1 | SUBROUTINE init_advec |
---|
2 | |
---|
3 | !------------------------------------------------------------------------------! |
---|
4 | ! Actual revisions: |
---|
5 | ! ----------------- |
---|
6 | ! |
---|
7 | ! |
---|
8 | ! Former revisions: |
---|
9 | ! ----------------- |
---|
10 | ! $Log: init_advec.f90,v $ |
---|
11 | ! Revision 1.6 2004/04/30 11:59:31 raasch |
---|
12 | ! impulse_advec renamed momentum_advec |
---|
13 | ! |
---|
14 | ! Revision 1.5 2001/03/30 07:25:53 raasch |
---|
15 | ! Translation of remaining German identifiers (variables, subroutines, etc.) |
---|
16 | ! |
---|
17 | ! Revision 1.4 2001/01/22 06:57:43 raasch |
---|
18 | ! Module test_variables removed |
---|
19 | ! |
---|
20 | ! Revision 1.3 2000/12/21 16:12:52 letzel |
---|
21 | ! All comments translated into English. |
---|
22 | ! |
---|
23 | ! Revision 1.2 1999/02/17 09:18:45 raasch |
---|
24 | ! Fehlerkorrektur, Verfahren muessen unabhaengig voneinander initialisierbar |
---|
25 | ! sein |
---|
26 | ! |
---|
27 | ! Revision 1.1 1999/02/05 09:07:38 raasch |
---|
28 | ! Initial revision |
---|
29 | ! |
---|
30 | ! |
---|
31 | ! Description: |
---|
32 | ! ------------ |
---|
33 | ! Initialize constant coefficients and parameters for certain advection schemes. |
---|
34 | !------------------------------------------------------------------------------! |
---|
35 | |
---|
36 | USE advection |
---|
37 | USE arrays_3d |
---|
38 | USE indices |
---|
39 | USE control_parameters |
---|
40 | |
---|
41 | IMPLICIT NONE |
---|
42 | |
---|
43 | INTEGER :: i, intervals, j, k |
---|
44 | REAL :: delt, dn, dnneu, ex1, ex2, ex3, ex4, ex5, ex6, spl_alpha, & |
---|
45 | spl_beta, sterm |
---|
46 | REAL, DIMENSION(:), ALLOCATABLE :: spl_u, temp |
---|
47 | |
---|
48 | |
---|
49 | IF ( scalar_advec == 'bc-scheme' ) THEN |
---|
50 | |
---|
51 | ! |
---|
52 | !-- Compute exponential coefficients for the Bott-Chlond scheme |
---|
53 | intervals = 1000 |
---|
54 | ALLOCATE( aex(intervals), bex(intervals), dex(intervals), eex(intervals) ) |
---|
55 | |
---|
56 | delt = 1.0 / REAL( intervals ) |
---|
57 | sterm = delt * 0.5 |
---|
58 | |
---|
59 | DO i = 1, intervals |
---|
60 | |
---|
61 | IF ( sterm > 0.5 ) THEN |
---|
62 | dn = -5.0 |
---|
63 | ELSE |
---|
64 | dn = 5.0 |
---|
65 | ENDIF |
---|
66 | |
---|
67 | DO j = 1, 15 |
---|
68 | ex1 = dn * EXP( -dn ) - EXP( 0.5 * dn ) + EXP( -0.5 * dn ) |
---|
69 | ex2 = EXP( dn ) - EXP( -dn ) |
---|
70 | ex3 = EXP( -dn ) * ( 1.0 - dn ) - 0.5 * EXP( 0.5 * dn ) & |
---|
71 | - 0.5 * EXP( -0.5 * dn ) |
---|
72 | ex4 = EXP( dn ) + EXP( -dn ) |
---|
73 | ex5 = dn * sterm + ex1 / ex2 |
---|
74 | ex6 = sterm + ( ex3 * ex2 - ex4 * ex1 ) / ( ex2 * ex2 ) |
---|
75 | dnneu = dn - ex5 / ex6 |
---|
76 | dn = dnneu |
---|
77 | ENDDO |
---|
78 | |
---|
79 | IF ( sterm < 0.5 ) dn = MAX( 2.95E-2, dn ) |
---|
80 | IF ( sterm > 0.5 ) dn = MIN( -2.95E-2, dn ) |
---|
81 | ex1 = EXP( -dn ) |
---|
82 | ex2 = EXP( dn ) - ex1 |
---|
83 | aex(i) = -ex1 / ex2 |
---|
84 | bex(i) = 1.0 / ex2 |
---|
