1 | SUBROUTINE init_rankine |
---|
2 | |
---|
3 | !------------------------------------------------------------------------------! |
---|
4 | ! Current revisions: |
---|
5 | ! ----------------- |
---|
6 | ! |
---|
7 | ! |
---|
8 | ! Former revisions: |
---|
9 | ! ----------------- |
---|
10 | ! $Id: init_rankine.f90 484 2010-02-05 07:36:54Z weinreis $ |
---|
11 | ! |
---|
12 | ! 107 2007-08-17 13:54:45Z raasch |
---|
13 | ! Initial profiles are reset to constant profiles |
---|
14 | ! |
---|
15 | ! 75 2007-03-22 09:54:05Z raasch |
---|
16 | ! uxrp, vynp eliminated, 2nd+3rd argument removed from exchange horiz |
---|
17 | ! |
---|
18 | ! RCS Log replace by Id keyword, revision history cleaned up |
---|
19 | ! |
---|
20 | ! Revision 1.11 2005/03/26 20:38:49 raasch |
---|
21 | ! Arguments for non-cyclic boundary conditions added to argument list of |
---|
22 | ! routine exchange_horiz |
---|
23 | ! |
---|
24 | ! Revision 1.1 1997/08/11 06:18:43 raasch |
---|
25 | ! Initial revision |
---|
26 | ! |
---|
27 | ! |
---|
28 | ! Description: |
---|
29 | ! ------------ |
---|
30 | ! Initialize a (nondivergent) Rankine eddy with a vertical axis in order to test |
---|
31 | ! the advection terms and the pressure solver. |
---|
32 | !------------------------------------------------------------------------------! |
---|
33 | |
---|
34 | USE arrays_3d |
---|
35 | USE constants |
---|
36 | USE grid_variables |
---|
37 | USE indices |
---|
38 | USE control_parameters |
---|
39 | |
---|
40 | IMPLICIT NONE |
---|
41 | |
---|
42 | INTEGER :: i, ic, j, jc, k, kc1, kc2 |
---|
43 | REAL :: alpha, betrag, radius, rc, uw, vw, x, y |
---|
44 | |
---|
45 | ! |
---|
46 | !-- Default: eddy radius rc, eddy strength z, |
---|
47 | !-- position of eddy centre: ic, jc, kc1, kc2 |
---|
48 | rc = 4.0 * dx |
---|
49 | ic = ( nx+1 ) / 2 |
---|
50 | jc = ic |
---|
51 | kc1 = nzb |
---|
52 | kc2 = nzt+1 |
---|
53 | |
---|
54 | ! |
---|
55 | !-- Reset initial profiles to constant profiles |
---|
56 | IF ( INDEX(initializing_actions, 'set_constant_profiles') /= 0 ) THEN |
---|
57 | DO i = nxl-1, nxr+1 |
---|
58 | DO j = nys-1, nyn+1 |
---|
59 | pt(:,j,i) = pt_init |
---|
60 | u(:,j,i) = u_init |
---|
61 | v(:,j,i) = v_init |
---|
62 | ENDDO |
---|
63 | ENDDO |
---|
64 | ENDIF |
---|
65 | |
---|
66 | ! |
---|
67 | !-- Compute the u-component. |
---|
68 | DO i = nxl, nxr |
---|
69 | DO j = nys, nyn |
---|
70 | x = ( i - ic - 0.5 ) * dx |
---|
71 | y = ( j - jc ) * dy |
---|
72 | radius = SQRT( x**2 + y**2 ) |
---|
