1 | #if defined( __ibmy_special ) |
---|
2 | @PROCESS NOOPTimize |
---|
3 | #endif |
---|
4 | SUBROUTINE init_3d_model |
---|
5 | |
---|
6 | !------------------------------------------------------------------------------! |
---|
7 | ! Actual revisions: |
---|
8 | ! ----------------- |
---|
9 | ! New initializing action "by_user" calls user_init_3d_model, |
---|
10 | ! ts_value is allocated |
---|
11 | ! |
---|
12 | ! Former revisions: |
---|
13 | ! ----------------- |
---|
14 | ! $Id: init_3d_model.f90 48 2007-03-06 12:28:36Z raasch $ |
---|
15 | ! |
---|
16 | ! 19 2007-02-23 04:53:48Z raasch |
---|
17 | ! +handling of top fluxes |
---|
18 | ! |
---|
19 | ! RCS Log replace by Id keyword, revision history cleaned up |
---|
20 | ! |
---|
21 | ! Revision 1.49 2006/08/22 15:59:07 raasch |
---|
22 | ! No optimization of this file on the ibmy (Yonsei Univ.) |
---|
23 | ! |
---|
24 | ! Revision 1.1 1998/03/09 16:22:22 raasch |
---|
25 | ! Initial revision |
---|
26 | ! |
---|
27 | ! |
---|
28 | ! Description: |
---|
29 | ! ------------ |
---|
30 | ! Allocation of arrays and initialization of the 3D model via |
---|
31 | ! a) pre-run the 1D model |
---|
32 | ! or |
---|
33 | ! b) pre-set constant linear profiles |
---|
34 | ! or |
---|
35 | ! c) read values of a previous run |
---|
36 | !------------------------------------------------------------------------------! |
---|
37 | |
---|
38 | USE arrays_3d |
---|
39 | USE averaging |
---|
40 | USE constants |
---|
41 | USE control_parameters |
---|
42 | USE cpulog |
---|
43 | USE indices |
---|
44 | USE interfaces |
---|
45 | USE model_1d |
---|
46 | USE particle_attributes |
---|
47 | USE pegrid |
---|
48 | USE profil_parameter |
---|
49 | USE random_function_mod |
---|
50 | USE statistics |
---|
51 | |
---|
52 | IMPLICIT NONE |
---|
53 | |
---|
54 | INTEGER :: i, j, k, sr |
---|
55 | |
---|
56 | INTEGER, DIMENSION(:), ALLOCATABLE :: ngp_2dh_l, ngp_3d_inner_l |
---|
57 | |
---|
58 | INTEGER, DIMENSION(:,:), ALLOCATABLE :: ngp_2dh_outer_l |
---|
59 | |
---|
60 | REAL, DIMENSION(1:2) :: volume_flow_area_l, volume_flow_initial_l |
---|
61 | |
---|
62 | |
---|
63 | ! |
---|
64 | !-- Allocate arrays |
---|
65 | ALLOCATE( ngp_2dh(0:statistic_regions), ngp_2dh_l(0:statistic_regions), & |
---|
66 | ngp_3d(0:statistic_regions), & |
---|
67 | ngp_3d_inner(0:statistic_regions), & |
---|
68 | ngp_3d_inner_l(0:statistic_regions), & |
---|
69 | sums_divnew_l(0:statistic_regions), & |
---|
70 | sums_divold_l(0:statistic_regions) ) |
---|
71 | ALLOCATE( rdf(nzb+1:nzt), uvmean_outflow(nzb:nzt+1), & |
---|
72 | uvmean_outflow_l(nzb:nzt+1) ) |
---|
73 | ALLOCATE( hom_sum(nzb:nzt+1,var_hom,0:statistic_regions), & |
---|
74 | ngp_2dh_outer(nzb:nzt+1,0:statistic_regions), & |
---|
75 | ngp_2dh_outer_l(nzb:nzt+1,0:statistic_regions), & |
---|
76 | rmask(nys-1:nyn+1,nxl-1:nxr+1,0:statistic_regions), & |
---|
77 | sums(nzb:nzt+1,var_sum), & |
---|
78 | sums_l(nzb:nzt+1,var_sum,0:threads_per_task-1), & |
---|
79 | sums_l_l(nzb:nzt+1,0:statistic_regions,0:threads_per_task-1), & |
---|
80 | sums_up_fraction_l(10,3,0:statistic_regions), & |
---|
81 | sums_wsts_bc_l(nzb:nzt+1,0:statistic_regions), & |
---|
82 | ts_value(var_ts,0:statistic_regions) ) |
---|
83 | ALLOCATE( km_damp_x(nxl-1:nxr+1), km_damp_y(nys-1:nyn+1) ) |
---|
84 | |
---|
85 | ALLOCATE( rif_1(nys-1:nyn+1,nxl-1:nxr+1), shf_1(nys-1:nyn+1,nxl-1:nxr+1), & |
---|
86 | ts(nys-1:nyn+1,nxl-1:nxr+1), tswst_1(nys-1:nyn+1,nxl-1:nxr+1), & |
---|
87 | us(nys-1:nyn+1,nxl-1:nxr+1), usws_1(nys-1:nyn+1,nxl-1:nxr+1), & |
---|
88 | vsws_1(nys-1:nyn+1,nxl-1:nxr+1), z0(nys-1:nyn+1,nxl-1:nxr+1) ) |
---|
89 | |
---|
90 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
91 | ! |
---|
92 | !-- Leapfrog scheme needs two timelevels of diffusion quantities |
---|
93 | ALLOCATE( rif_2(nys-1:nyn+1,nxl-1:nxr+1), & |
---|
94 | shf_2(nys-1:nyn+1,nxl-1:nxr+1), & |
---|
95 | tswst_2(nys-1:nyn+1,nxl-1:nxr+1), & |
---|
96 | usws_2(nys-1:nyn+1,nxl-1:nxr+1), & |
---|
97 | vsws_2(nys-1:nyn+1,nxl-1:nxr+1) ) |
---|
98 | ENDIF |
---|
99 | |
---|
100 | ALLOCATE( d(nzb+1:nzta,nys:nyna,nxl:nxra), & |
---|
101 | e_1(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
102 | e_2(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
103 | e_3(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
104 | kh_1(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
