source: palm/trunk/SOURCE/init_advec.f90 @ 856

Last change on this file since 856 was 667, checked in by suehring, 14 years ago

summary:


Gryschka:

  • Coupling with different resolution and different numbers of PEs in ocean and atmosphere is available
  • Exchange of u and v from ocean surface to atmosphere surface
  • Mirror boundary condition for u and v at the bottom are replaced by dirichlet boundary conditions
  • Inflow turbulence is now defined by flucuations around spanwise mean
  • Bugfixes for cyclic_fill and constant_volume_flow

Suehring:

  • New advection added ( Wicker and Skamarock 5th order ), therefore:
    • New module advec_ws.f90
    • Modified exchange of ghost boundaries.
    • Modified evaluation of turbulent fluxes
    • New index bounds nxlg, nxrg, nysg, nyng

advec_ws.f90


Advection scheme for scalars and momentum using the flux formulation of
Wicker and Skamarock 5th order.
Additionally the module contains of a routine using for initialisation and
steering of the statical evaluation. The computation of turbulent fluxes takes
place inside the advection routines.
In case of vector architectures Dirichlet and Radiation boundary conditions are
outstanding and not available. Furthermore simulations within topography are
not possible so far. A further routine local_diss_ij is available and is used
if a control of dissipative fluxes is desired.

check_parameters.f90


Exchange of parameters between ocean and atmosphere via PE0
Check for illegal combination of ws-scheme and timestep scheme.
Check for topography and ws-scheme.
Check for not cyclic boundary conditions in combination with ws-scheme and
loop_optimization = 'vector'.
Check for call_psolver_at_all_substeps and ws-scheme for momentum_advec.

Different processor/grid topology in atmosphere and ocean is now allowed!
Bugfixes in checking for conserve_volume_flow_mode.

exchange_horiz.f90


Dynamic exchange of ghost points with nbgp_local to ensure that no useless
ghost points exchanged in case of multigrid. type_yz(0) and type_xz(0) used for
normal grid, the remaining types used for the several grid levels.
Exchange is done via MPI-Vectors with a dynamic value of ghost points which
depend on the advection scheme. Exchange of left and right PEs is 10% faster
with MPI-Vectors than without.

flow_statistics.f90


When advection is computed with ws-scheme, turbulent fluxes are already
computed in the respective advection routines and buffered in arrays
sums_xxxx_ws_l(). This is due to a consistent treatment of statistics
with the numerics and to avoid unphysical kinks near the surface. So some if-
requests has to be done to dicern between fluxes from ws-scheme other advection
schemes. Furthermore the computation of z_i is only done if the heat flux
exceeds a minimum value. This affects only simulations of a neutral boundary
layer and is due to reasons of computations in the advection scheme.

inflow_turbulence.f90


Using nbgp recycling planes for a better resolution of the turbulent flow near
the inflow.

init_grid.f90


Definition of new array bounds nxlg, nxrg, nysg, nyng on each PE.
Furthermore the allocation of arrays and steering of loops is done with these
parameters. Call of exchange_horiz are modified.
In case of dirichlet bounday condition at the bottom zu(0)=0.0
dzu_mg has to be set explicitly for a equally spaced grid near bottom.
ddzu_pres added to use a equally spaced grid near bottom.

init_pegrid.f90


Moved determination of target_id's from init_coupling
Determination of parameters needed for coupling (coupling_topology, ngp_a, ngp_o)
with different grid/processor-topology in ocean and atmosphere

Adaption of ngp_xy, ngp_y to a dynamic number of ghost points.
The maximum_grid_level changed from 1 to 0. 0 is the normal grid, 1 to
maximum_grid_level the grids for multigrid, in which 0 and 1 are normal grids.
This distinction is due to reasons of data exchange and performance for the
normal grid and grids in poismg.
The definition of MPI-Vectors adapted to a dynamic numer of ghost points.
New MPI-Vectors for data exchange between left and right boundaries added.
This is due to reasons of performance (10% faster).

ATTENTION: nnz_x undefined problem still has to be solved!!!!!!!!
TEST OUTPUT (TO BE REMOVED) logging mpi2 ierr values

parin.f90


Steering parameter dissipation_control added in inipar.

