appl. Meteorol.) |
---|
3916 | diameter = particles(n)%radius * 2000.0_wp !diameter in mm |
---|
3917 | IF ( diameter <= d0_rog ) THEN |
---|
3918 | w_s = k_cap_rog * diameter * ( 1.0_wp - EXP( -k_low_rog * diameter ) ) |
---|
3919 | ELSE |
---|
3920 | w_s = a_rog - b_rog * EXP( -c_rog * diameter ) |
---|
3921 | ENDIF |
---|
3922 | |
---|
3923 | ! |
---|
3924 | !-- If selected, add random velocities following Soelch and Kaercher |
---|
3925 | !-- (2010, Q. J. R. Meteorol. Soc.) |
---|
3926 | IF ( use_sgs_for_particles ) THEN |
---|
3927 | lagr_timescale(n) = km(kp,jp,ip) / MAX( e(kp,jp,ip), 1.0E-20_wp ) |
---|
3928 | RL = EXP( -1.0_wp * dt_3d / MAX( lagr_timescale(n), & |
---|
3929 | 1.0E-20_wp ) ) |
---|
3930 | sigma = SQRT( e(kp,jp,ip) ) |
---|
3931 | |
---|
3932 | rg1 = random_gauss( iran_part, 5.0_wp ) - 1.0_wp |
---|
3933 | rg2 = random_gauss( iran_part, 5.0_wp ) - 1.0_wp |
---|
3934 | rg3 = random_gauss( iran_part, 5.0_wp ) - 1.0_wp |
---|
3935 | |
---|
3936 | particles(n)%rvar1 = RL * particles(n)%rvar1 + & |
---|
3937 | SQRT( 1.0_wp - RL**2 ) * sigma * rg1 |
---|
3938 | particles(n)%rvar2 = RL * particles(n)%rvar2 + & |
---|
3939 | SQRT( 1.0_wp - RL**2 ) * sigma * rg2 |
---|
3940 | particles(n)%rvar3 = RL * particles(n)%rvar3 + & |
---|
3941 | SQRT( 1.0_wp - RL**2 ) * sigma * rg3 |
---|
3942 | |
---|
3943 | particles(n)%speed_x = u_int(n) + particles(n)%rvar1 |
---|
3944 | particles(n)%speed_y = v_int(n) + particles(n)%rvar2 |
---|
3945 | particles(n)%speed_z = w_int(n) + particles(n)%rvar3 - w_s |
---|
3946 | ELSE |
---|
3947 | particles(n)%speed_x = u_int(n) |
---|
3948 | particles(n)%speed_y = v_int(n) |
---|
3949 | particles(n)%speed_z = w_int(n) - w_s |
---|
3950 | ENDIF |
---|
3951 | |
---|
3952 | ELSE |
---|
3953 | |
---|
3954 | IF ( use_sgs_for_particles ) THEN |
---|
3955 | exp_arg = particle_groups(particles(n)%group)%exp_arg |
---|
3956 | exp_term = EXP( -exp_arg * dt_particle(n) ) |
---|
3957 | ELSE |
---|
3958 | exp_arg = particle_groups(particles(n)%group)%exp_arg |
---|
3959 | exp_term = particle_groups(particles(n)%group)%exp_term |
---|
3960 | ENDIF |
---|
3961 | particles(n)%speed_x = particles(n)%speed_x * exp_term + & |
---|
3962 | u_int(n) * ( 1.0_wp - exp_term ) |
---|
3963 | particles(n)%speed_y = particles(n)%speed_y * exp_term + & |
---|
3964 | v_int(n) * ( 1.0_wp - exp_term ) |
---|
3965 | particles(n)%speed_z = particles(n)%speed_z * exp_term + & |
---|
3966 | ( w_int(n) - ( 1.0_wp - dens_ratio(n) ) * & |
---|
3967 | g / exp_arg ) * ( 1.0_wp - exp_term ) |
---|
3968 | ENDIF |
---|
3969 | |
---|
3970 | ENDIF |
---|
3971 | ENDDO |
---|
3972 | ENDDO |
---|
3973 | |
---|
3974 | ELSE |
---|
3975 | |
---|
3976 | DO nb = 0, 7 |
---|
3977 | DO n = start_index(nb), end_index(nb) |
---|
3978 | ! |
---|
3979 | !-- Transport of particles with inertia |
---|
3980 | particles(n)%x = xv(n) + particles(n)%speed_x * dt_particle(n) |
---|
3981 | particles(n)%y = yv(n) + particles(n)%speed_y * dt_particle(n) |
---|
3982 | particles(n)%z = zv(n) + particles(n)%speed_z * dt_particle(n) |
---|
3983 | ! |
---|
3984 | !-- Update of the particle velocity |
---|
3985 | IF ( cloud_droplets ) THEN |
---|
3986 | ! |
---|
3987 | !-- Terminal velocity is computed for vertical direction (Rogers et al., |
---|
3988 | !-- 1993, J. Appl. Meteorol.) |
---|
3989 | diameter = particles(n)%radius * 2000.0_wp !diameter in mm |
---|
3990 | IF ( diameter <= d0_rog ) THEN |
---|
3991 | w_s = k_cap_rog * diameter * ( 1.0_wp - EXP( -k_low_rog * diameter ) ) |
---|
3992 | ELSE |
---|
3993 | w_s = a_rog - b_rog * EXP( -c_rog * diameter ) |
---|
3994 | ENDIF |
---|
3995 | |
---|
3996 | ! |
---|
3997 | !-- If selected, add random velocities following Soelch and Kaercher |
---|
3998 | !-- (2010, Q. J. R. Meteorol. Soc.) |
---|
3999 | IF ( use_sgs_for_particles ) THEN |
---|
4000 | lagr_timescale(n) = km(kp,jp,ip) / MAX( e(kp,jp,ip), 1.0E-20_wp ) |
---|
4001 | RL = EXP( -1.0_wp * dt_3d / MAX( lagr_timescale(n), & |
---|
4002 | 1.0E-20_wp ) ) |
---|
4003 | sigma = SQRT( e(kp,jp,ip) ) |
---|
4004 | |
---|
4005 | rg1 = random_gauss( iran_part, 5.0_wp ) - 1.0_wp |
---|
4006 | rg2 = random_gauss( iran_part, 5.0_wp ) - 1.0_wp |
---|
4007 | rg3 = random_gauss( iran_part, 5.0_wp ) - 1.0_wp |
---|
4008 | |
---|
4009 | particles(n)%rvar1 = RL * particles(n)%rvar1 + & |
---|
4010 | SQRT( 1.0_wp - RL**2 ) * sigma * rg1 |
---|
4011 | particles(n)%rvar2 = RL * particles(n)%rvar2 + & |
---|
4012 | SQRT( 1.0_wp - RL**2 ) * sigma * rg2 |
---|
4013 | particles(n)%rvar3 = RL * particles(n)%rvar3 + & |
---|
4014 | SQRT( 1.0_wp - RL**2 ) * sigma * rg3 |
---|
4015 | |
---|
4016 | particles(n)%speed_x = u_int(n) + particles(n)%rvar1 |
---|
4017 | particles(n)%speed_y = v_int(n) + particles(n)%rvar2 |
---|
4018 | particles(n)%speed_z = w_int(n) + particles(n)%rvar3 - w_s |
---|
4019 | ELSE |
---|
4020 | particles(n)%speed_x = u_int(n) |
---|
4021 | particles(n)%speed_y = v_int(n) |
---|
4022 | particles(n)%speed_z = w_int(n) - w_s |
---|
4023 | ENDIF |
---|
4024 | |
---|
4025 | ELSE |
---|
4026 | |
---|
4027 | IF ( use_sgs_for_particles ) THEN |
---|
4028 | exp_arg = particle_groups(particles(n)%group)%exp_arg |
---|
4029 | exp_term = EXP( -exp_arg * dt_particle(n) ) |
---|
4030 | ELSE |
---|
4031 | exp_arg = particle_groups(particles(n)%group)%exp_arg |
---|
4032 | exp_term = particle_groups(particles(n)%group)%exp_term |
---|
4033 | ENDIF |
---|
4034 | particles(n)%speed_x = particles(n)%speed_x * exp_term + & |
---|
4035 | u_int(n) * ( 1.0_wp - exp_term ) |
---|
4036 | particles(n)%speed_y = particles(n)%speed_y * exp_term + & |
---|
4037 | v_int(n) * ( 1.0_wp - exp_term ) |
---|
4038 | particles(n)%speed_z = particles(n)%speed_z * exp_term + & |
---|
4039 | ( w_int(n) - ( 1.0_wp - dens_ratio(n) ) * g / & |
---|
4040 | exp_arg ) * ( 1.0_wp - exp_term ) |
---|
4041 | ENDIF |
---|
4042 | ENDDO |
---|
4043 | ENDDO |
---|
4044 | |
---|
4045 | ENDIF |
---|
4046 | |
---|
4047 | ! |
---|
4048 | !-- Store the old age of the particle ( needed to prevent that a |
---|
4049 | !-- particle crosses several PEs during one timestep, and for the |
---|
4050 | !-- evaluation of the subgrid particle velocity fluctuations ) |
---|
4051 | particles(1:number_of_particles)%age_m = particles(1:number_of_particles)%age |
---|
4052 | |
---|
4053 | DO nb = 0, 7 |
---|
4054 | DO n = start_index(nb), end_index(nb) |
---|
4055 | ! |
---|
4056 | !-- Increment the particle age and the total time that the particle |
---|
4057 | !-- has advanced within the particle timestep procedure |
---|
4058 | particles(n)%age = particles(n)%age + dt_particle(n) |
---|
4059 | particles(n)%dt_sum = particles(n)%dt_sum + dt_particle(n) |
---|
4060 | |
---|
4061 | ! |
---|
4062 | !-- Check whether there is still a particle that has not yet completed |
---|
4063 | !-- the total LES timestep |
---|
4064 | IF ( ( dt_3d - particles(n)%dt_sum ) > 1E-8_wp ) THEN |
---|
4065 | dt_3d_reached_l = .FALSE. |
---|
4066 | ENDIF |
---|
4067 | |
---|
4068 | ENDDO |
---|
4069 | ENDDO |
---|
4070 | |
---|
4071 | CALL cpu_log( log_point_s(44), 'lpm_advec', 'pause' ) |
---|
4072 | |
---|
4073 | |
---|
4074 | END SUBROUTINE lpm_advec |
---|
4075 | |
---|
4076 | |
---|
4077 | !------------------------------------------------------------------------------! |
---|
4078 | ! Description: |
---|
4079 | ! ------------ |
---|
4080 | !> Calculation of subgrid-scale particle speed using the stochastic model |
---|
4081 | !> of Weil et al. (2004, JAS, 61, 2877-2887). |
---|
4082 | !------------------------------------------------------------------------------! |
---|
4083 | SUBROUTINE weil_stochastic_eq( v_sgs, fs_n, e_n, dedxi_n, dedt_n, diss_n, & |
---|
4084 | dt_n, rg_n, fac ) |
---|
4085 | |
---|
4086 | REAL(wp) :: a1 !< dummy argument |
---|
4087 | REAL(wp) :: dedt_n !< time derivative of TKE at particle position |
---|
4088 | REAL(wp) :: dedxi_n !< horizontal derivative of TKE at particle position |
---|
4089 | REAL(wp) :: diss_n !< dissipation at particle position |
---|
4090 | REAL(wp) :: dt_n !< particle timestep |
---|
4091 | REAL(wp) :: e_n !< TKE at particle position |
---|
4092 | REAL(wp) :: fac !< flag to identify adjacent topography |
---|
4093 | REAL(wp) :: fs_n !< weighting factor to prevent that subgrid-scale particle speed becomes too large |
---|
4094 | REAL(wp) :: rg_n !< random number |
---|
4095 | REAL(wp) :: term1 !< memory term |
---|
4096 | REAL(wp) :: term2 !< drift correction term |
---|
4097 | REAL(wp) :: term3 !< random term |
---|
4098 | REAL(wp) :: v_sgs !< subgrid-scale velocity component |
---|
4099 | |
---|
4100 | !-- At first, limit TKE to a small non-zero number, in order to prevent |
---|
4101 | !-- the occurrence of extremely large SGS-velocities in case TKE is zero, |
---|
4102 | !-- (could occur at the simulation begin). |
---|
4103 | e_n = MAX( e_n, 1E-20_wp ) |
---|
4104 | ! |
---|
4105 | !-- Please note, terms 1 and 2 (drift and memory term, respectively) are |
---|
4106 | !-- multiplied by a flag to switch of both terms near topography. |
---|
4107 | !-- This is necessary, as both terms may cause a subgrid-scale velocity build up |
---|
4108 | !-- if particles are trapped in regions with very small TKE, e.g. in narrow street |
---|
4109 | !-- canyons resolved by only a few grid points. Hence, term 1 and term 2 are |
---|
4110 | !-- disabled if one of the adjacent grid points belongs to topography. |
---|
4111 | !-- Moreover, in this case, the previous subgrid-scale component is also set |
---|
4112 | !-- to zero. |
---|
4113 | |
---|
4114 | a1 = fs_n * c_0 * diss_n |
---|
4115 | ! |
---|
4116 | !-- Memory term |
---|
4117 | term1 = - a1 * v_sgs * dt_n / ( 4.0_wp * sgs_wf_part * e_n + 1E-20_wp ) & |
---|
4118 | * fac |
---|
4119 | ! |
---|
4120 | !-- Drift correction term |
---|
4121 | term2 = ( ( dedt_n * v_sgs / e_n ) + dedxi_n ) * 0.5_wp * dt_n & |
---|
4122 | * fac |
---|
4123 | ! |
---|
4124 | !-- Random term |
---|
4125 | term3 = SQRT( MAX( a1, 1E-20_wp ) ) * ( rg_n - 1.0_wp ) * SQRT( dt_n ) |
---|
4126 | ! |
---|
4127 | !-- In cese one of the adjacent grid-boxes belongs to topograhy, the previous |
---|
4128 | !-- subgrid-scale velocity component is set to zero, in order to prevent a |
---|
4129 | !-- velocity build-up. |
---|
4130 | !-- This case, set also previous subgrid-scale component to zero. |
---|
4131 | v_sgs = v_sgs * fac + term1 + term2 + term3 |
---|
4132 | |
---|
4133 | END SUBROUTINE weil_stochastic_eq |
---|
4134 | |
---|
4135 | |
---|
4136 | !------------------------------------------------------------------------------! |
---|
4137 | ! Description: |
---|
4138 | ! ------------ |
---|
4139 | !> Boundary conditions for the Lagrangian particles. |
---|
4140 | !> The routine consists of two different parts. One handles the bottom (flat) |
---|
4141 | !> and top boundary. In this part, also particles which exceeded their lifetime |
---|
4142 | !> are deleted. |
---|
4143 | !> The other part handles the reflection of particles from vertical walls. |
---|
4144 | !> This part was developed by Jin Zhang during 2006-2007. |
---|
4145 | !> |
---|
4146 | !> To do: Code structure for finding the t_index values and for checking the |
---|
4147 | !> ----- reflection conditions is basically the same for all four cases, so it |
---|
4148 | !> should be possible to further simplify/shorten it. |
---|
4149 | !> |
---|
4150 | !> THE WALLS PART OF THIS ROUTINE HAS NOT BEEN TESTED FOR OCEAN RUNS SO FAR!!!! |
---|
4151 | !> (see offset_ocean_*) |
---|
4152 | !------------------------------------------------------------------------------! |
---|
4153 | SUBROUTINE lpm_boundary_conds( location_bc , i, j, k ) |
---|
4154 | |
---|
4155 | CHARACTER (LEN=*), INTENT(IN) :: location_bc !< general mode: boundary conditions at bottom/top of the model domain |
---|
4156 | !< or at vertical surfaces (buildings, terrain steps) |
---|
4157 | INTEGER(iwp), INTENT(IN) :: i !< grid index of particle box along x |
---|
4158 | INTEGER(iwp), INTENT(IN) :: j !< grid index of particle box along y |
---|
4159 | INTEGER(iwp), INTENT(IN) :: k !< grid index of particle box along z |
---|
4160 | |
---|
4161 | INTEGER(iwp) :: inc !< dummy for sorting algorithmus |
---|
4162 | INTEGER(iwp) :: ir !< dummy for sorting algorithmus |
---|
4163 | INTEGER(iwp) :: i1 !< grid index (x) of old particle position |
---|
4164 | INTEGER(iwp) :: i2 !< grid index (x) of current particle position |
---|
4165 | INTEGER(iwp) :: i3 !< grid index (x) of intermediate particle position |
---|
4166 | INTEGER(iwp) :: jr !< dummy for sorting algorithmus |
---|
4167 | INTEGER(iwp) :: j1 !< grid index (y) of old particle position |
---|
4168 | INTEGER(iwp) :: j2 !< grid index (y) of current particle position |
---|
4169 | INTEGER(iwp) :: j3 !< grid index (y) of intermediate particle position |
---|
4170 | INTEGER(iwp) :: k1 !< grid index (z) of old particle position |
---|
4171 | INTEGER(iwp) :: k2 !< grid index (z) of current particle position |
---|
4172 | INTEGER(iwp) :: k3 !< grid index (z) of intermediate particle position |
---|
4173 | INTEGER(iwp) :: n !< particle number |
---|
4174 | INTEGER(iwp) :: t_index !< running index for intermediate particle timesteps in reflection algorithmus |
---|
4175 | INTEGER(iwp) :: t_index_number !< number of intermediate particle timesteps in reflection algorithmus |
---|
4176 | INTEGER(iwp) :: tmp_x !< dummy for sorting algorithm |
---|
4177 | INTEGER(iwp) :: tmp_y !< dummy for sorting algorithm |
---|
4178 | INTEGER(iwp) :: tmp_z !< dummy for sorting algorithm |
---|
4179 | |
---|
4180 | INTEGER(iwp), DIMENSION(0:10) :: x_ind(0:10) = 0 !< index array (x) of intermediate particle positions |
---|
4181 | INTEGER(iwp), DIMENSION(0:10) :: y_ind(0:10) = 0 !< index array (y) of intermediate particle positions |
---|
4182 | INTEGER(iwp), DIMENSION(0:10) :: z_ind(0:10) = 0 !< index array (z) of intermediate particle positions |
---|
4183 | |
---|
4184 | LOGICAL :: cross_wall_x !< flag to check if particle reflection along x is necessary |
---|
4185 | LOGICAL :: cross_wall_y !< flag to check if particle reflection along y is necessary |
---|
4186 | LOGICAL :: cross_wall_z !< flag to check if particle reflection along z is necessary |
---|
4187 | LOGICAL :: reflect_x !< flag to check if particle is already reflected along x |
---|
4188 | LOGICAL :: reflect_y !< flag to check if particle is already reflected along y |
---|
4189 | LOGICAL :: reflect_z !< flag to check if particle is already reflected along z |
---|
4190 | LOGICAL :: tmp_reach_x !< dummy for sorting algorithmus |
---|
4191 | LOGICAL :: tmp_reach_y !< dummy for sorting algorithmus |
---|
4192 | LOGICAL :: tmp_reach_z !< dummy for sorting algorithmus |
---|
4193 | LOGICAL :: x_wall_reached !< flag to check if particle has already reached wall |
---|
4194 | LOGICAL :: y_wall_reached !< flag to check if particle has already reached wall |
---|
4195 | LOGICAL :: z_wall_reached !< flag to check if particle has already reached wall |
---|
4196 | |
---|
4197 | LOGICAL, DIMENSION(0:10) :: reach_x !< flag to check if particle is at a yz-wall |
---|
4198 | LOGICAL, DIMENSION(0:10) :: reach_y !< flag to check if particle is at a xz-wall |
---|
4199 | LOGICAL, DIMENSION(0:10) :: reach_z !< flag to check if particle is at a xy-wall |
---|
4200 | |
---|
4201 | REAL(wp) :: dt_particle !< particle timestep |
---|
4202 | REAL(wp) :: eps = 1E-10_wp !< security number to check if particle has reached a wall |
---|
4203 | REAL(wp) :: pos_x !< intermediate particle position (x) |
---|
4204 | REAL(wp) :: pos_x_old !< particle position (x) at previous particle timestep |
---|
4205 | REAL(wp) :: pos_y !< intermediate particle position (y) |
---|
4206 | REAL(wp) :: pos_y_old !< particle position (y) at previous particle timestep |
---|
4207 | REAL(wp) :: pos_z !< intermediate particle position (z) |
---|
4208 | REAL(wp) :: pos_z_old !< particle position (z) at previous particle timestep |
---|
4209 | REAL(wp) :: prt_x !< current particle position (x) |
---|
4210 | REAL(wp) :: prt_y !< current particle position (y) |
---|
4211 | REAL(wp) :: prt_z !< current particle position (z) |
---|
4212 | REAL(wp) :: t_old !< previous reflection time |
---|
4213 | REAL(wp) :: tmp_t !< dummy for sorting algorithmus |
---|
4214 | REAL(wp) :: xwall !< location of wall in x |
---|
4215 | REAL(wp) :: ywall !< location of wall in y |
---|
4216 | REAL(wp) :: zwall !< location of wall in z |
---|
4217 | |
---|
4218 | REAL(wp), DIMENSION(0:10) :: t !< reflection time |
---|
4219 | |
---|
4220 | SELECT CASE ( location_bc ) |
---|
4221 | |
---|
4222 | CASE ( 'bottom/top' ) |
---|
4223 | |
---|
4224 | ! IF ( location_bc == 'bottom/top' ) THEN |
---|
4225 | |
---|
4226 | ! |
---|
4227 | !-- Apply boundary conditions to those particles that have crossed the top or |
---|
4228 | !-- bottom boundary and delete those particles, which are older than allowed |
---|
4229 | DO n = 1, number_of_particles |
---|
4230 | |
---|
4231 | ! |
---|
4232 | !-- Stop if particles have moved further than the length of one |
---|
4233 | !-- PE subdomain (newly released particles have age = age_m!) |
---|
4234 | IF ( particles(n)%age /= particles(n)%age_m ) THEN |
---|
4235 | IF ( ABS(particles(n)%speed_x) > & |
---|
4236 | ((nxr-nxl+2)*dx)/(particles(n)%age-particles(n)%age_m) .OR. & |
---|
4237 | ABS(particles(n)%speed_y) > & |
---|
4238 | ((nyn-nys+2)*dy)/(particles(n)%age-particles(n)%age_m) ) THEN |
---|
4239 | |
---|
4240 | WRITE( message_string, * ) 'particle too fast. n = ', n |
---|
4241 | CALL message( 'lpm_boundary_conds', 'PA0148', 2, 2, -1, 6, 1 ) |
---|
4242 | ENDIF |
---|
4243 | ENDIF |
---|
4244 | |
---|
4245 | IF ( particles(n)%age > particle_maximum_age .AND. & |
---|
4246 | particles(n)%particle_mask ) & |
---|
4247 | THEN |
---|
4248 | particles(n)%particle_mask = .FALSE. |
---|
4249 | deleted_particles = deleted_particles + 1 |
---|
4250 | ENDIF |
---|
4251 | |
---|
4252 | IF ( particles(n)%z >= zw(nz) .AND. particles(n)%particle_mask ) THEN |
---|
4253 | IF ( ibc_par_t == 1 ) THEN |
---|
4254 | ! |
---|
4255 | !-- Particle absorption |
---|
4256 | particles(n)%particle_mask = .FALSE. |
---|
4257 | deleted_particles = deleted_particles + 1 |
---|
4258 | ELSEIF ( ibc_par_t == 2 ) THEN |
---|
4259 | ! |
---|
4260 | !-- Particle reflection |
---|
4261 | particles(n)%z = 2.0_wp * zw(nz) - particles(n)%z |
---|
4262 | particles(n)%speed_z = -particles(n)%speed_z |
---|
4263 | IF ( use_sgs_for_particles .AND. & |
---|
4264 | particles(n)%rvar3 > 0.0_wp ) THEN |
---|
4265 | particles(n)%rvar3 = -particles(n)%rvar3 |
---|
4266 | ENDIF |
---|
4267 | ENDIF |
---|
4268 | ENDIF |
---|
4269 | |
---|
4270 | IF ( particles(n)%z < zw(0) .AND. particles(n)%particle_mask ) THEN |
---|
4271 | IF ( ibc_par_b == 1 ) THEN |
---|
4272 | ! |
---|
4273 | !-- Particle absorption |
---|
4274 | particles(n)%particle_mask = .FALSE. |
---|
4275 | deleted_particles = deleted_particles + 1 |
---|
4276 | ELSEIF ( ibc_par_b == 2 ) THEN |
---|
4277 | ! |
---|
4278 | !-- Particle reflection |
---|
4279 | particles(n)%z = 2.0_wp * zw(0) - particles(n)%z |
---|
4280 | particles(n)%speed_z = -particles(n)%speed_z |
---|
4281 | IF ( use_sgs_for_particles .AND. & |
---|
4282 | particles(n)%rvar3 < 0.0_wp ) THEN |
---|
4283 | particles(n)%rvar3 = -particles(n)%rvar3 |
---|
4284 | ENDIF |
---|
4285 | ENDIF |
---|
4286 | ENDIF |
---|
4287 | ENDDO |
---|
4288 | |
---|
4289 | ! ELSEIF ( location_bc == 'walls' ) THEN |
---|
4290 | CASE ( 'walls' ) |
---|
4291 | |
---|
4292 | CALL cpu_log( log_point_s(48), 'lpm_wall_reflect', 'start' ) |
---|
4293 | |
---|
4294 | DO n = 1, number_of_particles |
---|
4295 | ! |
---|
4296 | !-- Recalculate particle timestep |
---|
4297 | dt_particle = particles(n)%age - particles(n)%age_m |
---|
4298 | ! |
---|
4299 | !-- Obtain x/y indices for current particle position |
---|
4300 | i2 = particles(n)%x * ddx |
---|
4301 | j2 = particles(n)%y * ddy |
---|
4302 | IF (zw(k) < particles(n)%z ) k2 = k + 1 |
---|
4303 | IF (zw(k) > particles(n)%z .AND. zw(k-1) < particles(n)%z ) k2 = k |
---|
4304 | IF (zw(k-1) > particles(n)%z ) k2 = k - 1 |
---|
4305 | ! |
---|
4306 | !-- Save current particle positions |
---|
4307 | prt_x = particles(n)%x |
---|
4308 | prt_y = particles(n)%y |
---|
4309 | prt_z = particles(n)%z |
---|
4310 | ! |
---|
4311 | !-- Recalculate old particle positions |
---|
4312 | pos_x_old = particles(n)%x - particles(n)%speed_x * dt_particle |
---|
4313 | pos_y_old = particles(n)%y - particles(n)%speed_y * dt_particle |
---|
4314 | pos_z_old = particles(n)%z - particles(n)%speed_z * dt_particle |
---|
4315 | ! |
---|
4316 | !-- Obtain x/y indices for old particle positions |
---|
4317 | i1 = i |
---|
4318 | j1 = j |
---|
4319 | k1 = k |
---|
4320 | ! |
---|
4321 | !-- Determine horizontal as well as vertical walls at which particle can |
---|
4322 | !-- be potentially reflected. |
---|
4323 | !-- Start with walls aligned in yz layer. |
---|
4324 | !-- Wall to the right |
---|
4325 | IF ( prt_x > pos_x_old ) THEN |
---|
4326 | xwall = ( i1 + 1 ) * dx |
---|
4327 | ! |
---|
4328 | !-- Wall to the left |
---|
4329 | ELSE |
---|
4330 | xwall = i1 * dx |
---|
4331 | ENDIF |
---|
4332 | ! |
---|
4333 | !-- Walls aligned in xz layer |
---|
4334 | !-- Wall to the north |
---|
4335 | IF ( prt_y > pos_y_old ) THEN |
---|
4336 | ywall = ( j1 +1 ) * dy |
---|
4337 | !-- Wall to the south |
---|
4338 | ELSE |
---|
4339 | ywall = j1 * dy |
---|
4340 | ENDIF |
---|
4341 | |
---|
4342 | IF ( prt_z > pos_z_old ) THEN |
---|
4343 | zwall = zw(k) |
---|
4344 | ELSE |
---|
4345 | zwall = zw(k-1) |
---|
4346 | ENDIF |
---|
4347 | ! |
---|
4348 | !-- Initialize flags to check if particle reflection is necessary |
---|
4349 | cross_wall_x = .FALSE. |
---|
4350 | cross_wall_y = .FALSE. |
---|
4351 | cross_wall_z = .FALSE. |
---|
4352 | ! |
---|
4353 | !-- Initialize flags to check if a wall is reached |
---|
4354 | reach_x = .FALSE. |
---|
4355 | reach_y = .FALSE. |
---|
4356 | reach_z = .FALSE. |
---|
4357 | ! |
---|
4358 | !-- Initialize flags to check if a particle was already reflected |
---|
4359 | reflect_x = .FALSE. |
---|
4360 | reflect_y = .FALSE. |
---|
4361 | reflect_z = .FALSE. |
---|
4362 | ! |
---|
4363 | !-- Initialize flags to check if a wall is already crossed. |
---|
4364 | !-- ( Required to obtain correct indices. ) |
---|
4365 | x_wall_reached = .FALSE. |
---|
4366 | y_wall_reached = .FALSE. |
---|
4367 | z_wall_reached = .FALSE. |
---|
4368 | ! |
---|
4369 | !-- Initialize time array |
---|
4370 | t = 0.0_wp |
---|
4371 | ! |
---|
4372 | !-- Check if particle can reach any wall. This case, calculate the |
---|
