1 | #if defined( __ibmy_special ) |
---|
2 | @PROCESS NOOPTimize |
---|
3 | #endif |
---|
4 | SUBROUTINE init_3d_model |
---|
5 | |
---|
6 | !------------------------------------------------------------------------------! |
---|
7 | ! Actual revisions: |
---|
8 | ! ----------------- |
---|
9 | ! |
---|
10 | ! |
---|
11 | ! Former revisions: |
---|
12 | ! ----------------- |
---|
13 | ! $Id: init_3d_model.f90 90 2007-05-30 09:18:47Z raasch $ |
---|
14 | ! |
---|
15 | ! 87 2007-05-22 15:46:47Z raasch |
---|
16 | ! var_hom and var_sum renamed pr_palm |
---|
17 | ! |
---|
18 | ! 75 2007-03-22 09:54:05Z raasch |
---|
19 | ! Arrays for radiation boundary conditions are allocated (u_m_l, u_m_r, etc.), |
---|
20 | ! bugfix for cases with the outflow damping layer extending over more than one |
---|
21 | ! subdomain, moisture renamed humidity, |
---|
22 | ! new initializing action "by_user" calls user_init_3d_model, |
---|
23 | ! precipitation_amount/rate, ts_value are allocated, +module netcdf_control, |
---|
24 | ! initial velocities at nzb+1 are regarded for volume |
---|
25 | ! flow control in case they have been set zero before (to avoid small timesteps) |
---|
26 | ! -uvmean_outflow, uxrp, vynp eliminated |
---|
27 | ! |
---|
28 | ! 19 2007-02-23 04:53:48Z raasch |
---|
29 | ! +handling of top fluxes |
---|
30 | ! |
---|
31 | ! RCS Log replace by Id keyword, revision history cleaned up |
---|
32 | ! |
---|
33 | ! Revision 1.49 2006/08/22 15:59:07 raasch |
---|
34 | ! No optimization of this file on the ibmy (Yonsei Univ.) |
---|
35 | ! |
---|
36 | ! Revision 1.1 1998/03/09 16:22:22 raasch |
---|
37 | ! Initial revision |
---|
38 | ! |
---|
39 | ! |
---|
40 | ! Description: |
---|
41 | ! ------------ |
---|
42 | ! Allocation of arrays and initialization of the 3D model via |
---|
43 | ! a) pre-run the 1D model |
---|
44 | ! or |
---|
45 | ! b) pre-set constant linear profiles |
---|
46 | ! or |
---|
47 | ! c) read values of a previous run |
---|
48 | !------------------------------------------------------------------------------! |
---|
49 | |
---|
50 | USE arrays_3d |
---|
51 | USE averaging |
---|
52 | USE cloud_parameters |
---|
53 | USE constants |
---|
54 | USE control_parameters |
---|
55 | USE cpulog |
---|
56 | USE indices |
---|
57 | USE interfaces |
---|
58 | USE model_1d |
---|
59 | USE netcdf_control |
---|
60 | USE particle_attributes |
---|
61 | USE pegrid |
---|
62 | USE profil_parameter |
---|
63 | USE random_function_mod |
---|
64 | USE statistics |
---|
65 | |
---|
66 | IMPLICIT NONE |
---|
67 | |
---|
68 | INTEGER :: i, j, k, sr |
---|
69 | |
---|
70 | INTEGER, DIMENSION(:), ALLOCATABLE :: ngp_2dh_l, ngp_3d_inner_l |
---|
71 | |
---|
72 | INTEGER, DIMENSION(:,:), ALLOCATABLE :: ngp_2dh_outer_l |
---|
73 | |
---|
74 | REAL, DIMENSION(1:2) :: volume_flow_area_l, volume_flow_initial_l |
---|