105 | km_1(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
106 | p(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
107 | pt_1(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
108 | pt_2(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
109 | pt_3(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
110 | tend(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
111 | u_1(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1+uxrp), & |
---|
112 | u_2(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1+uxrp), & |
---|
113 | u_3(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1+uxrp), & |
---|
114 | v_1(nzb:nzt+1,nys-1:nyn+1+vynp,nxl-1:nxr+1), & |
---|
115 | v_2(nzb:nzt+1,nys-1:nyn+1+vynp,nxl-1:nxr+1), & |
---|
116 | v_3(nzb:nzt+1,nys-1:nyn+1+vynp,nxl-1:nxr+1), & |
---|
117 | w_1(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
118 | w_2(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
119 | w_3(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1) ) |
---|
120 | |
---|
121 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
122 | ALLOCATE( kh_2(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
123 | km_2(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1) ) |
---|
124 | ENDIF |
---|
125 | |
---|
126 | IF ( moisture .OR. passive_scalar ) THEN |
---|
127 | ! |
---|
128 | !-- 2D-moisture/scalar arrays |
---|
129 | ALLOCATE ( qs(nys-1:nyn+1,nxl-1:nxr+1), & |
---|
130 | qsws_1(nys-1:nyn+1,nxl-1:nxr+1), & |
---|
131 | qswst_1(nys-1:nyn+1,nxl-1:nxr+1) ) |
---|
132 | |
---|
133 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
134 | ALLOCATE( qsws_2(nys-1:nyn+1,nxl-1:nxr+1), & |
---|
135 | qswst_2(nys-1:nyn+1,nxl-1:nxr+1) ) |
---|
136 | ENDIF |
---|
137 | ! |
---|
138 | !-- 3D-moisture/scalar arrays |
---|
139 | ALLOCATE( q_1(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
140 | q_2(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
141 | q_3(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1) ) |
---|
142 | |
---|
143 | ! |
---|
144 | !-- 3D-arrays needed for moisture only |
---|
145 | IF ( moisture ) THEN |
---|
146 | ALLOCATE( vpt_1(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1) ) |
---|
147 | |
---|
148 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
149 | ALLOCATE( vpt_2(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1) ) |
---|
150 | ENDIF |
---|
151 | |
---|
152 | IF ( cloud_physics ) THEN |
---|
153 | ! |
---|
154 | !-- Liquid water content |
---|
155 | ALLOCATE ( ql_1(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1) ) |
---|
156 | ENDIF |
---|
157 | |
---|
158 | IF ( cloud_droplets ) THEN |
---|
159 | ! |
---|
160 | !-- Liquid water content, change in liquid water content, |
---|
161 | !-- real volume of particles (with weighting), volume of particles |
---|
162 | ALLOCATE ( ql_1(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
163 | ql_2(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
164 | ql_v(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
165 | ql_vp(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1) ) |
---|
166 | ENDIF |
---|
167 | |
---|
168 | ENDIF |
---|
169 | |
---|
170 | ENDIF |
---|
171 | |
---|
172 | ! |
---|
173 | !-- 3D-array for storing the dissipation, needed for calculating the sgs |
---|
174 | !-- particle velocities |
---|
175 | IF ( use_sgs_for_particles ) THEN |
---|
176 | ALLOCATE ( diss(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1) ) |
---|
177 | ENDIF |
---|
178 | |
---|
179 | IF ( dt_dosp /= 9999999.9 ) THEN |
---|
180 | ALLOCATE( spectrum_x( 1:nx/2, 1:10, 1:10 ), & |
---|
181 | spectrum_y( 1:ny/2, 1:10, 1:10 ) ) |
---|
182 | ENDIF |
---|
183 | |
---|
184 | ! |
---|
185 | !-- Initial assignment of the pointers |
---|
186 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
187 | |
---|
188 | rif_m => rif_1; rif => rif_2 |
---|
189 | shf_m => shf_1; shf => shf_2 |
---|
190 | tswst_m => tswst_1; tswst => tswst_2 |
---|
191 | usws_m => usws_1; usws => usws_2 |
---|
192 | vsws_m => vsws_1; vsws => vsws_2 |
---|
193 | e_m => e_1; e => e_2; e_p => e_3; te_m => e_3 |
---|
194 | kh_m => kh_1; kh => kh_2 |
---|
195 | km_m => km_1; km => km_2 |
---|
196 | pt_m => pt_1; pt => pt_2; pt_p => pt_3; tpt_m => pt_3 |
---|
197 | u_m => u_1; u => u_2; u_p => u_3; tu_m => u_3 |
---|