73 | IF ( radius <= 2.0 * rc ) THEN |
---|
74 | betrag = radius / ( 2.0 * rc ) * 0.08 |
---|
75 | ELSEIF ( radius > 2.0 * rc .AND. radius < 8.0 * rc ) THEN |
---|
76 | betrag = 0.08 * EXP( -( radius - 2.0 * rc ) / 2.0 ) |
---|
77 | ELSE |
---|
78 | betrag = 0.0 |
---|
79 | ENDIF |
---|
80 | |
---|
81 | IF ( x == 0.0 ) THEN |
---|
82 | IF ( y > 0.0 ) THEN |
---|
83 | alpha = pi / 2.0 |
---|
84 | ELSEIF ( y < 0.0 ) THEN |
---|
85 | alpha = 3.0 * pi / 2.0 |
---|
86 | ENDIF |
---|
87 | ELSE |
---|
88 | IF ( x < 0.0 ) THEN |
---|
89 | alpha = ATAN( y / x ) + pi |
---|
90 | ELSE |
---|
91 | IF ( y < 0.0 ) THEN |
---|
92 | alpha = ATAN( y / x ) + 2.0 * pi |
---|
93 | ELSE |
---|
94 | alpha = ATAN( y / x ) |
---|
95 | ENDIF |
---|
96 | ENDIF |
---|
97 | ENDIF |
---|
98 | |
---|
99 | uw = -SIN( alpha ) * betrag |
---|
100 | |
---|
101 | DO k = kc1, kc2 |
---|
102 | u(k,j,i) = u(k,j,i) + uw |
---|
103 | ENDDO |
---|
104 | ENDDO |
---|
105 | ENDDO |
---|
106 | |
---|
107 | ! |
---|
108 | !-- Compute the v-component. |
---|
109 | DO i = nxl, nxr |
---|
110 | DO j = nys, nyn |
---|
111 | x = ( i - ic ) * dx |
---|
112 | y = ( j - jc - 0.5) * dy |
---|
113 | radius = SQRT( x**2 + y**2 ) |
---|
114 | IF ( radius <= 2.0 * rc ) THEN |
---|
115 | betrag = radius / ( 2.0 * rc ) * 0.08 |
---|
116 | ELSEIF ( radius > 2.0 * rc .AND. radius < 8.0 * rc ) THEN |
---|
117 | betrag = 0.08 * EXP( -( radius - 2.0 * rc ) / 2.0 ) |
---|
118 | ELSE |
---|
119 | betrag = 0.0 |
---|
120 | ENDIF |
---|
121 | |
---|
122 | IF ( x == 0.0 ) THEN |
---|
123 | IF ( y > 0.0 ) THEN |
---|
124 | alpha = pi / 2.0 |
---|
125 | ELSEIF ( y < 0.0 ) THEN |
---|
126 | alpha = 3.0 * pi / 2.0 |
---|
127 | ENDIF |
---|
128 | ELSE |
---|
129 | IF ( x < 0.0 ) THEN |
---|
130 | alpha = ATAN( y / x ) + pi |
---|
131 | ELSE |
---|
132 | IF ( y < 0.0 ) THEN |
---|
133 | alpha = ATAN( y / x ) + 2.0 * pi |
---|
134 | ELSE |
---|
135 | alpha = ATAN( y / x ) |
---|
136 | ENDIF |
---|
137 | ENDIF |
---|
138 | ENDIF |
---|
139 | |
---|
140 | vw = COS( alpha ) * betrag |
---|
141 | |
---|
142 | DO k = kc1, kc2 |
---|
143 | v(k,j,i) = v(k,j,i) + vw |
---|
144 | ENDDO |
---|
145 | ENDDO |
---|
146 | ENDDO |
---|
147 | |
---|
148 | ! |
---|
149 | !-- Exchange of boundary values for the velocities. |
---|
150 | CALL exchange_horiz( u ) |
---|
151 | CALL exchange_horiz( v ) |
---|
152 | ! |
---|
153 | !-- Make velocity field nondivergent. |
---|
154 | n_sor = nsor_ini |
---|
155 | CALL pres |
---|
156 | n_sor = nsor |
---|
157 | |
---|
158 | END SUBROUTINE init_rankine |
---|