75 | |
---|
76 | |
---|
77 | ! |
---|
78 | !-- Allocate arrays |
---|
79 | ALLOCATE( ngp_2dh(0:statistic_regions), ngp_2dh_l(0:statistic_regions), & |
---|
80 | ngp_3d(0:statistic_regions), & |
---|
81 | ngp_3d_inner(0:statistic_regions), & |
---|
82 | ngp_3d_inner_l(0:statistic_regions), & |
---|
83 | sums_divnew_l(0:statistic_regions), & |
---|
84 | sums_divold_l(0:statistic_regions) ) |
---|
85 | ALLOCATE( rdf(nzb+1:nzt) ) |
---|
86 | ALLOCATE( hom_sum(nzb:nzt+1,pr_palm+max_pr_user,0:statistic_regions), & |
---|
87 | ngp_2dh_outer(nzb:nzt+1,0:statistic_regions), & |
---|
88 | ngp_2dh_outer_l(nzb:nzt+1,0:statistic_regions), & |
---|
89 | rmask(nys-1:nyn+1,nxl-1:nxr+1,0:statistic_regions), & |
---|
90 | sums(nzb:nzt+1,pr_palm+max_pr_user), & |
---|
91 | sums_l(nzb:nzt+1,pr_palm+max_pr_user,0:threads_per_task-1), & |
---|
92 | sums_l_l(nzb:nzt+1,0:statistic_regions,0:threads_per_task-1), & |
---|
93 | sums_up_fraction_l(10,3,0:statistic_regions), & |
---|
94 | sums_wsts_bc_l(nzb:nzt+1,0:statistic_regions), & |
---|
95 | ts_value(var_ts,0:statistic_regions) ) |
---|
96 | ALLOCATE( km_damp_x(nxl-1:nxr+1), km_damp_y(nys-1:nyn+1) ) |
---|
97 | |
---|
98 | ALLOCATE( rif_1(nys-1:nyn+1,nxl-1:nxr+1), shf_1(nys-1:nyn+1,nxl-1:nxr+1), & |
---|
99 | ts(nys-1:nyn+1,nxl-1:nxr+1), tswst_1(nys-1:nyn+1,nxl-1:nxr+1), & |
---|
100 | us(nys-1:nyn+1,nxl-1:nxr+1), usws_1(nys-1:nyn+1,nxl-1:nxr+1), & |
---|
101 | vsws_1(nys-1:nyn+1,nxl-1:nxr+1), z0(nys-1:nyn+1,nxl-1:nxr+1) ) |
---|
102 | |
---|
103 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
104 | ! |
---|
105 | !-- Leapfrog scheme needs two timelevels of diffusion quantities |
---|
106 | ALLOCATE( rif_2(nys-1:nyn+1,nxl-1:nxr+1), & |
---|
107 | shf_2(nys-1:nyn+1,nxl-1:nxr+1), & |
---|
108 | tswst_2(nys-1:nyn+1,nxl-1:nxr+1), & |
---|
109 | usws_2(nys-1:nyn+1,nxl-1:nxr+1), & |
---|
110 | vsws_2(nys-1:nyn+1,nxl-1:nxr+1) ) |
---|
111 | ENDIF |
---|
112 | |
---|
113 | ALLOCATE( d(nzb+1:nzta,nys:nyna,nxl:nxra), & |
---|
114 | e_1(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
115 | e_2(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
116 | e_3(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
117 | kh_1(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
118 | km_1(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
119 | p(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
120 | pt_1(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
121 | pt_2(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
122 | pt_3(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
123 | tend(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
124 | u_1(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
125 | u_2(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
126 | u_3(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
127 | v_1(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