85 | dex(i) = dn |
---|
86 | eex(i) = EXP( dex(i) * 0.5 ) |
---|
87 | sterm = sterm + delt |
---|
88 | |
---|
89 | ENDDO |
---|
90 | |
---|
91 | ENDIF |
---|
92 | |
---|
93 | IF ( momentum_advec == 'ups-scheme' .OR. scalar_advec == 'ups-scheme' ) & |
---|
94 | THEN |
---|
95 | |
---|
96 | ! |
---|
97 | !-- Provide the constant parameters for the Upstream-Spline advection scheme. |
---|
98 | !-- In x- und y-direction the Sherman-Morrison formula is applied |
---|
99 | !-- (cf. Press et al, 1986 (Numerical Recipes)). |
---|
100 | ! |
---|
101 | !-- Allocate nonlocal arrays |
---|
102 | ALLOCATE( spl_z_x(0:nx), spl_z_y(0:ny), spl_tri_x(5,0:nx), & |
---|
103 | spl_tri_y(5,0:ny), spl_tri_zu(5,nzb:nzt+1), & |
---|
104 | spl_tri_zw(5,nzb:nzt+1) ) |
---|
105 | |
---|
106 | ! |
---|
107 | !-- Provide diagonal elements of the tridiagonal matrices for all |
---|
108 | !-- directions |
---|
109 | spl_tri_x(1,:) = 2.0 |
---|
110 | spl_tri_y(1,:) = 2.0 |
---|
111 | spl_tri_zu(1,:) = 2.0 |
---|
112 | spl_tri_zw(1,:) = 2.0 |
---|
113 | |
---|
114 | ! |
---|
115 | !-- Elements of the cyclic tridiagonal matrix |
---|
116 | !-- (same for all horizontal directions) |
---|
117 | spl_alpha = 0.5 |
---|
118 | spl_beta = 0.5 |
---|
119 | |
---|
120 | ! |
---|
121 | !-- Sub- and superdiagonal elements, x-direction |
---|
122 | spl_tri_x(2,0:nx) = 0.5 |
---|
123 | spl_tri_x(3,0:nx) = 0.5 |
---|
124 | |
---|
125 | ! |
---|
126 | !-- mMdify the diagonal elements (Sherman-Morrison) |
---|
127 | spl_gamma_x = -spl_tri_x(1,0) |
---|
128 | spl_tri_x(1,0) = spl_tri_x(1,0) - spl_gamma_x |
---|
129 | spl_tri_x(1,nx) = spl_tri_x(1,nx) - spl_alpha * spl_beta / spl_gamma_x |
---|
130 | |
---|
131 | ! |
---|
132 | !-- Split the tridiagonal matrix for Thomas algorithm |
---|
133 | spl_tri_x(4,0) = spl_tri_x(1,0) |
---|
134 | DO i = 1, nx |
---|
135 | spl_tri_x(5,i) = spl_tri_x(2,i) / spl_tri_x(4,i-1) |
---|
136 | spl_tri_x(4,i) = spl_tri_x(1,i) - spl_tri_x(5,i) * spl_tri_x(3,i-1) |
---|
137 | ENDDO |
---|
138 | |
---|
139 | ! |
---|
140 | !-- Allocate arrays required locally |
---|
141 | ALLOCATE( temp(0:nx), spl_u(0:nx) ) |
---|
142 | |
---|
143 | ! |
---|
144 | !-- Provide "corrective vector", x-direction |
---|
145 | spl_u(0) = spl_gamma_x |
---|
146 | spl_u(1:nx-1) = 0.0 |
---|
147 | spl_u(nx) = spl_alpha |
---|
148 | |
---|
149 | ! |
---|
150 | !-- Solve the system of equations for the corrective vector |
---|
151 | !-- (Sherman-Morrison) |
---|
152 | temp(0) = spl_u(0) |
---|
153 | DO i = 1, nx |
---|
154 | temp(i) = spl_u(i) - spl_tri_x(5,i) * temp(i-1) |
---|
155 | ENDDO |
---|
156 | spl_z_x(nx) = temp(nx) / spl_tri_x(4,nx) |
---|
157 | DO i = nx-1, 0, -1 |
---|
158 | spl_z_x(i) = ( temp(i) - spl_tri_x(3,i) * spl_z_x(i+1) ) / & |
---|
159 | spl_tri_x(4,i) |
---|
160 | ENDDO |
---|
161 | |
---|
162 | ! |
---|
163 | !-- Deallocate local arrays, for they are allocated in a different way for |
---|
164 | !-- operations in y-direction |
---|
165 | DEALLOCATE( temp, spl_u ) |
---|
166 | |
---|
167 | ! |
---|
