source: palm/trunk/SOURCE/init_slope.f90 @ 4651

Last change on this file since 4651 was 4648, checked in by raasch, 4 years ago

files re-formatted to follow the PALM coding standard

  • Property svn:keywords set to Id
File size: 5.1 KB
Line 
1!> @file init_slope.f90
2!--------------------------------------------------------------------------------------------------!
3! This file is part of the PALM model system.
4!
5! PALM is free software: you can redistribute it and/or modify it under the terms of the GNU General
6! Public License as published by the Free Software Foundation, either version 3 of the License, or
7! (at your option) any later version.
8!
9! PALM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the
10! implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General
11! Public License for more details.
12!
13! You should have received a copy of the GNU General Public License along with PALM. If not, see
14! <http://www.gnu.org/licenses/>.
15!
16! Copyright 1997-2020 Leibniz Universitaet Hannover
17!--------------------------------------------------------------------------------------------------!
18!
19! Current revisions:
20! -----------------
21!
22!
23! Former revisions:
24! -----------------
25! $Id: init_slope.f90 4648 2020-08-25 07:52:08Z raasch $
26! file re-formatted to follow the PALM coding standard
27!
28! 4360 2020-01-07 11:25:50Z suehring
29! Corrected "Former revisions" section
30!
31! 3655 2019-01-07 16:51:22Z knoop
32! Modularization of all bulk cloud physics code components
33!
34! Revision 1.1  2000/04/27 07:06:24  raasch
35! Initial revision
36!
37!
38! Description:
39! ------------
40!> Initialization of the temperature field and other variables used in case of a sloping surface.
41!> @note when a sloping surface is used, only one constant temperature
42!>       gradient is allowed!
43!--------------------------------------------------------------------------------------------------!
44 SUBROUTINE init_slope
45
46
47    USE arrays_3d,                                                                                 &
48        ONLY:  pt, pt_init, pt_slope_ref, zu
49
50    USE basic_constants_and_equations_mod,                                                         &
51        ONLY:  pi
52
53    USE control_parameters,                                                                        &
54        ONLY:  alpha_surface, initializing_actions, pt_slope_offset, pt_surface,                   &
55               pt_vertical_gradient, sin_alpha_surface
56
57    USE grid_variables,                                                                            &
58        ONLY:  dx
59
60    USE indices,                                                                                   &
61        ONLY:  ngp_2dh, nx, nxl, nxlg, nxr, nxrg, nyn, nyng, nys, nysg, nzb, nzt
62
63    USE kinds
64
65    USE pegrid
66
67
68    IMPLICIT NONE
69
70    INTEGER(iwp) ::  i        !<
71    INTEGER(iwp) ::  j        !<
72    INTEGER(iwp) ::  k        !<
73
74    REAL(wp)     ::  alpha    !<
75    REAL(wp)     ::  height   !<
76    REAL(wp)     ::  pt_value !<
77    REAL(wp)     ::  radius   !<
78
79    REAL(wp), DIMENSION(:), ALLOCATABLE ::  pt_init_local !<
80
81!
82!-- Calculate reference temperature field needed for computing buoyancy
83    ALLOCATE( pt_slope_ref(nzb:nzt+1,nxlg:nxrg) )
84
85    DO  i = nxlg, nxrg
86       DO  k = nzb, nzt+1
87
88!
89!--       Compute height of grid-point relative to lower left corner of the total domain.
90!--       First compute the distance between the actual grid point and the lower left corner as well
91!--       as the angle between the line connecting these points and the bottom of the model.
92          IF ( k /= nzb )  THEN
93             radius = SQRT( ( i * dx )**2 + zu(k)**2 )
94             height = zu(k)
95          ELSE
96             radius = SQRT( ( i * dx )**2 )
97             height = 0.0_wp
98          ENDIF
99          IF ( radius /= 0.0_wp )  THEN
100             alpha = ASIN( height / radius )
101          ELSE
102             alpha = 0.0_wp
103          ENDIF
104!
105!--       Compute temperatures in the rotated coordinate system
106          alpha    = alpha + alpha_surface / 180.0_wp * pi
107          pt_value = pt_surface + radius * SIN( alpha ) * pt_vertical_gradient(1) / 100.0_wp
108          pt_slope_ref(k,i) = pt_value
109       ENDDO
110    ENDDO
111
112!
113!-- Temperature difference between left and right boundary of the total domain, used for the cyclic
114!-- boundary in x-direction
115    pt_slope_offset = (nx+1) * dx * sin_alpha_surface * pt_vertical_gradient(1) / 100.0_wp
116
117
118!
119!-- Following action must only be executed for initial runs
120    IF ( TRIM( initializing_actions ) /= 'read_restart_data' )  THEN
121!
122!--    Set initial temperature equal to the reference temperature field
123       DO  j = nysg, nyng
124          pt(:,j,:) = pt_slope_ref
125       ENDDO
126
127!
128!--    Recompute the mean initial temperature profile (mean along x-direction of the rotated
129!--    coordinate system)
130       ALLOCATE( pt_init_local(nzb:nzt+1) )
131       pt_init_local = 0.0_wp
132       DO  i = nxl, nxr
133          DO  j =  nys, nyn
134             DO  k = nzb, nzt+1
135                pt_init_local(k) = pt_init_local(k) + pt(k,j,i)
136             ENDDO
137          ENDDO
138       ENDDO
139
140#if defined( __parallel )
141       IF ( collective_wait )  CALL MPI_BARRIER( comm2d, ierr )
142       CALL MPI_ALLREDUCE( pt_init_local, pt_init, nzt+2-nzb, MPI_REAL, MPI_SUM, comm2d, ierr )
143#else
144       pt_init = pt_init_local
145#endif
146
147       pt_init = pt_init / ngp_2dh(0)
148       DEALLOCATE( pt_init_local )
149
150    ENDIF
151
152 END SUBROUTINE init_slope
Note: See TracBrowser for help on using the repository browser.