4373 | !-- fractional time needed to reach this wall. Store this fractional |
---|
4374 | !-- timestep in array t. Moreover, store indices for these grid |
---|
4375 | !-- boxes where the respective wall belongs to. |
---|
4376 | !-- Start with x-direction. |
---|
4377 | t_index = 1 |
---|
4378 | t(t_index) = ( xwall - pos_x_old ) & |
---|
4379 | / MERGE( MAX( prt_x - pos_x_old, 1E-30_wp ), & |
---|
4380 | MIN( prt_x - pos_x_old, -1E-30_wp ), & |
---|
4381 | prt_x > pos_x_old ) |
---|
4382 | x_ind(t_index) = i2 |
---|
4383 | y_ind(t_index) = j1 |
---|
4384 | z_ind(t_index) = k1 |
---|
4385 | reach_x(t_index) = .TRUE. |
---|
4386 | reach_y(t_index) = .FALSE. |
---|
4387 | reach_z(t_index) = .FALSE. |
---|
4388 | ! |
---|
4389 | !-- Store these values only if particle really reaches any wall. t must |
---|
4390 | !-- be in a interval between [0:1]. |
---|
4391 | IF ( t(t_index) <= 1.0_wp .AND. t(t_index) >= 0.0_wp ) THEN |
---|
4392 | t_index = t_index + 1 |
---|
4393 | cross_wall_x = .TRUE. |
---|
4394 | ENDIF |
---|
4395 | ! |
---|
4396 | !-- y-direction |
---|
4397 | t(t_index) = ( ywall - pos_y_old ) & |
---|
4398 | / MERGE( MAX( prt_y - pos_y_old, 1E-30_wp ), & |
---|
4399 | MIN( prt_y - pos_y_old, -1E-30_wp ), & |
---|
4400 | prt_y > pos_y_old ) |
---|
4401 | x_ind(t_index) = i1 |
---|
4402 | y_ind(t_index) = j2 |
---|
4403 | z_ind(t_index) = k1 |
---|
4404 | reach_x(t_index) = .FALSE. |
---|
4405 | reach_y(t_index) = .TRUE. |
---|
4406 | reach_z(t_index) = .FALSE. |
---|
4407 | IF ( t(t_index) <= 1.0_wp .AND. t(t_index) >= 0.0_wp ) THEN |
---|
4408 | t_index = t_index + 1 |
---|
4409 | cross_wall_y = .TRUE. |
---|
4410 | ENDIF |
---|
4411 | ! |
---|
4412 | !-- z-direction |
---|
4413 | t(t_index) = (zwall - pos_z_old ) & |
---|
4414 | / MERGE( MAX( prt_z - pos_z_old, 1E-30_wp ), & |
---|
4415 | MIN( prt_z - pos_z_old, -1E-30_wp ), & |
---|
4416 | prt_z > pos_z_old ) |
---|
4417 | |
---|
4418 | x_ind(t_index) = i1 |
---|
4419 | y_ind(t_index) = j1 |
---|
4420 | z_ind(t_index) = k2 |
---|
4421 | reach_x(t_index) = .FALSE. |
---|
4422 | reach_y(t_index) = .FALSE. |
---|
4423 | reach_z(t_index) = .TRUE. |
---|
4424 | IF( t(t_index) <= 1.0_wp .AND. t(t_index) >= 0.0_wp) THEN |
---|
4425 | t_index = t_index + 1 |
---|
4426 | cross_wall_z = .TRUE. |
---|
4427 | ENDIF |
---|
4428 | |
---|
4429 | t_index_number = t_index - 1 |
---|
4430 | ! |
---|
4431 | !-- Carry out reflection only if particle reaches any wall |
---|
4432 | IF ( cross_wall_x .OR. cross_wall_y .OR. cross_wall_z ) THEN |
---|
4433 | ! |
---|
4434 | !-- Sort fractional timesteps in ascending order. Also sort the |
---|
4435 | !-- corresponding indices and flag according to the time interval a |
---|
4436 | !-- particle reaches the respective wall. |
---|
4437 | inc = 1 |
---|
4438 | jr = 1 |
---|
4439 | DO WHILE ( inc <= t_index_number ) |
---|
4440 | inc = 3 * inc + 1 |
---|
4441 | ENDDO |
---|
4442 | |
---|
4443 | DO WHILE ( inc > 1 ) |
---|
4444 | inc = inc / 3 |
---|
4445 | DO ir = inc+1, t_index_number |
---|
4446 | tmp_t = t(ir) |
---|
4447 | tmp_x = x_ind(ir) |
---|
4448 | tmp_y = y_ind(ir) |
---|
4449 | tmp_z = z_ind(ir) |
---|
4450 | tmp_reach_x = reach_x(ir) |
---|
4451 | tmp_reach_y = reach_y(ir) |
---|
4452 | tmp_reach_z = reach_z(ir) |
---|
4453 | jr = ir |
---|
4454 | DO WHILE ( t(jr-inc) > tmp_t ) |
---|
4455 | t(jr) = t(jr-inc) |
---|
4456 | x_ind(jr) = x_ind(jr-inc) |
---|
4457 | y_ind(jr) = y_ind(jr-inc) |
---|
4458 | z_ind(jr) = z_ind(jr-inc) |
---|
4459 | reach_x(jr) = reach_x(jr-inc) |
---|
4460 | reach_y(jr) = reach_y(jr-inc) |
---|
4461 | reach_z(jr) = reach_z(jr-inc) |
---|
4462 | jr = jr - inc |
---|
4463 | IF ( jr <= inc ) EXIT |
---|
4464 | ENDDO |
---|
4465 | t(jr) = tmp_t |
---|
4466 | x_ind(jr) = tmp_x |
---|
4467 | y_ind(jr) = tmp_y |
---|
4468 | z_ind(jr) = tmp_z |
---|
4469 | reach_x(jr) = tmp_reach_x |
---|
4470 | reach_y(jr) = tmp_reach_y |
---|
4471 | reach_z(jr) = tmp_reach_z |
---|
4472 | ENDDO |
---|
4473 | ENDDO |
---|
4474 | ! |
---|
4475 | !-- Initialize temporary particle positions |
---|
4476 | pos_x = pos_x_old |
---|
4477 | pos_y = pos_y_old |
---|
4478 | pos_z = pos_z_old |
---|
4479 | ! |
---|
4480 | !-- Loop over all times a particle possibly moves into a new grid box |
---|
4481 | t_old = 0.0_wp |
---|
4482 | DO t_index = 1, t_index_number |
---|
4483 | ! |
---|
4484 | !-- Calculate intermediate particle position according to the |
---|
4485 | !-- timesteps a particle reaches any wall. |
---|
4486 | pos_x = pos_x + ( t(t_index) - t_old ) * dt_particle & |
---|
4487 | * particles(n)%speed_x |
---|
4488 | pos_y = pos_y + ( t(t_index) - t_old ) * dt_particle & |
---|
4489 | * particles(n)%speed_y |
---|
4490 | pos_z = pos_z + ( t(t_index) - t_old ) * dt_particle & |
---|
4491 | * particles(n)%speed_z |
---|
4492 | ! |
---|
4493 | !-- Obtain x/y grid indices for intermediate particle position from |
---|
4494 | !-- sorted index array |
---|
4495 | i3 = x_ind(t_index) |
---|
4496 | j3 = y_ind(t_index) |
---|
4497 | k3 = z_ind(t_index) |
---|
4498 | ! |
---|
4499 | !-- Check which wall is already reached |
---|
4500 | IF ( .NOT. x_wall_reached ) x_wall_reached = reach_x(t_index) |
---|
4501 | IF ( .NOT. y_wall_reached ) y_wall_reached = reach_y(t_index) |
---|
4502 | IF ( .NOT. z_wall_reached ) z_wall_reached = reach_z(t_index) |
---|
4503 | ! |
---|
4504 | !-- Check if a particle needs to be reflected at any yz-wall. If |
---|
4505 | !-- necessary, carry out reflection. Please note, a security |
---|
4506 | !-- constant is required, as the particle position does not |
---|
4507 | !-- necessarily exactly match the wall location due to rounding |
---|
4508 | !-- errors. |
---|
4509 | IF ( reach_x(t_index) .AND. & |
---|
4510 | ABS( pos_x - xwall ) < eps .AND. & |
---|
4511 | .NOT. BTEST(wall_flags_0(k3,j3,i3),0) .AND. & |
---|
4512 | .NOT. reflect_x ) THEN |
---|
4513 | ! |
---|
4514 | ! |
---|
4515 | !-- Reflection in x-direction. |
---|
4516 | !-- Ensure correct reflection by MIN/MAX functions, depending on |
---|
4517 | !-- direction of particle transport. |
---|
4518 | !-- Due to rounding errors pos_x does not exactly match the wall |
---|
4519 | !-- location, leading to erroneous reflection. |
---|
4520 | pos_x = MERGE( MIN( 2.0_wp * xwall - pos_x, xwall ), & |
---|
4521 | MAX( 2.0_wp * xwall - pos_x, xwall ), & |
---|
4522 | particles(n)%x > xwall ) |
---|
4523 | ! |
---|
4524 | !-- Change sign of particle speed |
---|
4525 | particles(n)%speed_x = - particles(n)%speed_x |
---|
4526 | ! |
---|
4527 | !-- Also change sign of subgrid-scale particle speed |
---|
4528 | particles(n)%rvar1 = - particles(n)%rvar1 |
---|
4529 | ! |
---|
4530 | !-- Set flag that reflection along x is already done |
---|
4531 | reflect_x = .TRUE. |
---|
4532 | ! |
---|
4533 | !-- As the particle does not cross any further yz-wall during |
---|
4534 | !-- this timestep, set further x-indices to the current one. |
---|
4535 | x_ind(t_index:t_index_number) = i1 |
---|
4536 | ! |
---|
4537 | !-- If particle already reached the wall but was not reflected, |
---|
4538 | !-- set further x-indices to the new one. |
---|
4539 | ELSEIF ( x_wall_reached .AND. .NOT. reflect_x ) THEN |
---|
4540 | x_ind(t_index:t_index_number) = i2 |
---|
4541 | ENDIF !particle reflection in x direction done |
---|
4542 | |
---|
4543 | ! |
---|
4544 | !-- Check if a particle needs to be reflected at any xz-wall. If |
---|
4545 | !-- necessary, carry out reflection. Please note, a security |
---|
4546 | !-- constant is required, as the particle position does not |
---|
4547 | !-- necessarily exactly match the wall location due to rounding |
---|
4548 | !-- errors. |
---|
4549 | IF ( reach_y(t_index) .AND. & |
---|
4550 | ABS( pos_y - ywall ) < eps .AND. & |
---|
4551 | .NOT. BTEST(wall_flags_0(k3,j3,i3),0) .AND. & |
---|
4552 | .NOT. reflect_y ) THEN |
---|
4553 | ! |
---|
4554 | ! |
---|
4555 | !-- Reflection in y-direction. |
---|
4556 | !-- Ensure correct reflection by MIN/MAX functions, depending on |
---|
4557 | !-- direction of particle transport. |
---|
4558 | !-- Due to rounding errors pos_y does not exactly match the wall |
---|
4559 | !-- location, leading to erroneous reflection. |
---|
4560 | pos_y = MERGE( MIN( 2.0_wp * ywall - pos_y, ywall ), & |
---|
4561 | MAX( 2.0_wp * ywall - pos_y, ywall ), & |
---|
4562 | particles(n)%y > ywall ) |
---|
4563 | ! |
---|
4564 | !-- Change sign of particle speed |
---|
4565 | particles(n)%speed_y = - particles(n)%speed_y |
---|
4566 | ! |
---|
4567 | !-- Also change sign of subgrid-scale particle speed |
---|
4568 | particles(n)%rvar2 = - particles(n)%rvar2 |
---|
4569 | ! |
---|
4570 | !-- Set flag that reflection along y is already done |
---|
4571 | reflect_y = .TRUE. |
---|
4572 | ! |
---|
4573 | !-- As the particle does not cross any further xz-wall during |
---|
4574 | !-- this timestep, set further y-indices to the current one. |
---|
4575 | y_ind(t_index:t_index_number) = j1 |
---|
4576 | ! |
---|
4577 | !-- If particle already reached the wall but was not reflected, |
---|
4578 | !-- set further y-indices to the new one. |
---|
4579 | ELSEIF ( y_wall_reached .AND. .NOT. reflect_y ) THEN |
---|
4580 | y_ind(t_index:t_index_number) = j2 |
---|
4581 | ENDIF !particle reflection in y direction done |
---|
4582 | |
---|
4583 | ! |
---|
4584 | !-- Check if a particle needs to be reflected at any xy-wall. If |
---|
4585 | !-- necessary, carry out reflection. Please note, a security |
---|
4586 | !-- constant is required, as the particle position does not |
---|
4587 | !-- necessarily exactly match the wall location due to rounding |
---|
4588 | !-- errors. |
---|
4589 | IF ( reach_z(t_index) .AND. & |
---|
4590 | ABS( pos_z - zwall ) < eps .AND. & |
---|
4591 | .NOT. BTEST(wall_flags_0(k3,j3,i3),0) .AND. & |
---|
4592 | .NOT. reflect_z ) THEN |
---|
4593 | ! |
---|
4594 | ! |
---|
4595 | !-- Reflection in z-direction. |
---|
4596 | !-- Ensure correct reflection by MIN/MAX functions, depending on |
---|
4597 | !-- direction of particle transport. |
---|
4598 | !-- Due to rounding errors pos_z does not exactly match the wall |
---|
4599 | !-- location, leading to erroneous reflection. |
---|
4600 | pos_z = MERGE( MIN( 2.0_wp * zwall - pos_z, zwall ), & |
---|
4601 | MAX( 2.0_wp * zwall - pos_z, zwall ), & |
---|
4602 | particles(n)%z > zwall ) |
---|
4603 | ! |
---|
4604 | !-- Change sign of particle speed |
---|
4605 | particles(n)%speed_z = - particles(n)%speed_z |
---|
4606 | ! |
---|
4607 | !-- Also change sign of subgrid-scale particle speed |
---|
4608 | particles(n)%rvar3 = - particles(n)%rvar3 |
---|
4609 | ! |
---|
4610 | !-- Set flag that reflection along z is already done |
---|
4611 | reflect_z = .TRUE. |
---|
4612 | ! |
---|
4613 | !-- As the particle does not cross any further xy-wall during |
---|
4614 | !-- this timestep, set further z-indices to the current one. |
---|
4615 | z_ind(t_index:t_index_number) = k1 |
---|
4616 | ! |
---|
4617 | !-- If particle already reached the wall but was not reflected, |
---|
4618 | !-- set further z-indices to the new one. |
---|
4619 | ELSEIF ( z_wall_reached .AND. .NOT. reflect_z ) THEN |
---|
4620 | z_ind(t_index:t_index_number) = k2 |
---|
4621 | ENDIF !particle reflection in z direction done |
---|
4622 | |
---|
4623 | ! |
---|
4624 | !-- Swap time |
---|
4625 | t_old = t(t_index) |
---|
4626 | |
---|
4627 | ENDDO |
---|
4628 | ! |
---|
4629 | !-- If a particle was reflected, calculate final position from last |
---|
4630 | !-- intermediate position. |
---|
4631 | IF ( reflect_x .OR. reflect_y .OR. reflect_z ) THEN |
---|
4632 | |
---|
4633 | particles(n)%x = pos_x + ( 1.0_wp - t_old ) * dt_particle & |
---|
4634 | * particles(n)%speed_x |
---|
4635 | particles(n)%y = pos_y + ( 1.0_wp - t_old ) * dt_particle & |
---|
4636 | * particles(n)%speed_y |
---|
4637 | particles(n)%z = pos_z + ( 1.0_wp - t_old ) * dt_particle & |
---|
4638 | * particles(n)%speed_z |
---|
4639 | |
---|
4640 | ENDIF |
---|
4641 | |
---|
4642 | ENDIF |
---|
4643 | |
---|
4644 | ENDDO |
---|
4645 | |
---|
4646 | CALL cpu_log( log_point_s(48), 'lpm_wall_reflect', 'stop' ) |
---|
4647 | |
---|
4648 | CASE DEFAULT |
---|
4649 | CONTINUE |
---|
4650 | |
---|
4651 | END SELECT |
---|
4652 | |
---|
4653 | END SUBROUTINE lpm_boundary_conds |
---|
4654 | |
---|
4655 | |
---|
4656 | SUBROUTINE lpm_droplet_condensation (i,j,k) |
---|
4657 | |
---|
4658 | INTEGER(iwp), INTENT(IN) :: i !< |
---|
4659 | INTEGER(iwp), INTENT(IN) :: j !< |
---|
4660 | INTEGER(iwp), INTENT(IN) :: k !< |
---|
4661 | INTEGER(iwp) :: n !< |
---|
4662 | |
---|
4663 | REAL(wp) :: afactor !< curvature effects |
---|
4664 | REAL(wp) :: arg !< |
---|
4665 | REAL(wp) :: bfactor !< solute effects |
---|
4666 | REAL(wp) :: ddenom !< |
---|
4667 | REAL(wp) :: delta_r !< |
---|
4668 | REAL(wp) :: diameter !< diameter of cloud droplets |
---|
4669 | REAL(wp) :: diff_coeff !< diffusivity for water vapor |
---|
4670 | REAL(wp) :: drdt !< |
---|
4671 | REAL(wp) :: dt_ros !< |
---|
4672 | REAL(wp) :: dt_ros_sum !< |
---|
4673 | REAL(wp) :: d2rdtdr !< |
---|
4674 | REAL(wp) :: e_a !< current vapor pressure |
---|
4675 | REAL(wp) :: e_s !< current saturation vapor pressure |
---|
4676 | REAL(wp) :: error !< local truncation error in Rosenbrock |
---|
4677 | REAL(wp) :: k1 !< |
---|
4678 | REAL(wp) :: k2 !< |
---|
4679 | REAL(wp) :: r_err !< First order estimate of Rosenbrock radius |
---|
4680 | REAL(wp) :: r_ros !< Rosenbrock radius |
---|
4681 | REAL(wp) :: r_ros_ini !< initial Rosenbrock radius |
---|
4682 | REAL(wp) :: r0 !< gas-kinetic lengthscale |
---|
4683 | REAL(wp) :: sigma !< surface tension of water |
---|
4684 | REAL(wp) :: thermal_conductivity !< thermal conductivity for water |
---|
4685 | REAL(wp) :: t_int !< temperature |
---|
4686 | REAL(wp) :: w_s !< terminal velocity of droplets |
---|
4687 | REAL(wp) :: re_p !< particle Reynolds number |
---|
4688 | ! |
---|
4689 | !-- Parameters for Rosenbrock method (see Verwer et al., 1999) |
---|
4690 | REAL(wp), PARAMETER :: prec = 1.0E-3_wp !< precision of Rosenbrock solution |
---|
4691 | REAL(wp), PARAMETER :: q_increase = 1.5_wp !< increase factor in timestep |
---|
4692 | REAL(wp), PARAMETER :: q_decrease = 0.9_wp !< decrease factor in timestep |
---|
4693 | REAL(wp), PARAMETER :: gamma = 0.292893218814_wp !< = 1.0 - 1.0 / SQRT(2.0) |
---|
4694 | ! |
---|
4695 | !-- Parameters for terminal velocity |
---|
4696 | REAL(wp), PARAMETER :: a_rog = 9.65_wp !< parameter for fall velocity |
---|
4697 | REAL(wp), PARAMETER :: b_rog = 10.43_wp !< parameter for fall velocity |
---|
4698 | REAL(wp), PARAMETER :: c_rog = 0.6_wp !< parameter for fall velocity |
---|
4699 | REAL(wp), PARAMETER :: k_cap_rog = 4.0_wp !< parameter for fall velocity |
---|
4700 | REAL(wp), PARAMETER :: k_low_rog = 12.0_wp !< parameter for fall velocity |
---|
4701 | REAL(wp), PARAMETER :: d0_rog = 0.745_wp !< separation diameter |
---|
4702 | |
---|
4703 | REAL(wp), DIMENSION(number_of_particles) :: ventilation_effect !< |
---|
4704 | REAL(wp), DIMENSION(number_of_particles) :: new_r !< |
---|
4705 | |
---|
4706 | CALL cpu_log( log_point_s(42), 'lpm_droplet_condens', 'start' ) |
---|
4707 | |
---|
4708 | ! |
---|
4709 | !-- Absolute temperature |
---|
4710 | t_int = pt(k,j,i) * exner(k) |
---|
4711 | ! |
---|
4712 | !-- Saturation vapor pressure (Eq. 10 in Bolton, 1980) |
---|
4713 | e_s = magnus( t_int ) |
---|
4714 | ! |
---|
4715 | !-- Current vapor pressure |
---|
4716 | e_a = q(k,j,i) * hyp(k) / ( q(k,j,i) + rd_d_rv ) |
---|
4717 | ! |
---|
4718 | !-- Thermal conductivity for water (from Rogers and Yau, Table 7.1) |
---|
4719 | thermal_conductivity = 7.94048E-05_wp * t_int + 0.00227011_wp |
---|
4720 | ! |
---|
4721 | !-- Moldecular diffusivity of water vapor in air (Hall und Pruppacher, 1976) |
---|
4722 | diff_coeff = 0.211E-4_wp * ( t_int / 273.15_wp )**1.94_wp * & |
---|
4723 | ( 101325.0_wp / hyp(k) ) |
---|
4724 | ! |
---|
4725 | !-- Lengthscale for gas-kinetic effects (from Mordy, 1959, p. 23): |
---|
4726 | r0 = diff_coeff / 0.036_wp * SQRT( 2.0_wp * pi / ( r_v * t_int ) ) |
---|
4727 | ! |
---|
4728 | !-- Calculate effects of heat conductivity and diffusion of water vapor on the |
---|
4729 | !-- diffusional growth process (usually known as 1.0 / (F_k + F_d) ) |
---|
4730 | ddenom = 1.0_wp / ( rho_l * r_v * t_int / ( e_s * diff_coeff ) + & |
---|
4731 | ( l_v / ( r_v * t_int ) - 1.0_wp ) * rho_l * & |
---|
4732 | l_v / ( thermal_conductivity * t_int ) & |
---|
4733 | ) |
---|
4734 | new_r = 0.0_wp |
---|
4735 | ! |
---|
4736 | !-- Determine ventilation effect on evaporation of large drops |
---|
4737 | DO n = 1, number_of_particles |
---|
4738 | |
---|
4739 | IF ( particles(n)%radius >= 4.0E-5_wp .AND. e_a / e_s < 1.0_wp ) THEN |
---|
4740 | ! |
---|
4741 | !-- Terminal velocity is computed for vertical direction (Rogers et al., |
---|
4742 | !-- 1993, J. Appl. Meteorol.) |
---|
4743 | diameter = particles(n)%radius * 2000.0_wp !diameter in mm |
---|
4744 | IF ( diameter <= d0_rog ) THEN |
---|
4745 | w_s = k_cap_rog * diameter * ( 1.0_wp - EXP( -k_low_rog * diameter ) ) |
---|
4746 | ELSE |
---|
4747 | w_s = a_rog - b_rog * EXP( -c_rog * diameter ) |
---|
4748 | ENDIF |
---|
4749 | ! |
---|
4750 | !-- Calculate droplet's Reynolds number |
---|
4751 | re_p = 2.0_wp * particles(n)%radius * w_s / molecular_viscosity |
---|
4752 | ! |
---|
4753 | !-- Ventilation coefficient (Rogers and Yau, 1989): |
---|
4754 | IF ( re_p > 2.5_wp ) THEN |
---|
4755 | ventilation_effect(n) = 0.78_wp + 0.28_wp * SQRT( re_p ) |
---|
4756 | ELSE |
---|
4757 | ventilation_effect(n) = 1.0_wp + 0.09_wp * re_p |
---|
4758 | ENDIF |
---|
4759 | ELSE |
---|
4760 | ! |
---|
4761 | !-- For small droplets or in supersaturated environments, the ventilation |
---|
4762 | !-- effect does not play a role |
---|
4763 | ventilation_effect(n) = 1.0_wp |
---|
4764 | ENDIF |
---|
4765 | ENDDO |
---|
4766 | |
---|
4767 | IF( .NOT. curvature_solution_effects ) then |
---|
4768 | ! |
---|
4769 | !-- Use analytic model for diffusional growth including gas-kinetic |
---|
4770 | !-- effects (Mordy, 1959) but without the impact of aerosols. |
---|
4771 | DO n = 1, number_of_particles |
---|
4772 | arg = ( particles(n)%radius + r0 )**2 + 2.0_wp * dt_3d * ddenom * & |
---|
4773 | ventilation_effect(n) * & |
---|
4774 | ( e_a / e_s - 1.0_wp ) |
---|
4775 | arg = MAX( arg, ( 0.01E-6 + r0 )**2 ) |
---|
4776 | new_r(n) = SQRT( arg ) - r0 |
---|
4777 | ENDDO |
---|
4778 | |
---|
4779 | ELSE |
---|
4780 | ! |
---|
4781 | !-- Integrate the diffusional growth including gas-kinetic (Mordy, 1959), |
---|
4782 | !-- as well as curvature and solute effects (e.g., Köhler, 1936). |
---|
4783 | ! |
---|
4784 | !-- Curvature effect (afactor) with surface tension (sigma) by Straka (2009) |
---|
4785 | sigma = 0.0761_wp - 0.000155_wp * ( t_int - 273.15_wp ) |
---|
4786 | ! |
---|
4787 | !-- Solute effect (afactor) |
---|
4788 | afactor = 2.0_wp * sigma / ( rho_l * r_v * t_int ) |
---|
4789 | |
---|
4790 | DO n = 1, number_of_particles |
---|
4791 | ! |
---|
4792 | !-- Solute effect (bfactor) |
---|
4793 | bfactor = vanthoff * rho_s * particles(n)%aux1**3 * & |
---|
4794 | molecular_weight_of_water / ( rho_l * molecular_weight_of_solute ) |
---|
4795 | |
---|
4796 | dt_ros = particles(n)%aux2 ! use previously stored Rosenbrock timestep |
---|
4797 | dt_ros_sum = 0.0_wp |
---|
4798 | |
---|
4799 | r_ros = particles(n)%radius ! initialize Rosenbrock particle radius |
---|
4800 | r_ros_ini = r_ros |
---|
4801 | ! |
---|
4802 | !-- Integrate growth equation using a 2nd-order Rosenbrock method |
---|
4803 | !-- (see Verwer et al., 1999, Eq. (3.2)). The Rosenbrock method adjusts |
---|
4804 | !-- its with internal timestep to minimize the local truncation error. |
---|
4805 | DO WHILE ( dt_ros_sum < dt_3d ) |
---|
4806 | |
---|
4807 | dt_ros = MIN( dt_ros, dt_3d - dt_ros_sum ) |
---|
4808 | |
---|
4809 | DO |
---|
4810 | |
---|
4811 | drdt = ddenom * ventilation_effect(n) * ( e_a / e_s - 1.0 - & |
---|
4812 | afactor / r_ros + & |
---|
4813 | bfactor / r_ros**3 & |
---|
4814 | ) / ( r_ros + r0 ) |
---|
4815 | |
---|
4816 | d2rdtdr = -ddenom * ventilation_effect(n) * ( & |
---|
4817 | (e_a / e_s - 1.0) * r_ros**4 - & |
---|
4818 | afactor * r0 * r_ros**2 - & |
---|
4819 | 2.0 * afactor * r_ros**3 + & |
---|
4820 | 3.0 * bfactor * r0 + & |
---|
4821 | 4.0 * bfactor * r_ros & |
---|
4822 | ) & |
---|
4823 | / ( r_ros**4 * ( r_ros + r0 )**2 ) |
---|
4824 | |
---|
4825 | k1 = drdt / ( 1.0 - gamma * dt_ros * d2rdtdr ) |
---|
4826 | |
---|
4827 | r_ros = MAX(r_ros_ini + k1 * dt_ros, particles(n)%aux1) |
---|
4828 | r_err = r_ros |
---|
4829 | |
---|
4830 | drdt = ddenom * ventilation_effect(n) * ( e_a / e_s - 1.0 - & |
---|
4831 | afactor / r_ros + & |
---|
4832 | bfactor / r_ros**3 & |
---|
4833 | ) / ( r_ros + r0 ) |
---|
4834 | |
---|
4835 | k2 = ( drdt - dt_ros * 2.0 * gamma * d2rdtdr * k1 ) / & |
---|
4836 | ( 1.0 - dt_ros * gamma * d2rdtdr ) |
---|
4837 | |
---|
4838 | r_ros = MAX(r_ros_ini + dt_ros * ( 1.5 * k1 + 0.5 * k2), particles(n)%aux1) |
---|
4839 | ! |
---|
4840 | !-- Check error of the solution, and reduce dt_ros if necessary. |
---|
4841 | error = ABS(r_err - r_ros) / r_ros |
---|
4842 | IF ( error .GT. prec ) THEN |
---|
4843 | dt_ros = SQRT( q_decrease * prec / error ) * dt_ros |
---|
4844 | r_ros = r_ros_ini |
---|
4845 | ELSE |
---|
4846 | dt_ros_sum = dt_ros_sum + dt_ros |
---|
4847 | dt_ros = q_increase * dt_ros |
---|
4848 | r_ros_ini = r_ros |
---|
4849 | EXIT |
---|
4850 | ENDIF |
---|
4851 | |
---|
4852 | END DO |
---|
4853 | |
---|
4854 | END DO !Rosenbrock loop |
---|
4855 | ! |
---|
4856 | !-- Store new particle radius |
---|
4857 | new_r(n) = r_ros |
---|
4858 | ! |
---|
4859 | !-- Store internal time step value for next PALM step |
---|
4860 | particles(n)%aux2 = dt_ros |
---|
4861 | |
---|
4862 | ENDDO !Particle loop |
---|
4863 | |
---|
4864 | ENDIF |
---|
4865 | |
---|
4866 | DO n = 1, number_of_particles |
---|
4867 | ! |
---|
4868 | !-- Sum up the change in liquid water for the respective grid |
---|
4869 | !-- box for the computation of the release/depletion of water vapor |
---|
4870 | !-- and heat. |
---|
4871 | ql_c(k,j,i) = ql_c(k,j,i) + particles(n)%weight_factor * & |
---|
4872 | rho_l * 1.33333333_wp * pi * & |
---|
4873 | ( new_r(n)**3 - particles(n)%radius**3 ) / & |
---|
4874 | ( rho_surface * dx * dy * dzw(k) ) |
---|
4875 | ! |
---|
4876 | !-- Check if the increase in liqid water is not too big. If this is the case, |
---|
4877 | !-- the model timestep might be too long. |
---|
4878 | IF ( ql_c(k,j,i) > 100.0_wp ) THEN |
---|
4879 | WRITE( message_string, * ) 'k=',k,' j=',j,' i=',i, & |