198 | v_m => v_1; v => v_2; v_p => v_3; tv_m => v_3 |
---|
199 | w_m => w_1; w => w_2; w_p => w_3; tw_m => w_3 |
---|
200 | |
---|
201 | IF ( moisture .OR. passive_scalar ) THEN |
---|
202 | qsws_m => qsws_1; qsws => qsws_2 |
---|
203 | qswst_m => qswst_1; qswst => qswst_2 |
---|
204 | q_m => q_1; q => q_2; q_p => q_3; tq_m => q_3 |
---|
205 | IF ( moisture ) vpt_m => vpt_1; vpt => vpt_2 |
---|
206 | IF ( cloud_physics ) ql => ql_1 |
---|
207 | IF ( cloud_droplets ) THEN |
---|
208 | ql => ql_1 |
---|
209 | ql_c => ql_2 |
---|
210 | ENDIF |
---|
211 | ENDIF |
---|
212 | |
---|
213 | ELSE |
---|
214 | |
---|
215 | rif => rif_1 |
---|
216 | shf => shf_1 |
---|
217 | tswst => tswst_1 |
---|
218 | usws => usws_1 |
---|
219 | vsws => vsws_1 |
---|
220 | e => e_1; e_p => e_2; te_m => e_3; e_m => e_3 |
---|
221 | kh => kh_1 |
---|
222 | km => km_1 |
---|
223 | pt => pt_1; pt_p => pt_2; tpt_m => pt_3; pt_m => pt_3 |
---|
224 | u => u_1; u_p => u_2; tu_m => u_3; u_m => u_3 |
---|
225 | v => v_1; v_p => v_2; tv_m => v_3; v_m => v_3 |
---|
226 | w => w_1; w_p => w_2; tw_m => w_3; w_m => w_3 |
---|
227 | |
---|
228 | IF ( moisture .OR. passive_scalar ) THEN |
---|
229 | qsws => qsws_1 |
---|
230 | qswst => qswst_1 |
---|
231 | q => q_1; q_p => q_2; tq_m => q_3; q_m => q_3 |
---|
232 | IF ( moisture ) vpt => vpt_1 |
---|
233 | IF ( cloud_physics ) ql => ql_1 |
---|
234 | IF ( cloud_droplets ) THEN |
---|
235 | ql => ql_1 |
---|
236 | ql_c => ql_2 |
---|
237 | ENDIF |
---|
238 | ENDIF |
---|
239 | |
---|
240 | ENDIF |
---|
241 | |
---|
242 | ! |
---|
243 | !-- Initialize model variables |
---|
244 | IF ( TRIM( initializing_actions ) /= 'read_restart_data' ) THEN |
---|
245 | ! |
---|
246 | !-- First model run of a possible job queue. |
---|
247 | !-- Initial profiles of the variables must be computes. |
---|
248 | IF ( INDEX( initializing_actions, 'set_1d-model_profiles' ) /= 0 ) THEN |
---|
249 | ! |
---|
250 | !-- Use solutions of the 1D model as initial profiles, |
---|
251 | !-- start 1D model |
---|
252 | CALL init_1d_model |
---|
253 | ! |
---|
254 | !-- Transfer initial profiles to the arrays of the 3D model |
---|
255 | DO i = nxl-1, nxr+1 |
---|
256 | DO j = nys-1, nyn+1 |
---|
257 | e(:,j,i) = e1d |
---|
258 | kh(:,j,i) = kh1d |
---|
259 | km(:,j,i) = km1d |
---|
260 | pt(:,j,i) = pt_init |
---|
261 | ENDDO |
---|
262 | ENDDO |
---|
263 | DO i = nxl-1, nxr+uxrp+1 |
---|
264 | DO j = nys-1, nyn+1 |
---|
265 | u(:,j,i) = u1d |
---|
266 | ENDDO |
---|
267 | ENDDO |
---|
268 | DO i = nxl-1, nxr+1 |
---|
269 | DO j = nys-1, nyn+vynp+1 |
---|
270 | v(:,j,i) = v1d |
---|
271 | ENDDO |
---|
272 | ENDDO |
---|
273 | |
---|
274 | IF ( moisture .OR. passive_scalar ) THEN |
---|
275 | DO i = nxl-1, nxr+1 |
---|
276 | DO j = nys-1, nyn+1 |
---|
277 | q(:,j,i) = q_init |
---|
278 | ENDDO |
---|
279 | ENDDO |
---|
280 | ENDIF |
---|
281 | |
---|
282 | IF ( .NOT. constant_diffusion ) THEN |
---|
283 | DO i = nxl-1, nxr+1 |
---|
284 | DO j = nys-1, nyn+1 |
---|
285 | e(:,j,i) = e1d |
---|
286 | ENDDO |
---|
287 | ENDDO |
---|
288 | ! |
---|
289 | !-- Store initial profiles for output purposes etc. |
---|
290 | hom(:,1,25,:) = SPREAD( l1d, 2, statistic_regions+1 ) |
---|
291 | |
---|
292 | IF ( prandtl_layer ) THEN |
---|
293 | rif = rif1d(nzb+1) |
---|
294 | ts = 0.0 ! could actually be computed more accurately in the |
---|
295 | ! 1D model. Update when opportunity arises. |
---|
296 | us = us1d |
---|
297 | usws = usws1d |
---|
298 | vsws = vsws1d |
---|
299 | ELSE |
---|
300 | ts = 0.0 ! must be set, because used in |
---|
301 | rif = 0.0 ! flowste |
---|
302 | us = 0.0 |
---|
303 | usws = 0.0 |
---|
304 | vsws = 0.0 |
---|
305 | ENDIF |
---|
306 | |
---|
307 | ELSE |
---|
308 | e = 0.0 ! must be set, because used in |
---|
309 | rif = 0.0 ! flowste |
---|
310 | ts = 0.0 |
---|
311 | us = 0.0 |
---|
312 | usws = 0.0 |
---|
313 | vsws = 0.0 |
---|
314 | ENDIF |
---|
315 | |
---|
316 | ! |
---|
317 | !-- In every case qs = 0.0 (see also pt) |
---|
318 | !-- This could actually be computed more accurately in the 1D model. |
---|
319 | !-- Update when opportunity arises! |
---|
320 | IF ( moisture .OR. passive_scalar ) qs = 0.0 |
---|
321 | |
---|
322 | ! |
---|
323 | !-- inside buildings set velocities back to zero |
---|
324 | IF ( topography /= 'flat' ) THEN |
---|
325 | DO i = nxl-1, nxr+1 |
---|