128 | v_2(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
129 | v_3(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
130 | w_1(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
131 | w_2(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
132 | w_3(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1) ) |
---|
133 | |
---|
134 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
135 | ALLOCATE( kh_2(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
136 | km_2(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1) ) |
---|
137 | ENDIF |
---|
138 | |
---|
139 | IF ( humidity .OR. passive_scalar ) THEN |
---|
140 | ! |
---|
141 | !-- 2D-humidity/scalar arrays |
---|
142 | ALLOCATE ( qs(nys-1:nyn+1,nxl-1:nxr+1), & |
---|
143 | qsws_1(nys-1:nyn+1,nxl-1:nxr+1), & |
---|
144 | qswst_1(nys-1:nyn+1,nxl-1:nxr+1) ) |
---|
145 | |
---|
146 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
147 | ALLOCATE( qsws_2(nys-1:nyn+1,nxl-1:nxr+1), & |
---|
148 | qswst_2(nys-1:nyn+1,nxl-1:nxr+1) ) |
---|
149 | ENDIF |
---|
150 | ! |
---|
151 | !-- 3D-humidity/scalar arrays |
---|
152 | ALLOCATE( q_1(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
153 | q_2(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
154 | q_3(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1) ) |
---|
155 | |
---|
156 | ! |
---|
157 | !-- 3D-arrays needed for humidity only |
---|
158 | IF ( humidity ) THEN |
---|
159 | ALLOCATE( vpt_1(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1) ) |
---|
160 | |
---|
161 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
162 | ALLOCATE( vpt_2(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1) ) |
---|
163 | ENDIF |
---|
164 | |
---|
165 | IF ( cloud_physics ) THEN |
---|
166 | ! |
---|
167 | !-- Liquid water content |
---|
168 | ALLOCATE ( ql_1(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1) ) |
---|
169 | ! |
---|
170 | !-- Precipitation amount and rate (only needed if output is switched) |
---|
171 | ALLOCATE( precipitation_amount(nys-1:nyn+1,nxl-1:nxr+1), & |
---|
172 | precipitation_rate(nys-1:nyn+1,nxl-1:nxr+1) ) |
---|
173 | ENDIF |
---|
174 | |
---|
175 | IF ( cloud_droplets ) THEN |
---|
176 | ! |
---|
177 | !-- Liquid water content, change in liquid water content, |
---|
178 | !-- real volume of particles (with weighting), volume of particles |
---|
179 | ALLOCATE ( ql_1(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
180 | ql_2(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
181 | ql_v(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
182 | ql_vp(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1) ) |
---|
183 | ENDIF |
---|
184 | |
---|
185 | ENDIF |
---|
186 | |
---|
187 | ENDIF |
---|
188 | |
---|
189 | ! |
---|
190 | !-- 3D-array for storing the dissipation, needed for calculating the sgs |