---|
4880 | ' ql_c=',ql_c(k,j,i), '&part(',n,')%wf=', & |
---|
4881 | particles(n)%weight_factor,' delta_r=',delta_r |
---|
4882 | CALL message( 'lpm_droplet_condensation', 'PA0143', 2, 2, -1, 6, 1 ) |
---|
4883 | ENDIF |
---|
4884 | ! |
---|
4885 | !-- Check if the change in the droplet radius is not too big. If this is the |
---|
4886 | !-- case, the model timestep might be too long. |
---|
4887 | delta_r = new_r(n) - particles(n)%radius |
---|
4888 | IF ( delta_r < 0.0_wp .AND. new_r(n) < 0.0_wp ) THEN |
---|
4889 | WRITE( message_string, * ) '#1 k=',k,' j=',j,' i=',i, & |
---|
4890 | ' e_s=',e_s, ' e_a=',e_a,' t_int=',t_int, & |
---|
4891 | '&delta_r=',delta_r, & |
---|
4892 | ' particle_radius=',particles(n)%radius |
---|
4893 | CALL message( 'lpm_droplet_condensation', 'PA0144', 2, 2, -1, 6, 1 ) |
---|
4894 | ENDIF |
---|
4895 | ! |
---|
4896 | !-- Sum up the total volume of liquid water (needed below for |
---|
4897 | !-- re-calculating the weighting factors) |
---|
4898 | ql_v(k,j,i) = ql_v(k,j,i) + particles(n)%weight_factor * new_r(n)**3 |
---|
4899 | ! |
---|
4900 | !-- Determine radius class of the particle needed for collision |
---|
4901 | IF ( use_kernel_tables ) THEN |
---|
4902 | particles(n)%class = ( LOG( new_r(n) ) - rclass_lbound ) / & |
---|
4903 | ( rclass_ubound - rclass_lbound ) * & |
---|
4904 | radius_classes |
---|
4905 | particles(n)%class = MIN( particles(n)%class, radius_classes ) |
---|
4906 | particles(n)%class = MAX( particles(n)%class, 1 ) |
---|
4907 | ENDIF |
---|
4908 | ! |
---|
4909 | !-- Store new radius to particle features |
---|
4910 | particles(n)%radius = new_r(n) |
---|
4911 | |
---|
4912 | ENDDO |
---|
4913 | |
---|
4914 | CALL cpu_log( log_point_s(42), 'lpm_droplet_condens', 'stop' ) |
---|
4915 | |
---|
4916 | |
---|
4917 | END SUBROUTINE lpm_droplet_condensation |
---|
4918 | |
---|
4919 | |
---|
4920 | !------------------------------------------------------------------------------! |
---|
4921 | ! Description: |
---|
4922 | ! ------------ |
---|
4923 | !> Release of latent heat and change of mixing ratio due to condensation / |
---|
4924 | !> evaporation of droplets. |
---|
4925 | !------------------------------------------------------------------------------! |
---|
4926 | SUBROUTINE lpm_interaction_droplets_ptq |
---|
4927 | |
---|
4928 | INTEGER(iwp) :: i !< running index x direction |
---|
4929 | INTEGER(iwp) :: j !< running index y direction |
---|
4930 | INTEGER(iwp) :: k !< running index z direction |
---|
4931 | |
---|
4932 | REAL(wp) :: flag !< flag to mask topography grid points |
---|
4933 | |
---|
4934 | DO i = nxl, nxr |
---|
4935 | DO j = nys, nyn |
---|
4936 | DO k = nzb+1, nzt |
---|
4937 | ! |
---|
4938 | !-- Predetermine flag to mask topography |
---|
4939 | flag = MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
4940 | |
---|
4941 | q_p(k,j,i) = q_p(k,j,i) - ql_c(k,j,i) * flag |
---|
4942 | pt_p(k,j,i) = pt_p(k,j,i) + lv_d_cp * ql_c(k,j,i) * d_exner(k) & |
---|
4943 | * flag |
---|
4944 | ENDDO |
---|
4945 | ENDDO |
---|
4946 | ENDDO |
---|
4947 | |
---|
4948 | END SUBROUTINE lpm_interaction_droplets_ptq |
---|
4949 | |
---|
4950 | |
---|
4951 | !------------------------------------------------------------------------------! |
---|
4952 | ! Description: |
---|
4953 | ! ------------ |
---|
4954 | !> Release of latent heat and change of mixing ratio due to condensation / |
---|
4955 | !> evaporation of droplets. Call for grid point i,j |
---|
4956 | !------------------------------------------------------------------------------! |
---|
4957 | SUBROUTINE lpm_interaction_droplets_ptq_ij( i, j ) |
---|
4958 | |
---|
4959 | INTEGER(iwp) :: i !< running index x direction |
---|
4960 | INTEGER(iwp) :: j !< running index y direction |
---|
4961 | INTEGER(iwp) :: k !< running index z direction |
---|
4962 | |
---|
4963 | REAL(wp) :: flag !< flag to mask topography grid points |
---|
4964 | |
---|
4965 | |
---|
4966 | DO k = nzb+1, nzt |
---|
4967 | ! |
---|
4968 | !-- Predetermine flag to mask topography |
---|
4969 | flag = MERGE( 1.0_wp, 0.0_wp, BTEST( wall_flags_0(k,j,i), 0 ) ) |
---|
4970 | |
---|
4971 | q_p(k,j,i) = q_p(k,j,i) - ql_c(k,j,i) * flag |
---|
4972 | pt_p(k,j,i) = pt_p(k,j,i) + lv_d_cp * ql_c(k,j,i) * d_exner(k) * flag |
---|
4973 | ENDDO |
---|
4974 | |
---|
4975 | END SUBROUTINE lpm_interaction_droplets_ptq_ij |
---|
4976 | |
---|
4977 | |
---|
4978 | !------------------------------------------------------------------------------! |
---|
4979 | ! Description: |
---|
4980 | ! ------------ |
---|
4981 | !> Calculate the liquid water content for each grid box. |
---|
4982 | !------------------------------------------------------------------------------! |
---|
4983 | SUBROUTINE lpm_calc_liquid_water_content |
---|
4984 | |
---|
4985 | |
---|
4986 | INTEGER(iwp) :: i !< |
---|
4987 | INTEGER(iwp) :: j !< |
---|
4988 | INTEGER(iwp) :: k !< |
---|
4989 | INTEGER(iwp) :: n !< |
---|
4990 | |
---|
4991 | CALL cpu_log( log_point_s(45), 'lpm_calc_ql', 'start' ) |
---|
4992 | |
---|
4993 | ! |
---|
4994 | !-- Set water content initially to zero |
---|
4995 | ql = 0.0_wp; ql_v = 0.0_wp; ql_vp = 0.0_wp |
---|
4996 | |
---|
4997 | ! |
---|
4998 | !-- Calculate for each grid box |
---|
4999 | DO i = nxl, nxr |
---|
5000 | DO j = nys, nyn |
---|
5001 | DO k = nzb+1, nzt |
---|
5002 | number_of_particles = prt_count(k,j,i) |
---|
5003 | IF ( number_of_particles <= 0 ) CYCLE |
---|
5004 | particles => grid_particles(k,j,i)%particles(1:number_of_particles) |
---|
5005 | ! |
---|
5006 | !-- Calculate the total volume in the boxes (ql_v, weighting factor |
---|
5007 | !-- has to beincluded) |
---|
5008 | DO n = 1, prt_count(k,j,i) |
---|
5009 | ql_v(k,j,i) = ql_v(k,j,i) + particles(n)%weight_factor * & |
---|
5010 | particles(n)%radius**3 |
---|
5011 | ENDDO |
---|
5012 | ! |
---|
5013 | !-- Calculate the liquid water content |
---|
5014 | IF ( ql_v(k,j,i) /= 0.0_wp ) THEN |
---|
5015 | ql(k,j,i) = ql(k,j,i) + rho_l * 1.33333333_wp * pi * & |
---|
5016 | ql_v(k,j,i) / & |
---|
5017 | ( rho_surface * dx * dy * dzw(k) ) |
---|
5018 | IF ( ql(k,j,i) < 0.0_wp ) THEN |
---|
5019 | WRITE( message_string, * ) 'LWC out of range: ' , & |
---|
5020 | ql(k,j,i),i,j,k |
---|
5021 | CALL message( 'lpm_calc_liquid_water_content', '', 2, 2, & |
---|
5022 | -1, 6, 1 ) |
---|
5023 | ENDIF |
---|
5024 | ELSE |
---|
5025 | ql(k,j,i) = 0.0_wp |
---|
5026 | ENDIF |
---|
5027 | ENDDO |
---|
5028 | ENDDO |
---|
5029 | ENDDO |
---|
5030 | |
---|
5031 | CALL cpu_log( log_point_s(45), 'lpm_calc_ql', 'stop' ) |
---|
5032 | |
---|
5033 | END SUBROUTINE lpm_calc_liquid_water_content |
---|
5034 | |
---|
5035 | |
---|
5036 | !------------------------------------------------------------------------------! |
---|
5037 | ! Description: |
---|
5038 | ! ------------ |
---|
5039 | !> Calculates change in droplet radius by collision. Droplet collision is |
---|
5040 | !> calculated for each grid box seperately. Collision is parameterized by |
---|
5041 | !> using collision kernels. Two different kernels are available: |
---|
5042 | !> Hall kernel: Kernel from Hall (1980, J. Atmos. Sci., 2486-2507), which |
---|
5043 | !> considers collision due to pure gravitational effects. |
---|
5044 | !> Wang kernel: Beside gravitational effects (treated with the Hall-kernel) also |
---|
5045 | !> the effects of turbulence on the collision are considered using |
---|
5046 | !> parameterizations of Ayala et al. (2008, New J. Phys., 10, |
---|
5047 | !> 075015) and Wang and Grabowski (2009, Atmos. Sci. Lett., 10, |
---|
5048 | !> 1-8). This kernel includes three possible effects of turbulence: |
---|
5049 | !> the modification of the relative velocity between the droplets, |
---|
5050 | !> the effect of preferential concentration, and the enhancement of |
---|
5051 | !> collision efficiencies. |
---|
5052 | !------------------------------------------------------------------------------! |
---|
5053 | SUBROUTINE lpm_droplet_collision (i,j,k) |
---|
5054 | |
---|
5055 | INTEGER(iwp), INTENT(IN) :: i !< |
---|
5056 | INTEGER(iwp), INTENT(IN) :: j !< |
---|
5057 | INTEGER(iwp), INTENT(IN) :: k !< |
---|
5058 | |
---|
5059 | INTEGER(iwp) :: eclass !< |
---|
5060 | INTEGER(iwp) :: n !< |
---|
5061 | INTEGER(iwp) :: m !< |
---|
5062 | INTEGER(iwp) :: rclass_l !< |
---|
5063 | INTEGER(iwp) :: rclass_s !< |
---|
5064 | |
---|
5065 | REAL(wp) :: collection_probability !< probability for collection |
---|
5066 | REAL(wp) :: ddV !< inverse grid box volume |
---|
5067 | REAL(wp) :: epsilon_collision !< dissipation rate |
---|
5068 | REAL(wp) :: factor_volume_to_mass !< 4.0 / 3.0 * pi * rho_l |
---|
5069 | REAL(wp) :: xm !< droplet mass of super-droplet m |
---|
5070 | REAL(wp) :: xn !< droplet mass of super-droplet n |
---|
5071 | REAL(wp) :: xsm !< aerosol mass of super-droplet m |
---|
5072 | REAL(wp) :: xsn !< aerosol mass of super-droplet n |
---|
5073 | |
---|
5074 | REAL(wp), DIMENSION(:), ALLOCATABLE :: weight !< weighting factor |
---|
5075 | REAL(wp), DIMENSION(:), ALLOCATABLE :: mass !< total mass of super droplet |
---|
5076 | REAL(wp), DIMENSION(:), ALLOCATABLE :: aero_mass !< total aerosol mass of super droplet |
---|
5077 | |
---|
5078 | CALL cpu_log( log_point_s(43), 'lpm_droplet_coll', 'start' ) |
---|
5079 | |
---|
5080 | number_of_particles = prt_count(k,j,i) |
---|
5081 | factor_volume_to_mass = 4.0_wp / 3.0_wp * pi * rho_l |
---|
5082 | ddV = 1.0_wp / ( dx * dy * dzw(k) ) |
---|
5083 | ! |
---|
5084 | !-- Collision requires at least one super droplet inside the box |
---|
5085 | IF ( number_of_particles > 0 ) THEN |
---|
5086 | |
---|
5087 | IF ( use_kernel_tables ) THEN |
---|
5088 | ! |
---|
5089 | !-- Fast method with pre-calculated collection kernels for |
---|
5090 | !-- discrete radius- and dissipation-classes. |
---|
5091 | IF ( wang_kernel ) THEN |
---|
5092 | eclass = INT( diss(k,j,i) * 1.0E4_wp / 600.0_wp * & |
---|
5093 | dissipation_classes ) + 1 |
---|
5094 | epsilon_collision = diss(k,j,i) |
---|
5095 | ELSE |
---|
5096 | epsilon_collision = 0.0_wp |
---|
5097 | ENDIF |
---|
5098 | |
---|
5099 | IF ( hall_kernel .OR. epsilon_collision * 1.0E4_wp < 0.001_wp ) THEN |
---|
5100 | eclass = 0 ! Hall kernel is used |
---|
5101 | ELSE |
---|
5102 | eclass = MIN( dissipation_classes, eclass ) |
---|
5103 | ENDIF |
---|
5104 | |
---|
5105 | ELSE |
---|
5106 | ! |
---|
5107 | !-- Collection kernels are re-calculated for every new |
---|
5108 | !-- grid box. First, allocate memory for kernel table. |
---|
5109 | !-- Third dimension is 1, because table is re-calculated for |
---|
5110 | !-- every new dissipation value. |
---|
5111 | ALLOCATE( ckernel(1:number_of_particles,1:number_of_particles,1:1) ) |
---|
5112 | ! |
---|
5113 | !-- Now calculate collection kernel for this box. Note that |
---|
5114 | !-- the kernel is based on the previous time step |
---|
5115 | CALL recalculate_kernel( i, j, k ) |
---|
5116 | |
---|
5117 | ENDIF |
---|
5118 | ! |
---|
5119 | !-- Temporary fields for total mass of super-droplet, aerosol mass, and |
---|
5120 | !-- weighting factor are allocated. |
---|
5121 | ALLOCATE(mass(1:number_of_particles), weight(1:number_of_particles)) |
---|
5122 | IF ( curvature_solution_effects ) ALLOCATE(aero_mass(1:number_of_particles)) |
---|
5123 | |
---|
5124 | mass(1:number_of_particles) = particles(1:number_of_particles)%weight_factor * & |
---|
5125 | particles(1:number_of_particles)%radius**3 * & |
---|
5126 | factor_volume_to_mass |
---|
5127 | |
---|
5128 | weight(1:number_of_particles) = particles(1:number_of_particles)%weight_factor |
---|
5129 | |
---|
5130 | IF ( curvature_solution_effects ) THEN |
---|
5131 | aero_mass(1:number_of_particles) = particles(1:number_of_particles)%weight_factor * & |
---|
5132 | particles(1:number_of_particles)%aux1**3 * & |
---|
5133 | 4.0 / 3.0 * pi * rho_s |
---|
5134 | ENDIF |
---|
5135 | ! |
---|
5136 | !-- Calculate collision/coalescence |
---|
5137 | DO n = 1, number_of_particles |
---|
5138 | |
---|
5139 | DO m = n, number_of_particles |
---|
5140 | ! |
---|
5141 | !-- For collisions, the weighting factor of at least one super-droplet |
---|
5142 | !-- needs to be larger or equal to one. |
---|
5143 | IF ( MIN( weight(n), weight(m) ) .LT. 1.0 ) CYCLE |
---|
5144 | ! |
---|
5145 | !-- Get mass of individual droplets (aerosols) |
---|
5146 | xn = mass(n) / weight(n) |
---|
5147 | xm = mass(m) / weight(m) |
---|
5148 | IF ( curvature_solution_effects ) THEN |
---|
5149 | xsn = aero_mass(n) / weight(n) |
---|
5150 | xsm = aero_mass(m) / weight(m) |
---|
5151 | ENDIF |
---|
5152 | ! |
---|
5153 | !-- Probability that the necessary collisions take place |
---|
5154 | IF ( use_kernel_tables ) THEN |
---|
5155 | rclass_l = particles(n)%class |
---|
5156 | rclass_s = particles(m)%class |
---|
5157 | |
---|
5158 | collection_probability = MAX( weight(n), weight(m) ) * & |
---|
5159 | ckernel(rclass_l,rclass_s,eclass) * ddV * dt_3d |
---|
5160 | ELSE |
---|
5161 | collection_probability = MAX( weight(n), weight(m) ) * & |
---|
5162 | ckernel(n,m,1) * ddV * dt_3d |
---|
5163 | ENDIF |
---|
5164 | ! |
---|
5165 | !-- Calculate the number of collections and consider multiple collections. |
---|
5166 | !-- (Accordingly, p_crit will be 0.0, 1.0, 2.0, ...) |
---|
5167 | IF ( collection_probability - FLOOR(collection_probability) & |
---|
5168 | .GT. random_function( iran_part ) ) THEN |
---|
5169 | collection_probability = FLOOR(collection_probability) + 1.0_wp |
---|
5170 | ELSE |
---|
5171 | collection_probability = FLOOR(collection_probability) |
---|
5172 | ENDIF |
---|
5173 | |
---|
5174 | IF ( collection_probability .GT. 0.0 ) THEN |
---|
5175 | ! |
---|
5176 | !-- Super-droplet n collects droplets of super-droplet m |
---|
5177 | IF ( weight(n) .LT. weight(m) ) THEN |
---|
5178 | |
---|
5179 | mass(n) = mass(n) + weight(n) * xm * collection_probability |
---|
5180 | weight(m) = weight(m) - weight(n) * collection_probability |
---|
5181 | mass(m) = mass(m) - weight(n) * xm * collection_probability |
---|
5182 | IF ( curvature_solution_effects ) THEN |
---|
5183 | aero_mass(n) = aero_mass(n) + weight(n) * xsm * collection_probability |
---|
5184 | aero_mass(m) = aero_mass(m) - weight(n) * xsm * collection_probability |
---|
5185 | ENDIF |
---|
5186 | |
---|
5187 | ELSEIF ( weight(m) .LT. weight(n) ) THEN |
---|
5188 | |
---|
5189 | mass(m) = mass(m) + weight(m) * xn * collection_probability |
---|
5190 | weight(n) = weight(n) - weight(m) * collection_probability |
---|
5191 | mass(n) = mass(n) - weight(m) * xn * collection_probability |
---|
5192 | IF ( curvature_solution_effects ) THEN |
---|
5193 | aero_mass(m) = aero_mass(m) + weight(m) * xsn * collection_probability |
---|
5194 | aero_mass(n) = aero_mass(n) - weight(m) * xsn * collection_probability |
---|
5195 | ENDIF |
---|
5196 | |
---|
5197 | ELSE |
---|
5198 | ! |
---|
5199 | !-- Collisions of particles of the same weighting factor. |
---|
5200 | !-- Particle n collects 1/2 weight(n) droplets of particle m, |
---|
5201 | !-- particle m collects 1/2 weight(m) droplets of particle n. |
---|
5202 | !-- The total mass mass changes accordingly. |
---|
5203 | !-- If n = m, the first half of the droplets coalesces with the |
---|
5204 | !-- second half of the droplets; mass is unchanged because |
---|
5205 | !-- xm = xn for n = m. |
---|
5206 | !-- |
---|
5207 | !-- Note: For m = n this equation is an approximation only |
---|
5208 | !-- valid for weight >> 1 (which is usually the case). The |
---|
5209 | !-- approximation is weight(n)-1 = weight(n). |
---|
5210 | mass(n) = mass(n) + 0.5_wp * weight(n) * ( xm - xn ) |
---|
5211 | mass(m) = mass(m) + 0.5_wp * weight(m) * ( xn - xm ) |
---|
5212 | IF ( curvature_solution_effects ) THEN |
---|
5213 | aero_mass(n) = aero_mass(n) + 0.5_wp * weight(n) * ( xsm - xsn ) |
---|
5214 | aero_mass(m) = aero_mass(m) + 0.5_wp * weight(m) * ( xsn - xsm ) |
---|
5215 | ENDIF |
---|
5216 | weight(n) = weight(n) - 0.5_wp * weight(m) |
---|
5217 | weight(m) = weight(n) |
---|
5218 | |
---|
5219 | ENDIF |
---|
5220 | |
---|
5221 | ENDIF |
---|
5222 | |
---|
5223 | ENDDO |
---|
5224 | |
---|
5225 | ql_vp(k,j,i) = ql_vp(k,j,i) + mass(n) / factor_volume_to_mass |
---|
5226 | |
---|
5227 | ENDDO |
---|
5228 | |
---|
5229 | IF ( ANY(weight < 0.0_wp) ) THEN |
---|
5230 | WRITE( message_string, * ) 'negative weighting factor' |
---|
5231 | CALL message( 'lpm_droplet_collision', 'PA0028', & |
---|
5232 | 2, 2, -1, 6, 1 ) |
---|
5233 | ENDIF |
---|
5234 | |
---|
5235 | particles(1:number_of_particles)%radius = ( mass(1:number_of_particles) / & |
---|
5236 | ( weight(1:number_of_particles) & |
---|
5237 | * factor_volume_to_mass & |
---|
5238 | ) & |
---|
5239 | )**0.33333333333333_wp |
---|
5240 | |
---|
5241 | IF ( curvature_solution_effects ) THEN |
---|
5242 | particles(1:number_of_particles)%aux1 = ( aero_mass(1:number_of_particles) / & |
---|
5243 | ( weight(1:number_of_particles) & |
---|
5244 | * 4.0_wp / 3.0_wp * pi * rho_s & |
---|
5245 | ) & |
---|
5246 | )**0.33333333333333_wp |
---|
5247 | ENDIF |
---|
5248 | |
---|
5249 | particles(1:number_of_particles)%weight_factor = weight(1:number_of_particles) |
---|
5250 | |
---|
5251 | DEALLOCATE( weight, mass ) |
---|
5252 | IF ( curvature_solution_effects ) DEALLOCATE( aero_mass ) |
---|
5253 | IF ( .NOT. use_kernel_tables ) DEALLOCATE( ckernel ) |
---|
5254 | |
---|
5255 | ! |
---|
5256 | !-- Check if LWC is conserved during collision process |
---|
5257 | IF ( ql_v(k,j,i) /= 0.0_wp ) THEN |
---|
5258 | IF ( ql_vp(k,j,i) / ql_v(k,j,i) >= 1.0001_wp .OR. & |
---|
5259 | ql_vp(k,j,i) / ql_v(k,j,i) <= 0.9999_wp ) THEN |
---|
5260 | WRITE( message_string, * ) ' LWC is not conserved during', & |
---|
5261 | ' collision! ', & |
---|
5262 | ' LWC after condensation: ', ql_v(k,j,i), & |
---|
5263 | ' LWC after collision: ', ql_vp(k,j,i) |
---|
5264 | CALL message( 'lpm_droplet_collision', 'PA0040', 2, 2, -1, 6, 1 ) |
---|
5265 | ENDIF |
---|
5266 | ENDIF |
---|
5267 | |
---|
5268 | ENDIF |
---|
5269 | |
---|
5270 | CALL cpu_log( log_point_s(43), 'lpm_droplet_coll', 'stop' ) |
---|
5271 | |
---|
5272 | END SUBROUTINE lpm_droplet_collision |
---|
5273 | |
---|
5274 | !------------------------------------------------------------------------------! |
---|
5275 | ! Description: |
---|
5276 | ! ------------ |
---|
5277 | !> Initialization of the collision efficiency matrix with fixed radius and |
---|
5278 | !> dissipation classes, calculated at simulation start only. |
---|
5279 | !------------------------------------------------------------------------------! |
---|
5280 | SUBROUTINE lpm_init_kernels |
---|
5281 | |
---|
5282 | INTEGER(iwp) :: i !< |
---|
5283 | INTEGER(iwp) :: j !< |
---|
5284 | INTEGER(iwp) :: k !< |
---|
5285 | |
---|
5286 | ! |
---|
5287 | !-- Calculate collision efficiencies for fixed radius- and dissipation |
---|
5288 | !-- classes |
---|
5289 | IF ( collision_kernel(6:9) == 'fast' ) THEN |
---|
5290 | |
---|
5291 | ALLOCATE( ckernel(1:radius_classes,1:radius_classes, & |
---|
5292 | 0:dissipation_classes), epsclass(1:dissipation_classes), & |
---|
5293 | radclass(1:radius_classes) ) |
---|
5294 | |
---|
5295 | ! |
---|
5296 | !-- Calculate the radius class bounds with logarithmic distances |
---|
5297 | !-- in the interval [1.0E-6, 1000.0E-6] m |
---|
5298 | rclass_lbound = LOG( 1.0E-6_wp ) |
---|
5299 | rclass_ubound = LOG( 1000.0E-6_wp ) |
---|
5300 | radclass(1) = EXP( rclass_lbound ) |
---|
5301 | DO i = 2, radius_classes |
---|
5302 | radclass(i) = EXP( rclass_lbound + & |
---|
5303 | ( rclass_ubound - rclass_lbound ) * & |
---|
5304 | ( i - 1.0_wp ) / ( radius_classes - 1.0_wp ) ) |
---|
5305 | ENDDO |
---|
5306 | |
---|
5307 | ! |
---|
5308 | !-- Set the class bounds for dissipation in interval [0.0, 600.0] cm**2/s**3 |
---|
5309 | DO i = 1, dissipation_classes |
---|
5310 | epsclass(i) = 0.06_wp * REAL( i, KIND=wp ) / dissipation_classes |
---|
5311 | ENDDO |
---|
5312 | ! |
---|
5313 | !-- Calculate collision efficiencies of the Wang/ayala kernel |
---|
5314 | ALLOCATE( ec(1:radius_classes,1:radius_classes), & |
---|
5315 | ecf(1:radius_classes,1:radius_classes), & |
---|
5316 | gck(1:radius_classes,1:radius_classes), & |
---|
5317 | winf(1:radius_classes) ) |
---|
5318 | |
---|
5319 | DO k = 1, dissipation_classes |
---|
5320 | |
---|
5321 | epsilon_collision = epsclass(k) |
---|
5322 | urms = 2.02_wp * ( epsilon_collision / 0.04_wp )**( 1.0_wp / 3.0_wp ) |
---|
5323 | |
---|
5324 | CALL turbsd |
---|
5325 | CALL turb_enhance_eff |
---|
5326 | CALL effic |
---|
5327 | |
---|
5328 | DO j = 1, radius_classes |
---|
5329 | DO i = 1, radius_classes |
---|
5330 | ckernel(i,j,k) = ec(i,j) * gck(i,j) * ecf(i,j) |
---|
5331 | ENDDO |
---|
5332 | ENDDO |
---|
5333 | |
---|
5334 | ENDDO |
---|
5335 | |
---|
5336 | ! |
---|
5337 | !-- Calculate collision efficiencies of the Hall kernel |
---|
5338 | ALLOCATE( hkernel(1:radius_classes,1:radius_classes), & |
---|
5339 | hwratio(1:radius_classes,1:radius_classes) ) |
---|
5340 | |
---|
5341 | CALL fallg |
---|
5342 | CALL effic |
---|
5343 | |
---|
5344 | DO j = 1, radius_classes |
---|
5345 | DO i = 1, radius_classes |
---|
5346 | hkernel(i,j) = pi * ( radclass(j) + radclass(i) )**2 & |
---|
5347 | * ec(i,j) * ABS( winf(j) - winf(i) ) |
---|
5348 | ckernel(i,j,0) = hkernel(i,j) ! hall kernel stored on index 0 |
---|
5349 | ENDDO |
---|
5350 | ENDDO |
---|
5351 | |
---|
5352 | ! |
---|
5353 | !-- Test output of efficiencies |
---|
5354 | IF ( j == -1 ) THEN |
---|
5355 | PRINT*, '*** Hall kernel' |
---|
5356 | WRITE ( *,'(5X,20(F4.0,1X))' ) ( radclass(i)*1.0E6_wp, & |
---|
5357 | i = 1,radius_classes ) |
---|
5358 | DO j = 1, radius_classes |
---|
5359 | WRITE ( *,'(F4.0,1X,20(F8.4,1X))' ) radclass(j), & |
---|
5360 | ( hkernel(i,j), i = 1,radius_classes ) |
---|
5361 | ENDDO |
---|
5362 | |
---|
5363 | DO k = 1, dissipation_classes |
---|
5364 | DO i = 1, radius_classes |
---|
5365 | DO j = 1, radius_classes |
---|
5366 | IF ( hkernel(i,j) == 0.0_wp ) THEN |
---|
5367 | hwratio(i,j) = 9999999.9_wp |
---|
5368 | ELSE |
---|
5369 | hwratio(i,j) = ckernel(i,j,k) / hkernel(i,j) |
---|
5370 | ENDIF |
---|
5371 | ENDDO |
---|
5372 | ENDDO |
---|
5373 | |
---|
5374 | PRINT*, '*** epsilon = ', epsclass(k) |
---|
5375 | WRITE ( *,'(5X,20(F4.0,1X))' ) ( radclass(i) * 1.0E6_wp, & |
---|
5376 | i = 1,radius_classes ) |
---|
5377 | DO j = 1, radius_classes |
---|
5378 | WRITE ( *,'(F4.0,1X,20(F8.4,1X))' ) radclass(j) * 1.0E6_wp, & |
---|
5379 | ( hwratio(i,j), i = 1,radius_classes ) |
---|
5380 | ENDDO |
---|
5381 | ENDDO |
---|
5382 | ENDIF |
---|
5383 | |
---|
