[95] | 1 | SUBROUTINE init_ocean |
---|
| 2 | |
---|
[1036] | 3 | !--------------------------------------------------------------------------------! |
---|
| 4 | ! This file is part of PALM. |
---|
| 5 | ! |
---|
| 6 | ! PALM is free software: you can redistribute it and/or modify it under the terms |
---|
| 7 | ! of the GNU General Public License as published by the Free Software Foundation, |
---|
| 8 | ! either version 3 of the License, or (at your option) any later version. |
---|
| 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
| 17 | ! Copyright 1997-2012 Leibniz University Hannover |
---|
| 18 | !--------------------------------------------------------------------------------! |
---|
| 19 | ! |
---|
[484] | 20 | ! Current revisions: |
---|
[95] | 21 | ! ----------------- |
---|
[1179] | 22 | ! Initial density profile is stored in array hom |
---|
[95] | 23 | ! |
---|
| 24 | ! Former revisions: |
---|
| 25 | ! ------------------ |
---|
[96] | 26 | ! $Id: init_ocean.f90 1179 2013-06-14 05:57:58Z ketelsen $ |
---|
[95] | 27 | ! |
---|
[1037] | 28 | ! 1036 2012-10-22 13:43:42Z raasch |
---|
| 29 | ! code put under GPL (PALM 3.9) |
---|
| 30 | ! |
---|
[392] | 31 | ! 388 2009-09-23 09:40:33Z raasch |
---|
| 32 | ! Bugfix: Initial profiles of hydrostatic pressure and density are calculated |
---|
| 33 | ! iteratively. First calculation of hyp(0) changed. |
---|
| 34 | ! |
---|
[139] | 35 | ! 124 2007-10-19 15:47:46Z raasch |
---|
| 36 | ! Bugfix: Initial density rho is calculated |
---|
| 37 | ! |
---|
[98] | 38 | ! 97 2007-06-21 08:23:15Z raasch |
---|
| 39 | ! Initial revision |
---|
[95] | 40 | ! |
---|
| 41 | ! Description: |
---|
| 42 | ! ------------ |
---|
| 43 | ! Initialization of quantities needed for the ocean version |
---|
| 44 | !------------------------------------------------------------------------------! |
---|
| 45 | |
---|
| 46 | USE arrays_3d |
---|
| 47 | USE control_parameters |
---|
| 48 | USE eqn_state_seawater_mod |
---|
| 49 | USE grid_variables |
---|
| 50 | USE indices |
---|
[1179] | 51 | USE pegrid |
---|
| 52 | USE statistics |
---|
[95] | 53 | |
---|
| 54 | IMPLICIT NONE |
---|
| 55 | |
---|
[336] | 56 | INTEGER :: k, n |
---|
[95] | 57 | |
---|
[388] | 58 | REAL :: sa_l, pt_l |
---|
[95] | 59 | |
---|
[336] | 60 | REAL, DIMENSION(nzb:nzt+1) :: rho_init |
---|
| 61 | |
---|
[95] | 62 | ALLOCATE( hyp(nzb:nzt+1) ) |
---|
| 63 | |
---|
| 64 | ! |
---|
| 65 | !-- Set water density near the ocean surface |
---|
| 66 | rho_surface = 1027.62 |
---|
| 67 | |
---|
| 68 | ! |
---|
| 69 | !-- Calculate initial vertical profile of hydrostatic pressure (in Pa) |
---|
[96] | 70 | !-- and the reference density (used later in buoyancy term) |
---|
[388] | 71 | !-- First step: Calculate pressure using reference density |