---|
191 | !-- particle velocities |
---|
192 | IF ( use_sgs_for_particles ) THEN |
---|
193 | ALLOCATE ( diss(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1) ) |
---|
194 | ENDIF |
---|
195 | |
---|
196 | IF ( dt_dosp /= 9999999.9 ) THEN |
---|
197 | ALLOCATE( spectrum_x( 1:nx/2, 1:10, 1:10 ), & |
---|
198 | spectrum_y( 1:ny/2, 1:10, 1:10 ) ) |
---|
199 | ENDIF |
---|
200 | |
---|
201 | ! |
---|
202 | !-- 4D-array for storing the Rif-values at vertical walls |
---|
203 | IF ( topography /= 'flat' ) THEN |
---|
204 | ALLOCATE( rif_wall(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1,1:4) ) |
---|
205 | rif_wall = 0.0 |
---|
206 | ENDIF |
---|
207 | |
---|
208 | ! |
---|
209 | !-- Velocities at nzb+1 needed for volume flow control |
---|
210 | IF ( conserve_volume_flow ) THEN |
---|
211 | ALLOCATE( u_nzb_p1_for_vfc(nys:nyn), v_nzb_p1_for_vfc(nxl:nxr) ) |
---|
212 | u_nzb_p1_for_vfc = 0.0 |
---|
213 | v_nzb_p1_for_vfc = 0.0 |
---|
214 | ENDIF |
---|
215 | |
---|
216 | ! |
---|
217 | !-- Arrays to store velocity data from t-dt needed for radiation boundary |
---|
218 | !-- conditions |
---|
219 | IF ( outflow_l ) THEN |
---|
220 | ALLOCATE( u_m_l(nzb:nzt+1,nys-1:nyn+1,-1:1), & |
---|
221 | v_m_l(nzb:nzt+1,nys-1:nyn+1,-1:1), & |
---|
222 | w_m_l(nzb:nzt+1,nys-1:nyn+1,-1:1) ) |
---|
223 | ENDIF |
---|
224 | IF ( outflow_r ) THEN |
---|
225 | ALLOCATE( u_m_r(nzb:nzt+1,nys-1:nyn+1,nx-1:nx+1), & |
---|
226 | v_m_r(nzb:nzt+1,nys-1:nyn+1,nx-1:nx+1), & |
---|
227 | w_m_r(nzb:nzt+1,nys-1:nyn+1,nx-1:nx+1) ) |
---|
228 | ENDIF |
---|
229 | IF ( outflow_s ) THEN |
---|
230 | ALLOCATE( u_m_s(nzb:nzt+1,-1:1,nxl-1:nxr+1), & |
---|
231 | v_m_s(nzb:nzt+1,-1:1,nxl-1:nxr+1), & |
---|
232 | w_m_s(nzb:nzt+1,-1:1,nxl-1:nxr+1) ) |
---|
233 | ENDIF |
---|
234 | IF ( outflow_n ) THEN |
---|
235 | ALLOCATE( u_m_n(nzb:nzt+1,ny-1:ny+1,nxl-1:nxr+1), & |
---|
236 | v_m_n(nzb:nzt+1,ny-1:ny+1,nxl-1:nxr+1), & |
---|
237 | w_m_n(nzb:nzt+1,ny-1:ny+1,nxl-1:nxr+1) ) |
---|
238 | ENDIF |
---|
239 | |
---|
240 | ! |
---|
241 | !-- Initial assignment of the pointers |
---|
242 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
243 | |
---|
244 | rif_m => rif_1; rif => rif_2 |
---|
245 | shf_m => shf_1; shf => shf_2 |
---|
246 | tswst_m => tswst_1; tswst => tswst_2 |
---|
247 | usws_m => usws_1; usws => usws_2 |
---|
248 | vsws_m => vsws_1; vsws => vsws_2 |
---|
249 | e_m => e_1; e => e_2; e_p => e_3; te_m => e_3 |
---|
250 | kh_m => kh_1; kh => kh_2 |
---|
251 | km_m => km_1; km => km_2 |
---|
252 | pt_m => pt_1; pt => pt_2; pt_p => pt_3; tpt_m => pt_3 |
---|
253 | u_m => u_1; u => u_2; u_p => u_3; tu_m => u_3 |
---|
254 | v_m => v_1; v => v_2; v_p => v_3; tv_m => v_3 |
---|
255 | w_m => w_1; w => w_2; w_p => w_3; tw_m => w_3 |
---|
256 | |
---|
257 | IF ( humidity .OR. passive_scalar ) THEN |
---|
258 | qsws_m => qsws_1; qsws => qsws_2 |