5384 | DEALLOCATE( ec, ecf, epsclass, gck, hkernel, winf ) |
---|
5385 | |
---|
5386 | ENDIF |
---|
5387 | |
---|
5388 | END SUBROUTINE lpm_init_kernels |
---|
5389 | |
---|
5390 | !------------------------------------------------------------------------------! |
---|
5391 | ! Description: |
---|
5392 | ! ------------ |
---|
5393 | !> Calculation of collision kernels during each timestep and for each grid box |
---|
5394 | !------------------------------------------------------------------------------! |
---|
5395 | SUBROUTINE recalculate_kernel( i1, j1, k1 ) |
---|
5396 | |
---|
5397 | |
---|
5398 | INTEGER(iwp) :: i !< |
---|
5399 | INTEGER(iwp) :: i1 !< |
---|
5400 | INTEGER(iwp) :: j !< |
---|
5401 | INTEGER(iwp) :: j1 !< |
---|
5402 | INTEGER(iwp) :: k1 !< |
---|
5403 | |
---|
5404 | |
---|
5405 | number_of_particles = prt_count(k1,j1,i1) |
---|
5406 | radius_classes = number_of_particles ! necessary to use the same |
---|
5407 | ! subroutines as for |
---|
5408 | ! precalculated kernels |
---|
5409 | |
---|
5410 | ALLOCATE( ec(1:number_of_particles,1:number_of_particles), & |
---|
5411 | radclass(1:number_of_particles), winf(1:number_of_particles) ) |
---|
5412 | |
---|
5413 | ! |
---|
5414 | !-- Store particle radii on the radclass array |
---|
5415 | radclass(1:number_of_particles) = particles(1:number_of_particles)%radius |
---|
5416 | |
---|
5417 | IF ( wang_kernel ) THEN |
---|
5418 | epsilon_collision = diss(k1,j1,i1) ! dissipation rate in m**2/s**3 |
---|
5419 | ELSE |
---|
5420 | epsilon_collision = 0.0_wp |
---|
5421 | ENDIF |
---|
5422 | urms = 2.02_wp * ( epsilon_collision / 0.04_wp )**( 0.33333333333_wp ) |
---|
5423 | |
---|
5424 | IF ( wang_kernel .AND. epsilon_collision > 1.0E-7_wp ) THEN |
---|
5425 | ! |
---|
5426 | !-- Call routines to calculate efficiencies for the Wang kernel |
---|
5427 | ALLOCATE( gck(1:number_of_particles,1:number_of_particles), & |
---|
5428 | ecf(1:number_of_particles,1:number_of_particles) ) |
---|
5429 | |
---|
5430 | CALL turbsd |
---|
5431 | CALL turb_enhance_eff |
---|
5432 | CALL effic |
---|
5433 | |
---|
5434 | DO j = 1, number_of_particles |
---|
5435 | DO i = 1, number_of_particles |
---|
5436 | ckernel(1+i-1,1+j-1,1) = ec(i,j) * gck(i,j) * ecf(i,j) |
---|
5437 | ENDDO |
---|
5438 | ENDDO |
---|
5439 | |
---|
5440 | DEALLOCATE( gck, ecf ) |
---|
5441 | ELSE |
---|
5442 | ! |
---|
5443 | !-- Call routines to calculate efficiencies for the Hall kernel |
---|
5444 | CALL fallg |
---|
5445 | CALL effic |
---|
5446 | |
---|
5447 | DO j = 1, number_of_particles |
---|
5448 | DO i = 1, number_of_particles |
---|
5449 | ckernel(i,j,1) = pi * ( radclass(j) + radclass(i) )**2 & |
---|
5450 | * ec(i,j) * ABS( winf(j) - winf(i) ) |
---|
5451 | ENDDO |
---|
5452 | ENDDO |
---|
5453 | ENDIF |
---|
5454 | |
---|
5455 | DEALLOCATE( ec, radclass, winf ) |
---|
5456 | |
---|
5457 | END SUBROUTINE recalculate_kernel |
---|
5458 | |
---|
5459 | !------------------------------------------------------------------------------! |
---|
5460 | ! Description: |
---|
5461 | ! ------------ |
---|
5462 | !> Calculation of effects of turbulence on the geometric collision kernel |
---|
5463 | !> (by including the droplets' average radial relative velocities and their |
---|
5464 | !> radial distribution function) following the analytic model by Aayala et al. |
---|
5465 | !> (2008, New J. Phys.). For details check the second part 2 of the publication, |
---|
5466 | !> page 37ff. |
---|
5467 | !> |
---|
5468 | !> Input parameters, which need to be replaced by PALM parameters: |
---|
5469 | !> water density, air density |
---|
5470 | !------------------------------------------------------------------------------! |
---|
5471 | SUBROUTINE turbsd |
---|
5472 | |
---|
5473 | INTEGER(iwp) :: i !< |
---|
5474 | INTEGER(iwp) :: j !< |
---|
5475 | |
---|
5476 | REAL(wp) :: ao !< |
---|
5477 | REAL(wp) :: ao_gr !< |
---|
5478 | REAL(wp) :: bbb !< |
---|
5479 | REAL(wp) :: be !< |
---|
5480 | REAL(wp) :: b1 !< |
---|
5481 | REAL(wp) :: b2 !< |
---|
5482 | REAL(wp) :: ccc !< |
---|
5483 | REAL(wp) :: c1 !< |
---|
5484 | REAL(wp) :: c1_gr !< |
---|
5485 | REAL(wp) :: c2 !< |
---|
5486 | REAL(wp) :: d1 !< |
---|
5487 | REAL(wp) :: d2 !< |
---|
5488 | REAL(wp) :: eta !< |
---|
5489 | REAL(wp) :: e1 !< |
---|
5490 | REAL(wp) :: e2 !< |
---|
5491 | REAL(wp) :: fao_gr !< |
---|
5492 | REAL(wp) :: fr !< |
---|
5493 | REAL(wp) :: grfin !< |
---|
5494 | REAL(wp) :: lambda !< |
---|
5495 | REAL(wp) :: lambda_re !< |
---|
5496 | REAL(wp) :: lf !< |
---|
5497 | REAL(wp) :: rc !< |
---|
5498 | REAL(wp) :: rrp !< |
---|
5499 | REAL(wp) :: sst !< |
---|
5500 | REAL(wp) :: tauk !< |
---|
5501 | REAL(wp) :: tl !< |
---|
5502 | REAL(wp) :: t2 !< |
---|
5503 | REAL(wp) :: tt !< |
---|
5504 | REAL(wp) :: t1 !< |
---|
5505 | REAL(wp) :: vk !< |
---|
5506 | REAL(wp) :: vrms1xy !< |
---|
5507 | REAL(wp) :: vrms2xy !< |
---|
5508 | REAL(wp) :: v1 !< |
---|
5509 | REAL(wp) :: v1v2xy !< |
---|
5510 | REAL(wp) :: v1xysq !< |
---|
5511 | REAL(wp) :: v2 !< |
---|
5512 | REAL(wp) :: v2xysq !< |
---|
5513 | REAL(wp) :: wrfin !< |
---|
5514 | REAL(wp) :: wrgrav2 !< |
---|
5515 | REAL(wp) :: wrtur2xy !< |
---|
5516 | REAL(wp) :: xx !< |
---|
5517 | REAL(wp) :: yy !< |
---|
5518 | REAL(wp) :: z !< |
---|
5519 | |
---|
5520 | REAL(wp), DIMENSION(1:radius_classes) :: st !< Stokes number |
---|
5521 | REAL(wp), DIMENSION(1:radius_classes) :: tau !< inertial time scale |
---|
5522 | |
---|
5523 | lambda = urms * SQRT( 15.0_wp * molecular_viscosity / epsilon_collision ) |
---|
5524 | lambda_re = urms**2 * SQRT( 15.0_wp / epsilon_collision / molecular_viscosity ) |
---|
5525 | tl = urms**2 / epsilon_collision |
---|
5526 | lf = 0.5_wp * urms**3 / epsilon_collision |
---|
5527 | tauk = SQRT( molecular_viscosity / epsilon_collision ) |
---|
5528 | eta = ( molecular_viscosity**3 / epsilon_collision )**0.25_wp |
---|
5529 | vk = eta / tauk |
---|
5530 | |
---|
5531 | ao = ( 11.0_wp + 7.0_wp * lambda_re ) / ( 205.0_wp + lambda_re ) |
---|
5532 | tt = SQRT( 2.0_wp * lambda_re / ( SQRT( 15.0_wp ) * ao ) ) * tauk |
---|
5533 | |
---|
5534 | ! |
---|
5535 | !-- Get terminal velocity of droplets |
---|
5536 | CALL fallg |
---|
5537 | |
---|
5538 | DO i = 1, radius_classes |
---|
5539 | tau(i) = winf(i) / g ! inertial time scale |
---|
5540 | st(i) = tau(i) / tauk ! Stokes number |
---|
5541 | ENDDO |
---|
5542 | |
---|
5543 | ! |
---|
5544 | !-- Calculate average radial relative velocity at contact (wrfin) |
---|
5545 | z = tt / tl |
---|
5546 | be = SQRT( 2.0_wp ) * lambda / lf |
---|
5547 | bbb = SQRT( 1.0_wp - 2.0_wp * be**2 ) |
---|
5548 | d1 = ( 1.0_wp + bbb ) / ( 2.0_wp * bbb ) |
---|
5549 | e1 = lf * ( 1.0_wp + bbb ) * 0.5_wp |
---|
5550 | d2 = ( 1.0_wp - bbb ) * 0.5_wp / bbb |
---|
5551 | e2 = lf * ( 1.0_wp - bbb ) * 0.5_wp |
---|
5552 | ccc = SQRT( 1.0_wp - 2.0_wp * z**2 ) |
---|
5553 | b1 = ( 1.0_wp + ccc ) * 0.5_wp / ccc |
---|
5554 | c1 = tl * ( 1.0_wp + ccc ) * 0.5_wp |
---|
5555 | b2 = ( 1.0_wp - ccc ) * 0.5_wp / ccc |
---|
5556 | c2 = tl * ( 1.0_wp - ccc ) * 0.5_wp |
---|
5557 | |
---|
5558 | DO i = 1, radius_classes |
---|
5559 | |
---|
5560 | v1 = winf(i) |
---|
5561 | t1 = tau(i) |
---|
5562 | |
---|
5563 | DO j = 1, i |
---|
5564 | rrp = radclass(i) + radclass(j) |
---|
5565 | v2 = winf(j) |
---|
5566 | t2 = tau(j) |
---|
5567 | |
---|
5568 | v1xysq = b1 * d1 * phi_w(c1,e1,v1,t1) - b1 * d2 * phi_w(c1,e2,v1,t1) & |
---|
5569 | - b2 * d1 * phi_w(c2,e1,v1,t1) + b2 * d2 * phi_w(c2,e2,v1,t1) |
---|
5570 | v1xysq = v1xysq * urms**2 / t1 |
---|
5571 | vrms1xy = SQRT( v1xysq ) |
---|
5572 | |
---|
5573 | v2xysq = b1 * d1 * phi_w(c1,e1,v2,t2) - b1 * d2 * phi_w(c1,e2,v2,t2) & |
---|
5574 | - b2 * d1 * phi_w(c2,e1,v2,t2) + b2 * d2 * phi_w(c2,e2,v2,t2) |
---|
5575 | v2xysq = v2xysq * urms**2 / t2 |
---|
5576 | vrms2xy = SQRT( v2xysq ) |
---|
5577 | |
---|
5578 | IF ( winf(i) >= winf(j) ) THEN |
---|
5579 | v1 = winf(i) |
---|
5580 | t1 = tau(i) |
---|
5581 | v2 = winf(j) |
---|
5582 | t2 = tau(j) |
---|
5583 | ELSE |
---|
5584 | v1 = winf(j) |
---|
5585 | t1 = tau(j) |
---|
5586 | v2 = winf(i) |
---|
5587 | t2 = tau(i) |
---|
5588 | ENDIF |
---|
5589 | |
---|
5590 | v1v2xy = b1 * d1 * zhi(c1,e1,v1,t1,v2,t2) - & |
---|
5591 | b1 * d2 * zhi(c1,e2,v1,t1,v2,t2) - & |
---|
5592 | b2 * d1 * zhi(c2,e1,v1,t1,v2,t2) + & |
---|
5593 | b2 * d2* zhi(c2,e2,v1,t1,v2,t2) |
---|
5594 | fr = d1 * EXP( -rrp / e1 ) - d2 * EXP( -rrp / e2 ) |
---|
5595 | v1v2xy = v1v2xy * fr * urms**2 / tau(i) / tau(j) |
---|
5596 | wrtur2xy = vrms1xy**2 + vrms2xy**2 - 2.0_wp * v1v2xy |
---|
5597 | IF ( wrtur2xy < 0.0_wp ) wrtur2xy = 0.0_wp |
---|
5598 | wrgrav2 = pi / 8.0_wp * ( winf(j) - winf(i) )**2 |
---|
5599 | wrfin = SQRT( ( 2.0_wp / pi ) * ( wrtur2xy + wrgrav2) ) |
---|
5600 | |
---|
5601 | ! |
---|
5602 | !-- Calculate radial distribution function (grfin) |
---|
5603 | IF ( st(j) > st(i) ) THEN |
---|
5604 | sst = st(j) |
---|
5605 | ELSE |
---|
5606 | sst = st(i) |
---|
5607 | ENDIF |
---|
5608 | |
---|
5609 | xx = -0.1988_wp * sst**4 + 1.5275_wp * sst**3 - 4.2942_wp * & |
---|
5610 | sst**2 + 5.3406_wp * sst |
---|
5611 | IF ( xx < 0.0_wp ) xx = 0.0_wp |
---|
5612 | yy = 0.1886_wp * EXP( 20.306_wp / lambda_re ) |
---|
5613 | |
---|
5614 | c1_gr = xx / ( g / vk * tauk )**yy |
---|
5615 | |
---|
5616 | ao_gr = ao + ( pi / 8.0_wp) * ( g / vk * tauk )**2 |
---|
5617 | fao_gr = 20.115_wp * SQRT( ao_gr / lambda_re ) |
---|
5618 | rc = SQRT( fao_gr * ABS( st(j) - st(i) ) ) * eta |
---|
5619 | |
---|
5620 | grfin = ( ( eta**2 + rc**2 ) / ( rrp**2 + rc**2) )**( c1_gr*0.5_wp ) |
---|
5621 | IF ( grfin < 1.0_wp ) grfin = 1.0_wp |
---|
5622 | |
---|
5623 | ! |
---|
5624 | !-- Calculate general collection kernel (without the consideration of |
---|
5625 | !-- collection efficiencies) |
---|
5626 | gck(i,j) = 2.0_wp * pi * rrp**2 * wrfin * grfin |
---|
5627 | gck(j,i) = gck(i,j) |
---|
5628 | |
---|
5629 | ENDDO |
---|
5630 | ENDDO |
---|
5631 | |
---|
5632 | END SUBROUTINE turbsd |
---|
5633 | |
---|
5634 | REAL(wp) FUNCTION phi_w( a, b, vsett, tau0 ) |
---|
5635 | ! |
---|
5636 | !-- Function used in the Ayala et al. (2008) analytical model for turbulent |
---|
5637 | !-- effects on the collision kernel |
---|
5638 | |
---|
5639 | |
---|
5640 | REAL(wp) :: a !< |
---|
5641 | REAL(wp) :: aa1 !< |
---|
5642 | REAL(wp) :: b !< |
---|
5643 | REAL(wp) :: tau0 !< |
---|
5644 | REAL(wp) :: vsett !< |
---|
5645 | |
---|
5646 | aa1 = 1.0_wp / tau0 + 1.0_wp / a + vsett / b |
---|
5647 | phi_w = 1.0_wp / aa1 - 0.5_wp * vsett / b / aa1**2 |
---|
5648 | |
---|
5649 | END FUNCTION phi_w |
---|
5650 | |
---|
5651 | REAL(wp) FUNCTION zhi( a, b, vsett1, tau1, vsett2, tau2 ) |
---|
5652 | ! |
---|
5653 | !-- Function used in the Ayala et al. (2008) analytical model for turbulent |
---|
5654 | !-- effects on the collision kernel |
---|
5655 | |
---|
5656 | REAL(wp) :: a !< |
---|
5657 | REAL(wp) :: aa1 !< |
---|
5658 | REAL(wp) :: aa2 !< |
---|
5659 | REAL(wp) :: aa3 !< |
---|
5660 | REAL(wp) :: aa4 !< |
---|
5661 | REAL(wp) :: aa5 !< |
---|
5662 | REAL(wp) :: aa6 !< |
---|
5663 | REAL(wp) :: b !< |
---|
5664 | REAL(wp) :: tau1 !< |
---|
5665 | REAL(wp) :: tau2 !< |
---|
5666 | REAL(wp) :: vsett1 !< |
---|
5667 | REAL(wp) :: vsett2 !< |
---|
5668 | |
---|
5669 | aa1 = vsett2 / b - 1.0_wp / tau2 - 1.0_wp / a |
---|
5670 | aa2 = vsett1 / b + 1.0_wp / tau1 + 1.0_wp / a |
---|
5671 | aa3 = ( vsett1 - vsett2 ) / b + 1.0_wp / tau1 + 1.0_wp / tau2 |
---|
5672 | aa4 = ( vsett2 / b )**2 - ( 1.0_wp / tau2 + 1.0_wp / a )**2 |
---|
5673 | aa5 = vsett2 / b + 1.0_wp / tau2 + 1.0_wp / a |
---|
5674 | aa6 = 1.0_wp / tau1 - 1.0_wp / a + ( 1.0_wp / tau2 + 1.0_wp / a) * & |
---|
5675 | vsett1 / vsett2 |
---|
5676 | zhi = (1.0_wp / aa1 - 1.0_wp / aa2 ) * ( vsett1 - vsett2 ) * 0.5_wp / & |
---|
5677 | b / aa3**2 + ( 4.0_wp / aa4 - 1.0_wp / aa5**2 - 1.0_wp / aa1**2 ) & |
---|
5678 | * vsett2 * 0.5_wp / b /aa6 + ( 2.0_wp * ( b / aa2 - b / aa1 ) - & |
---|
5679 | vsett1 / aa2**2 + vsett2 / aa1**2 ) * 0.5_wp / b / aa3 |
---|
5680 | |
---|
5681 | END FUNCTION zhi |
---|
5682 | |
---|
5683 | |
---|
5684 | !------------------------------------------------------------------------------! |
---|
5685 | ! Description: |
---|
5686 | ! ------------ |
---|
5687 | !> Parameterization of terminal velocity following Rogers et al. (1993, J. Appl. |
---|
5688 | !> Meteorol.) |
---|
5689 | !------------------------------------------------------------------------------! |
---|
5690 | SUBROUTINE fallg |
---|
5691 | |
---|
5692 | INTEGER(iwp) :: j !< |
---|
5693 | |
---|
5694 | REAL(wp), PARAMETER :: k_cap_rog = 4.0_wp !< parameter |
---|
5695 | REAL(wp), PARAMETER :: k_low_rog = 12.0_wp !< parameter |
---|
5696 | REAL(wp), PARAMETER :: a_rog = 9.65_wp !< parameter |
---|
5697 | REAL(wp), PARAMETER :: b_rog = 10.43_wp !< parameter |
---|
5698 | REAL(wp), PARAMETER :: c_rog = 0.6_wp !< parameter |
---|
5699 | REAL(wp), PARAMETER :: d0_rog = 0.745_wp !< seperation diameter |
---|
5700 | |
---|
5701 | REAL(wp) :: diameter !< droplet diameter in mm |
---|
5702 | |
---|
5703 | |
---|
5704 | DO j = 1, radius_classes |
---|
5705 | |
---|
5706 | diameter = radclass(j) * 2000.0_wp |
---|
5707 | |
---|
5708 | IF ( diameter <= d0_rog ) THEN |
---|
5709 | winf(j) = k_cap_rog * diameter * ( 1.0_wp - & |
---|
5710 | EXP( -k_low_rog * diameter ) ) |
---|
5711 | ELSE |
---|
5712 | winf(j) = a_rog - b_rog * EXP( -c_rog * diameter ) |
---|
5713 | ENDIF |
---|
5714 | |
---|
5715 | ENDDO |
---|
5716 | |
---|
5717 | END SUBROUTINE fallg |
---|
5718 | |
---|
5719 | |
---|
5720 | !------------------------------------------------------------------------------! |
---|
5721 | ! Description: |
---|
5722 | ! ------------ |
---|
5723 | !> Interpolation of collision efficiencies (Hall, 1980, J. Atmos. Sci.) |
---|
5724 | !------------------------------------------------------------------------------! |
---|
5725 | SUBROUTINE effic |
---|
5726 | |
---|
5727 | INTEGER(iwp) :: i !< |
---|
5728 | INTEGER(iwp) :: iq !< |
---|
5729 | INTEGER(iwp) :: ir !< |
---|
5730 | INTEGER(iwp) :: j !< |
---|
5731 | INTEGER(iwp) :: k !< |
---|
5732 | |
---|
5733 | INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: ira !< |
---|
5734 | |
---|
5735 | LOGICAL, SAVE :: first = .TRUE. !< |
---|
5736 | |
---|
5737 | REAL(wp) :: ek !< |
---|
5738 | REAL(wp) :: particle_radius !< |
---|
5739 | REAL(wp) :: pp !< |
---|
5740 | REAL(wp) :: qq !< |
---|
5741 | REAL(wp) :: rq !< |
---|
5742 | |
---|
5743 | REAL(wp), DIMENSION(1:21), SAVE :: rat !< |
---|
5744 | |
---|
5745 | REAL(wp), DIMENSION(1:15), SAVE :: r0 !< |
---|
5746 | |
---|
5747 | REAL(wp), DIMENSION(1:15,1:21), SAVE :: ecoll !< |
---|
5748 | |
---|
5749 | ! |
---|
5750 | !-- Initial assignment of constants |
---|
5751 | IF ( first ) THEN |
---|
5752 | |
---|
5753 | first = .FALSE. |
---|
5754 | r0 = (/ 6.0_wp, 8.0_wp, 10.0_wp, 15.0_wp, 20.0_wp, 25.0_wp, & |
---|
5755 | 30.0_wp, 40.0_wp, 50.0_wp, 60.0_wp, 70.0_wp, 100.0_wp, & |
---|
5756 | 150.0_wp, 200.0_wp, 300.0_wp /) |
---|
5757 | |
---|
5758 | rat = (/ 0.00_wp, 0.05_wp, 0.10_wp, 0.15_wp, 0.20_wp, 0.25_wp, & |
---|
5759 | 0.30_wp, 0.35_wp, 0.40_wp, 0.45_wp, 0.50_wp, 0.55_wp, & |
---|
5760 | 0.60_wp, 0.65_wp, 0.70_wp, 0.75_wp, 0.80_wp, 0.85_wp, & |
---|
5761 | 0.90_wp, 0.95_wp, 1.00_wp /) |
---|
5762 | |
---|
5763 | ecoll(:,1) = (/ 0.001_wp, 0.001_wp, 0.001_wp, 0.001_wp, 0.001_wp, & |
---|
5764 | 0.001_wp, 0.001_wp, 0.001_wp, 0.001_wp, 0.001_wp, & |
---|
5765 | 0.001_wp, 0.001_wp, 0.001_wp, 0.001_wp, 0.001_wp /) |
---|
5766 | ecoll(:,2) = (/ 0.003_wp, 0.003_wp, 0.003_wp, 0.004_wp, 0.005_wp, & |
---|
5767 | 0.005_wp, 0.005_wp, 0.010_wp, 0.100_wp, 0.050_wp, & |
---|
5768 | 0.200_wp, 0.500_wp, 0.770_wp, 0.870_wp, 0.970_wp /) |
---|
5769 | ecoll(:,3) = (/ 0.007_wp, 0.007_wp, 0.007_wp, 0.008_wp, 0.009_wp, & |
---|
5770 | 0.010_wp, 0.010_wp, 0.070_wp, 0.400_wp, 0.430_wp, & |
---|
5771 | 0.580_wp, 0.790_wp, 0.930_wp, 0.960_wp, 1.000_wp /) |
---|
5772 | ecoll(:,4) = (/ 0.009_wp, 0.009_wp, 0.009_wp, 0.012_wp, 0.015_wp, & |
---|
5773 | 0.010_wp, 0.020_wp, 0.280_wp, 0.600_wp, 0.640_wp, & |
---|
5774 | 0.750_wp, 0.910_wp, 0.970_wp, 0.980_wp, 1.000_wp /) |
---|
5775 | ecoll(:,5) = (/ 0.014_wp, 0.014_wp, 0.014_wp, 0.015_wp, 0.016_wp, & |
---|
5776 | 0.030_wp, 0.060_wp, 0.500_wp, 0.700_wp, 0.770_wp, & |
---|
5777 | 0.840_wp, 0.950_wp, 0.970_wp, 1.000_wp, 1.000_wp /) |
---|
5778 | ecoll(:,6) = (/ 0.017_wp, 0.017_wp, 0.017_wp, 0.020_wp, 0.022_wp, & |
---|
5779 | 0.060_wp, 0.100_wp, 0.620_wp, 0.780_wp, 0.840_wp, & |
---|
5780 | 0.880_wp, 0.950_wp, 1.000_wp, 1.000_wp, 1.000_wp /) |
---|
5781 | ecoll(:,7) = (/ 0.030_wp, 0.030_wp, 0.024_wp, 0.022_wp, 0.032_wp, & |
---|
5782 | 0.062_wp, 0.200_wp, 0.680_wp, 0.830_wp, 0.870_wp, & |
---|
5783 | 0.900_wp, 0.950_wp, 1.000_wp, 1.000_wp, 1.000_wp /) |
---|
5784 | ecoll(:,8) = (/ 0.025_wp, 0.025_wp, 0.025_wp, 0.036_wp, 0.043_wp, & |
---|
5785 | 0.130_wp, 0.270_wp, 0.740_wp, 0.860_wp, 0.890_wp, & |
---|
5786 | 0.920_wp, 1.000_wp, 1.000_wp, 1.000_wp, 1.000_wp /) |
---|
5787 | ecoll(:,9) = (/ 0.027_wp, 0.027_wp, 0.027_wp, 0.040_wp, 0.052_wp, & |
---|
5788 | 0.200_wp, 0.400_wp, 0.780_wp, 0.880_wp, 0.900_wp, & |
---|
5789 | 0.940_wp, 1.000_wp, 1.000_wp, 1.000_wp, 1.000_wp /) |
---|
5790 | ecoll(:,10) = (/ 0.030_wp, 0.030_wp, 0.030_wp, 0.047_wp, 0.064_wp, & |
---|
5791 | 0.250_wp, 0.500_wp, 0.800_wp, 0.900_wp, 0.910_wp, & |
---|
5792 | 0.950_wp, 1.000_wp, 1.000_wp, 1.000_wp, 1.000_wp /) |
---|
5793 | ecoll(:,11) = (/ 0.040_wp, 0.040_wp, 0.033_wp, 0.037_wp, 0.068_wp, & |
---|
5794 | 0.240_wp, 0.550_wp, 0.800_wp, 0.900_wp, 0.910_wp, & |
---|
5795 | 0.950_wp, 1.000_wp, 1.000_wp, 1.000_wp, 1.000_wp /) |
---|
5796 | ecoll(:,12) = (/ 0.035_wp, 0.035_wp, 0.035_wp, 0.055_wp, 0.079_wp, & |
---|
5797 | 0.290_wp, 0.580_wp, 0.800_wp, 0.900_wp, 0.910_wp, & |
---|
5798 | 0.950_wp, 1.000_wp, 1.000_wp, 1.000_wp, 1.000_wp /) |
---|
5799 | ecoll(:,13) = (/ 0.037_wp, 0.037_wp, 0.037_wp, 0.062_wp, 0.082_wp, & |
---|
5800 | 0.290_wp, 0.590_wp, 0.780_wp, 0.900_wp, 0.910_wp, & |
---|
5801 | 0.950_wp, 1.000_wp, 1.000_wp, 1.000_wp, 1.000_wp /) |
---|
5802 | ecoll(:,14) = (/ 0.037_wp, 0.037_wp, 0.037_wp, 0.060_wp, 0.080_wp, & |
---|
5803 | 0.290_wp, 0.580_wp, 0.770_wp, 0.890_wp, 0.910_wp, & |
---|
5804 | 0.950_wp, 1.000_wp, 1.000_wp, 1.000_wp, 1.000_wp /) |
---|
5805 | ecoll(:,15) = (/ 0.037_wp, 0.037_wp, 0.037_wp, 0.041_wp, 0.075_wp, & |
---|
5806 | 0.250_wp, 0.540_wp, 0.760_wp, 0.880_wp, 0.920_wp, & |
---|
5807 | 0.950_wp, 1.000_wp, 1.000_wp, 1.000_wp, 1.000_wp /) |
---|
5808 | ecoll(:,16) = (/ 0.037_wp, 0.037_wp, 0.037_wp, 0.052_wp, 0.067_wp, & |
---|
5809 | 0.250_wp, 0.510_wp, 0.770_wp, 0.880_wp, 0.930_wp, & |
---|
5810 | 0.970_wp, 1.000_wp, 1.000_wp, 1.000_wp, 1.000_wp /) |
---|
5811 | ecoll(:,17) = (/ 0.037_wp, 0.037_wp, 0.037_wp, 0.047_wp, 0.057_wp, & |
---|
5812 | 0.250_wp, 0.490_wp, 0.770_wp, 0.890_wp, 0.950_wp, & |
---|
5813 | 1.000_wp, 1.000_wp, 1.000_wp, 1.000_wp, 1.000_wp /) |
---|
5814 | ecoll(:,18) = (/ 0.036_wp, 0.036_wp, 0.036_wp, 0.042_wp, 0.048_wp, & |
---|
5815 | 0.230_wp, 0.470_wp, 0.780_wp, 0.920_wp, 1.000_wp, & |
---|
5816 | 1.020_wp, 1.020_wp, 1.020_wp, 1.020_wp, 1.020_wp /) |
---|
5817 | ecoll(:,19) = (/ 0.040_wp, 0.040_wp, 0.035_wp, 0.033_wp, 0.040_wp, & |
---|
5818 | 0.112_wp, 0.450_wp, 0.790_wp, 1.010_wp, 1.030_wp, & |
---|
5819 | 1.040_wp, 1.040_wp, 1.040_wp, 1.040_wp, 1.040_wp /) |
---|
5820 | ecoll(:,20) = (/ 0.033_wp, 0.033_wp, 0.033_wp, 0.033_wp, 0.033_wp, & |
---|
5821 | 0.119_wp, 0.470_wp, 0.950_wp, 1.300_wp, 1.700_wp, & |
---|
5822 | 2.300_wp, 2.300_wp, 2.300_wp, 2.300_wp, 2.300_wp /) |
---|
5823 | ecoll(:,21) = (/ 0.027_wp, 0.027_wp, 0.027_wp, 0.027_wp, 0.027_wp, & |
---|
5824 | 0.125_wp, 0.520_wp, 1.400_wp, 2.300_wp, 3.000_wp, & |
---|
5825 | 4.000_wp, 4.000_wp, 4.000_wp, 4.000_wp, 4.000_wp /) |
---|
5826 | ENDIF |
---|
5827 | |
---|
5828 | ! |
---|
5829 | !-- Calculate the radius class index of particles with respect to array r |
---|
5830 | !-- Radius has to be in microns |
---|
5831 | ALLOCATE( ira(1:radius_classes) ) |
---|
5832 | DO j = 1, radius_classes |
---|
5833 | particle_radius = radclass(j) * 1.0E6_wp |
---|
5834 | DO k = 1, 15 |
---|
5835 | IF ( particle_radius < r0(k) ) THEN |
---|
5836 | ira(j) = k |
---|
5837 | EXIT |
---|
5838 | ENDIF |
---|
5839 | ENDDO |
---|
5840 | IF ( particle_radius >= r0(15) ) ira(j) = 16 |
---|
5841 | ENDDO |
---|
5842 | |
---|
5843 | ! |
---|
5844 | !-- Two-dimensional linear interpolation of the collision efficiency. |
---|
5845 | !-- Radius has to be in microns |
---|
5846 | DO j = 1, radius_classes |
---|
5847 | DO i = 1, j |
---|
5848 | |
---|
5849 | ir = MAX( ira(i), ira(j) ) |
---|
5850 | rq = MIN( radclass(i) / radclass(j), radclass(j) / radclass(i) ) |
---|
5851 | iq = INT( rq * 20 ) + 1 |
---|
5852 | iq = MAX( iq , 2) |
---|
5853 | |
---|
5854 | IF ( ir < 16 ) THEN |
---|
5855 | IF ( ir >= 2 ) THEN |
---|
5856 | pp = ( ( MAX( radclass(j), radclass(i) ) * 1.0E6_wp ) - & |
---|
5857 | r0(ir-1) ) / ( r0(ir) - r0(ir-1) ) |
---|
5858 | qq = ( rq - rat(iq-1) ) / ( rat(iq) - rat(iq-1) ) |
---|
5859 | ec(j,i) = ( 1.0_wp - pp ) * ( 1.0_wp - qq ) & |
---|
5860 | * ecoll(ir-1,iq-1) & |
---|
5861 | + pp * ( 1.0_wp - qq ) * ecoll(ir,iq-1) & |
---|
5862 | + qq * ( 1.0_wp - pp ) * ecoll(ir-1,iq) & |
---|
5863 | + pp * qq * ecoll(ir,iq) |
---|
5864 | ELSE |
---|
5865 | qq = ( rq - rat(iq-1) ) / ( rat(iq) - rat(iq-1) ) |
---|
5866 | ec(j,i) = ( 1.0_wp - qq ) * ecoll(1,iq-1) + qq * ecoll(1,iq) |
---|
5867 | ENDIF |
---|
5868 | ELSE |
---|
5869 | qq = ( rq - rat(iq-1) ) / ( rat(iq) - rat(iq-1) ) |
---|
5870 | ek = ( 1.0_wp - qq ) * ecoll(15,iq-1) + qq * ecoll(15,iq) |
---|
5871 | ec(j,i) = MIN( ek, 1.0_wp ) |
---|
5872 | ENDIF |
---|
5873 | |
---|
5874 | IF ( ec(j,i) < 1.0E-20_wp ) ec(j,i) = 0.0_wp |
---|
5875 | |
---|
5876 | ec(i,j) = ec(j,i) |
---|
5877 | |
---|
5878 | ENDDO |
---|
5879 | ENDDO |
---|
5880 | |
---|
5881 | DEALLOCATE( ira ) |
---|
5882 | |
---|
5883 | END SUBROUTINE effic |
---|
5884 | |
---|
5885 | |
---|
5886 | !------------------------------------------------------------------------------! |
---|
5887 | ! Description: |
---|
5888 | ! ------------ |
---|
5889 | !> Interpolation of turbulent enhancement factor for collision efficencies |
---|
5890 | !> following Wang and Grabowski (2009, Atmos. Sci. Let.) |
---|
5891 | !------------------------------------------------------------------------------! |
---|
5892 | SUBROUTINE turb_enhance_eff |
---|
5893 | |
---|
5894 | INTEGER(iwp) :: i !< |
---|
5895 | INTEGER(iwp) :: iq !< |
---|
5896 | INTEGER(iwp) :: ir !< |
---|
5897 | INTEGER(iwp) :: j !< |
---|
5898 | INTEGER(iwp) :: k !< |
---|
5899 | INTEGER(iwp) :: kk !< |