326 | DO j = nys-1, nyn+1 |
---|
327 | u(nzb:nzb_u_inner(j,i),j,i) = 0.0 |
---|
328 | v(nzb:nzb_v_inner(j,i),j,i) = 0.0 |
---|
329 | ENDDO |
---|
330 | ENDDO |
---|
331 | ! |
---|
332 | !-- WARNING: The extra boundary conditions set after running the |
---|
333 | !-- ------- 1D model impose an error on the divergence one layer |
---|
334 | !-- below the topography; need to correct later |
---|
335 | !-- ATTENTION: Provisional correction for Piacsek & Williams |
---|
336 | !-- --------- advection scheme: keep u and v zero one layer below |
---|
337 | !-- the topography. |
---|
338 | IF ( ibc_uv_b == 0 ) THEN |
---|
339 | ! |
---|
340 | !-- Satisfying the Dirichlet condition with an extra layer below |
---|
341 | !-- the surface where the u and v component change their sign. |
---|
342 | DO i = nxl-1, nxr+1 |
---|
343 | DO j = nys-1, nyn+1 |
---|
344 | IF ( nzb_u_inner(j,i) == 0 ) u(0,j,i) = -u(1,j,i) |
---|
345 | IF ( nzb_v_inner(j,i) == 0 ) v(0,j,i) = -v(1,j,i) |
---|
346 | ENDDO |
---|
347 | ENDDO |
---|
348 | |
---|
349 | ELSE |
---|
350 | ! |
---|
351 | !-- Neumann condition |
---|
352 | DO i = nxl-1, nxr+1 |
---|
353 | DO j = nys-1, nyn+1 |
---|
354 | IF ( nzb_u_inner(j,i) == 0 ) u(0,j,i) = u(1,j,i) |
---|
355 | IF ( nzb_v_inner(j,i) == 0 ) v(0,j,i) = v(1,j,i) |
---|
356 | ENDDO |
---|
357 | ENDDO |
---|
358 | |
---|
359 | ENDIF |
---|
360 | |
---|
361 | ENDIF |
---|
362 | |
---|
363 | ELSEIF ( INDEX(initializing_actions, 'set_constant_profiles') /= 0 ) & |
---|
364 | THEN |
---|
365 | ! |
---|
366 | !-- Use constructed initial profiles (velocity constant with height, |
---|
367 | !-- temperature profile with constant gradient) |
---|
368 | DO i = nxl-1, nxr+1 |
---|
369 | DO j = nys-1, nyn+1 |
---|
370 | pt(:,j,i) = pt_init |
---|
371 | ENDDO |
---|
372 | ENDDO |
---|
373 | DO i = nxl-1, nxr+uxrp+1 |
---|
374 | DO j = nys-1, nyn+1 |
---|
375 | u(:,j,i) = u_init |
---|
376 | ENDDO |
---|
377 | ENDDO |
---|
378 | DO i = nxl-1, nxr+1 |
---|
379 | DO j = nys-1, nyn+vynp+1 |
---|
380 | v(:,j,i) = v_init |
---|
381 | ENDDO |
---|
382 | ENDDO |
---|
383 | ! |
---|
384 | !-- Set initial horizontal velocities at the lowest grid levels to zero |
---|
385 | !-- in order to avoid too small time steps caused by the diffusion |
---|
386 | !-- limit in the initial phase of a run (at k=1, dz/2 occurs in the |
---|
387 | !-- limiting formula!) |
---|
388 | DO i = nxl-1, nxr+1 |
---|
389 | DO j = nys-1, nyn+1 |
---|
390 | u(nzb:nzb_u_inner(j,i)+1,j,i) = 0.0 |
---|
391 | v(nzb:nzb_v_inner(j,i)+1,j,i) = 0.0 |
---|
392 | ENDDO |
---|
393 | ENDDO |
---|
394 | |
---|
395 | IF ( moisture .OR. passive_scalar ) THEN |
---|
396 | DO i = nxl-1, nxr+1 |
---|
397 | DO j = nys-1, nyn+1 |
---|
398 | q(:,j,i) = q_init |
---|
399 | ENDDO |
---|
400 | ENDDO |
---|
401 | ENDIF |
---|
402 | |
---|
403 | |
---|
404 | IF ( constant_diffusion ) THEN |
---|
405 | km = km_constant |
---|
406 | kh = km / prandtl_number |
---|
407 | ELSE |
---|
408 | kh = 0.01 ! there must exist an initial diffusion, because |
---|
409 | km = 0.01 ! otherwise no TKE would be produced by the |
---|
410 | ! production terms, as long as not yet |
---|
411 | ! e = (u*/cm)**2 at k=nzb+1 |
---|
412 | ENDIF |
---|
413 | e = 0.0 |
---|
414 | rif = 0.0 |
---|
415 | ts = 0.0 |
---|
416 | us = 0.0 |
---|
417 | usws = 0.0 |
---|
418 | vsws = 0.0 |
---|
419 | IF ( moisture .OR. passive_scalar ) qs = 0.0 |
---|
420 | |
---|
421 | ! |
---|
422 | !-- Compute initial temperature field and other constants used in case |
---|
423 | !-- of a sloping surface |
---|
424 | IF ( sloping_surface ) CALL init_slope |
---|
425 | |
---|
426 | ELSEIF ( INDEX(initializing_actions, 'by_user') /= 0 ) & |
---|
427 | THEN |
---|
428 | ! |
---|
429 | !-- Initialization will completely be done by the user |
---|
430 | CALL user_init_3d_model |
---|
431 | |
---|
432 | ENDIF |
---|
433 | |
---|
434 | ! |
---|
435 | !-- Calculate virtual potential temperature |
---|
436 | IF ( moisture ) vpt = pt * ( 1.0 + 0.61 * q ) |
---|
437 | |
---|
438 | ! |
---|
439 | !-- Store initial profiles for output purposes etc. |
---|
440 | hom(:,1,5,:) = SPREAD( u(:,nys,nxl), 2, statistic_regions+1 ) |
---|
441 | hom(:,1,6,:) = SPREAD( v(:,nys,nxl), 2, statistic_regions+1 ) |
---|
442 | IF ( ibc_uv_b == 0 ) THEN |
---|
443 | hom(nzb,1,5,:) = -hom(nzb+1,1,5,:) ! due to satisfying the Dirichlet |