Makefile


Module advec_ws added.

Modules


Removed u_nzb_p1_for_vfc and v_nzb_p1_for_vfc

For coupling with different resolution in ocean and atmophere:
+nx_a, +nx_o, ny_a, +ny_o, ngp_a, ngp_o, +total_2d_o, +total_2d_a,
+coupling_topology

Buffer arrays for the left sided advective fluxes added in arrays_3d.
+flux_s_u, +flux_s_v, +flux_s_w, +diss_s_u, +diss_s_v, +diss_s_w,
+flux_s_pt, +diss_s_pt, +flux_s_e, +diss_s_e, +flux_s_q, +diss_s_q,
+flux_s_sa, +diss_s_sa
3d arrays for dissipation control added. (only necessary for vector arch.)
+var_x, +var_y, +var_z, +gamma_x, +gamma_y, +gamma_z
Default of momentum_advec and scalar_advec changed to 'ws-scheme' .
+exchange_mg added in control_parameters to steer the data exchange.
Parameters +nbgp, +nxlg, +nxrg, +nysg, +nyng added in indices.
flag array +boundary_flags added in indices to steer the degradation of order
of the advective fluxes when non-cyclic boundaries are used.
MPI-datatypes +type_y, +type_y_int and +type_yz for data_exchange added in
pegrid.
+sums_wsus_ws_l, +sums_wsvs_ws_l, +sums_us2_ws_l, +sums_vs2_ws_l,
+sums_ws2_ws_l, +sums_wspts_ws_l, +sums_wssas_ws_l, +sums_wsqs_ws_l
and +weight_substep added in statistics to steer the statistical evaluation
of turbulent fluxes in the advection routines.
LOGICALS +ws_scheme_sca and +ws_scheme_mom added to get a better performance
in prognostic_equations.
LOGICAL +dissipation_control control added to steer numerical dissipation
in ws-scheme.

Changed length of string run_description_header

pres.f90


New allocation of tend when ws-scheme and multigrid is used. This is due to
reasons of perforance of the data_exchange. The same is done with p after
poismg is called.
nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng when no
multigrid is used. Calls of exchange_horiz are modified.

bugfix: After pressure correction no volume flow correction in case of
non-cyclic boundary conditions
(has to be done only before pressure correction)

Call of SOR routine is referenced with ddzu_pres.

prognostic_equations.f90


Calls of the advection routines with WS5 added.
Calls of ws_statistics added to set the statistical arrays to zero after each
time step.

advec_particles.f90


Declaration of de_dx, de_dy, de_dz adapted to additional ghost points.
Furthermore the calls of exchange_horiz were modified.

asselin_filter.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng

average_3d_data.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng

boundary_conds.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng
Removed mirror boundary conditions for u and v at the bottom in case of
ibc_uv_b == 0. Instead, dirichelt boundary conditions (u=v=0) are set
in init_3d_model

calc_liquid_water_content.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng

calc_spectra.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng for
allocation of tend.

check_open.f90


Output of total array size was adapted to nbgp.

data_output_2d.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng in loops and
allocation of arrays local_2d and total_2d.
Calls of exchange_horiz are modified.

data_output_2d.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng in loops and
allocation of arrays. Calls of exchange_horiz are modified.
Skip-value skip_do_avs changed to a dynamic adaption of ghost points.

data_output_mask.f90


Calls of exchange_horiz are modified.

diffusion_e.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng

diffusion_s.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng

diffusion_u.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng

diffusion_v.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng

diffusion_w.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng

diffusivities.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng

diffusivities.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng.
Calls of exchange_horiz are modified.

exchange_horiz_2d.f90


Dynamic exchange of ghost points with nbgp, which depends on the advection
scheme. Exchange between left and right PEs is now done with MPI-vectors.

global_min_max.f90


Adapting of the index arrays, because MINLOC assumes lowerbound
at 1 and not at nbgp.

init_3d_model.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng in loops and
allocation of arrays. Calls of exchange_horiz are modified.
Call ws_init to initialize arrays needed for statistical evaluation and
optimization when ws-scheme is used.
Initial volume flow is now calculated by using the variable hom_sum.
Therefore the correction of initial volume flow for non-flat topography
removed (removed u_nzb_p1_for_vfc and v_nzb_p1_for_vfc)
Changed surface boundary conditions for u and v in case of ibc_uv_b == 0 from
mirror bc to dirichlet boundary conditions (u=v=0), so that k=nzb is
representative for the height z0