---|
5900 | |
---|
5901 | INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: ira !< |
---|
5902 | |
---|
5903 | LOGICAL, SAVE :: first = .TRUE. !< |
---|
5904 | |
---|
5905 | REAL(wp) :: particle_radius !< |
---|
5906 | REAL(wp) :: pp !< |
---|
5907 | REAL(wp) :: qq !< |
---|
5908 | REAL(wp) :: rq !< |
---|
5909 | REAL(wp) :: y1 !< |
---|
5910 | REAL(wp) :: y2 !< |
---|
5911 | REAL(wp) :: y3 !< |
---|
5912 | |
---|
5913 | REAL(wp), DIMENSION(1:11), SAVE :: rat !< |
---|
5914 | REAL(wp), DIMENSION(1:7), SAVE :: r0 !< |
---|
5915 | |
---|
5916 | REAL(wp), DIMENSION(1:7,1:11), SAVE :: ecoll_100 !< |
---|
5917 | REAL(wp), DIMENSION(1:7,1:11), SAVE :: ecoll_400 !< |
---|
5918 | |
---|
5919 | ! |
---|
5920 | !-- Initial assignment of constants |
---|
5921 | IF ( first ) THEN |
---|
5922 | |
---|
5923 | first = .FALSE. |
---|
5924 | |
---|
5925 | r0 = (/ 10.0_wp, 20.0_wp, 30.0_wp, 40.0_wp, 50.0_wp, 60.0_wp, & |
---|
5926 | 100.0_wp /) |
---|
5927 | |
---|
5928 | rat = (/ 0.0_wp, 0.1_wp, 0.2_wp, 0.3_wp, 0.4_wp, 0.5_wp, 0.6_wp, & |
---|
5929 | 0.7_wp, 0.8_wp, 0.9_wp, 1.0_wp /) |
---|
5930 | ! |
---|
5931 | !-- Tabulated turbulent enhancement factor at 100 cm**2/s**3 |
---|
5932 | ecoll_100(:,1) = (/ 1.74_wp, 1.74_wp, 1.773_wp, 1.49_wp, & |
---|
5933 | 1.207_wp, 1.207_wp, 1.0_wp /) |
---|
5934 | ecoll_100(:,2) = (/ 1.46_wp, 1.46_wp, 1.421_wp, 1.245_wp, & |
---|
5935 | 1.069_wp, 1.069_wp, 1.0_wp /) |
---|
5936 | ecoll_100(:,3) = (/ 1.32_wp, 1.32_wp, 1.245_wp, 1.123_wp, & |
---|
5937 | 1.000_wp, 1.000_wp, 1.0_wp /) |
---|
5938 | ecoll_100(:,4) = (/ 1.250_wp, 1.250_wp, 1.148_wp, 1.087_wp, & |
---|
5939 | 1.025_wp, 1.025_wp, 1.0_wp /) |
---|
5940 | ecoll_100(:,5) = (/ 1.186_wp, 1.186_wp, 1.066_wp, 1.060_wp, & |
---|
5941 | 1.056_wp, 1.056_wp, 1.0_wp /) |
---|
5942 | ecoll_100(:,6) = (/ 1.045_wp, 1.045_wp, 1.000_wp, 1.014_wp, & |
---|
5943 | 1.028_wp, 1.028_wp, 1.0_wp /) |
---|
5944 | ecoll_100(:,7) = (/ 1.070_wp, 1.070_wp, 1.030_wp, 1.038_wp, & |
---|
5945 | 1.046_wp, 1.046_wp, 1.0_wp /) |
---|
5946 | ecoll_100(:,8) = (/ 1.000_wp, 1.000_wp, 1.054_wp, 1.042_wp, & |
---|
5947 | 1.029_wp, 1.029_wp, 1.0_wp /) |
---|
5948 | ecoll_100(:,9) = (/ 1.223_wp, 1.223_wp, 1.117_wp, 1.069_wp, & |
---|
5949 | 1.021_wp, 1.021_wp, 1.0_wp /) |
---|
5950 | ecoll_100(:,10) = (/ 1.570_wp, 1.570_wp, 1.244_wp, 1.166_wp, & |
---|
5951 | 1.088_wp, 1.088_wp, 1.0_wp /) |
---|
5952 | ecoll_100(:,11) = (/ 20.3_wp, 20.3_wp, 14.6_wp, 8.61_wp, & |
---|
5953 | 2.60_wp, 2.60_wp, 1.0_wp /) |
---|
5954 | ! |
---|
5955 | !-- Tabulated turbulent enhancement factor at 400 cm**2/s**3 |
---|
5956 | ecoll_400(:,1) = (/ 4.976_wp, 4.976_wp, 3.593_wp, 2.519_wp, & |
---|
5957 | 1.445_wp, 1.445_wp, 1.0_wp /) |
---|
5958 | ecoll_400(:,2) = (/ 2.984_wp, 2.984_wp, 2.181_wp, 1.691_wp, & |
---|
5959 | 1.201_wp, 1.201_wp, 1.0_wp /) |
---|
5960 | ecoll_400(:,3) = (/ 1.988_wp, 1.988_wp, 1.475_wp, 1.313_wp, & |
---|
5961 | 1.150_wp, 1.150_wp, 1.0_wp /) |
---|
5962 | ecoll_400(:,4) = (/ 1.490_wp, 1.490_wp, 1.187_wp, 1.156_wp, & |
---|
5963 | 1.126_wp, 1.126_wp, 1.0_wp /) |
---|
5964 | ecoll_400(:,5) = (/ 1.249_wp, 1.249_wp, 1.088_wp, 1.090_wp, & |
---|
5965 | 1.092_wp, 1.092_wp, 1.0_wp /) |
---|
5966 | ecoll_400(:,6) = (/ 1.139_wp, 1.139_wp, 1.130_wp, 1.091_wp, & |
---|
5967 | 1.051_wp, 1.051_wp, 1.0_wp /) |
---|
5968 | ecoll_400(:,7) = (/ 1.220_wp, 1.220_wp, 1.190_wp, 1.138_wp, & |
---|
5969 | 1.086_wp, 1.086_wp, 1.0_wp /) |
---|
5970 | ecoll_400(:,8) = (/ 1.325_wp, 1.325_wp, 1.267_wp, 1.165_wp, & |
---|
5971 | 1.063_wp, 1.063_wp, 1.0_wp /) |
---|
5972 | ecoll_400(:,9) = (/ 1.716_wp, 1.716_wp, 1.345_wp, 1.223_wp, & |
---|
5973 | 1.100_wp, 1.100_wp, 1.0_wp /) |
---|
5974 | ecoll_400(:,10) = (/ 3.788_wp, 3.788_wp, 1.501_wp, 1.311_wp, & |
---|
5975 | 1.120_wp, 1.120_wp, 1.0_wp /) |
---|
5976 | ecoll_400(:,11) = (/ 36.52_wp, 36.52_wp, 19.16_wp, 22.80_wp, & |
---|
5977 | 26.0_wp, 26.0_wp, 1.0_wp /) |
---|
5978 | |
---|
5979 | ENDIF |
---|
5980 | |
---|
5981 | ! |
---|
5982 | !-- Calculate the radius class index of particles with respect to array r0 |
---|
5983 | !-- The droplet radius has to be given in microns. |
---|
5984 | ALLOCATE( ira(1:radius_classes) ) |
---|
5985 | |
---|
5986 | DO j = 1, radius_classes |
---|
5987 | particle_radius = radclass(j) * 1.0E6_wp |
---|
5988 | DO k = 1, 7 |
---|
5989 | IF ( particle_radius < r0(k) ) THEN |
---|
5990 | ira(j) = k |
---|
5991 | EXIT |
---|
5992 | ENDIF |
---|
5993 | ENDDO |
---|
5994 | IF ( particle_radius >= r0(7) ) ira(j) = 8 |
---|
5995 | ENDDO |
---|
5996 | |
---|
5997 | ! |
---|
5998 | !-- Two-dimensional linear interpolation of the turbulent enhancement factor. |
---|
5999 | !-- The droplet radius has to be given in microns. |
---|
6000 | DO j = 1, radius_classes |
---|
6001 | DO i = 1, j |
---|
6002 | |
---|
6003 | ir = MAX( ira(i), ira(j) ) |
---|
6004 | rq = MIN( radclass(i) / radclass(j), radclass(j) / radclass(i) ) |
---|
6005 | |
---|
6006 | DO kk = 2, 11 |
---|
6007 | IF ( rq <= rat(kk) ) THEN |
---|
6008 | iq = kk |
---|
6009 | EXIT |
---|
6010 | ENDIF |
---|
6011 | ENDDO |
---|
6012 | |
---|
6013 | y1 = 1.0_wp ! turbulent enhancement factor at 0 m**2/s**3 |
---|
6014 | |
---|
6015 | IF ( ir < 8 ) THEN |
---|
6016 | IF ( ir >= 2 ) THEN |
---|
6017 | pp = ( MAX( radclass(j), radclass(i) ) * 1.0E6_wp - & |
---|
6018 | r0(ir-1) ) / ( r0(ir) - r0(ir-1) ) |
---|
6019 | qq = ( rq - rat(iq-1) ) / ( rat(iq) - rat(iq-1) ) |
---|
6020 | y2 = ( 1.0_wp - pp ) * ( 1.0_wp - qq ) * ecoll_100(ir-1,iq-1) + & |
---|
6021 | pp * ( 1.0_wp - qq ) * ecoll_100(ir,iq-1) + & |
---|
6022 | qq * ( 1.0_wp - pp ) * ecoll_100(ir-1,iq) + & |
---|
6023 | pp * qq * ecoll_100(ir,iq) |
---|
6024 | y3 = ( 1.0-pp ) * ( 1.0_wp - qq ) * ecoll_400(ir-1,iq-1) + & |
---|
6025 | pp * ( 1.0_wp - qq ) * ecoll_400(ir,iq-1) + & |
---|
6026 | qq * ( 1.0_wp - pp ) * ecoll_400(ir-1,iq) + & |
---|
6027 | pp * qq * ecoll_400(ir,iq) |
---|
6028 | ELSE |
---|
6029 | qq = ( rq - rat(iq-1) ) / ( rat(iq) - rat(iq-1) ) |
---|
6030 | y2 = ( 1.0_wp - qq ) * ecoll_100(1,iq-1) + qq * ecoll_100(1,iq) |
---|
6031 | y3 = ( 1.0_wp - qq ) * ecoll_400(1,iq-1) + qq * ecoll_400(1,iq) |
---|
6032 | ENDIF |
---|
6033 | ELSE |
---|
6034 | qq = ( rq - rat(iq-1) ) / ( rat(iq) - rat(iq-1) ) |
---|
6035 | y2 = ( 1.0_wp - qq ) * ecoll_100(7,iq-1) + qq * ecoll_100(7,iq) |
---|
6036 | y3 = ( 1.0_wp - qq ) * ecoll_400(7,iq-1) + qq * ecoll_400(7,iq) |
---|
6037 | ENDIF |
---|
6038 | ! |
---|
6039 | !-- Linear interpolation of turbulent enhancement factor |
---|
6040 | IF ( epsilon_collision <= 0.01_wp ) THEN |
---|
6041 | ecf(j,i) = ( epsilon_collision - 0.01_wp ) / ( 0.0_wp - 0.01_wp ) * y1 & |
---|
6042 | + ( epsilon_collision - 0.0_wp ) / ( 0.01_wp - 0.0_wp ) * y2 |
---|
6043 | ELSEIF ( epsilon_collision <= 0.06_wp ) THEN |
---|
6044 | ecf(j,i) = ( epsilon_collision - 0.04_wp ) / ( 0.01_wp - 0.04_wp ) * y2 & |
---|
6045 | + ( epsilon_collision - 0.01_wp ) / ( 0.04_wp - 0.01_wp ) * y3 |
---|
6046 | ELSE |
---|
6047 | ecf(j,i) = ( 0.06_wp - 0.04_wp ) / ( 0.01_wp - 0.04_wp ) * y2 & |
---|
6048 | + ( 0.06_wp - 0.01_wp ) / ( 0.04_wp - 0.01_wp ) * y3 |
---|
6049 | ENDIF |
---|
6050 | |
---|
6051 | IF ( ecf(j,i) < 1.0_wp ) ecf(j,i) = 1.0_wp |
---|
6052 | |
---|
6053 | ecf(i,j) = ecf(j,i) |
---|
6054 | |
---|
6055 | ENDDO |
---|
6056 | ENDDO |
---|
6057 | |
---|
6058 | END SUBROUTINE turb_enhance_eff |
---|
6059 | |
---|
6060 | |
---|
6061 | !------------------------------------------------------------------------------! |
---|
6062 | ! Description: |
---|
6063 | ! ------------ |
---|
6064 | ! This routine is a part of the Lagrangian particle model. Super droplets which |
---|
6065 | ! fulfill certain criterion's (e.g. a big weighting factor and a large radius) |
---|
6066 | ! can be split into several super droplets with a reduced number of |
---|
6067 | ! represented particles of every super droplet. This mechanism ensures an |
---|
6068 | ! improved representation of the right tail of the drop size distribution with |
---|
6069 | ! a feasible amount of computational costs. The limits of particle creation |
---|
6070 | ! should be chosen carefully! The idea of this algorithm is based on |
---|
6071 | ! Unterstrasser and Soelch, 2014. |
---|
6072 | !------------------------------------------------------------------------------! |
---|
6073 | SUBROUTINE lpm_splitting |
---|
6074 | |
---|
6075 | INTEGER(iwp) :: i !< |
---|
6076 | INTEGER(iwp) :: j !< |
---|
6077 | INTEGER(iwp) :: jpp !< |
---|
6078 | INTEGER(iwp) :: k !< |
---|
6079 | INTEGER(iwp) :: n !< |
---|
6080 | INTEGER(iwp) :: new_particles_gb !< counter of created particles within one grid box |
---|
6081 | INTEGER(iwp) :: new_size !< new particle array size |
---|
6082 | INTEGER(iwp) :: np !< |
---|
6083 | INTEGER(iwp) :: old_size !< old particle array size |
---|
6084 | |
---|
6085 | INTEGER(iwp), PARAMETER :: n_max = 100 !< number of radii bin for splitting functions |
---|
6086 | |
---|
6087 | LOGICAL :: first_loop_stride_sp = .TRUE. !< flag to calculate constants only once |
---|
6088 | |
---|
6089 | REAL(wp) :: diameter !< diameter of droplet |
---|
6090 | REAL(wp) :: dlog !< factor for DSD calculation |
---|
6091 | REAL(wp) :: factor_volume_to_mass !< pre calculate factor volume to mass |
---|
6092 | REAL(wp) :: lambda !< slope parameter of gamma-distribution |
---|
6093 | REAL(wp) :: lwc !< liquid water content of grid box |
---|
6094 | REAL(wp) :: lwc_total !< average liquid water content of cloud |
---|
6095 | REAL(wp) :: m1 !< first moment of DSD |
---|
6096 | REAL(wp) :: m1_total !< average over all PEs of first moment of DSD |
---|
6097 | REAL(wp) :: m2 !< second moment of DSD |
---|
6098 | REAL(wp) :: m2_total !< average average over all PEs second moment of DSD |
---|
6099 | REAL(wp) :: m3 !< third moment of DSD |
---|
6100 | REAL(wp) :: m3_total !< average average over all PEs third moment of DSD |
---|
6101 | REAL(wp) :: mu !< spectral shape parameter of gamma distribution |
---|
6102 | REAL(wp) :: nrclgb !< number of cloudy grid boxes (ql >= 1.0E-5 kg/kg) |
---|
6103 | REAL(wp) :: nrclgb_total !< average over all PEs of number of cloudy grid boxes |
---|
6104 | REAL(wp) :: nr !< number concentration of cloud droplets |
---|
6105 | REAL(wp) :: nr_total !< average over all PEs of number of cloudy grid boxes |
---|
6106 | REAL(wp) :: nr0 !< intercept parameter of gamma distribution |
---|
6107 | REAL(wp) :: pirho_l !< pi * rho_l / 6.0 |
---|
6108 | REAL(wp) :: ql_crit = 1.0E-5_wp !< threshold lwc for cloudy grid cells |
---|
6109 | !< (Siebesma et al 2003, JAS, 60) |
---|
6110 | REAL(wp) :: rm !< volume averaged mean radius |
---|
6111 | REAL(wp) :: rm_total !< average over all PEs of volume averaged mean radius |
---|
6112 | REAL(wp) :: r_min = 1.0E-6_wp !< minimum radius of approximated spectra |
---|
6113 | REAL(wp) :: r_max = 1.0E-3_wp !< maximum radius of approximated spectra |
---|
6114 | REAL(wp) :: sigma_log = 1.5_wp !< standard deviation of the LOG-distribution |
---|
6115 | REAL(wp) :: zeta !< Parameter for DSD calculation of Seifert |
---|
6116 | |
---|
6117 | REAL(wp), DIMENSION(0:n_max-1) :: an_spl !< size dependent critical weight factor |
---|
6118 | REAL(wp), DIMENSION(0:n_max-1) :: r_bin_mid !< mass weighted mean radius of a bin |
---|
6119 | REAL(wp), DIMENSION(0:n_max) :: r_bin !< boundaries of a radius bin |
---|
6120 | |
---|
6121 | TYPE(particle_type) :: tmp_particle !< temporary particle TYPE |
---|
6122 | |
---|
6123 | CALL cpu_log( log_point_s(80), 'lpm_splitting', 'start' ) |
---|
6124 | |
---|
6125 | IF ( first_loop_stride_sp ) THEN |
---|
6126 | IF ( i_splitting_mode == 2 .OR. i_splitting_mode == 3 ) THEN |
---|
6127 | dlog = ( LOG10(r_max) - LOG10(r_min) ) / ( n_max - 1 ) |
---|
6128 | DO i = 0, n_max-1 |
---|
6129 | r_bin(i) = 10.0_wp**( LOG10(r_min) + i * dlog - 0.5_wp * dlog ) |
---|
6130 | r_bin_mid(i) = 10.0_wp**( LOG10(r_min) + i * dlog ) |
---|
6131 | ENDDO |
---|
6132 | r_bin(n_max) = 10.0_wp**( LOG10(r_min) + n_max * dlog - 0.5_wp * dlog ) |
---|
6133 | ENDIF |
---|
6134 | factor_volume_to_mass = 4.0_wp / 3.0_wp * pi * rho_l |
---|
6135 | pirho_l = pi * rho_l / 6.0_wp |
---|
6136 | IF ( weight_factor_split == -1.0_wp ) THEN |
---|
6137 | weight_factor_split = 0.1_wp * initial_weighting_factor |
---|
6138 | ENDIF |
---|
6139 | ENDIF |
---|
6140 | |
---|
6141 | |
---|
6142 | IF ( i_splitting_mode == 1 ) THEN |
---|
6143 | |
---|
6144 | DO i = nxl, nxr |
---|
6145 | DO j = nys, nyn |
---|
6146 | DO k = nzb+1, nzt |
---|
6147 | |
---|
6148 | new_particles_gb = 0 |
---|
6149 | number_of_particles = prt_count(k,j,i) |
---|
6150 | IF ( number_of_particles <= 0 .OR. & |
---|
6151 | ql(k,j,i) < ql_crit ) CYCLE |
---|
6152 | particles => grid_particles(k,j,i)%particles(1:number_of_particles) |
---|
6153 | ! |
---|
6154 | !-- Start splitting operations. Each particle is checked if it |
---|
6155 | !-- fulfilled the splitting criterion's. In splitting mode 'const' |
---|
6156 | !-- a critical radius (radius_split) a critical weighting factor |
---|
6157 | !-- (weight_factor_split) and a splitting factor (splitting_factor) |
---|
6158 | !-- must be prescribed (see particle_parameters). Super droplets |
---|
6159 | !-- which have a larger radius and larger weighting factor are split |
---|
6160 | !-- into 'splitting_factor' super droplets. Therefore, the weighting |
---|
6161 | !-- factor of the super droplet and all created clones is reduced |
---|
6162 | !-- by the factor of 'splitting_factor'. |
---|
6163 | DO n = 1, number_of_particles |
---|
6164 | IF ( particles(n)%particle_mask .AND. & |
---|
6165 | particles(n)%radius >= radius_split .AND. & |
---|
6166 | particles(n)%weight_factor >= weight_factor_split ) & |
---|
6167 | THEN |
---|
6168 | ! |
---|
6169 | !-- Calculate the new number of particles. |
---|
6170 | new_size = prt_count(k,j,i) + splitting_factor - 1 |
---|
6171 | ! |
---|
6172 | !-- Cycle if maximum number of particles per grid box |
---|
6173 | !-- is greater than the allowed maximum number. |
---|
6174 | IF ( new_size >= max_number_particles_per_gridbox ) CYCLE |
---|
6175 | ! |
---|
6176 | !-- Reallocate particle array if necessary. |
---|
6177 | IF ( new_size > SIZE(particles) ) THEN |
---|
6178 | CALL realloc_particles_array(i,j,k,new_size) |
---|
6179 | ENDIF |
---|
6180 | old_size = prt_count(k,j,i) |
---|
6181 | ! |
---|
6182 | !-- Calculate new weighting factor. |
---|
6183 | particles(n)%weight_factor = & |
---|
6184 | particles(n)%weight_factor / splitting_factor |
---|
6185 | tmp_particle = particles(n) |
---|
6186 | ! |
---|
6187 | !-- Create splitting_factor-1 new particles. |
---|
6188 | DO jpp = 1, splitting_factor-1 |
---|
6189 | grid_particles(k,j,i)%particles(jpp+old_size) = & |
---|
6190 | tmp_particle |
---|
6191 | ENDDO |
---|
6192 | new_particles_gb = new_particles_gb + splitting_factor - 1 |
---|
6193 | ! |
---|
6194 | !-- Save the new number of super droplets for every grid box. |
---|
6195 | prt_count(k,j,i) = prt_count(k,j,i) + & |
---|
6196 | splitting_factor - 1 |
---|
6197 | ENDIF |
---|
6198 | ENDDO |
---|
6199 | |
---|
6200 | ENDDO |
---|
6201 | ENDDO |
---|
6202 | ENDDO |
---|
6203 | |
---|
6204 | ELSEIF ( i_splitting_mode == 2 ) THEN |
---|
6205 | ! |
---|
6206 | !-- Initialize summing variables. |
---|
6207 | lwc = 0.0_wp |
---|
6208 | lwc_total = 0.0_wp |
---|
6209 | m1 = 0.0_wp |
---|
6210 | m1_total = 0.0_wp |
---|
6211 | m2 = 0.0_wp |
---|
6212 | m2_total = 0.0_wp |
---|
6213 | m3 = 0.0_wp |
---|
6214 | m3_total = 0.0_wp |
---|
6215 | nr = 0.0_wp |
---|
6216 | nrclgb = 0.0_wp |
---|
6217 | nrclgb_total = 0.0_wp |
---|
6218 | nr_total = 0.0_wp |
---|
6219 | rm = 0.0_wp |
---|
6220 | rm_total = 0.0_wp |
---|
6221 | |
---|
6222 | DO i = nxl, nxr |
---|
6223 | DO j = nys, nyn |
---|
6224 | DO k = nzb+1, nzt |
---|
6225 | number_of_particles = prt_count(k,j,i) |
---|
6226 | IF ( number_of_particles <= 0 .OR. & |
---|
6227 | ql(k,j,i) < ql_crit ) CYCLE |
---|
6228 | particles => grid_particles(k,j,i)%particles(1:number_of_particles) |
---|
6229 | nrclgb = nrclgb + 1.0_wp |
---|
6230 | ! |
---|
6231 | !-- Calculate moments of DSD. |
---|
6232 | DO n = 1, number_of_particles |
---|
6233 | IF ( particles(n)%particle_mask .AND. & |
---|
6234 | particles(n)%radius >= r_min ) & |
---|
6235 | THEN |
---|
6236 | nr = nr + particles(n)%weight_factor |
---|
6237 | rm = rm + factor_volume_to_mass * & |
---|
6238 | particles(n)%radius**3 * & |
---|
6239 | particles(n)%weight_factor |
---|
6240 | IF ( isf == 1 ) THEN |
---|
6241 | diameter = particles(n)%radius * 2.0_wp |
---|
6242 | lwc = lwc + factor_volume_to_mass * & |
---|
6243 | particles(n)%radius**3 * & |
---|
6244 | particles(n)%weight_factor |
---|
6245 | m1 = m1 + particles(n)%weight_factor * diameter |
---|
6246 | m2 = m2 + particles(n)%weight_factor * diameter**2 |
---|
6247 | m3 = m3 + particles(n)%weight_factor * diameter**3 |
---|
6248 | ENDIF |
---|
6249 | ENDIF |
---|
6250 | ENDDO |
---|
6251 | ENDDO |
---|
6252 | ENDDO |
---|
6253 | ENDDO |
---|
6254 | |
---|
6255 | #if defined( __parallel ) |
---|
6256 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
6257 | CALL MPI_ALLREDUCE( nr, nr_total, 1 , & |
---|
6258 | MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
6259 | CALL MPI_ALLREDUCE( rm, rm_total, 1 , & |
---|
6260 | MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
6261 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
6262 | CALL MPI_ALLREDUCE( nrclgb, nrclgb_total, 1 , & |
---|
6263 | MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
6264 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
6265 | CALL MPI_ALLREDUCE( lwc, lwc_total, 1 , & |
---|
6266 | MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
6267 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
6268 | CALL MPI_ALLREDUCE( m1, m1_total, 1 , & |
---|
6269 | MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
6270 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
6271 | CALL MPI_ALLREDUCE( m2, m2_total, 1 , & |
---|
6272 | MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
6273 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
6274 | CALL MPI_ALLREDUCE( m3, m3_total, 1 , & |
---|
6275 | MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
6276 | #endif |
---|
6277 | |
---|
6278 | ! |
---|
6279 | !-- Calculate number concentration and mean volume averaged radius. |
---|
6280 | nr_total = MERGE( nr_total / nrclgb_total, & |
---|
6281 | 0.0_wp, nrclgb_total > 0.0_wp & |
---|
6282 | ) |
---|
6283 | rm_total = MERGE( ( rm_total / & |
---|
6284 | ( nr_total * factor_volume_to_mass ) & |
---|
6285 | )**0.3333333_wp, 0.0_wp, nrclgb_total > 0.0_wp & |
---|
6286 | ) |
---|
6287 | ! |
---|
6288 | !-- Check which function should be used to approximate the DSD. |
---|
6289 | IF ( isf == 1 ) THEN |
---|
6290 | lwc_total = MERGE( lwc_total / nrclgb_total, & |
---|
6291 | 0.0_wp, nrclgb_total > 0.0_wp & |
---|
6292 | ) |
---|
6293 | m1_total = MERGE( m1_total / nrclgb_total, & |
---|
6294 | 0.0_wp, nrclgb_total > 0.0_wp & |
---|
6295 | ) |
---|
6296 | m2_total = MERGE( m2_total / nrclgb_total, & |
---|
6297 | 0.0_wp, nrclgb_total > 0.0_wp & |
---|
6298 | ) |
---|
6299 | m3_total = MERGE( m3_total / nrclgb_total, & |
---|
6300 | 0.0_wp, nrclgb_total > 0.0_wp & |
---|
6301 | ) |
---|
6302 | zeta = m1_total * m3_total / m2_total**2 |
---|
6303 | mu = MAX( ( ( 1.0_wp - zeta ) * 2.0_wp + 1.0_wp ) / & |
---|
6304 | ( zeta - 1.0_wp ), 0.0_wp & |
---|
6305 | ) |
---|
6306 | |
---|
6307 | lambda = ( pirho_l * nr_total / lwc_total * & |
---|
6308 | ( mu + 3.0_wp ) * ( mu + 2.0_wp ) * ( mu + 1.0_wp ) & |
---|
6309 | )**0.3333333_wp |
---|
6310 | nr0 = nr_total / gamma( mu + 1.0_wp ) * lambda**( mu + 1.0_wp ) |
---|
6311 | |
---|
6312 | DO n = 0, n_max-1 |
---|
6313 | diameter = r_bin_mid(n) * 2.0_wp |
---|
6314 | an_spl(n) = nr0 * diameter**mu * EXP( -lambda * diameter ) * & |
---|
6315 | ( r_bin(n+1) - r_bin(n) ) * 2.0_wp |
---|
6316 | ENDDO |
---|
6317 | ELSEIF ( isf == 2 ) THEN |
---|
6318 | DO n = 0, n_max-1 |
---|
6319 | an_spl(n) = nr_total / ( SQRT( 2.0_wp * pi ) * & |
---|
6320 | LOG(sigma_log) * r_bin_mid(n) & |
---|
6321 | ) * & |
---|
6322 | EXP( -( LOG( r_bin_mid(n) / rm_total )**2 ) / & |
---|
6323 | ( 2.0_wp * LOG(sigma_log)**2 ) & |
---|
6324 | ) * & |
---|
6325 | ( r_bin(n+1) - r_bin(n) ) |
---|
6326 | ENDDO |
---|
6327 | ELSEIF( isf == 3 ) THEN |
---|
6328 | DO n = 0, n_max-1 |
---|
6329 | an_spl(n) = 3.0_wp * nr_total * r_bin_mid(n)**2 / rm_total**3 * & |
---|
6330 | EXP( - ( r_bin_mid(n)**3 / rm_total**3 ) ) * & |
---|
6331 | ( r_bin(n+1) - r_bin(n) ) |
---|
6332 | ENDDO |
---|
6333 | ENDIF |
---|
6334 | ! |
---|
6335 | !-- Criterion to avoid super droplets with a weighting factor < 1.0. |
---|
6336 | an_spl = MAX(an_spl, 1.0_wp) |
---|
6337 | |
---|
6338 | DO i = nxl, nxr |
---|
6339 | DO j = nys, nyn |
---|
6340 | DO k = nzb+1, nzt |
---|
6341 | number_of_particles = prt_count(k,j,i) |
---|
6342 | IF ( number_of_particles <= 0 .OR. & |
---|
6343 | ql(k,j,i) < ql_crit ) CYCLE |
---|
6344 | particles => grid_particles(k,j,i)%particles(1:number_of_particles) |
---|
6345 | new_particles_gb = 0 |
---|
6346 | ! |
---|
6347 | !-- Start splitting operations. Each particle is checked if it |
---|
6348 | !-- fulfilled the splitting criterion's. In splitting mode 'cl_av' |
---|
6349 | !-- a critical radius (radius_split) and a splitting function must |
---|
6350 | !-- be prescribed (see particles_par). The critical weighting factor |
---|
6351 | !-- is calculated while approximating a 'gamma', 'log' or 'exp'- |
---|
6352 | !-- drop size distribution. In this mode the DSD is calculated as |
---|
6353 | !-- an average over all cloudy grid boxes. Super droplets which |
---|
6354 | !-- have a larger radius and larger weighting factor are split into |
---|
6355 | !-- 'splitting_factor' super droplets. In this case the splitting |
---|
6356 | !-- factor is calculated of weighting factor of the super droplet |
---|
6357 | !-- and the approximated number concentration for droplet of such |
---|
6358 | !-- a size. Due to the splitting, the weighting factor of the |
---|
6359 | !-- super droplet and all created clones is reduced by the factor |
---|
6360 | !-- of 'splitting_facor'. |
---|
6361 | DO n = 1, number_of_particles |
---|
6362 | DO np = 0, n_max-1 |
---|
6363 | IF ( r_bin(np) >= radius_split .AND. & |
---|
6364 | particles(n)%particle_mask .AND. & |
---|
6365 | particles(n)%radius >= r_bin(np) .AND. & |
---|
6366 | particles(n)%radius < r_bin(np+1) .AND. & |
---|
6367 | particles(n)%weight_factor >= an_spl(np) ) & |
---|
6368 | THEN |
---|
6369 | ! |
---|
6370 | !-- Calculate splitting factor |
---|
6371 | splitting_factor = & |