---|
444 | hom(nzb,1,6,:) = -hom(nzb+1,1,6,:) ! condition with an extra layer |
---|
445 | ! below the surface where the u and v component change their sign |
---|
446 | ENDIF |
---|
447 | hom(:,1,7,:) = SPREAD( pt(:,nys,nxl), 2, statistic_regions+1 ) |
---|
448 | hom(:,1,23,:) = SPREAD( km(:,nys,nxl), 2, statistic_regions+1 ) |
---|
449 | hom(:,1,24,:) = SPREAD( kh(:,nys,nxl), 2, statistic_regions+1 ) |
---|
450 | |
---|
451 | |
---|
452 | IF ( moisture ) THEN |
---|
453 | ! |
---|
454 | !-- Store initial profile of total water content, virtual potential |
---|
455 | !-- temperature |
---|
456 | hom(:,1,26,:) = SPREAD( q(:,nys,nxl), 2, statistic_regions+1 ) |
---|
457 | hom(:,1,29,:) = SPREAD( vpt(:,nys,nxl), 2, statistic_regions+1 ) |
---|
458 | IF ( cloud_physics .OR. cloud_droplets ) THEN |
---|
459 | ! |
---|
460 | !-- Store initial profile of specific humidity and potential |
---|
461 | !-- temperature |
---|
462 | hom(:,1,27,:) = SPREAD( q(:,nys,nxl), 2, statistic_regions+1 ) |
---|
463 | hom(:,1,28,:) = SPREAD( pt(:,nys,nxl), 2, statistic_regions+1 ) |
---|
464 | ENDIF |
---|
465 | ENDIF |
---|
466 | |
---|
467 | IF ( passive_scalar ) THEN |
---|
468 | ! |
---|
469 | !-- Store initial scalar profile |
---|
470 | hom(:,1,26,:) = SPREAD( q(:,nys,nxl), 2, statistic_regions+1 ) |
---|
471 | ENDIF |
---|
472 | |
---|
473 | ! |
---|
474 | !-- Initialize fluxes at bottom surface |
---|
475 | IF ( use_surface_fluxes ) THEN |
---|
476 | |
---|
477 | IF ( constant_heatflux ) THEN |
---|
478 | ! |
---|
479 | !-- Heat flux is prescribed |
---|
480 | IF ( random_heatflux ) THEN |
---|
481 | CALL disturb_heatflux |
---|
482 | ELSE |
---|
483 | shf = surface_heatflux |
---|
484 | ! |
---|
485 | !-- Over topography surface_heatflux is replaced by wall_heatflux(0) |
---|
486 | IF ( TRIM( topography ) /= 'flat' ) THEN |
---|
487 | DO i = nxl-1, nxr+1 |
---|
488 | DO j = nys-1, nyn+1 |
---|
489 | IF ( nzb_s_inner(j,i) /= 0 ) THEN |
---|
490 | shf(j,i) = wall_heatflux(0) |
---|
491 | ENDIF |
---|
492 | ENDDO |
---|
493 | ENDDO |
---|
494 | ENDIF |
---|
495 | ENDIF |
---|
496 | IF ( ASSOCIATED( shf_m ) ) shf_m = shf |
---|
497 | ENDIF |
---|
498 | |
---|
499 | ! |
---|
500 | !-- Determine the near-surface water flux |
---|
501 | IF ( moisture .OR. passive_scalar ) THEN |
---|
502 | IF ( constant_waterflux ) THEN |
---|
503 | qsws = surface_waterflux |
---|
504 | IF ( ASSOCIATED( qsws_m ) ) qsws_m = qsws |
---|
505 | ENDIF |
---|
506 | ENDIF |
---|
507 | |
---|
508 | ENDIF |
---|
509 | |
---|
510 | ! |
---|
511 | !-- Initialize fluxes at top surface |
---|
512 | !-- Currently, only the heatflux can be prescribed. The latent flux is |
---|
513 | !-- zero in this case! |
---|
514 | IF ( use_top_fluxes ) THEN |
---|
515 | |
---|
516 | IF ( constant_top_heatflux ) THEN |
---|
517 | ! |
---|
518 | !-- Heat flux is prescribed |
---|
519 | tswst = top_heatflux |
---|
520 | IF ( ASSOCIATED( tswst_m ) ) tswst_m = tswst |
---|
521 | |
---|
522 | IF ( moisture .OR. passive_scalar ) THEN |
---|
523 | qswst = 0.0 |
---|
524 | IF ( ASSOCIATED( qswst_m ) ) qswst_m = qswst |
---|
525 | ENDIF |
---|
526 | ENDIF |
---|
527 | |
---|
528 | ENDIF |
---|
529 | |
---|
530 | ! |
---|
531 | !-- Initialize Prandtl layer quantities |
---|
532 | IF ( prandtl_layer ) THEN |
---|
533 | |
---|
534 | z0 = roughness_length |
---|
535 | |
---|
536 | IF ( .NOT. constant_heatflux ) THEN |
---|
537 | ! |
---|
538 | !-- Surface temperature is prescribed. Here the heat flux cannot be |
---|
539 | !-- simply estimated, because therefore rif, u* and theta* would have |
---|
540 | !-- to be computed by iteration. This is why the heat flux is assumed |
---|
541 | !-- to be zero before the first time step. It approaches its correct |
---|
542 | !-- value in the course of the first few time steps. |
---|
543 | shf = 0.0 |
---|
544 | IF ( ASSOCIATED( shf_m ) ) shf_m = 0.0 |
---|
545 | ENDIF |
---|
546 | |
---|
547 | IF ( moisture .OR. passive_scalar ) THEN |
---|
548 | IF ( .NOT. constant_waterflux ) THEN |
---|
549 | qsws = 0.0 |
---|
550 | IF ( ASSOCIATED( qsws_m ) ) qsws_m = 0.0 |
---|
551 | ENDIF |
---|
552 | ENDIF |
---|
553 | |
---|
554 | ENDIF |
---|
555 | |
---|
556 | ! |
---|
557 | !-- Calculate the initial volume flow at the right and north boundary |
---|
558 | IF ( conserve_volume_flow ) THEN |