Bugfix: type conversion of '1' to 64bit for the MAX function (ngp_3d_inner)

init_coupling.f90


determination of target_id's moved to init_pegrid

init_pt_anomaly.f90


Call of exchange_horiz are modified.

init_rankine.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng.
Calls of exchange_horiz are modified.

init_slope.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng.

header.f90


Output of advection scheme.

poismg.f90


Calls of exchange_horiz are modified.

prandtl_fluxes.f90


Changed surface boundary conditions for u and v from mirror bc to dirichelt bc,
therefore u(uzb,:,:) and v(nzb,:,:) is now representative for the height z0
nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng

production_e.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng

read_3d_binary.f90


+/- 1 replaced with +/- nbgp when swapping and allocating variables.

sor.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng.
Call of exchange_horiz are modified.
bug removed in declaration of ddzw(), nz replaced by nzt+1

subsidence.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng.

sum_up_3d_data.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng.

surface_coupler.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng in
MPI_SEND() and MPI_RECV.
additional case for nonequivalent processor and grid topopolgy in ocean and
atmosphere added (coupling_topology = 1)

Added exchange of u and v from Ocean to Atmosphere

time_integration.f90


Calls of exchange_horiz are modified.
Adaption to slooping surface.

timestep.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng.

user_3d_data_averaging.f90, user_data_output_2d.f90, user_data_output_3d.f90,
user_actions.f90, user_init.f90, user_init_plant_canopy.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng.

user_read_restart_data.f90


Allocation with nbgp.

wall_fluxes.f90


nxl-1, nxr+1, nys-1, nyn+1 replaced by nxlg, nxrg, nysg, nyng.

write_compressed.f90


Array bounds and nx, ny adapted with nbgp.