168 | !-- Provide sub- and superdiagonal elements, y-direction |
---|
169 | spl_tri_y(2,0:ny) = 0.5 |
---|
170 | spl_tri_y(3,0:ny) = 0.5 |
---|
171 | |
---|
172 | ! |
---|
173 | !-- Modify the diagonal elements (Sherman-Morrison) |
---|
174 | spl_gamma_y = -spl_tri_y(1,0) |
---|
175 | spl_tri_y(1,0) = spl_tri_y(1,0) - spl_gamma_y |
---|
176 | spl_tri_y(1,ny) = spl_tri_y(1,ny) - spl_alpha * spl_beta / spl_gamma_y |
---|
177 | |
---|
178 | ! |
---|
179 | !-- Split the tridiagonal matrix for Thomas algorithm |
---|
180 | spl_tri_y(4,0) = spl_tri_y(1,0) |
---|
181 | DO j = 1, ny |
---|
182 | spl_tri_y(5,j) = spl_tri_y(2,j) / spl_tri_y(4,j-1) |
---|
183 | spl_tri_y(4,j) = spl_tri_y(1,j) - spl_tri_y(5,j) * spl_tri_y(3,j-1) |
---|
184 | ENDDO |
---|
185 | |
---|
186 | ! |
---|
187 | !-- Allocate arrays required locally |
---|
188 | ALLOCATE( temp(0:ny), spl_u(0:ny) ) |
---|
189 | |
---|
190 | ! |
---|
191 | !-- Provide "corrective vector", y-direction |
---|
192 | spl_u(0) = spl_gamma_y |
---|
193 | spl_u(1:ny-1) = 0.0 |
---|
194 | spl_u(ny) = spl_alpha |
---|
195 | |
---|
196 | ! |
---|
197 | !-- Solve the system of equations for the corrective vector |
---|
198 | !-- (Sherman-Morrison) |
---|
199 | temp = 0.0 |
---|
200 | spl_z_y = 0.0 |
---|
201 | temp(0) = spl_u(0) |
---|
202 | DO j = 1, ny |
---|
203 | temp(j) = spl_u(j) - spl_tri_y(5,j) * temp(j-1) |
---|
204 | ENDDO |
---|
205 | spl_z_y(ny) = temp(ny) / spl_tri_y(4,ny) |
---|
206 | DO j = ny-1, 0, -1 |
---|
207 | spl_z_y(j) = ( temp(j) - spl_tri_y(3,j) * spl_z_y(j+1) ) / & |
---|
208 | spl_tri_y(4,j) |
---|
209 | ENDDO |
---|
210 | |
---|
211 | ! |
---|
212 | !-- deallocate local arrays, for they are no longer required |
---|
213 | DEALLOCATE( temp, spl_u ) |
---|
214 | |
---|
215 | ! |
---|
216 | !-- provide sub- and superdiagonal elements, z-direction |
---|
217 | spl_tri_zu(2,nzb) = 0.0 |
---|
218 | spl_tri_zu(2,nzt+1) = 1.0 |
---|
219 | spl_tri_zw(2,nzb) = 0.0 |
---|
220 | spl_tri_zw(2,nzt+1) = 1.0 |
---|
221 | |
---|
222 | spl_tri_zu(3,nzb) = 1.0 |
---|
223 | spl_tri_zu(3,nzt+1) = 0.0 |
---|
224 | spl_tri_zw(3,nzb) = 1.0 |
---|
225 | spl_tri_zw(3,nzt+1) = 0.0 |
---|
226 | |
---|
227 | DO k = nzb+1, nzt |
---|
228 | spl_tri_zu(2,k) = dzu(k) / ( dzu(k) + dzu(k+1) ) |
---|
229 | spl_tri_zw(2,k) = dzw(k) / ( dzw(k) + dzw(k+1) ) |
---|
230 | spl_tri_zu(3,k) = 1.0 - spl_tri_zu(2,k) |
---|
231 | spl_tri_zw(3,k) = 1.0 - spl_tri_zw(2,k) |
---|
232 | ENDDO |
---|
233 | |
---|
234 | spl_tri_zu(4,nzb) = spl_tri_zu(1,nzb) |
---|
235 | spl_tri_zw(4,nzb) = spl_tri_zw(1,nzb) |
---|
236 | DO k = nzb+1, nzt+1 |
---|
237 | spl_tri_zu(5,k) = spl_tri_zu(2,k) / spl_tri_zu(4,k-1) |
---|
238 | spl_tri_zw(5,k) = spl_tri_zw(2,k) / spl_tri_zw(4,k-1) |
---|
239 | spl_tri_zu(4,k) = spl_tri_zu(1,k) - spl_tri_zu(5,k) * & |
---|
240 | spl_tri_zu(3,k-1) |
---|
241 | spl_tri_zw(4,k) = spl_tri_zw(1,k) - spl_tri_zw(5,k) * & |
---|
242 | spl_tri_zw(3,k-1) |
---|
243 | ENDDO |
---|
244 | |
---|
245 | ENDIF |
---|
246 | |
---|
247 | END SUBROUTINE init_advec |
---|