---|
6372 | MIN( INT( particles(n)%weight_factor / & |
---|
6373 | an_spl(np) & |
---|
6374 | ), splitting_factor_max & |
---|
6375 | ) |
---|
6376 | IF ( splitting_factor < 2 ) CYCLE |
---|
6377 | ! |
---|
6378 | !-- Calculate the new number of particles. |
---|
6379 | new_size = prt_count(k,j,i) + splitting_factor - 1 |
---|
6380 | ! |
---|
6381 | !-- Cycle if maximum number of particles per grid box |
---|
6382 | !-- is greater than the allowed maximum number. |
---|
6383 | IF ( new_size >= max_number_particles_per_gridbox ) & |
---|
6384 | CYCLE |
---|
6385 | ! |
---|
6386 | !-- Reallocate particle array if necessary. |
---|
6387 | IF ( new_size > SIZE(particles) ) THEN |
---|
6388 | CALL realloc_particles_array(i,j,k,new_size) |
---|
6389 | ENDIF |
---|
6390 | old_size = prt_count(k,j,i) |
---|
6391 | new_particles_gb = new_particles_gb + & |
---|
6392 | splitting_factor - 1 |
---|
6393 | ! |
---|
6394 | !-- Calculate new weighting factor. |
---|
6395 | particles(n)%weight_factor = & |
---|
6396 | particles(n)%weight_factor / splitting_factor |
---|
6397 | tmp_particle = particles(n) |
---|
6398 | ! |
---|
6399 | !-- Create splitting_factor-1 new particles. |
---|
6400 | DO jpp = 1, splitting_factor-1 |
---|
6401 | grid_particles(k,j,i)%particles(jpp+old_size) = & |
---|
6402 | tmp_particle |
---|
6403 | ENDDO |
---|
6404 | ! |
---|
6405 | !-- Save the new number of super droplets. |
---|
6406 | prt_count(k,j,i) = prt_count(k,j,i) + & |
---|
6407 | splitting_factor - 1 |
---|
6408 | ENDIF |
---|
6409 | ENDDO |
---|
6410 | ENDDO |
---|
6411 | |
---|
6412 | ENDDO |
---|
6413 | ENDDO |
---|
6414 | ENDDO |
---|
6415 | |
---|
6416 | ELSEIF ( i_splitting_mode == 3 ) THEN |
---|
6417 | |
---|
6418 | DO i = nxl, nxr |
---|
6419 | DO j = nys, nyn |
---|
6420 | DO k = nzb+1, nzt |
---|
6421 | |
---|
6422 | ! |
---|
6423 | !-- Initialize summing variables. |
---|
6424 | lwc = 0.0_wp |
---|
6425 | m1 = 0.0_wp |
---|
6426 | m2 = 0.0_wp |
---|
6427 | m3 = 0.0_wp |
---|
6428 | nr = 0.0_wp |
---|
6429 | rm = 0.0_wp |
---|
6430 | |
---|
6431 | new_particles_gb = 0 |
---|
6432 | number_of_particles = prt_count(k,j,i) |
---|
6433 | IF ( number_of_particles <= 0 .OR. & |
---|
6434 | ql(k,j,i) < ql_crit ) CYCLE |
---|
6435 | particles => grid_particles(k,j,i)%particles |
---|
6436 | ! |
---|
6437 | !-- Calculate moments of DSD. |
---|
6438 | DO n = 1, number_of_particles |
---|
6439 | IF ( particles(n)%particle_mask .AND. & |
---|
6440 | particles(n)%radius >= r_min ) & |
---|
6441 | THEN |
---|
6442 | nr = nr + particles(n)%weight_factor |
---|
6443 | rm = rm + factor_volume_to_mass * & |
---|
6444 | particles(n)%radius**3 * & |
---|
6445 | particles(n)%weight_factor |
---|
6446 | IF ( isf == 1 ) THEN |
---|
6447 | diameter = particles(n)%radius * 2.0_wp |
---|
6448 | lwc = lwc + factor_volume_to_mass * & |
---|
6449 | particles(n)%radius**3 * & |
---|
6450 | particles(n)%weight_factor |
---|
6451 | m1 = m1 + particles(n)%weight_factor * diameter |
---|
6452 | m2 = m2 + particles(n)%weight_factor * diameter**2 |
---|
6453 | m3 = m3 + particles(n)%weight_factor * diameter**3 |
---|
6454 | ENDIF |
---|
6455 | ENDIF |
---|
6456 | ENDDO |
---|
6457 | |
---|
6458 | IF ( nr <= 0.0 .OR. rm <= 0.0_wp ) CYCLE |
---|
6459 | ! |
---|
6460 | !-- Calculate mean volume averaged radius. |
---|
6461 | rm = ( rm / ( nr * factor_volume_to_mass ) )**0.3333333_wp |
---|
6462 | ! |
---|
6463 | !-- Check which function should be used to approximate the DSD. |
---|
6464 | IF ( isf == 1 ) THEN |
---|
6465 | ! |
---|
6466 | !-- Gamma size distribution to calculate |
---|
6467 | !-- critical weight_factor (e.g. Marshall + Palmer, 1948). |
---|
6468 | zeta = m1 * m3 / m2**2 |
---|
6469 | mu = MAX( ( ( 1.0_wp - zeta ) * 2.0_wp + 1.0_wp ) / & |
---|
6470 | ( zeta - 1.0_wp ), 0.0_wp & |
---|
6471 | ) |
---|
6472 | lambda = ( pirho_l * nr / lwc * & |
---|
6473 | ( mu + 3.0_wp ) * ( mu + 2.0_wp ) * & |
---|
6474 | ( mu + 1.0_wp ) & |
---|
6475 | )**0.3333333_wp |
---|
6476 | nr0 = ( nr / (gamma( mu + 1.0_wp ) ) ) * & |
---|
6477 | lambda**( mu + 1.0_wp ) |
---|
6478 | |
---|
6479 | DO n = 0, n_max-1 |
---|
6480 | diameter = r_bin_mid(n) * 2.0_wp |
---|
6481 | an_spl(n) = nr0 * diameter**mu * & |
---|
6482 | EXP( -lambda * diameter ) * & |
---|
6483 | ( r_bin(n+1) - r_bin(n) ) * 2.0_wp |
---|
6484 | ENDDO |
---|
6485 | ELSEIF ( isf == 2 ) THEN |
---|
6486 | ! |
---|
6487 | !-- Lognormal size distribution to calculate critical |
---|
6488 | !-- weight_factor (e.g. Levin, 1971, Bradley + Stow, 1974). |
---|
6489 | DO n = 0, n_max-1 |
---|
6490 | an_spl(n) = nr / ( SQRT( 2.0_wp * pi ) * & |
---|
6491 | LOG(sigma_log) * r_bin_mid(n) & |
---|
6492 | ) * & |
---|
6493 | EXP( -( LOG( r_bin_mid(n) / rm )**2 ) / & |
---|
6494 | ( 2.0_wp * LOG(sigma_log)**2 ) & |
---|
6495 | ) * & |
---|
6496 | ( r_bin(n+1) - r_bin(n) ) |
---|
6497 | ENDDO |
---|
6498 | ELSEIF ( isf == 3 ) THEN |
---|
6499 | ! |
---|
6500 | !-- Exponential size distribution to calculate critical |
---|
6501 | !-- weight_factor (e.g. Berry + Reinhardt, 1974). |
---|
6502 | DO n = 0, n_max-1 |
---|
6503 | an_spl(n) = 3.0_wp * nr * r_bin_mid(n)**2 / rm**3 * & |
---|
6504 | EXP( - ( r_bin_mid(n)**3 / rm**3 ) ) * & |
---|
6505 | ( r_bin(n+1) - r_bin(n) ) |
---|
6506 | ENDDO |
---|
6507 | ENDIF |
---|
6508 | |
---|
6509 | ! |
---|
6510 | !-- Criterion to avoid super droplets with a weighting factor < 1.0. |
---|
6511 | an_spl = MAX(an_spl, 1.0_wp) |
---|
6512 | ! |
---|
6513 | !-- Start splitting operations. Each particle is checked if it |
---|
6514 | !-- fulfilled the splitting criterion's. In splitting mode 'gb_av' |
---|
6515 | !-- a critical radius (radius_split) and a splitting function must |
---|
6516 | !-- be prescribed (see particles_par). The critical weighting factor |
---|
6517 | !-- is calculated while appoximating a 'gamma', 'log' or 'exp'- |
---|
6518 | !-- drop size distribution. In this mode a DSD is calculated for |
---|
6519 | !-- every cloudy grid box. Super droplets which have a larger |
---|
6520 | !-- radius and larger weighting factor are split into |
---|
6521 | !-- 'splitting_factor' super droplets. In this case the splitting |
---|
6522 | !-- factor is calculated of weighting factor of the super droplet |
---|
6523 | !-- and theapproximated number concentration for droplet of such |
---|
6524 | !-- a size. Due to the splitting, the weighting factor of the |
---|
6525 | !-- super droplet and all created clones is reduced by the factor |
---|
6526 | !-- of 'splitting_facor'. |
---|
6527 | DO n = 1, number_of_particles |
---|
6528 | DO np = 0, n_max-1 |
---|
6529 | IF ( r_bin(np) >= radius_split .AND. & |
---|
6530 | particles(n)%particle_mask .AND. & |
---|
6531 | particles(n)%radius >= r_bin(np) .AND. & |
---|
6532 | particles(n)%radius < r_bin(np+1) .AND. & |
---|
6533 | particles(n)%weight_factor >= an_spl(np) ) & |
---|
6534 | THEN |
---|
6535 | ! |
---|
6536 | !-- Calculate splitting factor. |
---|
6537 | splitting_factor = & |
---|
6538 | MIN( INT( particles(n)%weight_factor / & |
---|
6539 | an_spl(np) & |
---|
6540 | ), splitting_factor_max & |
---|
6541 | ) |
---|
6542 | IF ( splitting_factor < 2 ) CYCLE |
---|
6543 | |
---|
6544 | ! |
---|
6545 | !-- Calculate the new number of particles. |
---|
6546 | new_size = prt_count(k,j,i) + splitting_factor - 1 |
---|
6547 | ! |
---|
6548 | !-- Cycle if maximum number of particles per grid box |
---|
6549 | !-- is greater than the allowed maximum number. |
---|
6550 | IF ( new_size >= max_number_particles_per_gridbox ) & |
---|
6551 | CYCLE |
---|
6552 | ! |
---|
6553 | !-- Reallocate particle array if necessary. |
---|
6554 | IF ( new_size > SIZE(particles) ) THEN |
---|
6555 | CALL realloc_particles_array(i,j,k,new_size) |
---|
6556 | ENDIF |
---|
6557 | ! |
---|
6558 | !-- Calculate new weighting factor. |
---|
6559 | particles(n)%weight_factor = & |
---|
6560 | particles(n)%weight_factor / splitting_factor |
---|
6561 | tmp_particle = particles(n) |
---|
6562 | old_size = prt_count(k,j,i) |
---|
6563 | ! |
---|
6564 | !-- Create splitting_factor-1 new particles. |
---|
6565 | DO jpp = 1, splitting_factor-1 |
---|
6566 | grid_particles(k,j,i)%particles(jpp+old_size) = & |
---|
6567 | tmp_particle |
---|
6568 | ENDDO |
---|
6569 | ! |
---|
6570 | !-- Save the new number of droplets for every grid box. |
---|
6571 | prt_count(k,j,i) = prt_count(k,j,i) + & |
---|
6572 | splitting_factor - 1 |
---|
6573 | new_particles_gb = new_particles_gb + & |
---|
6574 | splitting_factor - 1 |
---|
6575 | ENDIF |
---|
6576 | ENDDO |
---|
6577 | ENDDO |
---|
6578 | ENDDO |
---|
6579 | ENDDO |
---|
6580 | ENDDO |
---|
6581 | ENDIF |
---|
6582 | |
---|
6583 | CALL cpu_log( log_point_s(80), 'lpm_splitting', 'stop' ) |
---|
6584 | |
---|
6585 | END SUBROUTINE lpm_splitting |
---|
6586 | |
---|
6587 | |
---|
6588 | !------------------------------------------------------------------------------! |
---|
6589 | ! Description: |
---|
6590 | ! ------------ |
---|
6591 | ! This routine is a part of the Lagrangian particle model. Two Super droplets |
---|
6592 | ! which fulfill certain criterion's (e.g. a big weighting factor and a small |
---|
6593 | ! radius) can be merged into one super droplet with a increased number of |
---|
6594 | ! represented particles of the super droplet. This mechanism ensures an |
---|
6595 | ! improved a feasible amount of computational costs. The limits of particle |
---|
6596 | ! creation should be chosen carefully! The idea of this algorithm is based on |
---|
6597 | ! Unterstrasser and Soelch, 2014. |
---|
6598 | !------------------------------------------------------------------------------! |
---|
6599 | SUBROUTINE lpm_merging |
---|
6600 | |
---|
6601 | INTEGER(iwp) :: i !< |
---|
6602 | INTEGER(iwp) :: j !< |
---|
6603 | INTEGER(iwp) :: k !< |
---|
6604 | INTEGER(iwp) :: n !< |
---|
6605 | INTEGER(iwp) :: merge_drp = 0 !< number of merged droplets |
---|
6606 | |
---|
6607 | |
---|
6608 | REAL(wp) :: ql_crit = 1.0E-5_wp !< threshold lwc for cloudy grid cells |
---|
6609 | !< (e.g. Siebesma et al 2003, JAS, 60) |
---|
6610 | |
---|
6611 | CALL cpu_log( log_point_s(81), 'lpm_merging', 'start' ) |
---|
6612 | |
---|
6613 | merge_drp = 0 |
---|
6614 | |
---|
6615 | IF ( weight_factor_merge == -1.0_wp ) THEN |
---|
6616 | weight_factor_merge = 0.5_wp * initial_weighting_factor |
---|
6617 | ENDIF |
---|
6618 | |
---|
6619 | DO i = nxl, nxr |
---|
6620 | DO j = nys, nyn |
---|
6621 | DO k = nzb+1, nzt |
---|
6622 | |
---|
6623 | number_of_particles = prt_count(k,j,i) |
---|
6624 | IF ( number_of_particles <= 0 .OR. & |
---|
6625 | ql(k,j,i) >= ql_crit ) CYCLE |
---|
6626 | particles => grid_particles(k,j,i)%particles(1:number_of_particles) |
---|
6627 | ! |
---|
6628 | !-- Start merging operations: This routine delete super droplets with |
---|
6629 | !-- a small radius (radius <= radius_merge) and a low weighting |
---|
6630 | !-- factor (weight_factor <= weight_factor_merge). The number of |
---|
6631 | !-- represented particles will be added to the next particle of the |
---|
6632 | !-- particle array. Tests showed that this simplified method can be |
---|
6633 | !-- used because it will only take place outside of cloudy grid |
---|
6634 | !-- boxes where ql <= 1.0E-5 kg/kg. Therefore, especially former cloned |
---|
6635 | !-- and subsequent evaporated super droplets will be merged. |
---|
6636 | DO n = 1, number_of_particles-1 |
---|
6637 | IF ( particles(n)%particle_mask .AND. & |
---|
6638 | particles(n+1)%particle_mask .AND. & |
---|
6639 | particles(n)%radius <= radius_merge .AND. & |
---|
6640 | particles(n)%weight_factor <= weight_factor_merge ) & |
---|
6641 | THEN |
---|
6642 | particles(n+1)%weight_factor = & |
---|
6643 | particles(n+1)%weight_factor + & |
---|
6644 | ( particles(n)%radius**3 / & |
---|
6645 | particles(n+1)%radius**3 * & |
---|
6646 | particles(n)%weight_factor & |
---|
6647 | ) |
---|
6648 | particles(n)%particle_mask = .FALSE. |
---|
6649 | deleted_particles = deleted_particles + 1 |
---|
6650 | merge_drp = merge_drp + 1 |
---|
6651 | |
---|
6652 | ENDIF |
---|
6653 | ENDDO |
---|
6654 | ENDDO |
---|
6655 | ENDDO |
---|
6656 | ENDDO |
---|
6657 | |
---|
6658 | |
---|
6659 | CALL cpu_log( log_point_s(81), 'lpm_merging', 'stop' ) |
---|
6660 | |
---|
6661 | END SUBROUTINE lpm_merging |
---|
6662 | |
---|
6663 | |
---|
6664 | |
---|
6665 | |
---|
6666 | !------------------------------------------------------------------------------! |
---|
6667 | ! Description: |
---|
6668 | ! ------------ |
---|
6669 | !> Exchange between subdomains. |
---|
6670 | !> As soon as one particle has moved beyond the boundary of the domain, it |
---|
6671 | !> is included in the relevant transfer arrays and marked for subsequent |
---|
6672 | !> deletion on this PE. |
---|
6673 | !> First sweep for crossings in x direction. Find out first the number of |
---|
6674 | !> particles to be transferred and allocate temporary arrays needed to store |
---|
6675 | !> them. |
---|
6676 | !> For a one-dimensional decomposition along y, no transfer is necessary, |
---|
6677 | !> because the particle remains on the PE, but the particle coordinate has to |
---|
6678 | !> be adjusted. |
---|
6679 | !------------------------------------------------------------------------------! |
---|
6680 | SUBROUTINE lpm_exchange_horiz |
---|
6681 | |
---|
6682 | INTEGER(iwp) :: i !< grid index (x) of particle positition |
---|
6683 | INTEGER(iwp) :: ip !< index variable along x |
---|
6684 | INTEGER(iwp) :: j !< grid index (y) of particle positition |
---|
6685 | INTEGER(iwp) :: jp !< index variable along y |
---|
6686 | INTEGER(iwp) :: kp !< index variable along z |
---|
6687 | INTEGER(iwp) :: n !< particle index variable |
---|
6688 | INTEGER(iwp) :: par_size !< Particle size in bytes |
---|
6689 | INTEGER(iwp) :: trlp_count !< number of particles send to left PE |
---|
6690 | INTEGER(iwp) :: trlp_count_recv !< number of particles receive from right PE |
---|
6691 | INTEGER(iwp) :: trnp_count !< number of particles send to north PE |
---|
6692 | INTEGER(iwp) :: trnp_count_recv !< number of particles receive from south PE |
---|
6693 | INTEGER(iwp) :: trrp_count !< number of particles send to right PE |
---|
6694 | INTEGER(iwp) :: trrp_count_recv !< number of particles receive from left PE |
---|
6695 | INTEGER(iwp) :: trsp_count !< number of particles send to south PE |
---|
6696 | INTEGER(iwp) :: trsp_count_recv !< number of particles receive from north PE |
---|
6697 | |
---|
6698 | TYPE(particle_type), DIMENSION(:), ALLOCATABLE :: rvlp !< particles received from right PE |
---|
6699 | TYPE(particle_type), DIMENSION(:), ALLOCATABLE :: rvnp !< particles received from south PE |
---|
6700 | TYPE(particle_type), DIMENSION(:), ALLOCATABLE :: rvrp !< particles received from left PE |
---|
6701 | TYPE(particle_type), DIMENSION(:), ALLOCATABLE :: rvsp !< particles received from north PE |
---|
6702 | TYPE(particle_type), DIMENSION(:), ALLOCATABLE :: trlp !< particles send to left PE |
---|
6703 | TYPE(particle_type), DIMENSION(:), ALLOCATABLE :: trnp !< particles send to north PE |
---|
6704 | TYPE(particle_type), DIMENSION(:), ALLOCATABLE :: trrp !< particles send to right PE |
---|
6705 | TYPE(particle_type), DIMENSION(:), ALLOCATABLE :: trsp !< particles send to south PE |
---|
6706 | |
---|
6707 | CALL cpu_log( log_point_s(23), 'lpm_exchange_horiz', 'start' ) |
---|
6708 | |
---|
6709 | #if defined( __parallel ) |
---|
6710 | |
---|
6711 | ! |
---|
6712 | !-- Exchange between subdomains. |
---|
6713 | !-- As soon as one particle has moved beyond the boundary of the domain, it |
---|
6714 | !-- is included in the relevant transfer arrays and marked for subsequent |
---|
6715 | !-- deletion on this PE. |
---|
6716 | !-- First sweep for crossings in x direction. Find out first the number of |
---|
6717 | !-- particles to be transferred and allocate temporary arrays needed to store |
---|
6718 | !-- them. |
---|
6719 | !-- For a one-dimensional decomposition along y, no transfer is necessary, |
---|
6720 | !-- because the particle remains on the PE, but the particle coordinate has to |
---|
6721 | !-- be adjusted. |
---|
6722 | trlp_count = 0 |
---|
6723 | trrp_count = 0 |
---|
6724 | |
---|
6725 | trlp_count_recv = 0 |
---|
6726 | trrp_count_recv = 0 |
---|
6727 | |
---|
6728 | IF ( pdims(1) /= 1 ) THEN |
---|
6729 | ! |
---|
6730 | !-- First calculate the storage necessary for sending and receiving the data. |
---|
6731 | !-- Compute only first (nxl) and last (nxr) loop iterration. |
---|
6732 | DO ip = nxl, nxr, nxr - nxl |
---|
6733 | DO jp = nys, nyn |
---|
6734 | DO kp = nzb+1, nzt |
---|
6735 | |
---|
6736 | number_of_particles = prt_count(kp,jp,ip) |
---|
6737 | IF ( number_of_particles <= 0 ) CYCLE |
---|
6738 | particles => grid_particles(kp,jp,ip)%particles(1:number_of_particles) |
---|
6739 | DO n = 1, number_of_particles |
---|
6740 | IF ( particles(n)%particle_mask ) THEN |
---|
6741 | i = particles(n)%x * ddx |
---|
6742 | ! |
---|
6743 | !-- Above calculation does not work for indices less than zero |
---|
6744 | IF ( particles(n)%x < 0.0_wp) i = -1 |
---|
6745 | |
---|
6746 | IF ( i < nxl ) THEN |
---|
6747 | trlp_count = trlp_count + 1 |
---|
6748 | ELSEIF ( i > nxr ) THEN |
---|
6749 | trrp_count = trrp_count + 1 |
---|
6750 | ENDIF |
---|
6751 | ENDIF |
---|
6752 | ENDDO |
---|
6753 | |
---|
6754 | ENDDO |
---|
6755 | ENDDO |
---|
6756 | ENDDO |
---|
6757 | |
---|
6758 | IF ( trlp_count == 0 ) trlp_count = 1 |
---|
6759 | IF ( trrp_count == 0 ) trrp_count = 1 |
---|
6760 | |
---|
6761 | ALLOCATE( trlp(trlp_count), trrp(trrp_count) ) |
---|
6762 | |
---|
6763 | trlp = zero_particle |
---|
6764 | trrp = zero_particle |
---|
6765 | |
---|
6766 | trlp_count = 0 |
---|
6767 | trrp_count = 0 |
---|
6768 | |
---|
6769 | ENDIF |
---|
6770 | ! |
---|
6771 | !-- Compute only first (nxl) and last (nxr) loop iterration |
---|
6772 | DO ip = nxl, nxr, nxr-nxl |
---|
6773 | DO jp = nys, nyn |
---|
6774 | DO kp = nzb+1, nzt |
---|
6775 | number_of_particles = prt_count(kp,jp,ip) |
---|
6776 | IF ( number_of_particles <= 0 ) CYCLE |
---|
6777 | particles => grid_particles(kp,jp,ip)%particles(1:number_of_particles) |
---|
6778 | DO n = 1, number_of_particles |
---|
6779 | ! |
---|
6780 | !-- Only those particles that have not been marked as 'deleted' may |
---|
6781 | !-- be moved. |
---|
6782 | IF ( particles(n)%particle_mask ) THEN |
---|
6783 | |
---|
6784 | i = particles(n)%x * ddx |
---|
6785 | ! |
---|
6786 | !-- Above calculation does not work for indices less than zero |
---|
6787 | IF ( particles(n)%x < 0.0_wp ) i = -1 |
---|
6788 | |
---|
6789 | IF ( i < nxl ) THEN |
---|
6790 | IF ( i < 0 ) THEN |
---|
6791 | ! |
---|
6792 | !-- Apply boundary condition along x |
---|
6793 | IF ( ibc_par_lr == 0 ) THEN |
---|
6794 | ! |
---|
6795 | !-- Cyclic condition |
---|
6796 | IF ( pdims(1) == 1 ) THEN |
---|
6797 | particles(n)%x = ( nx + 1 ) * dx + particles(n)%x |
---|
6798 | particles(n)%origin_x = ( nx + 1 ) * dx + & |
---|
6799 | particles(n)%origin_x |
---|
6800 | ELSE |
---|
6801 | trlp_count = trlp_count + 1 |
---|
6802 | trlp(trlp_count) = particles(n) |
---|
6803 | trlp(trlp_count)%x = ( nx + 1 ) * dx + trlp(trlp_count)%x |
---|
6804 | trlp(trlp_count)%origin_x = trlp(trlp_count)%origin_x + & |
---|
6805 | ( nx + 1 ) * dx |
---|
6806 | particles(n)%particle_mask = .FALSE. |
---|
6807 | deleted_particles = deleted_particles + 1 |
---|
6808 | |
---|
6809 | IF ( trlp(trlp_count)%x >= (nx + 1)* dx - 1.0E-12_wp ) THEN |
---|
6810 | trlp(trlp_count)%x = trlp(trlp_count)%x - 1.0E-10_wp |
---|
6811 | !++ why is 1 subtracted in next statement??? |
---|
6812 | trlp(trlp_count)%origin_x = trlp(trlp_count)%origin_x - 1 |
---|
6813 | ENDIF |
---|
6814 | |
---|
6815 | ENDIF |
---|
6816 | |
---|
6817 | ELSEIF ( ibc_par_lr == 1 ) THEN |
---|
6818 | ! |
---|
6819 | !-- Particle absorption |
---|
6820 | particles(n)%particle_mask = .FALSE. |
---|
6821 | deleted_particles = deleted_particles + 1 |
---|
6822 | |
---|
6823 | ELSEIF ( ibc_par_lr == 2 ) THEN |
---|
6824 | ! |
---|
6825 | !-- Particle reflection |
---|
6826 | particles(n)%x = -particles(n)%x |
---|
6827 | particles(n)%speed_x = -particles(n)%speed_x |
---|
6828 | |
---|
6829 | ENDIF |
---|
6830 | ELSE |
---|
6831 | ! |
---|
6832 | !-- Store particle data in the transfer array, which will be |
---|
6833 | !-- send to the neighbouring PE |
---|
6834 | trlp_count = trlp_count + 1 |
---|
6835 | trlp(trlp_count) = particles(n) |
---|
6836 | particles(n)%particle_mask = .FALSE. |
---|
6837 | deleted_particles = deleted_particles + 1 |
---|
6838 | |
---|
6839 | ENDIF |
---|
6840 | |
---|
6841 | ELSEIF ( i > nxr ) THEN |
---|
6842 | IF ( i > nx ) THEN |
---|
6843 | ! |
---|
6844 | !-- Apply boundary condition along x |
---|
6845 | IF ( ibc_par_lr == 0 ) THEN |
---|
6846 | ! |
---|
6847 | !-- Cyclic condition |
---|
6848 | IF ( pdims(1) == 1 ) THEN |
---|
6849 | particles(n)%x = particles(n)%x - ( nx + 1 ) * dx |
---|
6850 | particles(n)%origin_x = particles(n)%origin_x - & |
---|
6851 | ( nx + 1 ) * dx |
---|
6852 | ELSE |
---|
6853 | trrp_count = trrp_count + 1 |
---|
6854 | trrp(trrp_count) = particles(n) |
---|
6855 | trrp(trrp_count)%x = trrp(trrp_count)%x - ( nx + 1 ) * dx |
---|
6856 | trrp(trrp_count)%origin_x = trrp(trrp_count)%origin_x - & |
---|
6857 | ( nx + 1 ) * dx |
---|
6858 | particles(n)%particle_mask = .FALSE. |
---|
6859 | deleted_particles = deleted_particles + 1 |
---|
6860 | |
---|
6861 | ENDIF |
---|
6862 | |
---|
6863 | ELSEIF ( ibc_par_lr == 1 ) THEN |
---|
6864 | ! |
---|
6865 | !-- Particle absorption |
---|
6866 | particles(n)%particle_mask = .FALSE. |
---|
6867 | deleted_particles = deleted_particles + 1 |
---|
6868 | |
---|
6869 | ELSEIF ( ibc_par_lr == 2 ) THEN |
---|
6870 | ! |
---|
6871 | !-- Particle reflection |
---|
6872 | particles(n)%x = 2 * ( nx * dx ) - particles(n)%x |
---|
6873 | particles(n)%speed_x = -particles(n)%speed_x |
---|
6874 | |
---|
6875 | ENDIF |
---|
6876 | ELSE |
---|
6877 | ! |
---|
6878 | !-- Store particle data in the transfer array, which will be send |
---|
6879 | !-- to the neighbouring PE |
---|
6880 | trrp_count = trrp_count + 1 |
---|
6881 | trrp(trrp_count) = particles(n) |
---|
6882 | particles(n)%particle_mask = .FALSE. |
---|
6883 | deleted_particles = deleted_particles + 1 |
---|
6884 | |
---|
6885 | ENDIF |
---|
6886 | |
---|
6887 | ENDIF |
---|
6888 | ENDIF |
---|
6889 | |
---|
6890 | ENDDO |
---|
6891 | ENDDO |
---|
6892 | ENDDO |
---|
6893 | ENDDO |
---|
6894 | |
---|
6895 | ! |
---|
6896 | !-- STORAGE_SIZE returns the storage size of argument A in bits. However , it |