---|
[95] | 72 | hyp(nzt+1) = surface_pressure * 100.0 |
---|
| 73 | |
---|
[97] | 74 | hyp(nzt) = hyp(nzt+1) + rho_surface * g * 0.5 * dzu(nzt+1) |
---|
[336] | 75 | rho_init(nzt) = rho_surface |
---|
[95] | 76 | |
---|
[366] | 77 | DO k = nzt-1, 1, -1 |
---|
[336] | 78 | hyp(k) = hyp(k+1) + rho_surface * g * dzu(k) |
---|
| 79 | ENDDO |
---|
[366] | 80 | hyp(0) = hyp(1) + rho_surface * g * dzu(1) |
---|
[95] | 81 | |
---|
[388] | 82 | ! |
---|
| 83 | !-- Second step: Iteratively calculate in situ density (based on presssure) |
---|
| 84 | !-- and pressure (based on in situ density) |
---|
[336] | 85 | DO n = 1, 5 |
---|
[95] | 86 | |
---|
[336] | 87 | rho_reference = rho_surface * 0.5 * dzu(nzt+1) |
---|
[95] | 88 | |
---|
[336] | 89 | DO k = nzt-1, 0, -1 |
---|
| 90 | |
---|
| 91 | sa_l = 0.5 * ( sa_init(k) + sa_init(k+1) ) |
---|
| 92 | pt_l = 0.5 * ( pt_init(k) + pt_init(k+1) ) |
---|
| 93 | |
---|
| 94 | rho_init(k) = eqn_state_seawater_func( hyp(k), pt_l, sa_l ) |
---|
| 95 | |
---|
| 96 | rho_reference = rho_reference + rho_init(k) * dzu(k+1) |
---|
| 97 | |
---|
| 98 | ENDDO |
---|
| 99 | |
---|
| 100 | rho_reference = rho_reference / ( zw(nzt) - zu(nzb) ) |
---|
| 101 | |
---|
| 102 | DO k = nzt-1, 0, -1 |
---|
| 103 | hyp(k) = hyp(k+1) + g * 0.5 * ( rho_init(k) + rho_init(k+1 ) ) * & |
---|
| 104 | dzu(k+1) |
---|
| 105 | ENDDO |
---|
| 106 | |
---|
[95] | 107 | ENDDO |
---|
| 108 | |
---|
[97] | 109 | ! |
---|
| 110 | !-- Calculate the reference potential density |
---|
| 111 | prho_reference = 0.0 |
---|
| 112 | DO k = 0, nzt |
---|
[96] | 113 | |
---|
[97] | 114 | sa_l = 0.5 * ( sa_init(k) + sa_init(k+1) ) |
---|
| 115 | pt_l = 0.5 * ( pt_init(k) + pt_init(k+1) ) |
---|
| 116 | |
---|
| 117 | prho_reference = prho_reference + dzu(k+1) * & |
---|
[336] | 118 | eqn_state_seawater_func( 0.0, pt_l, sa_l ) |
---|
[97] | 119 | |
---|
| 120 | ENDDO |
---|
| 121 | |
---|
| 122 | prho_reference = prho_reference / ( zu(nzt) - zu(nzb) ) |
---|
| 123 | |
---|
[124] | 124 | ! |
---|
[388] | 125 | !-- Calculate the 3d array of initial in situ and potential density, |
---|
| 126 | !-- based on the initial temperature and salinity profile |
---|
[124] | 127 | CALL eqn_state_seawater |
---|
[97] | 128 | |
---|
[1179] | 129 | ! |
---|
| 130 | !-- Store initial density profile |
---|
| 131 | hom(:,1,77,:) = SPREAD( rho_init(:), 2, statistic_regions+1 ) |
---|
[124] | 132 | |
---|
[1179] | 133 | ! |
---|
| 134 | !-- Set the reference state to be used in the buoyancy terms |
---|
| 135 | IF ( use_single_reference_value ) THEN |
---|
| 136 | ref_state(:) = prho_reference |
---|
| 137 | ELSE |
---|
| 138 | ref_state(:) = rho_init(:) |
---|
| 139 | ENDIF |
---|
| 140 | |
---|
| 141 | |
---|
[95] | 142 | END SUBROUTINE init_ocean |
---|