---|
559 | |
---|
560 | volume_flow_initial_l = 0.0 |
---|
561 | volume_flow_area_l = 0.0 |
---|
562 | |
---|
563 | IF ( nxr == nx ) THEN |
---|
564 | DO j = nys, nyn |
---|
565 | DO k = nzb_2d(j,nx) + 1, nzt |
---|
566 | volume_flow_initial_l(1) = volume_flow_initial_l(1) + & |
---|
567 | u(k,j,nx) * dzu(k) |
---|
568 | volume_flow_area_l(1) = volume_flow_area_l(1) + dzu(k) |
---|
569 | ENDDO |
---|
570 | ENDDO |
---|
571 | ENDIF |
---|
572 | |
---|
573 | IF ( nyn == ny ) THEN |
---|
574 | DO i = nxl, nxr |
---|
575 | DO k = nzb_2d(ny,i) + 1, nzt |
---|
576 | volume_flow_initial_l(2) = volume_flow_initial_l(2) + & |
---|
577 | v(k,ny,i) * dzu(k) |
---|
578 | volume_flow_area_l(2) = volume_flow_area_l(2) + dzu(k) |
---|
579 | ENDDO |
---|
580 | ENDDO |
---|
581 | ENDIF |
---|
582 | |
---|
583 | #if defined( __parallel ) |
---|
584 | CALL MPI_ALLREDUCE( volume_flow_initial_l(1), volume_flow_initial(1),& |
---|
585 | 2, MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
586 | CALL MPI_ALLREDUCE( volume_flow_area_l(1), volume_flow_area(1), & |
---|
587 | 2, MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
588 | #else |
---|
589 | volume_flow_initial = volume_flow_initial_l |
---|
590 | volume_flow_area = volume_flow_area_l |
---|
591 | #endif |
---|
592 | ENDIF |
---|
593 | |
---|
594 | ! |
---|
595 | !-- For the moment, perturbation pressure and vertical velocity are zero |
---|
596 | p = 0.0; w = 0.0 |
---|
597 | |
---|
598 | ! |
---|
599 | !-- Initialize array sums (must be defined in first call of pres) |
---|
600 | sums = 0.0 |
---|
601 | |
---|
602 | ! |
---|
603 | !-- Treating cloud physics, liquid water content is zero at beginning of |
---|
604 | !-- the simulation |
---|
605 | IF ( cloud_physics ) ql = 0.0 |
---|
606 | |
---|
607 | ! |
---|
608 | !-- Initialize spectra |
---|
609 | IF ( dt_dosp /= 9999999.9 ) THEN |
---|
610 | spectrum_x = 0.0 |
---|
611 | spectrum_y = 0.0 |
---|
612 | ENDIF |
---|
613 | |
---|
614 | ! |
---|
615 | !-- Impose vortex with vertical axis on the initial velocity profile |
---|
616 | IF ( INDEX( initializing_actions, 'initialize_vortex' ) /= 0 ) THEN |
---|
617 | CALL init_rankine |
---|
618 | ENDIF |
---|
619 | |
---|
620 | ! |
---|
621 | !-- Impose temperature anomaly (advection test only) |
---|
622 | IF ( INDEX( initializing_actions, 'initialize_ptanom' ) /= 0 ) THEN |
---|
623 | CALL init_pt_anomaly |
---|
624 | ENDIF |
---|
625 | |
---|
626 | ! |
---|
627 | !-- If required, change the surface temperature at the start of the 3D run |
---|
628 | IF ( pt_surface_initial_change /= 0.0 ) THEN |
---|
629 | pt(nzb,:,:) = pt(nzb,:,:) + pt_surface_initial_change |
---|
630 | ENDIF |
---|
631 | |
---|
632 | ! |
---|
633 | !-- If required, change the surface humidity/scalar at the start of the 3D |
---|
634 | !-- run |
---|
635 | IF ( ( moisture .OR. passive_scalar ) .AND. & |
---|
636 | q_surface_initial_change /= 0.0 ) THEN |
---|
637 | q(nzb,:,:) = q(nzb,:,:) + q_surface_initial_change |
---|
638 | ENDIF |
---|
639 | |
---|
640 | ! |
---|
641 | !-- Initialize the random number generator (from numerical recipes) |
---|
642 | CALL random_function_ini |
---|
643 | |
---|
644 | ! |
---|
645 | !-- Impose random perturbation on the horizontal velocity field and then |
---|
646 | !-- remove the divergences from the velocity field |
---|
647 | IF ( create_disturbances ) THEN |
---|
648 | CALL disturb_field( nzb_u_inner, tend, u, uxrp, 0 ) |
---|
649 | CALL disturb_field( nzb_v_inner, tend, v, 0, vynp ) |
---|
650 | n_sor = nsor_ini |
---|
651 | CALL pres |
---|
652 | n_sor = nsor |
---|
653 | ENDIF |
---|
654 | |
---|
655 | ! |
---|
656 | !-- Once again set the perturbation pressure explicitly to zero in order to |
---|
657 | !-- assure that it does not generate any divergences in the first time step. |
---|
658 | !-- At t=0 the velocity field is free of divergence (as constructed above). |
---|
659 | !-- Divergences being created during a time step are not yet known and thus |
---|
660 | !-- cannot be corrected during the time step yet. |
---|
661 | p = 0.0 |
---|
662 | |
---|
663 | ! |
---|
664 | !-- Initialize old and new time levels. |
---|
665 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
666 | e_m = e; pt_m = pt; u_m = u; v_m = v; w_m = w; kh_m = kh; km_m = km |
---|
667 | ELSE |
---|