---|
6897 | !-- is needed in bytes. The function C_SIZEOF which produces this value directly |
---|
6898 | !-- causes problems with gfortran. For this reason the use of C_SIZEOF is avoided |
---|
6899 | par_size = STORAGE_SIZE(trlp(1))/8 |
---|
6900 | |
---|
6901 | |
---|
6902 | ! |
---|
6903 | !-- Allocate arrays required for north-south exchange, as these |
---|
6904 | !-- are used directly after particles are exchange along x-direction. |
---|
6905 | ALLOCATE( move_also_north(1:NR_2_direction_move) ) |
---|
6906 | ALLOCATE( move_also_south(1:NR_2_direction_move) ) |
---|
6907 | |
---|
6908 | nr_move_north = 0 |
---|
6909 | nr_move_south = 0 |
---|
6910 | ! |
---|
6911 | !-- Send left boundary, receive right boundary (but first exchange how many |
---|
6912 | !-- and check, if particle storage must be extended) |
---|
6913 | IF ( pdims(1) /= 1 ) THEN |
---|
6914 | |
---|
6915 | CALL MPI_SENDRECV( trlp_count, 1, MPI_INTEGER, pleft, 0, & |
---|
6916 | trrp_count_recv, 1, MPI_INTEGER, pright, 0, & |
---|
6917 | comm2d, status, ierr ) |
---|
6918 | |
---|
6919 | ALLOCATE(rvrp(MAX(1,trrp_count_recv))) |
---|
6920 | |
---|
6921 | CALL MPI_SENDRECV( trlp, max(1,trlp_count)*par_size, MPI_BYTE,& |
---|
6922 | pleft, 1, rvrp, & |
---|
6923 | max(1,trrp_count_recv)*par_size, MPI_BYTE, pright, 1,& |
---|
6924 | comm2d, status, ierr ) |
---|
6925 | |
---|
6926 | IF ( trrp_count_recv > 0 ) CALL lpm_add_particles_to_gridcell(rvrp(1:trrp_count_recv)) |
---|
6927 | |
---|
6928 | DEALLOCATE(rvrp) |
---|
6929 | |
---|
6930 | ! |
---|
6931 | !-- Send right boundary, receive left boundary |
---|
6932 | CALL MPI_SENDRECV( trrp_count, 1, MPI_INTEGER, pright, 0, & |
---|
6933 | trlp_count_recv, 1, MPI_INTEGER, pleft, 0, & |
---|
6934 | comm2d, status, ierr ) |
---|
6935 | |
---|
6936 | ALLOCATE(rvlp(MAX(1,trlp_count_recv))) |
---|
6937 | ! |
---|
6938 | !-- This MPI_SENDRECV should work even with odd mixture on 32 and 64 Bit |
---|
6939 | !-- variables in structure particle_type (due to the calculation of par_size) |
---|
6940 | CALL MPI_SENDRECV( trrp, max(1,trrp_count)*par_size, MPI_BYTE,& |
---|
6941 | pright, 1, rvlp, & |
---|
6942 | max(1,trlp_count_recv)*par_size, MPI_BYTE, pleft, 1, & |
---|
6943 | comm2d, status, ierr ) |
---|
6944 | |
---|
6945 | IF ( trlp_count_recv > 0 ) CALL lpm_add_particles_to_gridcell(rvlp(1:trlp_count_recv)) |
---|
6946 | |
---|
6947 | DEALLOCATE( rvlp ) |
---|
6948 | DEALLOCATE( trlp, trrp ) |
---|
6949 | |
---|
6950 | ENDIF |
---|
6951 | |
---|
6952 | ! |
---|
6953 | !-- Check whether particles have crossed the boundaries in y direction. Note |
---|
6954 | !-- that this case can also apply to particles that have just been received |
---|
6955 | !-- from the adjacent right or left PE. |
---|
6956 | !-- Find out first the number of particles to be transferred and allocate |
---|
6957 | !-- temporary arrays needed to store them. |
---|
6958 | !-- For a one-dimensional decomposition along y, no transfer is necessary, |
---|
6959 | !-- because the particle remains on the PE. |
---|
6960 | trsp_count = nr_move_south |
---|
6961 | trnp_count = nr_move_north |
---|
6962 | |
---|
6963 | trsp_count_recv = 0 |
---|
6964 | trnp_count_recv = 0 |
---|
6965 | |
---|
6966 | IF ( pdims(2) /= 1 ) THEN |
---|
6967 | ! |
---|
6968 | !-- First calculate the storage necessary for sending and receiving the |
---|
6969 | !-- data |
---|
6970 | DO ip = nxl, nxr |
---|
6971 | DO jp = nys, nyn, nyn-nys !compute only first (nys) and last (nyn) loop iterration |
---|
6972 | DO kp = nzb+1, nzt |
---|
6973 | number_of_particles = prt_count(kp,jp,ip) |
---|
6974 | IF ( number_of_particles <= 0 ) CYCLE |
---|
6975 | particles => grid_particles(kp,jp,ip)%particles(1:number_of_particles) |
---|
6976 | DO n = 1, number_of_particles |
---|
6977 | IF ( particles(n)%particle_mask ) THEN |
---|
6978 | j = particles(n)%y * ddy |
---|
6979 | ! |
---|
6980 | !-- Above calculation does not work for indices less than zero |
---|
6981 | IF ( particles(n)%y < 0.0_wp) j = -1 |
---|
6982 | |
---|
6983 | IF ( j < nys ) THEN |
---|
6984 | trsp_count = trsp_count + 1 |
---|
6985 | ELSEIF ( j > nyn ) THEN |
---|
6986 | trnp_count = trnp_count + 1 |
---|
6987 | ENDIF |
---|
6988 | ENDIF |
---|
6989 | ENDDO |
---|
6990 | ENDDO |
---|
6991 | ENDDO |
---|
6992 | ENDDO |
---|
6993 | |
---|
6994 | IF ( trsp_count == 0 ) trsp_count = 1 |
---|
6995 | IF ( trnp_count == 0 ) trnp_count = 1 |
---|
6996 | |
---|
6997 | ALLOCATE( trsp(trsp_count), trnp(trnp_count) ) |
---|
6998 | |
---|
6999 | trsp = zero_particle |
---|
7000 | trnp = zero_particle |
---|
7001 | |
---|
7002 | trsp_count = nr_move_south |
---|
7003 | trnp_count = nr_move_north |
---|
7004 | |
---|
7005 | trsp(1:nr_move_south) = move_also_south(1:nr_move_south) |
---|
7006 | trnp(1:nr_move_north) = move_also_north(1:nr_move_north) |
---|
7007 | |
---|
7008 | ENDIF |
---|
7009 | |
---|
7010 | DO ip = nxl, nxr |
---|
7011 | DO jp = nys, nyn, nyn-nys ! compute only first (nys) and last (nyn) loop iterration |
---|
7012 | DO kp = nzb+1, nzt |
---|
7013 | number_of_particles = prt_count(kp,jp,ip) |
---|
7014 | IF ( number_of_particles <= 0 ) CYCLE |
---|
7015 | particles => grid_particles(kp,jp,ip)%particles(1:number_of_particles) |
---|
7016 | DO n = 1, number_of_particles |
---|
7017 | ! |
---|
7018 | !-- Only those particles that have not been marked as 'deleted' may |
---|
7019 | !-- be moved. |
---|
7020 | IF ( particles(n)%particle_mask ) THEN |
---|
7021 | |
---|
7022 | j = particles(n)%y * ddy |
---|
7023 | ! |
---|
7024 | !-- Above calculation does not work for indices less than zero |
---|
7025 | IF ( particles(n)%y < 0.0_wp ) j = -1 |
---|
7026 | |
---|
7027 | IF ( j < nys ) THEN |
---|
7028 | IF ( j < 0 ) THEN |
---|
7029 | ! |
---|
7030 | !-- Apply boundary condition along y |
---|
7031 | IF ( ibc_par_ns == 0 ) THEN |
---|
7032 | ! |
---|
7033 | !-- Cyclic condition |
---|
7034 | IF ( pdims(2) == 1 ) THEN |
---|
7035 | particles(n)%y = ( ny + 1 ) * dy + particles(n)%y |
---|
7036 | particles(n)%origin_y = ( ny + 1 ) * dy + & |
---|
7037 | particles(n)%origin_y |
---|
7038 | ELSE |
---|
7039 | trsp_count = trsp_count + 1 |
---|
7040 | trsp(trsp_count) = particles(n) |
---|
7041 | trsp(trsp_count)%y = ( ny + 1 ) * dy + & |
---|
7042 | trsp(trsp_count)%y |
---|
7043 | trsp(trsp_count)%origin_y = trsp(trsp_count)%origin_y & |
---|
7044 | + ( ny + 1 ) * dy |
---|
7045 | particles(n)%particle_mask = .FALSE. |
---|
7046 | deleted_particles = deleted_particles + 1 |
---|
7047 | |
---|
7048 | IF ( trsp(trsp_count)%y >= (ny+1)* dy - 1.0E-12_wp ) THEN |
---|
7049 | trsp(trsp_count)%y = trsp(trsp_count)%y - 1.0E-10_wp |
---|
7050 | !++ why is 1 subtracted in next statement??? |
---|
7051 | trsp(trsp_count)%origin_y = & |
---|
7052 | trsp(trsp_count)%origin_y - 1 |
---|
7053 | ENDIF |
---|
7054 | |
---|
7055 | ENDIF |
---|
7056 | |
---|
7057 | ELSEIF ( ibc_par_ns == 1 ) THEN |
---|
7058 | ! |
---|
7059 | !-- Particle absorption |
---|
7060 | particles(n)%particle_mask = .FALSE. |
---|
7061 | deleted_particles = deleted_particles + 1 |
---|
7062 | |
---|
7063 | ELSEIF ( ibc_par_ns == 2 ) THEN |
---|
7064 | ! |
---|
7065 | !-- Particle reflection |
---|
7066 | particles(n)%y = -particles(n)%y |
---|
7067 | particles(n)%speed_y = -particles(n)%speed_y |
---|
7068 | |
---|
7069 | ENDIF |
---|
7070 | ELSE |
---|
7071 | ! |
---|
7072 | !-- Store particle data in the transfer array, which will |
---|
7073 | !-- be send to the neighbouring PE |
---|
7074 | trsp_count = trsp_count + 1 |
---|
7075 | trsp(trsp_count) = particles(n) |
---|
7076 | particles(n)%particle_mask = .FALSE. |
---|
7077 | deleted_particles = deleted_particles + 1 |
---|
7078 | |
---|
7079 | ENDIF |
---|
7080 | |
---|
7081 | ELSEIF ( j > nyn ) THEN |
---|
7082 | IF ( j > ny ) THEN |
---|
7083 | ! |
---|
7084 | !-- Apply boundary condition along y |
---|
7085 | IF ( ibc_par_ns == 0 ) THEN |
---|
7086 | ! |
---|
7087 | !-- Cyclic condition |
---|
7088 | IF ( pdims(2) == 1 ) THEN |
---|
7089 | particles(n)%y = particles(n)%y - ( ny + 1 ) * dy |
---|
7090 | particles(n)%origin_y = & |
---|
7091 | particles(n)%origin_y - ( ny + 1 ) * dy |
---|
7092 | ELSE |
---|
7093 | trnp_count = trnp_count + 1 |
---|
7094 | trnp(trnp_count) = particles(n) |
---|
7095 | trnp(trnp_count)%y = & |
---|
7096 | trnp(trnp_count)%y - ( ny + 1 ) * dy |
---|
7097 | trnp(trnp_count)%origin_y = & |
---|
7098 | trnp(trnp_count)%origin_y - ( ny + 1 ) * dy |
---|
7099 | particles(n)%particle_mask = .FALSE. |
---|
7100 | deleted_particles = deleted_particles + 1 |
---|
7101 | ENDIF |
---|
7102 | |
---|
7103 | ELSEIF ( ibc_par_ns == 1 ) THEN |
---|
7104 | ! |
---|
7105 | !-- Particle absorption |
---|
7106 | particles(n)%particle_mask = .FALSE. |
---|
7107 | deleted_particles = deleted_particles + 1 |
---|
7108 | |
---|
7109 | ELSEIF ( ibc_par_ns == 2 ) THEN |
---|
7110 | ! |
---|
7111 | !-- Particle reflection |
---|
7112 | particles(n)%y = 2 * ( ny * dy ) - particles(n)%y |
---|
7113 | particles(n)%speed_y = -particles(n)%speed_y |
---|
7114 | |
---|
7115 | ENDIF |
---|
7116 | ELSE |
---|
7117 | ! |
---|
7118 | !-- Store particle data in the transfer array, which will |
---|
7119 | !-- be send to the neighbouring PE |
---|
7120 | trnp_count = trnp_count + 1 |
---|
7121 | trnp(trnp_count) = particles(n) |
---|
7122 | particles(n)%particle_mask = .FALSE. |
---|
7123 | deleted_particles = deleted_particles + 1 |
---|
7124 | |
---|
7125 | ENDIF |
---|
7126 | |
---|
7127 | ENDIF |
---|
7128 | ENDIF |
---|
7129 | ENDDO |
---|
7130 | ENDDO |
---|
7131 | ENDDO |
---|
7132 | ENDDO |
---|
7133 | |
---|
7134 | ! |
---|
7135 | !-- Send front boundary, receive back boundary (but first exchange how many |
---|
7136 | !-- and check, if particle storage must be extended) |
---|
7137 | IF ( pdims(2) /= 1 ) THEN |
---|
7138 | |
---|
7139 | CALL MPI_SENDRECV( trsp_count, 1, MPI_INTEGER, psouth, 0, & |
---|
7140 | trnp_count_recv, 1, MPI_INTEGER, pnorth, 0, & |
---|
7141 | comm2d, status, ierr ) |
---|
7142 | |
---|
7143 | ALLOCATE(rvnp(MAX(1,trnp_count_recv))) |
---|
7144 | ! |
---|
7145 | !-- This MPI_SENDRECV should work even with odd mixture on 32 and 64 Bit |
---|
7146 | !-- variables in structure particle_type (due to the calculation of par_size) |
---|
7147 | CALL MPI_SENDRECV( trsp, trsp_count*par_size, MPI_BYTE, & |
---|
7148 | psouth, 1, rvnp, & |
---|
7149 | trnp_count_recv*par_size, MPI_BYTE, pnorth, 1, & |
---|
7150 | comm2d, status, ierr ) |
---|
7151 | |
---|
7152 | IF ( trnp_count_recv > 0 ) CALL lpm_add_particles_to_gridcell(rvnp(1:trnp_count_recv)) |
---|
7153 | |
---|
7154 | DEALLOCATE(rvnp) |
---|
7155 | |
---|
7156 | ! |
---|
7157 | !-- Send back boundary, receive front boundary |
---|
7158 | CALL MPI_SENDRECV( trnp_count, 1, MPI_INTEGER, pnorth, 0, & |
---|
7159 | trsp_count_recv, 1, MPI_INTEGER, psouth, 0, & |
---|
7160 | comm2d, status, ierr ) |
---|
7161 | |
---|
7162 | ALLOCATE(rvsp(MAX(1,trsp_count_recv))) |
---|
7163 | ! |
---|
7164 | !-- This MPI_SENDRECV should work even with odd mixture on 32 and 64 Bit |
---|
7165 | !-- variables in structure particle_type (due to the calculation of par_size) |
---|
7166 | CALL MPI_SENDRECV( trnp, trnp_count*par_size, MPI_BYTE, & |
---|
7167 | pnorth, 1, rvsp, & |
---|
7168 | trsp_count_recv*par_size, MPI_BYTE, psouth, 1, & |
---|
7169 | comm2d, status, ierr ) |
---|
7170 | |
---|
7171 | IF ( trsp_count_recv > 0 ) CALL lpm_add_particles_to_gridcell(rvsp(1:trsp_count_recv)) |
---|
7172 | |
---|
7173 | DEALLOCATE(rvsp) |
---|
7174 | |
---|
7175 | number_of_particles = number_of_particles + trsp_count_recv |
---|
7176 | |
---|
7177 | DEALLOCATE( trsp, trnp ) |
---|
7178 | |
---|
7179 | ENDIF |
---|
7180 | |
---|
7181 | DEALLOCATE( move_also_north ) |
---|
7182 | DEALLOCATE( move_also_south ) |
---|
7183 | |
---|
7184 | #else |
---|
7185 | |
---|
7186 | DO ip = nxl, nxr, nxr-nxl |
---|
7187 | DO jp = nys, nyn |
---|
7188 | DO kp = nzb+1, nzt |
---|
7189 | number_of_particles = prt_count(kp,jp,ip) |
---|
7190 | IF ( number_of_particles <= 0 ) CYCLE |
---|
7191 | particles => grid_particles(kp,jp,ip)%particles(1:number_of_particles) |
---|
7192 | DO n = 1, number_of_particles |
---|
7193 | ! |
---|
7194 | !-- Apply boundary conditions |
---|
7195 | |
---|
7196 | IF ( particles(n)%x < 0.0_wp ) THEN |
---|
7197 | |
---|
7198 | IF ( ibc_par_lr == 0 ) THEN |
---|
7199 | ! |
---|
7200 | !-- Cyclic boundary. Relevant coordinate has to be changed. |
---|
7201 | particles(n)%x = ( nx + 1 ) * dx + particles(n)%x |
---|
7202 | particles(n)%origin_x = ( nx + 1 ) * dx + & |
---|
7203 | particles(n)%origin_x |
---|
7204 | ELSEIF ( ibc_par_lr == 1 ) THEN |
---|
7205 | ! |
---|
7206 | !-- Particle absorption |
---|
7207 | particles(n)%particle_mask = .FALSE. |
---|
7208 | deleted_particles = deleted_particles + 1 |
---|
7209 | |
---|
7210 | ELSEIF ( ibc_par_lr == 2 ) THEN |
---|
7211 | ! |
---|
7212 | !-- Particle reflection |
---|
7213 | particles(n)%x = -dx - particles(n)%x |
---|
7214 | particles(n)%speed_x = -particles(n)%speed_x |
---|
7215 | ENDIF |
---|
7216 | |
---|
7217 | ELSEIF ( particles(n)%x >= ( nx + 1) * dx ) THEN |
---|
7218 | |
---|
7219 | IF ( ibc_par_lr == 0 ) THEN |
---|
7220 | ! |
---|
7221 | !-- Cyclic boundary. Relevant coordinate has to be changed. |
---|
7222 | particles(n)%x = particles(n)%x - ( nx + 1 ) * dx |
---|
7223 | particles(n)%origin_x = particles(n)%origin_x - & |
---|
7224 | ( nx + 1 ) * dx |
---|
7225 | |
---|
7226 | ELSEIF ( ibc_par_lr == 1 ) THEN |
---|
7227 | ! |
---|
7228 | !-- Particle absorption |
---|
7229 | particles(n)%particle_mask = .FALSE. |
---|
7230 | deleted_particles = deleted_particles + 1 |
---|
7231 | |
---|
7232 | ELSEIF ( ibc_par_lr == 2 ) THEN |
---|
7233 | ! |
---|
7234 | !-- Particle reflection |
---|
7235 | particles(n)%x = ( nx + 1 ) * dx - particles(n)%x |
---|
7236 | particles(n)%speed_x = -particles(n)%speed_x |
---|
7237 | ENDIF |
---|
7238 | |
---|
7239 | ENDIF |
---|
7240 | ENDDO |
---|
7241 | ENDDO |
---|
7242 | ENDDO |
---|
7243 | ENDDO |
---|
7244 | |
---|
7245 | DO ip = nxl, nxr |
---|
7246 | DO jp = nys, nyn, nyn-nys |
---|
7247 | DO kp = nzb+1, nzt |
---|
7248 | number_of_particles = prt_count(kp,jp,ip) |
---|
7249 | IF ( number_of_particles <= 0 ) CYCLE |
---|
7250 | particles => grid_particles(kp,jp,ip)%particles(1:number_of_particles) |
---|
7251 | DO n = 1, number_of_particles |
---|
7252 | |
---|
7253 | IF ( particles(n)%y < 0.0_wp) THEN |
---|
7254 | |
---|
7255 | IF ( ibc_par_ns == 0 ) THEN |
---|
7256 | ! |
---|
7257 | !-- Cyclic boundary. Relevant coordinate has to be changed. |
---|
7258 | particles(n)%y = ( ny + 1 ) * dy + particles(n)%y |
---|
7259 | particles(n)%origin_y = ( ny + 1 ) * dy + & |
---|
7260 | particles(n)%origin_y |
---|
7261 | |
---|
7262 | ELSEIF ( ibc_par_ns == 1 ) THEN |
---|
7263 | ! |
---|
7264 | !-- Particle absorption |
---|
7265 | particles(n)%particle_mask = .FALSE. |
---|
7266 | deleted_particles = deleted_particles + 1 |
---|
7267 | |
---|
7268 | ELSEIF ( ibc_par_ns == 2 ) THEN |
---|
7269 | ! |
---|
7270 | !-- Particle reflection |
---|
7271 | particles(n)%y = -dy - particles(n)%y |
---|
7272 | particles(n)%speed_y = -particles(n)%speed_y |
---|
7273 | ENDIF |
---|
7274 | |
---|
7275 | ELSEIF ( particles(n)%y >= ( ny + 1) * dy ) THEN |
---|
7276 | |
---|
7277 | IF ( ibc_par_ns == 0 ) THEN |
---|
7278 | ! |
---|
7279 | !-- Cyclic boundary. Relevant coordinate has to be changed. |
---|
7280 | particles(n)%y = particles(n)%y - ( ny + 1 ) * dy |
---|
7281 | particles(n)%origin_y = particles(n)%origin_y - & |
---|
7282 | ( ny + 1 ) * dy |
---|
7283 | |
---|
7284 | ELSEIF ( ibc_par_ns == 1 ) THEN |
---|
7285 | ! |
---|
7286 | !-- Particle absorption |
---|
7287 | particles(n)%particle_mask = .FALSE. |
---|
7288 | deleted_particles = deleted_particles + 1 |
---|
7289 | |
---|
7290 | ELSEIF ( ibc_par_ns == 2 ) THEN |
---|
7291 | ! |
---|
7292 | !-- Particle reflection |
---|
7293 | particles(n)%y = ( ny + 1 ) * dy - particles(n)%y |
---|
7294 | particles(n)%speed_y = -particles(n)%speed_y |
---|
7295 | ENDIF |
---|
7296 | |
---|
7297 | ENDIF |
---|
7298 | |
---|
7299 | ENDDO |
---|
7300 | ENDDO |
---|
7301 | ENDDO |
---|
7302 | ENDDO |
---|
7303 | #endif |
---|
7304 | |
---|
7305 | ! |
---|
7306 | !-- Accumulate the number of particles transferred between the subdomains |
---|
7307 | #if defined( __parallel ) |
---|
7308 | trlp_count_sum = trlp_count_sum + trlp_count |
---|
7309 | trlp_count_recv_sum = trlp_count_recv_sum + trlp_count_recv |
---|
7310 | trrp_count_sum = trrp_count_sum + trrp_count |
---|
7311 | trrp_count_recv_sum = trrp_count_recv_sum + trrp_count_recv |
---|
7312 | trsp_count_sum = trsp_count_sum + trsp_count |
---|
7313 | trsp_count_recv_sum = trsp_count_recv_sum + trsp_count_recv |
---|
7314 | trnp_count_sum = trnp_count_sum + trnp_count |
---|
7315 | trnp_count_recv_sum = trnp_count_recv_sum + trnp_count_recv |
---|
7316 | #endif |
---|
7317 | |
---|
7318 | CALL cpu_log( log_point_s(23), 'lpm_exchange_horiz', 'stop' ) |
---|
7319 | |
---|
7320 | END SUBROUTINE lpm_exchange_horiz |
---|
7321 | |
---|
7322 | !------------------------------------------------------------------------------! |
---|
7323 | ! Description: |
---|
7324 | ! ------------ |
---|
7325 | !> If a particle moves from one processor to another, this subroutine moves |
---|
7326 | !> the corresponding elements from the particle arrays of the old grid cells |
---|
7327 | !> to the particle arrays of the new grid cells. |
---|
7328 | !------------------------------------------------------------------------------! |
---|
7329 | SUBROUTINE lpm_add_particles_to_gridcell (particle_array) |
---|
7330 | |
---|
7331 | IMPLICIT NONE |
---|
7332 | |
---|
7333 | INTEGER(iwp) :: ip !< grid index (x) of particle |
---|
7334 | INTEGER(iwp) :: jp !< grid index (x) of particle |
---|
7335 | INTEGER(iwp) :: kp !< grid index (x) of particle |
---|
7336 | INTEGER(iwp) :: n !< index variable of particle |
---|
7337 | INTEGER(iwp) :: pindex !< dummy argument for new number of particles per grid box |
---|
7338 | |
---|
7339 | LOGICAL :: pack_done !< |
---|
7340 | |
---|
7341 | TYPE(particle_type), DIMENSION(:), INTENT(IN) :: particle_array !< new particles in a grid box |
---|
7342 | TYPE(particle_type), DIMENSION(:), ALLOCATABLE :: temp_ns !< temporary particle array for reallocation |
---|
7343 | |
---|
7344 | pack_done = .FALSE. |
---|
7345 | |
---|
7346 | DO n = 1, SIZE(particle_array) |
---|
7347 | |
---|
7348 | IF ( .NOT. particle_array(n)%particle_mask ) CYCLE |
---|
7349 | |
---|
7350 | ip = particle_array(n)%x * ddx |
---|
7351 | jp = particle_array(n)%y * ddy |
---|
7352 | ! |
---|
7353 | !-- In case of stretching the actual k index must be found |
---|
7354 | IF ( dz_stretch_level .NE. -9999999.9 .OR. & |
---|
7355 | dz_stretch_level_start(1) .NE. -9999999.9 ) THEN |
---|
7356 | kp = MINLOC( ABS( particle_array(n)%z - zu ), DIM = 1 ) - 1 |
---|
7357 | ELSE |
---|
7358 | kp = INT( particle_array(n)%z / dz(1) + 1 + offset_ocean_nzt ) |
---|
7359 | ENDIF |
---|
7360 | |
---|
7361 | IF ( ip >= nxl .AND. ip <= nxr .AND. jp >= nys .AND. jp <= nyn & |
---|
7362 | .AND. kp >= nzb+1 .AND. kp <= nzt) THEN ! particle stays on processor |
---|
7363 | number_of_particles = prt_count(kp,jp,ip) |
---|
7364 | particles => grid_particles(kp,jp,ip)%particles(1:number_of_particles) |
---|
7365 | |
---|
7366 | pindex = prt_count(kp,jp,ip)+1 |
---|
7367 | IF( pindex > SIZE(grid_particles(kp,jp,ip)%particles) ) THEN |
---|
7368 | IF ( pack_done ) THEN |
---|
7369 | CALL realloc_particles_array (ip,jp,kp) |
---|
7370 | ELSE |
---|
7371 | CALL lpm_pack |
---|
7372 | prt_count(kp,jp,ip) = number_of_particles |
---|
7373 | pindex = prt_count(kp,jp,ip)+1 |
---|
7374 | IF ( pindex > SIZE(grid_particles(kp,jp,ip)%particles) ) THEN |
---|
7375 | CALL realloc_particles_array (ip,jp,kp) |
---|
7376 | ENDIF |
---|
7377 | pack_done = .TRUE. |
---|
7378 | ENDIF |
---|
7379 | ENDIF |
---|
7380 | grid_particles(kp,jp,ip)%particles(pindex) = particle_array(n) |
---|
7381 | prt_count(kp,jp,ip) = pindex |
---|
7382 | ELSE |
---|
7383 | IF ( jp <= nys - 1 ) THEN |
---|
7384 | nr_move_south = nr_move_south+1 |
---|
7385 | ! |
---|
7386 | !-- Before particle information is swapped to exchange-array, check |
---|
7387 | !-- if enough memory is allocated. If required, reallocate exchange |
---|
7388 | !-- array. |
---|
7389 | IF ( nr_move_south > SIZE(move_also_south) ) THEN |
---|
7390 | ! |
---|
7391 | !-- At first, allocate further temporary array to swap particle |
---|
7392 | !-- information. |
---|
7393 | ALLOCATE( temp_ns(SIZE(move_also_south)+NR_2_direction_move) ) |
---|
7394 | temp_ns(1:nr_move_south-1) = move_also_south(1:nr_move_south-1) |
---|
7395 | DEALLOCATE( move_also_south ) |
---|
7396 | ALLOCATE( move_also_south(SIZE(temp_ns)) ) |
---|
7397 | move_also_south(1:nr_move_south-1) = temp_ns(1:nr_move_south-1) |
---|
7398 | DEALLOCATE( temp_ns ) |
---|
7399 | |
---|
7400 | ENDIF |
---|
7401 | |
---|
7402 | move_also_south(nr_move_south) = particle_array(n) |
---|
7403 | |
---|
7404 | IF ( jp == -1 ) THEN |
---|
7405 | ! |
---|
7406 | !-- Apply boundary condition along y |
---|
7407 | IF ( ibc_par_ns == 0 ) THEN |
---|
7408 | move_also_south(nr_move_south)%y = & |
---|
7409 | move_also_south(nr_move_south)%y + ( ny + 1 ) * dy |
---|
7410 | move_also_south(nr_move_south)%origin_y = & |
---|
7411 | move_also_south(nr_move_south)%origin_y + ( ny + 1 ) * dy |
---|
7412 | ELSEIF ( ibc_par_ns == 1 ) THEN |
---|
7413 | ! |
---|
7414 | !-- Particle absorption |
---|
7415 | move_also_south(nr_move_south)%particle_mask = .FALSE. |
---|
7416 | deleted_particles = deleted_particles + 1 |
---|
7417 | |
---|
7418 | ELSEIF ( ibc_par_ns == 2 ) THEN |
---|
7419 | ! |
---|
7420 | !-- Particle reflection |
---|
7421 | move_also_south(nr_move_south)%y = & |
---|
7422 | -move_also_south(nr_move_south)%y |
---|
7423 | move_also_south(nr_move_south)%speed_y = & |
---|
7424 | -move_also_south(nr_move_south)%speed_y |
---|
7425 | |
---|
7426 | ENDIF |
---|
7427 | ENDIF |
---|
7428 | ELSEIF ( jp >= nyn+1 ) THEN |
---|
7429 | nr_move_north = nr_move_north+1 |
---|
7430 | ! |
---|
7431 | !-- Before particle information is swapped to exchange-array, check |
---|
7432 | !-- if enough memory is allocated. If required, reallocate exchange |
---|
7433 | !-- array. |
---|
7434 | IF ( nr_move_north > SIZE(move_also_north) ) THEN |
---|
7435 | ! |
---|
7436 | !-- At first, allocate further temporary array to swap particle |
---|
7437 | !-- information. |
---|
7438 | ALLOCATE( temp_ns(SIZE(move_also_north)+NR_2_direction_move) ) |
---|