sor.f90


bug removed in declaration of ddzw(), nz replaced by nzt+1

  • Property svn:keywords set to Id
File size: 6.9 KB
RevLine 
[1]1 SUBROUTINE init_advec
2
3!------------------------------------------------------------------------------!
[484]4! Current revisions:
[1]5! -----------------
6!
7!
8! Former revisions:
9! -----------------
[667]10! $Id: init_advec.f90 484 2010-02-05 07:36:54Z raasch
[3]11! RCS Log replace by Id keyword, revision history cleaned up
12!
[1]13! Revision 1.6  2004/04/30 11:59:31  raasch
14! impulse_advec renamed momentum_advec
15!
16! Revision 1.1  1999/02/05 09:07:38  raasch
17! Initial revision
18!
19!
20! Description:
21! ------------
22! Initialize constant coefficients and parameters for certain advection schemes.
23!------------------------------------------------------------------------------!
24
25    USE advection
26    USE arrays_3d
27    USE indices
28    USE control_parameters
29
30    IMPLICIT NONE
31
32    INTEGER :: i, intervals, j, k
33    REAL    :: delt, dn, dnneu, ex1, ex2, ex3, ex4, ex5, ex6, spl_alpha, &
34               spl_beta, sterm
35    REAL, DIMENSION(:), ALLOCATABLE ::  spl_u, temp
36
37
38    IF ( scalar_advec == 'bc-scheme' )  THEN
39
40!
41!--    Compute exponential coefficients for the Bott-Chlond scheme
42       intervals = 1000
43       ALLOCATE( aex(intervals), bex(intervals), dex(intervals), eex(intervals) )
44
45       delt  = 1.0 / REAL( intervals )
46       sterm = delt * 0.5
47
48       DO  i = 1, intervals
49
50          IF ( sterm > 0.5 )  THEN
51             dn = -5.0
52          ELSE
53             dn = 5.0
54          ENDIF
55
56          DO  j = 1, 15
57             ex1 = dn * EXP( -dn ) - EXP( 0.5 * dn ) + EXP( -0.5 * dn )
58             ex2 = EXP( dn ) - EXP( -dn )
59             ex3 = EXP( -dn ) * ( 1.0 - dn ) - 0.5 * EXP(  0.5 * dn ) &
60                                             - 0.5 * EXP( -0.5 * dn )
61             ex4 = EXP( dn ) + EXP( -dn )
62             ex5 = dn * sterm + ex1 / ex2
63             ex6 = sterm + ( ex3 * ex2 - ex4 * ex1 ) / ( ex2 * ex2 )
64             dnneu = dn - ex5 / ex6
65             dn  = dnneu
66          ENDDO
67
68          IF ( sterm < 0.5 )  dn = MAX(  2.95E-2, dn )
69          IF ( sterm > 0.5 )  dn = MIN( -2.95E-2, dn )
70          ex1 = EXP( -dn )
71          ex2 = EXP( dn ) - ex1
72          aex(i) = -ex1 / ex2
73          bex(i) = 1.0 / ex2
74          dex(i) = dn
75          eex(i) = EXP( dex(i) * 0.5 )
76          sterm = sterm + delt
77
78       ENDDO
79
80    ENDIF
81
82    IF ( momentum_advec == 'ups-scheme' .OR. scalar_advec  == 'ups-scheme' )  &
83    THEN
84
85!
86!--    Provide the constant parameters for the Upstream-Spline advection scheme.
87!--    In x- und y-direction the Sherman-Morrison formula is applied
88!--    (cf. Press et al, 1986 (Numerical Recipes)).
89!
90!--    Allocate nonlocal arrays
91       ALLOCATE( spl_z_x(0:nx), spl_z_y(0:ny), spl_tri_x(5,0:nx), &
92                 spl_tri_y(5,0:ny), spl_tri_zu(5,nzb:nzt+1),      &
93                 spl_tri_zw(5,nzb:nzt+1) )
94
95!
96!--    Provide diagonal elements of the tridiagonal matrices for all
97!--    directions
98       spl_tri_x(1,:)  = 2.0
99       spl_tri_y(1,:)  = 2.0
100       spl_tri_zu(1,:) = 2.0
101       spl_tri_zw(1,:) = 2.0
102
103!
104!--    Elements of the cyclic tridiagonal matrix
105!--    (same for all horizontal directions)
106       spl_alpha = 0.5
107       spl_beta  = 0.5
108
109!
110!--    Sub- and superdiagonal elements, x-direction
111       spl_tri_x(2,0:nx) = 0.5
112       spl_tri_x(3,0:nx) = 0.5
113
114!
115!--    mMdify the diagonal elements (Sherman-Morrison)
116       spl_gamma_x    = -spl_tri_x(1,0)
117       spl_tri_x(1,0)  = spl_tri_x(1,0) - spl_gamma_x
118       spl_tri_x(1,nx) = spl_tri_x(1,nx) - spl_alpha * spl_beta / spl_gamma_x
119
120!
121!--    Split the tridiagonal matrix for Thomas algorithm