---|
259 | qswst_m => qswst_1; qswst => qswst_2 |
---|
260 | q_m => q_1; q => q_2; q_p => q_3; tq_m => q_3 |
---|
261 | IF ( humidity ) vpt_m => vpt_1; vpt => vpt_2 |
---|
262 | IF ( cloud_physics ) ql => ql_1 |
---|
263 | IF ( cloud_droplets ) THEN |
---|
264 | ql => ql_1 |
---|
265 | ql_c => ql_2 |
---|
266 | ENDIF |
---|
267 | ENDIF |
---|
268 | |
---|
269 | ELSE |
---|
270 | |
---|
271 | rif => rif_1 |
---|
272 | shf => shf_1 |
---|
273 | tswst => tswst_1 |
---|
274 | usws => usws_1 |
---|
275 | vsws => vsws_1 |
---|
276 | e => e_1; e_p => e_2; te_m => e_3; e_m => e_3 |
---|
277 | kh => kh_1 |
---|
278 | km => km_1 |
---|
279 | pt => pt_1; pt_p => pt_2; tpt_m => pt_3; pt_m => pt_3 |
---|
280 | u => u_1; u_p => u_2; tu_m => u_3; u_m => u_3 |
---|
281 | v => v_1; v_p => v_2; tv_m => v_3; v_m => v_3 |
---|
282 | w => w_1; w_p => w_2; tw_m => w_3; w_m => w_3 |
---|
283 | |
---|
284 | IF ( humidity .OR. passive_scalar ) THEN |
---|
285 | qsws => qsws_1 |
---|
286 | qswst => qswst_1 |
---|
287 | q => q_1; q_p => q_2; tq_m => q_3; q_m => q_3 |
---|
288 | IF ( humidity ) vpt => vpt_1 |
---|
289 | IF ( cloud_physics ) ql => ql_1 |
---|
290 | IF ( cloud_droplets ) THEN |
---|
291 | ql => ql_1 |
---|
292 | ql_c => ql_2 |
---|
293 | ENDIF |
---|
294 | ENDIF |
---|
295 | |
---|
296 | ENDIF |
---|
297 | |
---|
298 | ! |
---|
299 | !-- Initialize model variables |
---|
300 | IF ( TRIM( initializing_actions ) /= 'read_restart_data' ) THEN |
---|
301 | ! |
---|
302 | !-- First model run of a possible job queue. |
---|
303 | !-- Initial profiles of the variables must be computes. |
---|
304 | IF ( INDEX( initializing_actions, 'set_1d-model_profiles' ) /= 0 ) THEN |
---|
305 | ! |
---|
306 | !-- Use solutions of the 1D model as initial profiles, |
---|
307 | !-- start 1D model |
---|
308 | CALL init_1d_model |
---|
309 | ! |
---|
310 | !-- Transfer initial profiles to the arrays of the 3D model |
---|
311 | DO i = nxl-1, nxr+1 |
---|
312 | DO j = nys-1, nyn+1 |
---|
313 | e(:,j,i) = e1d |
---|
314 | kh(:,j,i) = kh1d |
---|
315 | km(:,j,i) = km1d |
---|
316 | pt(:,j,i) = pt_init |
---|
317 | u(:,j,i) = u1d |
---|
318 | v(:,j,i) = v1d |
---|
319 | ENDDO |
---|
320 | ENDDO |
---|
321 | |
---|
322 | IF ( humidity .OR. passive_scalar ) THEN |
---|
323 | DO i = nxl-1, nxr+1 |
---|
324 | DO j = nys-1, nyn+1 |
---|
325 | q(:,j,i) = q_init |
---|
326 | ENDDO |
---|
327 | ENDDO |
---|
328 | ENDIF |
---|
329 | |
---|
330 | IF ( .NOT. constant_diffusion ) THEN |
---|
331 | DO i = nxl-1, nxr+1 |
---|
332 | DO j = nys-1, nyn+1 |
---|
333 | e(:,j,i) = e1d |
---|
334 | ENDDO |
---|
335 | ENDDO |
---|
336 | ! |
---|
337 | !-- Store initial profiles for output purposes etc. |
---|
338 | hom(:,1,25,:) = SPREAD( l1d, 2, statistic_regions+1 ) |
---|
339 | |
---|
340 | IF ( prandtl_layer ) THEN |
---|
341 | rif = rif1d(nzb+1) |
