source: palm/trunk/SOURCE/init_slope.f90 @ 4180

Last change on this file since 4180 was 4180, checked in by scharf, 5 years ago

removed comments in 'Former revisions' section that are older than 01.01.2019

  • Property svn:keywords set to Id
File size: 4.9 KB
RevLine 
[1682]1!> @file init_slope.f90
[2000]2!------------------------------------------------------------------------------!
[2696]3! This file is part of the PALM model system.
[1036]4!
[2000]5! PALM is free software: you can redistribute it and/or modify it under the
6! terms of the GNU General Public License as published by the Free Software
7! Foundation, either version 3 of the License, or (at your option) any later
8! version.
[1036]9!
10! PALM is distributed in the hope that it will be useful, but WITHOUT ANY
11! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
12! A PARTICULAR PURPOSE.  See the GNU General Public License for more details.
13!
14! You should have received a copy of the GNU General Public License along with
15! PALM. If not, see <http://www.gnu.org/licenses/>.
16!
[3655]17! Copyright 1997-2019 Leibniz Universitaet Hannover
[2000]18!------------------------------------------------------------------------------!
[1036]19!
[484]20! Current revisions:
[1]21! -----------------
[1354]22!
[2001]23!
[1321]24! Former revisions:
25! -----------------
26! $Id: init_slope.f90 4180 2019-08-21 14:37:54Z scharf $
[3274]27! Modularization of all bulk cloud physics code components
28!
[1321]29!
[1]30! Description:
31! ------------
[1682]32!> Initialization of the temperature field and other variables used in case
33!> of a sloping surface.
34!> @note when a sloping surface is used, only one constant temperature
35!>       gradient is allowed!
[3]36!------------------------------------------------------------------------------!
[1682]37 SUBROUTINE init_slope
38 
[1]39
[1320]40    USE arrays_3d,                                                             &
41        ONLY:  pt, pt_init, pt_slope_ref, zu
42       
[3274]43    USE basic_constants_and_equations_mod,                                     &
[1320]44        ONLY:  pi
45                   
46    USE control_parameters,                                                    &
47        ONLY:  alpha_surface, initializing_actions, pt_slope_offset,           &
48               pt_surface, pt_vertical_gradient, sin_alpha_surface
49       
50    USE grid_variables,                                                        &
51        ONLY:  dx
52       
53    USE indices,                                                               &
54        ONLY:  ngp_2dh, nx, nxl, nxlg, nxr, nxrg, nyn, nyng, nys, nysg, nzb, nzt
55       
56    USE kinds
57
[1]58    USE pegrid
59
[1320]60
[1]61    IMPLICIT NONE
62
[1682]63    INTEGER(iwp) ::  i        !<
64    INTEGER(iwp) ::  j        !<
65    INTEGER(iwp) ::  k        !<
[1320]66   
[1682]67    REAL(wp)     ::  alpha    !<
68    REAL(wp)     ::  height   !<
69    REAL(wp)     ::  pt_value !<
70    REAL(wp)     ::  radius   !<
[1320]71   
[1682]72    REAL(wp), DIMENSION(:), ALLOCATABLE ::  pt_init_local !<
[1]73
74!
75!-- Calculate reference temperature field needed for computing buoyancy
[667]76    ALLOCATE( pt_slope_ref(nzb:nzt+1,nxlg:nxrg) )
[1]77
[667]78    DO  i = nxlg, nxrg
[1]79       DO  k = nzb, nzt+1
80
81!
82!--       Compute height of grid-point relative to lower left corner of
83!--       the total domain.
84!--       First compute the distance between the actual grid point and the
85!--       lower left corner as well as the angle between the line connecting
86!--       these points and the bottom of the model.
87          IF ( k /= nzb )  THEN
88             radius = SQRT( ( i * dx )**2 + zu(k)**2 )
89             height = zu(k)
90          ELSE
91             radius = SQRT( ( i * dx )**2 )
[1353]92             height = 0.0_wp
[1]93          ENDIF
[1353]94          IF ( radius /= 0.0_wp )  THEN
[1]95             alpha = ASIN( height / radius )
96          ELSE
[1353]97             alpha = 0.0_wp
[1]98          ENDIF
99!
100!--       Compute temperatures in the rotated coordinate system
[1322]101          alpha    = alpha + alpha_surface / 180.0_wp * pi
[1]102          pt_value = pt_surface + radius * SIN( alpha ) * &
[1322]103                                  pt_vertical_gradient(1) / 100.0_wp
[1]104          pt_slope_ref(k,i) = pt_value
105       ENDDO               
106    ENDDO
107
108!
109!-- Temperature difference between left and right boundary of the total domain,
110!-- used for the cyclic boundary in x-direction
111    pt_slope_offset = (nx+1) * dx * sin_alpha_surface * &
[1322]112                      pt_vertical_gradient(1) / 100.0_wp
[1]113
114
115!
116!-- Following action must only be executed for initial runs
117    IF ( TRIM( initializing_actions ) /= 'read_restart_data' )  THEN
118!
119!--    Set initial temperature equal to the reference temperature field
[667]120       DO  j = nysg, nyng
[1]121          pt(:,j,:) = pt_slope_ref
122       ENDDO
123
124!
125!--    Recompute the mean initial temperature profile (mean along x-direction of
126!--    the rotated coordinate system)
127       ALLOCATE( pt_init_local(nzb:nzt+1) )
[1353]128       pt_init_local = 0.0_wp
[1]129       DO  i = nxl, nxr
130          DO  j =  nys, nyn
131             DO  k = nzb, nzt+1
132                pt_init_local(k) = pt_init_local(k) + pt(k,j,i)
133             ENDDO
134          ENDDO
[622]135       ENDDO
[1]136
137#if defined( __parallel )
[622]138       IF ( collective_wait )  CALL MPI_BARRIER( comm2d, ierr )
139       CALL MPI_ALLREDUCE( pt_init_local, pt_init, nzt+2-nzb, MPI_REAL, &
140                            MPI_SUM, comm2d, ierr )
[1]141#else
[622]142       pt_init = pt_init_local
[1]143#endif
144
[622]145       pt_init = pt_init / ngp_2dh(0)
146       DEALLOCATE( pt_init_local )
[1]147
[622]148    ENDIF
[1]149
150 END SUBROUTINE init_slope
Note: See TracBrowser for help on using the repository browser.