7439 | temp_ns(1:nr_move_north-1) = move_also_south(1:nr_move_north-1) |
---|
7440 | DEALLOCATE( move_also_north ) |
---|
7441 | ALLOCATE( move_also_north(SIZE(temp_ns)) ) |
---|
7442 | move_also_north(1:nr_move_north-1) = temp_ns(1:nr_move_north-1) |
---|
7443 | DEALLOCATE( temp_ns ) |
---|
7444 | |
---|
7445 | ENDIF |
---|
7446 | |
---|
7447 | move_also_north(nr_move_north) = particle_array(n) |
---|
7448 | IF ( jp == ny+1 ) THEN |
---|
7449 | ! |
---|
7450 | !-- Apply boundary condition along y |
---|
7451 | IF ( ibc_par_ns == 0 ) THEN |
---|
7452 | |
---|
7453 | move_also_north(nr_move_north)%y = & |
---|
7454 | move_also_north(nr_move_north)%y - ( ny + 1 ) * dy |
---|
7455 | move_also_north(nr_move_north)%origin_y = & |
---|
7456 | move_also_north(nr_move_north)%origin_y - ( ny + 1 ) * dy |
---|
7457 | ELSEIF ( ibc_par_ns == 1 ) THEN |
---|
7458 | ! |
---|
7459 | !-- Particle absorption |
---|
7460 | move_also_north(nr_move_north)%particle_mask = .FALSE. |
---|
7461 | deleted_particles = deleted_particles + 1 |
---|
7462 | |
---|
7463 | ELSEIF ( ibc_par_ns == 2 ) THEN |
---|
7464 | ! |
---|
7465 | !-- Particle reflection |
---|
7466 | move_also_north(nr_move_north)%y = & |
---|
7467 | -move_also_north(nr_move_north)%y |
---|
7468 | move_also_north(nr_move_north)%speed_y = & |
---|
7469 | -move_also_north(nr_move_north)%speed_y |
---|
7470 | |
---|
7471 | ENDIF |
---|
7472 | ENDIF |
---|
7473 | ELSE |
---|
7474 | WRITE(0,'(a,8i7)') 'particle out of range ',myid,ip,jp,kp,nxl,nxr,nys,nyn |
---|
7475 | ENDIF |
---|
7476 | ENDIF |
---|
7477 | ENDDO |
---|
7478 | |
---|
7479 | RETURN |
---|
7480 | |
---|
7481 | END SUBROUTINE lpm_add_particles_to_gridcell |
---|
7482 | |
---|
7483 | |
---|
7484 | !------------------------------------------------------------------------------! |
---|
7485 | ! Description: |
---|
7486 | ! ------------ |
---|
7487 | !> If a particle moves from one grid cell to another (on the current |
---|
7488 | !> processor!), this subroutine moves the corresponding element from the |
---|
7489 | !> particle array of the old grid cell to the particle array of the new grid |
---|
7490 | !> cell. |
---|
7491 | !------------------------------------------------------------------------------! |
---|
7492 | SUBROUTINE lpm_move_particle |
---|
7493 | |
---|
7494 | INTEGER(iwp) :: i !< grid index (x) of particle position |
---|
7495 | INTEGER(iwp) :: ip !< index variable along x |
---|
7496 | INTEGER(iwp) :: j !< grid index (y) of particle position |
---|
7497 | INTEGER(iwp) :: jp !< index variable along y |
---|
7498 | INTEGER(iwp) :: k !< grid index (z) of particle position |
---|
7499 | INTEGER(iwp) :: kp !< index variable along z |
---|
7500 | INTEGER(iwp) :: n !< index variable for particle array |
---|
7501 | INTEGER(iwp) :: np_before_move !< number of particles per grid box before moving |
---|
7502 | INTEGER(iwp) :: pindex !< dummy argument for number of new particle per grid box |
---|
7503 | |
---|
7504 | TYPE(particle_type), DIMENSION(:), POINTER :: particles_before_move !< particles before moving |
---|
7505 | |
---|
7506 | CALL cpu_log( log_point_s(41), 'lpm_move_particle', 'start' ) |
---|
7507 | CALL lpm_check_cfl |
---|
7508 | DO ip = nxl, nxr |
---|
7509 | DO jp = nys, nyn |
---|
7510 | DO kp = nzb+1, nzt |
---|
7511 | |
---|
7512 | np_before_move = prt_count(kp,jp,ip) |
---|
7513 | IF ( np_before_move <= 0 ) CYCLE |
---|
7514 | particles_before_move => grid_particles(kp,jp,ip)%particles(1:np_before_move) |
---|
7515 | |
---|
7516 | DO n = 1, np_before_move |
---|
7517 | i = particles_before_move(n)%x * ddx |
---|
7518 | j = particles_before_move(n)%y * ddy |
---|
7519 | k = kp |
---|
7520 | ! |
---|
7521 | !-- Find correct vertical particle grid box (necessary in case of grid stretching) |
---|
7522 | !-- Due to the CFL limitations only the neighbouring grid boxes are considered. |
---|
7523 | IF( zw(k) < particles_before_move(n)%z ) k = k + 1 |
---|
7524 | IF( zw(k-1) > particles_before_move(n)%z ) k = k - 1 |
---|
7525 | |
---|
7526 | !-- For lpm_exchange_horiz to work properly particles need to be moved to the outermost gridboxes |
---|
7527 | !-- of the respective processor. If the particle index is inside the processor the following lines |
---|
7528 | !-- will not change the index |
---|
7529 | i = MIN ( i , nxr ) |
---|
7530 | i = MAX ( i , nxl ) |
---|
7531 | j = MIN ( j , nyn ) |
---|
7532 | j = MAX ( j , nys ) |
---|
7533 | |
---|
7534 | k = MIN ( k , nzt ) |
---|
7535 | k = MAX ( k , nzb+1 ) |
---|
7536 | |
---|
7537 | ! |
---|
7538 | !-- Check, if particle has moved to another grid cell. |
---|
7539 | IF ( i /= ip .OR. j /= jp .OR. k /= kp ) THEN |
---|
7540 | !! |
---|
7541 | !-- If the particle stays on the same processor, the particle |
---|
7542 | !-- will be added to the particle array of the new processor. |
---|
7543 | number_of_particles = prt_count(k,j,i) |
---|
7544 | particles => grid_particles(k,j,i)%particles(1:number_of_particles) |
---|
7545 | |
---|
7546 | pindex = prt_count(k,j,i)+1 |
---|
7547 | IF ( pindex > SIZE(grid_particles(k,j,i)%particles) ) & |
---|
7548 | THEN |
---|
7549 | CALL realloc_particles_array(i,j,k) |
---|
7550 | ENDIF |
---|
7551 | |
---|
7552 | grid_particles(k,j,i)%particles(pindex) = particles_before_move(n) |
---|
7553 | prt_count(k,j,i) = pindex |
---|
7554 | |
---|
7555 | particles_before_move(n)%particle_mask = .FALSE. |
---|
7556 | ENDIF |
---|
7557 | ENDDO |
---|
7558 | |
---|
7559 | ENDDO |
---|
7560 | ENDDO |
---|
7561 | ENDDO |
---|
7562 | |
---|
7563 | CALL cpu_log( log_point_s(41), 'lpm_move_particle', 'stop' ) |
---|
7564 | |
---|
7565 | RETURN |
---|
7566 | |
---|
7567 | END SUBROUTINE lpm_move_particle |
---|
7568 | |
---|
7569 | |
---|
7570 | !------------------------------------------------------------------------------! |
---|
7571 | ! Description: |
---|
7572 | ! ------------ |
---|
7573 | !> Check CFL-criterion for each particle. If one particle violated the |
---|
7574 | !> criterion the particle will be deleted and a warning message is given. |
---|
7575 | !------------------------------------------------------------------------------! |
---|
7576 | SUBROUTINE lpm_check_cfl |
---|
7577 | |
---|
7578 | IMPLICIT NONE |
---|
7579 | |
---|
7580 | INTEGER(iwp) :: i !< running index, x-direction |
---|
7581 | INTEGER(iwp) :: j !< running index, y-direction |
---|
7582 | INTEGER(iwp) :: k !< running index, z-direction |
---|
7583 | INTEGER(iwp) :: n !< running index, number of particles |
---|
7584 | |
---|
7585 | DO i = nxl, nxr |
---|
7586 | DO j = nys, nyn |
---|
7587 | DO k = nzb+1, nzt |
---|
7588 | number_of_particles = prt_count(k,j,i) |
---|
7589 | IF ( number_of_particles <= 0 ) CYCLE |
---|
7590 | particles => grid_particles(k,j,i)%particles(1:number_of_particles) |
---|
7591 | DO n = 1, number_of_particles |
---|
7592 | ! |
---|
7593 | !-- Note, check for CFL does not work at first particle timestep |
---|
7594 | !-- when both, age and age_m are zero. |
---|
7595 | IF ( particles(n)%age - particles(n)%age_m > 0.0_wp ) THEN |
---|
7596 | IF(ABS(particles(n)%speed_x) > & |
---|
7597 | (dx/(particles(n)%age-particles(n)%age_m)) .OR. & |
---|
7598 | ABS(particles(n)%speed_y) > & |
---|
7599 | (dy/(particles(n)%age-particles(n)%age_m)) .OR. & |
---|
7600 | ABS(particles(n)%speed_z) > & |
---|
7601 | ((zw(k)-zw(k-1))/(particles(n)%age-particles(n)%age_m))) & |
---|
7602 | THEN |
---|
7603 | WRITE( message_string, * ) & |
---|
7604 | 'Particle violated CFL-criterion: &particle with id ', & |
---|
7605 | particles(n)%id, ' will be deleted!' |
---|
7606 | CALL message( 'lpm_check_cfl', 'PA0475', 0, 1, -1, 6, 0 ) |
---|
7607 | particles(n)%particle_mask= .FALSE. |
---|
7608 | ENDIF |
---|
7609 | ENDIF |
---|
7610 | ENDDO |
---|
7611 | ENDDO |
---|
7612 | ENDDO |
---|
7613 | ENDDO |
---|
7614 | |
---|
7615 | END SUBROUTINE lpm_check_cfl |
---|
7616 | |
---|
7617 | |
---|
7618 | !------------------------------------------------------------------------------! |
---|
7619 | ! Description: |
---|
7620 | ! ------------ |
---|
7621 | !> If the allocated memory for the particle array do not suffice to add arriving |
---|
7622 | !> particles from neighbour grid cells, this subrouting reallocates the |
---|
7623 | !> particle array to assure enough memory is available. |
---|
7624 | !------------------------------------------------------------------------------! |
---|
7625 | SUBROUTINE realloc_particles_array ( i, j, k, size_in ) |
---|
7626 | |
---|
7627 | INTEGER(iwp), INTENT(IN) :: i !< |
---|
7628 | INTEGER(iwp), INTENT(IN) :: j !< |
---|
7629 | INTEGER(iwp), INTENT(IN) :: k !< |
---|
7630 | INTEGER(iwp), INTENT(IN), OPTIONAL :: size_in !< |
---|
7631 | |
---|
7632 | INTEGER(iwp) :: old_size !< |
---|
7633 | INTEGER(iwp) :: new_size !< |
---|
7634 | TYPE(particle_type), DIMENSION(:), ALLOCATABLE :: tmp_particles_d !< |
---|
7635 | TYPE(particle_type), DIMENSION(500) :: tmp_particles_s !< |
---|
7636 | |
---|
7637 | old_size = SIZE(grid_particles(k,j,i)%particles) |
---|
7638 | |
---|
7639 | IF ( PRESENT(size_in) ) THEN |
---|
7640 | new_size = size_in |
---|
7641 | ELSE |
---|
7642 | new_size = old_size * ( 1.0_wp + alloc_factor / 100.0_wp ) |
---|
7643 | ENDIF |
---|
7644 | |
---|
7645 | new_size = MAX( new_size, 1, old_size + 1 ) |
---|
7646 | |
---|
7647 | IF ( old_size <= 500 ) THEN |
---|
7648 | |
---|
7649 | tmp_particles_s(1:old_size) = grid_particles(k,j,i)%particles(1:old_size) |
---|
7650 | |
---|
7651 | DEALLOCATE(grid_particles(k,j,i)%particles) |
---|
7652 | ALLOCATE(grid_particles(k,j,i)%particles(new_size)) |
---|
7653 | |
---|
7654 | grid_particles(k,j,i)%particles(1:old_size) = tmp_particles_s(1:old_size) |
---|
7655 | grid_particles(k,j,i)%particles(old_size+1:new_size) = zero_particle |
---|
7656 | |
---|
7657 | ELSE |
---|
7658 | |
---|
7659 | ALLOCATE(tmp_particles_d(new_size)) |
---|
7660 | tmp_particles_d(1:old_size) = grid_particles(k,j,i)%particles |
---|
7661 | |
---|
7662 | DEALLOCATE(grid_particles(k,j,i)%particles) |
---|
7663 | ALLOCATE(grid_particles(k,j,i)%particles(new_size)) |
---|
7664 | |
---|
7665 | grid_particles(k,j,i)%particles(1:old_size) = tmp_particles_d(1:old_size) |
---|
7666 | grid_particles(k,j,i)%particles(old_size+1:new_size) = zero_particle |
---|
7667 | |
---|
7668 | DEALLOCATE(tmp_particles_d) |
---|
7669 | |
---|
7670 | ENDIF |
---|
7671 | particles => grid_particles(k,j,i)%particles(1:new_size) |
---|
7672 | |
---|
7673 | RETURN |
---|
7674 | |
---|
7675 | END SUBROUTINE realloc_particles_array |
---|
7676 | |
---|
7677 | |
---|
7678 | !------------------------------------------------------------------------------! |
---|
7679 | ! Description: |
---|
7680 | ! ------------ |
---|
7681 | !> Not needed but allocated space for particles is dealloced. |
---|
7682 | !------------------------------------------------------------------------------! |
---|
7683 | SUBROUTINE dealloc_particles_array |
---|
7684 | |
---|
7685 | |
---|
7686 | INTEGER(iwp) :: i |
---|
7687 | INTEGER(iwp) :: j |
---|
7688 | INTEGER(iwp) :: k |
---|
7689 | INTEGER(iwp) :: old_size !< |
---|
7690 | INTEGER(iwp) :: new_size !< |
---|
7691 | |
---|
7692 | LOGICAL :: dealloc |
---|
7693 | |
---|
7694 | TYPE(particle_type), DIMENSION(:), ALLOCATABLE :: tmp_particles_d !< |
---|
7695 | TYPE(particle_type), DIMENSION(500) :: tmp_particles_s !< |
---|
7696 | |
---|
7697 | DO i = nxl, nxr |
---|
7698 | DO j = nys, nyn |
---|
7699 | DO k = nzb+1, nzt |
---|
7700 | ! |
---|
7701 | !-- Determine number of active particles |
---|
7702 | number_of_particles = prt_count(k,j,i) |
---|
7703 | ! |
---|
7704 | !-- Determine allocated memory size |
---|
7705 | old_size = SIZE( grid_particles(k,j,i)%particles ) |
---|
7706 | ! |
---|
7707 | !-- Check for large unused memory |
---|
7708 | dealloc = ( ( number_of_particles < 1 .AND. & |
---|
7709 | old_size > 1 ) .OR. & |
---|
7710 | ( number_of_particles > 1 .AND. & |
---|
7711 | old_size - number_of_particles * & |
---|
7712 | ( 1.0_wp + 0.01_wp * alloc_factor ) > 0.0_wp ) ) |
---|
7713 | |
---|
7714 | IF ( dealloc ) THEN |
---|
7715 | IF ( number_of_particles < 1 ) THEN |
---|
7716 | new_size = 1 |
---|
7717 | ELSE |
---|
7718 | new_size = INT( number_of_particles * ( 1.0_wp + 0.01_wp * alloc_factor ) ) |
---|
7719 | ENDIF |
---|
7720 | |
---|
7721 | IF ( number_of_particles <= 500 ) THEN |
---|
7722 | |
---|
7723 | tmp_particles_s(1:number_of_particles) = grid_particles(k,j,i)%particles(1:number_of_particles) |
---|
7724 | |
---|
7725 | DEALLOCATE(grid_particles(k,j,i)%particles) |
---|
7726 | ALLOCATE(grid_particles(k,j,i)%particles(new_size)) |
---|
7727 | |
---|
7728 | grid_particles(k,j,i)%particles(1:number_of_particles) = tmp_particles_s(1:number_of_particles) |
---|
7729 | grid_particles(k,j,i)%particles(number_of_particles+1:new_size) = zero_particle |
---|
7730 | |
---|
7731 | ELSE |
---|
7732 | |
---|
7733 | ALLOCATE(tmp_particles_d(number_of_particles)) |
---|
7734 | tmp_particles_d(1:number_of_particles) = grid_particles(k,j,i)%particles(1:number_of_particles) |
---|
7735 | |
---|
7736 | DEALLOCATE(grid_particles(k,j,i)%particles) |
---|
7737 | ALLOCATE(grid_particles(k,j,i)%particles(new_size)) |
---|
7738 | |
---|
7739 | grid_particles(k,j,i)%particles(1:number_of_particles) = tmp_particles_d(1:number_of_particles) |
---|
7740 | grid_particles(k,j,i)%particles(number_of_particles+1:new_size) = zero_particle |
---|
7741 | |
---|
7742 | DEALLOCATE(tmp_particles_d) |
---|
7743 | |
---|
7744 | ENDIF |
---|
7745 | |
---|
7746 | ENDIF |
---|
7747 | ENDDO |
---|
7748 | ENDDO |
---|
7749 | ENDDO |
---|
7750 | |
---|
7751 | END SUBROUTINE dealloc_particles_array |
---|
7752 | |
---|
7753 | |
---|
7754 | !------------------------------------------------------------------------------! |
---|
7755 | ! Description: |
---|
7756 | ! ----------- |
---|
7757 | !> Routine for the whole processor |
---|
7758 | !> Sort all particles into the 8 respective subgrid boxes |
---|
7759 | !------------------------------------------------------------------------------! |
---|
7760 | SUBROUTINE lpm_sort_in_subboxes |
---|
7761 | |
---|
7762 | INTEGER(iwp) :: i !< |
---|
7763 | INTEGER(iwp) :: ip !< |
---|
7764 | INTEGER(iwp) :: is !< |
---|
7765 | INTEGER(iwp) :: j !< |
---|
7766 | INTEGER(iwp) :: jp !< |
---|
7767 | INTEGER(iwp) :: kp !< |
---|
7768 | INTEGER(iwp) :: m !< |
---|
7769 | INTEGER(iwp) :: n !< |
---|
7770 | INTEGER(iwp) :: nn !< |
---|
7771 | INTEGER(iwp) :: sort_index !< |
---|
7772 | |
---|
7773 | INTEGER(iwp), DIMENSION(0:7) :: sort_count !< |
---|
7774 | |
---|
7775 | TYPE(particle_type), DIMENSION(:,:), ALLOCATABLE :: sort_particles !< |
---|
7776 | |
---|
7777 | CALL cpu_log( log_point_s(51), 'lpm_sort_in_subboxes', 'start' ) |
---|
7778 | DO ip = nxl, nxr |
---|
7779 | DO jp = nys, nyn |
---|
7780 | DO kp = nzb+1, nzt |
---|
7781 | number_of_particles = prt_count(kp,jp,ip) |
---|
7782 | IF ( number_of_particles <= 0 ) CYCLE |
---|
7783 | particles => grid_particles(kp,jp,ip)%particles(1:number_of_particles) |
---|
7784 | |
---|
7785 | nn = 0 |
---|
7786 | sort_count = 0 |
---|
7787 | ALLOCATE( sort_particles(number_of_particles, 0:7) ) |
---|
7788 | |
---|
7789 | DO n = 1, number_of_particles |
---|
7790 | sort_index = 0 |
---|
7791 | |
---|
7792 | IF ( particles(n)%particle_mask ) THEN |
---|
7793 | nn = nn + 1 |
---|
7794 | ! |
---|
7795 | !-- Sorting particles with a binary scheme |
---|
7796 | !-- sort_index=111_2=7_10 -> particle at the left,south,bottom subgridbox |
---|
7797 | !-- sort_index=000_2=0_10 -> particle at the right,north,top subgridbox |
---|
7798 | !-- For this the center of the gridbox is calculated |
---|
7799 | i = (particles(n)%x + 0.5_wp * dx) * ddx |
---|
7800 | j = (particles(n)%y + 0.5_wp * dy) * ddy |
---|
7801 | |
---|
7802 | IF ( i == ip ) sort_index = sort_index + 4 |
---|
7803 | IF ( j == jp ) sort_index = sort_index + 2 |
---|
7804 | IF ( zu(kp) > particles(n)%z ) sort_index = sort_index + 1 |
---|
7805 | |
---|
7806 | sort_count(sort_index) = sort_count(sort_index) + 1 |
---|
7807 | m = sort_count(sort_index) |
---|
7808 | sort_particles(m,sort_index) = particles(n) |
---|
7809 | sort_particles(m,sort_index)%block_nr = sort_index |
---|
7810 | ENDIF |
---|
7811 | ENDDO |
---|
7812 | |
---|
7813 | nn = 0 |
---|
7814 | DO is = 0,7 |
---|
7815 | grid_particles(kp,jp,ip)%start_index(is) = nn + 1 |
---|
7816 | DO n = 1,sort_count(is) |
---|
7817 | nn = nn + 1 |
---|
7818 | particles(nn) = sort_particles(n,is) |
---|
7819 | ENDDO |
---|
7820 | grid_particles(kp,jp,ip)%end_index(is) = nn |
---|
7821 | ENDDO |
---|
7822 | |
---|
7823 | number_of_particles = nn |
---|
7824 | prt_count(kp,jp,ip) = number_of_particles |
---|
7825 | DEALLOCATE(sort_particles) |
---|
7826 | ENDDO |
---|
7827 | ENDDO |
---|
7828 | ENDDO |
---|
7829 | CALL cpu_log( log_point_s(51), 'lpm_sort_in_subboxes', 'stop' ) |
---|
7830 | |
---|
7831 | END SUBROUTINE lpm_sort_in_subboxes |
---|
7832 | |
---|
7833 | |
---|
7834 | !------------------------------------------------------------------------------! |
---|
7835 | ! Description: |
---|
7836 | ! ------------ |
---|
7837 | !> Move all particles not marked for deletion to lowest indices (packing) |
---|
7838 | !------------------------------------------------------------------------------! |
---|
7839 | SUBROUTINE lpm_pack |
---|
7840 | |
---|
7841 | INTEGER(iwp) :: n !< |
---|
7842 | INTEGER(iwp) :: nn !< |
---|
7843 | ! |
---|
7844 | !-- Find out elements marked for deletion and move data from highest index |
---|
7845 | !-- values to these free indices |
---|
7846 | nn = number_of_particles |
---|
7847 | |
---|
7848 | DO WHILE ( .NOT. particles(nn)%particle_mask ) |
---|
7849 | nn = nn-1 |
---|
7850 | IF ( nn == 0 ) EXIT |
---|
7851 | ENDDO |
---|
7852 | |
---|
7853 | IF ( nn > 0 ) THEN |
---|
7854 | DO n = 1, number_of_particles |
---|
7855 | IF ( .NOT. particles(n)%particle_mask ) THEN |
---|
7856 | particles(n) = particles(nn) |
---|
7857 | nn = nn - 1 |
---|
7858 | DO WHILE ( .NOT. particles(nn)%particle_mask ) |
---|
7859 | nn = nn-1 |
---|
7860 | IF ( n == nn ) EXIT |
---|
7861 | ENDDO |
---|
7862 | ENDIF |
---|
7863 | IF ( n == nn ) EXIT |
---|
7864 | ENDDO |
---|
7865 | ENDIF |
---|
7866 | |
---|
7867 | ! |
---|
7868 | !-- The number of deleted particles has been determined in routines |
---|
7869 | !-- lpm_boundary_conds, lpm_droplet_collision, and lpm_exchange_horiz |
---|
7870 | number_of_particles = nn |
---|
7871 | |
---|
7872 | END SUBROUTINE lpm_pack |
---|
7873 | |
---|
7874 | |
---|
7875 | !------------------------------------------------------------------------------! |
---|
7876 | ! Description: |
---|
7877 | ! ------------ |
---|
7878 | !> Sort particles in each sub-grid box into two groups: particles that already |
---|
7879 | !> completed the LES timestep, and particles that need further timestepping to |
---|
7880 | !> complete the LES timestep. |
---|
7881 | !------------------------------------------------------------------------------! |
---|
7882 | SUBROUTINE lpm_sort_timeloop_done |
---|
7883 | |
---|
7884 | INTEGER(iwp) :: end_index !< particle end index for each sub-box |
---|
7885 | INTEGER(iwp) :: i !< index of particle grid box in x-direction |
---|
7886 | INTEGER(iwp) :: j !< index of particle grid box in y-direction |
---|
7887 | INTEGER(iwp) :: k !< index of particle grid box in z-direction |
---|
7888 | INTEGER(iwp) :: n !< running index for number of particles |
---|
7889 | INTEGER(iwp) :: nb !< index of subgrid boux |
---|
7890 | INTEGER(iwp) :: nf !< indices for particles in each sub-box that already finalized their substeps |
---|
7891 | INTEGER(iwp) :: nnf !< indices for particles in each sub-box that need further treatment |
---|
7892 | INTEGER(iwp) :: num_finalized !< number of particles in each sub-box that already finalized their substeps |
---|
7893 | INTEGER(iwp) :: start_index !< particle start index for each sub-box |
---|
7894 | |
---|
7895 | TYPE(particle_type), DIMENSION(:), ALLOCATABLE :: sort_particles !< temporary particle array |
---|
7896 | |
---|
7897 | DO i = nxl, nxr |
---|
7898 | DO j = nys, nyn |
---|
7899 | DO k = nzb+1, nzt |
---|
7900 | |
---|
7901 | number_of_particles = prt_count(k,j,i) |
---|
7902 | IF ( number_of_particles <= 0 ) CYCLE |
---|
7903 | |
---|
7904 | particles => grid_particles(k,j,i)%particles(1:number_of_particles) |
---|
7905 | |
---|
7906 | DO nb = 0, 7 |
---|
7907 | ! |
---|
7908 | !-- Obtain start and end index for each subgrid box |
---|
7909 | start_index = grid_particles(k,j,i)%start_index(nb) |
---|
7910 | end_index = grid_particles(k,j,i)%end_index(nb) |
---|
7911 | ! |
---|
7912 | !-- Allocate temporary array used for sorting. |
---|
7913 | ALLOCATE( sort_particles(start_index:end_index) ) |
---|
7914 | ! |
---|
7915 | !-- Determine number of particles already completed the LES |
---|
7916 | !-- timestep, and write them into a temporary array. |
---|
7917 | nf = start_index |
---|
7918 | num_finalized = 0 |
---|
7919 | DO n = start_index, end_index |
---|
7920 | IF ( dt_3d - particles(n)%dt_sum < 1E-8_wp ) THEN |
---|
7921 | sort_particles(nf) = particles(n) |
---|
7922 | nf = nf + 1 |
---|
7923 | num_finalized = num_finalized + 1 |
---|
7924 | ENDIF |
---|
7925 | ENDDO |
---|
7926 | ! |
---|
7927 | !-- Determine number of particles that not completed the LES |
---|
7928 | !-- timestep, and write them into a temporary array. |
---|
7929 | nnf = nf |
---|
7930 | DO n = start_index, end_index |
---|
7931 | IF ( dt_3d - particles(n)%dt_sum > 1E-8_wp ) THEN |
---|
7932 | sort_particles(nnf) = particles(n) |
---|
7933 | nnf = nnf + 1 |
---|
7934 | ENDIF |
---|
7935 | ENDDO |
---|
7936 | ! |
---|
7937 | !-- Write back sorted particles |
---|
7938 | particles(start_index:end_index) = & |
---|
7939 | sort_particles(start_index:end_index) |
---|
7940 | ! |
---|
7941 | !-- Determine updated start_index, used to masked already |
---|
7942 | !-- completed particles. |
---|
7943 | grid_particles(k,j,i)%start_index(nb) = & |
---|
7944 | grid_particles(k,j,i)%start_index(nb) & |
---|
7945 | + num_finalized |
---|
7946 | ! |
---|
7947 | !-- Deallocate dummy array |
---|
7948 | DEALLOCATE ( sort_particles ) |
---|
7949 | ! |
---|
7950 | !-- Finally, if number of non-completed particles is non zero |
---|
7951 | !-- in any of the sub-boxes, set control flag appropriately. |
---|
7952 | IF ( nnf > nf ) & |
---|
7953 | grid_particles(k,j,i)%time_loop_done = .FALSE. |
---|
7954 | |
---|
7955 | ENDDO |
---|
7956 | ENDDO |
---|
7957 | ENDDO |
---|
7958 | ENDDO |
---|
7959 | |
---|
7960 | END SUBROUTINE lpm_sort_timeloop_done |
---|
7961 | |
---|
7962 | END MODULE lagrangian_particle_model_mod |
---|