---|
342 | ts = 0.0 ! could actually be computed more accurately in the |
---|
343 | ! 1D model. Update when opportunity arises. |
---|
344 | us = us1d |
---|
345 | usws = usws1d |
---|
346 | vsws = vsws1d |
---|
347 | ELSE |
---|
348 | ts = 0.0 ! must be set, because used in |
---|
349 | rif = 0.0 ! flowste |
---|
350 | us = 0.0 |
---|
351 | usws = 0.0 |
---|
352 | vsws = 0.0 |
---|
353 | ENDIF |
---|
354 | |
---|
355 | ELSE |
---|
356 | e = 0.0 ! must be set, because used in |
---|
357 | rif = 0.0 ! flowste |
---|
358 | ts = 0.0 |
---|
359 | us = 0.0 |
---|
360 | usws = 0.0 |
---|
361 | vsws = 0.0 |
---|
362 | ENDIF |
---|
363 | |
---|
364 | ! |
---|
365 | !-- In every case qs = 0.0 (see also pt) |
---|
366 | !-- This could actually be computed more accurately in the 1D model. |
---|
367 | !-- Update when opportunity arises! |
---|
368 | IF ( humidity .OR. passive_scalar ) qs = 0.0 |
---|
369 | |
---|
370 | ! |
---|
371 | !-- inside buildings set velocities back to zero |
---|
372 | IF ( topography /= 'flat' ) THEN |
---|
373 | DO i = nxl-1, nxr+1 |
---|
374 | DO j = nys-1, nyn+1 |
---|
375 | u(nzb:nzb_u_inner(j,i),j,i) = 0.0 |
---|
376 | v(nzb:nzb_v_inner(j,i),j,i) = 0.0 |
---|
377 | ENDDO |
---|
378 | ENDDO |
---|
379 | ! |
---|
380 | !-- WARNING: The extra boundary conditions set after running the |
---|
381 | !-- ------- 1D model impose an error on the divergence one layer |
---|
382 | !-- below the topography; need to correct later |
---|
383 | !-- ATTENTION: Provisional correction for Piacsek & Williams |
---|
384 | !-- --------- advection scheme: keep u and v zero one layer below |
---|
385 | !-- the topography. |
---|
386 | IF ( ibc_uv_b == 0 ) THEN |
---|
387 | ! |
---|
388 | !-- Satisfying the Dirichlet condition with an extra layer below |
---|
389 | !-- the surface where the u and v component change their sign. |
---|
390 | DO i = nxl-1, nxr+1 |
---|
391 | DO j = nys-1, nyn+1 |
---|
392 | IF ( nzb_u_inner(j,i) == 0 ) u(0,j,i) = -u(1,j,i) |
---|
393 | IF ( nzb_v_inner(j,i) == 0 ) v(0,j,i) = -v(1,j,i) |
---|
394 | ENDDO |
---|
395 | ENDDO |
---|
396 | |
---|
397 | ELSE |
---|
398 | ! |
---|
399 | !-- Neumann condition |
---|
400 | DO i = nxl-1, nxr+1 |
---|
401 | DO j = nys-1, nyn+1 |
---|
402 | IF ( nzb_u_inner(j,i) == 0 ) u(0,j,i) = u(1,j,i) |
---|
403 | IF ( nzb_v_inner(j,i) == 0 ) v(0,j,i) = v(1,j,i) |
---|
404 | ENDDO |
---|
405 | ENDDO |
---|
406 | |
---|
407 | ENDIF |
---|
408 | |
---|
409 | ENDIF |
---|
410 | |
---|
411 | ELSEIF ( INDEX(initializing_actions, 'set_constant_profiles') /= 0 ) & |
---|
412 | THEN |
---|
413 | ! |
---|
414 | !-- Use constructed initial profiles (velocity constant with height, |
---|
415 | !-- temperature profile with constant gradient) |
---|
416 | DO i = nxl-1, nxr+1 |
---|
417 | DO j = nys-1, nyn+1 |
---|
418 | pt(:,j,i) = pt_init |
---|
419 | u(:,j,i) = u_init |