668 | te_m = 0.0; tpt_m = 0.0; tu_m = 0.0; tv_m = 0.0; tw_m = 0.0 |
---|
669 | ENDIF |
---|
670 | e_p = e; pt_p = pt; u_p = u; v_p = v; w_p = w |
---|
671 | |
---|
672 | IF ( moisture .OR. passive_scalar ) THEN |
---|
673 | IF ( ASSOCIATED( q_m ) ) q_m = q |
---|
674 | IF ( timestep_scheme(1:5) == 'runge' ) tq_m = 0.0 |
---|
675 | q_p = q |
---|
676 | IF ( moisture .AND. ASSOCIATED( vpt_m ) ) vpt_m = vpt |
---|
677 | ENDIF |
---|
678 | |
---|
679 | ELSEIF ( TRIM( initializing_actions ) == 'read_restart_data' ) & |
---|
680 | THEN |
---|
681 | ! |
---|
682 | !-- Read binary data from restart file |
---|
683 | CALL read_3d_binary |
---|
684 | |
---|
685 | ! |
---|
686 | !-- Calculate initial temperature field and other constants used in case |
---|
687 | !-- of a sloping surface |
---|
688 | IF ( sloping_surface ) CALL init_slope |
---|
689 | |
---|
690 | ! |
---|
691 | !-- Initialize new time levels (only done in order to set boundary values |
---|
692 | !-- including ghost points) |
---|
693 | e_p = e; pt_p = pt; u_p = u; v_p = v; w_p = w |
---|
694 | IF ( moisture .OR. passive_scalar ) q_p = q |
---|
695 | |
---|
696 | ELSE |
---|
697 | ! |
---|
698 | !-- Actually this part of the programm should not be reached |
---|
699 | IF ( myid == 0 ) PRINT*,'+++ init_3d_model: unknown initializing ', & |
---|
700 | 'problem' |
---|
701 | CALL local_stop |
---|
702 | ENDIF |
---|
703 | |
---|
704 | ! |
---|
705 | !-- If required, initialize dvrp-software |
---|
706 | ! WRITE ( 9, * ) '*** myid=', myid, ' vor init_dvrp' |
---|
707 | ! CALL FLUSH_( 9 ) |
---|
708 | IF ( dt_dvrp /= 9999999.9 ) CALL init_dvrp |
---|
709 | ! WRITE ( 9, * ) '*** myid=', myid, ' nach init_dvrp' |
---|
710 | ! CALL FLUSH_( 9 ) |
---|
711 | |
---|
712 | ! |
---|
713 | !-- If required, initialize quantities for handling cloud physics |
---|
714 | !-- This routine must be called before init_particles, because |
---|
715 | !-- otherwise, array pt_d_t, needed in data_output_dvrp (called by |
---|
716 | !-- init_particles) is not defined. |
---|
717 | CALL init_cloud_physics |
---|
718 | |
---|
719 | ! |
---|
720 | !-- If required, initialize particles |
---|
721 | ! WRITE ( 9, * ) '*** myid=', myid, ' vor init_particles' |
---|
722 | ! CALL FLUSH_( 9 ) |
---|
723 | CALL init_particles |
---|
724 | ! WRITE ( 9, * ) '*** myid=', myid, ' nach init_particles' |
---|
725 | ! CALL FLUSH_( 9 ) |
---|
726 | |
---|
727 | ! |
---|
728 | !-- Initialize quantities for special advections schemes |
---|
729 | CALL init_advec |
---|
730 | |
---|
731 | ! |
---|
732 | !-- Initialize Rayleigh damping factors |
---|
733 | rdf = 0.0 |
---|
734 | IF ( rayleigh_damping_factor /= 0.0 ) THEN |
---|
735 | DO k = nzb+1, nzt |
---|
736 | IF ( zu(k) >= rayleigh_damping_height ) THEN |
---|
737 | rdf(k) = rayleigh_damping_factor * & |
---|
738 | ( SIN( pi * 0.5 * ( zu(k) - rayleigh_damping_height ) & |
---|
739 | / ( zu(nzt) - rayleigh_damping_height ) )& |
---|
740 | )**2 |
---|
741 | ENDIF |
---|
742 | ENDDO |
---|
743 | ENDIF |
---|
744 | |
---|
745 | ! |
---|
746 | !-- Initialize diffusivities used within the outflow damping layer in case of |
---|
747 | !-- non-cyclic lateral boundaries. A linear increase is assumed over the first |
---|
748 | !-- half of the width of the damping layer |
---|
749 | IF ( bc_lr /= 'cyclic' ) THEN |
---|
750 | |
---|
751 | DO i = nxl-1, nxr+1 |
---|
752 | |
---|
753 | IF ( outflow_r ) THEN |
---|
754 | |
---|
755 | IF ( i >= nx - outflow_damping_width ) THEN |
---|
756 | km_damp_x(i) = km_damp_max * MIN( 1.0, & |
---|
757 | ( i - ( nx - outflow_damping_width ) ) / & |
---|
758 | REAL( outflow_damping_width/2 ) & |
---|
759 | ) |
---|
760 | ELSE |
---|
761 | km_damp_x(i) = 0.0 |
---|
762 | ENDIF |
---|
763 | |
---|
764 | ELSEIF ( outflow_l ) THEN |
---|
765 | |
---|
766 | IF ( i <= outflow_damping_width ) THEN |
---|
767 | km_damp_x(i) = km_damp_max * MIN( 1.0, & |
---|
768 | ( outflow_damping_width - i ) / & |
---|
769 | REAL( outflow_damping_width/2 ) & |
---|
770 | ) |
---|
771 | ELSE |
---|
772 | km_damp_x(i) = 0.0 |
---|
773 | ENDIF |
---|
774 | |
---|
775 | ENDIF |
---|
776 | |
---|
777 | ENDDO |
---|
778 | ENDIF |
---|
779 | |
---|
780 | IF ( bc_ns /= 'cyclic' ) THEN |
---|
781 | |
---|
782 | DO j = nys-1, nyn+1 |
---|
783 | |
---|
784 | IF ( outflow_n ) THEN |
---|
785 | |
---|
786 | IF ( j >= ny - outflow_damping_width ) THEN |
