[1] | 1 | SUBROUTINE init_slope |
---|
| 2 | |
---|
[3] | 3 | !------------------------------------------------------------------------------! |
---|
[484] | 4 | ! Current revisions: |
---|
[1] | 5 | ! ----------------- |
---|
| 6 | ! |
---|
| 7 | ! Former revisions: |
---|
| 8 | ! ----------------- |
---|
[3] | 9 | ! $Id: init_slope.f90 668 2010-12-23 13:22:58Z maronga $ |
---|
[623] | 10 | ! |
---|
[668] | 11 | ! 667 2010-12-23 12:06:00Z suehring/gryschka |
---|
| 12 | ! nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng. |
---|
| 13 | ! |
---|
[623] | 14 | ! 622 2010-12-10 08:08:13Z raasch |
---|
| 15 | ! optional barriers included in order to speed up collective operations |
---|
| 16 | ! |
---|
| 17 | ! Feb. 2007 |
---|
[3] | 18 | ! RCS Log replace by Id keyword, revision history cleaned up |
---|
| 19 | ! |
---|
[1] | 20 | ! Revision 1.5 2006/02/23 12:35:34 raasch |
---|
| 21 | ! nanz_2dh renamed ngp_2dh |
---|
| 22 | ! |
---|
| 23 | ! Revision 1.1 2000/04/27 07:06:24 raasch |
---|
| 24 | ! Initial revision |
---|
| 25 | ! |
---|
| 26 | ! |
---|
| 27 | ! Description: |
---|
| 28 | ! ------------ |
---|
| 29 | ! Initialization of the temperature field and other variables used in case |
---|
| 30 | ! of a sloping surface. |
---|
| 31 | ! Remember: when a sloping surface is used, only one constant temperature |
---|
| 32 | ! gradient is allowed! |
---|
[3] | 33 | !------------------------------------------------------------------------------! |
---|
[1] | 34 | |
---|
| 35 | USE arrays_3d |
---|
| 36 | USE constants |
---|
| 37 | USE grid_variables |
---|
| 38 | USE indices |
---|
| 39 | USE pegrid |
---|
| 40 | USE control_parameters |
---|
| 41 | |
---|
| 42 | IMPLICIT NONE |
---|
| 43 | |
---|
| 44 | INTEGER :: i, j, k |
---|
| 45 | REAL :: alpha, height, pt_value, radius |
---|
| 46 | REAL, DIMENSION(:), ALLOCATABLE :: pt_init_local |
---|
| 47 | |
---|
| 48 | ! |
---|
| 49 | !-- Calculate reference temperature field needed for computing buoyancy |
---|
[667] | 50 | ALLOCATE( pt_slope_ref(nzb:nzt+1,nxlg:nxrg) ) |
---|
[1] | 51 | |
---|
[667] | 52 | DO i = nxlg, nxrg |
---|
[1] | 53 | DO k = nzb, nzt+1 |
---|
| 54 | |
---|
| 55 | ! |
---|
| 56 | !-- Compute height of grid-point relative to lower left corner of |
---|
| 57 | !-- the total domain. |
---|
| 58 | !-- First compute the distance between the actual grid point and the |
---|
| 59 | !-- lower left corner as well as the angle between the line connecting |
---|
| 60 | !-- these points and the bottom of the model. |
---|
| 61 | IF ( k /= nzb ) THEN |
---|
| 62 | radius = SQRT( ( i * dx )**2 + zu(k)**2 ) |
---|
| 63 | height = zu(k) |
---|
| 64 | ELSE |
---|
| 65 | radius = SQRT( ( i * dx )**2 ) |
---|
| 66 | height = 0.0 |
---|
| 67 | ENDIF |
---|
| 68 | IF ( radius /= 0.0 ) THEN |
---|
| 69 | alpha = ASIN( height / radius ) |
---|
| 70 | ELSE |
---|
| 71 | alpha = 0.0 |
---|
| 72 | ENDIF |
---|
| 73 | ! |
---|
| 74 | !-- Compute temperatures in the rotated coordinate system |
---|
| 75 | alpha = alpha + alpha_surface / 180.0 * pi |
---|
| 76 | pt_value = pt_surface + radius * SIN( alpha ) * & |
---|
| 77 | pt_vertical_gradient(1) / 100.0 |
---|
| 78 | pt_slope_ref(k,i) = pt_value |
---|
| 79 | ENDDO |
---|
| 80 | ENDDO |
---|
| 81 | |
---|
| 82 | ! |
---|
| 83 | !-- Temperature difference between left and right boundary of the total domain, |
---|
| 84 | !-- used for the cyclic boundary in x-direction |
---|
| 85 | pt_slope_offset = (nx+1) * dx * sin_alpha_surface * & |
---|
| 86 | pt_vertical_gradient(1) / 100.0 |
---|
| 87 | |
---|
| 88 | |
---|
| 89 | ! |
---|
| 90 | !-- Following action must only be executed for initial runs |
---|
| 91 | IF ( TRIM( initializing_actions ) /= 'read_restart_data' ) THEN |
---|
| 92 | ! |
---|
| 93 | !-- Set initial temperature equal to the reference temperature field |
---|
[667] | 94 | DO j = nysg, nyng |
---|
[1] | 95 | pt(:,j,:) = pt_slope_ref |
---|
| 96 | ENDDO |
---|
| 97 | |
---|
| 98 | ! |
---|
| 99 | !-- Recompute the mean initial temperature profile (mean along x-direction of |
---|
| 100 | !-- the rotated coordinate system) |
---|
| 101 | ALLOCATE( pt_init_local(nzb:nzt+1) ) |
---|
| 102 | pt_init_local = 0.0 |
---|
| 103 | DO i = nxl, nxr |
---|
| 104 | DO j = nys, nyn |
---|
| 105 | DO k = nzb, nzt+1 |
---|
| 106 | pt_init_local(k) = pt_init_local(k) + pt(k,j,i) |
---|
| 107 | ENDDO |
---|
| 108 | ENDDO |
---|
[622] | 109 | ENDDO |
---|
[1] | 110 | |
---|
| 111 | #if defined( __parallel ) |
---|
[622] | 112 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
| 113 | CALL MPI_ALLREDUCE( pt_init_local, pt_init, nzt+2-nzb, MPI_REAL, & |
---|
| 114 | MPI_SUM, comm2d, ierr ) |
---|
[1] | 115 | #else |
---|
[622] | 116 | pt_init = pt_init_local |
---|
[1] | 117 | #endif |
---|
| 118 | |
---|
[622] | 119 | pt_init = pt_init / ngp_2dh(0) |
---|
| 120 | DEALLOCATE( pt_init_local ) |
---|
[1] | 121 | |
---|
[622] | 122 | ENDIF |
---|
[1] | 123 | |
---|
| 124 | END SUBROUTINE init_slope |
---|