---|
420 | v(:,j,i) = v_init |
---|
421 | ENDDO |
---|
422 | ENDDO |
---|
423 | |
---|
424 | ! |
---|
425 | !-- Set initial horizontal velocities at the lowest computational grid levels |
---|
426 | !-- to zero in order to avoid too small time steps caused by the diffusion |
---|
427 | !-- limit in the initial phase of a run (at k=1, dz/2 occurs in the |
---|
428 | !-- limiting formula!). The original values are stored to be later used for |
---|
429 | !-- volume flow control. |
---|
430 | DO i = nxl-1, nxr+1 |
---|
431 | DO j = nys-1, nyn+1 |
---|
432 | u(nzb:nzb_u_inner(j,i)+1,j,i) = 0.0 |
---|
433 | v(nzb:nzb_v_inner(j,i)+1,j,i) = 0.0 |
---|
434 | ENDDO |
---|
435 | ENDDO |
---|
436 | IF ( conserve_volume_flow ) THEN |
---|
437 | IF ( nxr == nx ) THEN |
---|
438 | DO j = nys, nyn |
---|
439 | k = nzb_u_inner(j,nx) + 1 |
---|
440 | u_nzb_p1_for_vfc(j) = u_init(k) * dzu(k) |
---|
441 | ENDDO |
---|
442 | ENDIF |
---|
443 | IF ( nyn == ny ) THEN |
---|
444 | DO i = nxl, nxr |
---|
445 | k = nzb_v_inner(ny,i) + 1 |
---|
446 | v_nzb_p1_for_vfc(i) = v_init(k) * dzu(k) |
---|
447 | ENDDO |
---|
448 | ENDIF |
---|
449 | ENDIF |
---|
450 | |
---|
451 | IF ( humidity .OR. passive_scalar ) THEN |
---|
452 | DO i = nxl-1, nxr+1 |
---|
453 | DO j = nys-1, nyn+1 |
---|
454 | q(:,j,i) = q_init |
---|
455 | ENDDO |
---|
456 | ENDDO |
---|
457 | ENDIF |
---|
458 | |
---|
459 | |
---|
460 | IF ( constant_diffusion ) THEN |
---|
461 | km = km_constant |
---|
462 | kh = km / prandtl_number |
---|
463 | ELSE |
---|
464 | kh = 0.01 ! there must exist an initial diffusion, because |
---|
465 | km = 0.01 ! otherwise no TKE would be produced by the |
---|
466 | ! production terms, as long as not yet |
---|
467 | ! e = (u*/cm)**2 at k=nzb+1 |
---|
468 | ENDIF |
---|
469 | e = 0.0 |
---|
470 | rif = 0.0 |
---|
471 | ts = 0.0 |
---|
472 | us = 0.0 |
---|
473 | usws = 0.0 |
---|
474 | vsws = 0.0 |
---|
475 | IF ( humidity .OR. passive_scalar ) qs = 0.0 |
---|
476 | |
---|
477 | ! |
---|
478 | !-- Compute initial temperature field and other constants used in case |
---|
479 | !-- of a sloping surface |
---|
480 | IF ( sloping_surface ) CALL init_slope |
---|
481 | |
---|
482 | ELSEIF ( INDEX(initializing_actions, 'by_user') /= 0 ) & |
---|
483 | THEN |
---|
484 | ! |
---|
485 | !-- Initialization will completely be done by the user |
---|
486 | CALL user_init_3d_model |
---|
487 | |
---|
488 | ENDIF |
---|
489 | |
---|
490 | ! |
---|
491 | !-- Calculate virtual potential temperature |
---|
492 | IF ( humidity ) vpt = pt * ( 1.0 + 0.61 * q ) |
---|
493 | |
---|
494 | ! |
---|
495 | !-- Store initial profiles for output purposes etc. |
---|
496 | hom(:,1,5,:) = SPREAD( u(:,nys,nxl), 2, statistic_regions+1 ) |
---|
497 | hom(:,1,6,:) = SPREAD( v(:,nys,nxl), 2, statistic_regions+1 ) |
---|
498 | IF ( ibc_uv_b == 0 ) THEN |
---|