---|
787 | km_damp_y(j) = km_damp_max * MIN( 1.0, & |
---|
788 | ( j - ( ny - outflow_damping_width ) ) / & |
---|
789 | REAL( outflow_damping_width/2 ) & |
---|
790 | ) |
---|
791 | ELSE |
---|
792 | km_damp_y(j) = 0.0 |
---|
793 | ENDIF |
---|
794 | |
---|
795 | ELSEIF ( outflow_s ) THEN |
---|
796 | |
---|
797 | IF ( j <= outflow_damping_width ) THEN |
---|
798 | km_damp_y(j) = km_damp_max * MIN( 1.0, & |
---|
799 | ( outflow_damping_width - j ) / & |
---|
800 | REAL( outflow_damping_width/2 ) & |
---|
801 | ) |
---|
802 | ELSE |
---|
803 | km_damp_y(j) = 0.0 |
---|
804 | ENDIF |
---|
805 | |
---|
806 | ENDIF |
---|
807 | |
---|
808 | ENDDO |
---|
809 | ENDIF |
---|
810 | |
---|
811 | ! |
---|
812 | !-- Initialize local summation arrays for UP flow_statistics. This is necessary |
---|
813 | !-- because they may not yet have been initialized when they are called from |
---|
814 | !-- flow_statistics (or - depending on the chosen model run - are never |
---|
815 | !-- initialized) |
---|
816 | sums_divnew_l = 0.0 |
---|
817 | sums_divold_l = 0.0 |
---|
818 | sums_l_l = 0.0 |
---|
819 | sums_up_fraction_l = 0.0 |
---|
820 | sums_wsts_bc_l = 0.0 |
---|
821 | |
---|
822 | ! |
---|
823 | !-- Pre-set masks for regional statistics. Default is the total model domain. |
---|
824 | rmask = 1.0 |
---|
825 | |
---|
826 | ! |
---|
827 | !-- User-defined initializing actions |
---|
828 | CALL user_init |
---|
829 | |
---|
830 | ! |
---|
831 | !-- Input binary data file is not needed anymore. This line must be placed |
---|
832 | !-- after call of user_init! |
---|
833 | CALL close_file( 13 ) |
---|
834 | |
---|
835 | ! |
---|
836 | !-- Compute total sum of active mask grid points |
---|
837 | !-- ngp_2dh: number of grid points of a horizontal cross section through the |
---|
838 | !-- total domain |
---|
839 | !-- ngp_3d: number of grid points of the total domain |
---|
840 | !-- Note: The lower vertical index nzb_s_outer imposes a small error on the 2D |
---|
841 | !-- ---- averages of staggered variables such as u and v due to the topography |
---|
842 | !-- arrangement on the staggered grid. Maybe revise later. |
---|
843 | ngp_2dh_outer_l = 0 |
---|
844 | ngp_2dh_outer = 0 |
---|
845 | ngp_2dh_l = 0 |
---|
846 | ngp_2dh = 0 |
---|
847 | ngp_3d_inner_l = 0 |
---|
848 | ngp_3d_inner = 0 |
---|
849 | ngp_3d = 0 |
---|
850 | ngp_sums = ( nz + 2 ) * var_sum |
---|
851 | |
---|
852 | DO sr = 0, statistic_regions |
---|
853 | DO i = nxl, nxr |
---|
854 | DO j = nys, nyn |
---|
855 | IF ( rmask(j,i,sr) == 1.0 ) THEN |
---|
856 | ! |
---|
857 | !-- All xy-grid points |
---|
858 | ngp_2dh_l(sr) = ngp_2dh_l(sr) + 1 |
---|
859 | ! |
---|
860 | !-- xy-grid points above topography |
---|
861 | DO k = nzb_s_outer(j,i), nz + 1 |
---|
862 | ngp_2dh_outer_l(k,sr) = ngp_2dh_outer_l(k,sr) + 1 |
---|
863 | ENDDO |
---|
864 | ! |
---|
865 | !-- All grid points of the total domain above topography |
---|
866 | ngp_3d_inner_l(sr) = ngp_3d_inner_l(sr) + & |
---|
867 | ( nz - nzb_s_inner(j,i) + 2 ) |
---|
868 | ENDIF |
---|
869 | ENDDO |
---|
870 | ENDDO |
---|
871 | ENDDO |
---|
872 | |
---|
873 | sr = statistic_regions + 1 |
---|
874 | #if defined( __parallel ) |
---|
875 | CALL MPI_ALLREDUCE( ngp_2dh_l(0), ngp_2dh(0), sr, MPI_INTEGER, MPI_SUM, & |
---|
876 | comm2d, ierr ) |
---|
877 | CALL MPI_ALLREDUCE( ngp_2dh_outer_l(0,0), ngp_2dh_outer(0,0), (nz+2)*sr, & |
---|
878 | MPI_INTEGER, MPI_SUM, comm2d, ierr ) |
---|
879 | CALL MPI_ALLREDUCE( ngp_3d_inner_l(0), ngp_3d_inner(0), sr, MPI_INTEGER, & |
---|
880 | MPI_SUM, comm2d, ierr ) |
---|
881 | #else |
---|
882 | ngp_2dh = ngp_2dh_l |
---|
883 | ngp_2dh_outer = ngp_2dh_outer_l |
---|
884 | ngp_3d_inner = ngp_3d_inner_l |
---|
885 | #endif |
---|
886 | |
---|
887 | ngp_3d = ngp_2dh * ( nz + 2 ) |
---|
888 | |
---|
889 | ! |
---|
890 | !-- Set a lower limit of 1 in order to avoid zero divisions in flow_statistics, |
---|
891 | !-- buoyancy, etc. A zero value will occur for cases where all grid points of |
---|
892 | !-- the respective subdomain lie below the surface topography |
---|
893 | ngp_2dh_outer = MAX( 1, ngp_2dh_outer(:,:) ) |
---|
894 | ngp_3d_inner = MAX( 1, ngp_3d_inner(:) ) |
---|
895 | |
---|
896 | DEALLOCATE( ngp_2dh_l, ngp_2dh_outer_l, ngp_3d_inner_l ) |
---|
897 | |
---|
898 | |
---|
899 | END SUBROUTINE init_3d_model |
---|