122       spl_tri_x(4,0) = spl_tri_x(1,0)
123       DO  i = 1, nx
124          spl_tri_x(5,i) = spl_tri_x(2,i) / spl_tri_x(4,i-1)
125          spl_tri_x(4,i) = spl_tri_x(1,i) - spl_tri_x(5,i) * spl_tri_x(3,i-1)
126       ENDDO
127
128!
129!--    Allocate arrays required locally
130       ALLOCATE( temp(0:nx), spl_u(0:nx) )
131
132!
133!--    Provide "corrective vector", x-direction
134       spl_u(0)      = spl_gamma_x
135       spl_u(1:nx-1) = 0.0
136       spl_u(nx)     = spl_alpha
137
138!
139!--    Solve the system of equations for the corrective vector
140!--    (Sherman-Morrison)
141       temp(0) = spl_u(0)
142       DO  i = 1, nx
143          temp(i) = spl_u(i) - spl_tri_x(5,i) * temp(i-1)
144       ENDDO
145       spl_z_x(nx) = temp(nx) / spl_tri_x(4,nx)
146       DO  i = nx-1, 0, -1
147          spl_z_x(i) = ( temp(i) - spl_tri_x(3,i) * spl_z_x(i+1) ) / &
148                       spl_tri_x(4,i)
149       ENDDO
150
151!
152!--    Deallocate local arrays, for they are allocated in a different way for
153!--    operations in y-direction
154       DEALLOCATE( temp, spl_u )   
155   
156!
157!--    Provide sub- and superdiagonal elements, y-direction
158       spl_tri_y(2,0:ny) = 0.5
159       spl_tri_y(3,0:ny) = 0.5
160
161!
162!--    Modify the diagonal elements (Sherman-Morrison)
163       spl_gamma_y    = -spl_tri_y(1,0) 
164       spl_tri_y(1,0)  = spl_tri_y(1,0) - spl_gamma_y
165       spl_tri_y(1,ny) = spl_tri_y(1,ny) - spl_alpha * spl_beta / spl_gamma_y
166
167!
168!--    Split the tridiagonal matrix for Thomas algorithm
169       spl_tri_y(4,0) = spl_tri_y(1,0)
170       DO  j = 1, ny
171          spl_tri_y(5,j) = spl_tri_y(2,j) / spl_tri_y(4,j-1)
172          spl_tri_y(4,j) = spl_tri_y(1,j) - spl_tri_y(5,j) * spl_tri_y(3,j-1)
173       ENDDO
174
175!
176!--    Allocate arrays required locally
177       ALLOCATE( temp(0:ny), spl_u(0:ny) )
178
179!
180!--    Provide "corrective vector", y-direction
181       spl_u(0)      = spl_gamma_y
182       spl_u(1:ny-1) = 0.0
183       spl_u(ny)     = spl_alpha
184   
185!
186!--    Solve the system of equations for the corrective vector
187!--    (Sherman-Morrison)
188       temp = 0.0
189       spl_z_y = 0.0
190       temp(0) = spl_u(0)
191       DO  j = 1, ny
192          temp(j) = spl_u(j) - spl_tri_y(5,j) * temp(j-1)
193       ENDDO
194       spl_z_y(ny) = temp(ny) / spl_tri_y(4,ny)
195       DO  j = ny-1, 0, -1
196          spl_z_y(j) = ( temp(j) - spl_tri_y(3,j) * spl_z_y(j+1) ) / &
197                       spl_tri_y(4,j)
198       ENDDO
199
200!
201!--    deallocate local arrays, for they are no longer required
202       DEALLOCATE( temp, spl_u )
203
204!
205!--    provide sub- and superdiagonal elements, z-direction
206       spl_tri_zu(2,nzb)   = 0.0
207       spl_tri_zu(2,nzt+1) = 1.0
208       spl_tri_zw(2,nzb)   = 0.0
209       spl_tri_zw(2,nzt+1) = 1.0
210
211       spl_tri_zu(3,nzb)   = 1.0
212       spl_tri_zu(3,nzt+1) = 0.0
213       spl_tri_zw(3,nzb)   = 1.0
214       spl_tri_zw(3,nzt+1) = 0.0
215
216       DO  k = nzb+1, nzt
217          spl_tri_zu(2,k) = dzu(k) / ( dzu(k) + dzu(k+1) )
218          spl_tri_zw(2,k) = dzw(k) / ( dzw(k) + dzw(k+1) )
219          spl_tri_zu(3,k) = 1.0 - spl_tri_zu(2,k)
220          spl_tri_zw(3,k) = 1.0 - spl_tri_zw(2,k)
221       ENDDO
222   
223       spl_tri_zu(4,nzb) = spl_tri_zu(1,nzb)
224       spl_tri_zw(4,nzb) = spl_tri_zw(1,nzb)
225       DO  k = nzb+1, nzt+1
226          spl_tri_zu(5,k) = spl_tri_zu(2,k) / spl_tri_zu(4,k-1)
227          spl_tri_zw(5,k) = spl_tri_zw(2,k) / spl_tri_zw(4,k-1)
228          spl_tri_zu(4,k) = spl_tri_zu(1,k) - spl_tri_zu(5,k) * &
229                            spl_tri_zu(3,k-1)
230          spl_tri_zw(4,k) = spl_tri_zw(1,k) - spl_tri_zw(5,k) * &
231                            spl_tri_zw(3,k-1)
232       ENDDO
233
234    ENDIF
235
236 END SUBROUTINE init_advec
Note: See TracBrowser for help on using the repository browser.