499 | hom(nzb,1,5,:) = -hom(nzb+1,1,5,:) ! due to satisfying the Dirichlet |
---|
500 | hom(nzb,1,6,:) = -hom(nzb+1,1,6,:) ! condition with an extra layer |
---|
501 | ! below the surface where the u and v component change their sign |
---|
502 | ENDIF |
---|
503 | hom(:,1,7,:) = SPREAD( pt(:,nys,nxl), 2, statistic_regions+1 ) |
---|
504 | hom(:,1,23,:) = SPREAD( km(:,nys,nxl), 2, statistic_regions+1 ) |
---|
505 | hom(:,1,24,:) = SPREAD( kh(:,nys,nxl), 2, statistic_regions+1 ) |
---|
506 | |
---|
507 | |
---|
508 | IF ( humidity ) THEN |
---|
509 | ! |
---|
510 | !-- Store initial profile of total water content, virtual potential |
---|
511 | !-- temperature |
---|
512 | hom(:,1,26,:) = SPREAD( q(:,nys,nxl), 2, statistic_regions+1 ) |
---|
513 | hom(:,1,29,:) = SPREAD( vpt(:,nys,nxl), 2, statistic_regions+1 ) |
---|
514 | IF ( cloud_physics .OR. cloud_droplets ) THEN |
---|
515 | ! |
---|
516 | !-- Store initial profile of specific humidity and potential |
---|
517 | !-- temperature |
---|
518 | hom(:,1,27,:) = SPREAD( q(:,nys,nxl), 2, statistic_regions+1 ) |
---|
519 | hom(:,1,28,:) = SPREAD( pt(:,nys,nxl), 2, statistic_regions+1 ) |
---|
520 | ENDIF |
---|
521 | ENDIF |
---|
522 | |
---|
523 | IF ( passive_scalar ) THEN |
---|
524 | ! |
---|
525 | !-- Store initial scalar profile |
---|
526 | hom(:,1,26,:) = SPREAD( q(:,nys,nxl), 2, statistic_regions+1 ) |
---|
527 | ENDIF |
---|
528 | |
---|
529 | ! |
---|
530 | !-- Initialize fluxes at bottom surface |
---|
531 | IF ( use_surface_fluxes ) THEN |
---|
532 | |
---|
533 | IF ( constant_heatflux ) THEN |
---|
534 | ! |
---|
535 | !-- Heat flux is prescribed |
---|
536 | IF ( random_heatflux ) THEN |
---|
537 | CALL disturb_heatflux |
---|
538 | ELSE |
---|
539 | shf = surface_heatflux |
---|
540 | ! |
---|
541 | !-- Over topography surface_heatflux is replaced by wall_heatflux(0) |
---|
542 | IF ( TRIM( topography ) /= 'flat' ) THEN |
---|
543 | DO i = nxl-1, nxr+1 |
---|
544 | DO j = nys-1, nyn+1 |
---|
545 | IF ( nzb_s_inner(j,i) /= 0 ) THEN |
---|
546 | shf(j,i) = wall_heatflux(0) |
---|
547 | ENDIF |
---|
548 | ENDDO |
---|
549 | ENDDO |
---|
550 | ENDIF |
---|
551 | ENDIF |
---|
552 | IF ( ASSOCIATED( shf_m ) ) shf_m = shf |
---|
553 | ENDIF |
---|
554 | |
---|
555 | ! |
---|
556 | !-- Determine the near-surface water flux |
---|
557 | IF ( humidity .OR. passive_scalar ) THEN |
---|
558 | IF ( constant_waterflux ) THEN |
---|
559 | qsws = surface_waterflux |
---|
560 | IF ( ASSOCIATED( qsws_m ) ) qsws_m = qsws |
---|
561 | ENDIF |
---|
562 | ENDIF |
---|
563 | |
---|
564 | ENDIF |
---|
565 | |
---|
566 | ! |
---|
567 | !-- Initialize fluxes at top surface |
---|
568 | !-- Currently, only the heatflux can be prescribed. The latent flux is |
---|
569 | !-- zero in this case! |
---|
570 | IF ( use_top_fluxes ) THEN |
---|
571 | |
---|
572 | IF ( constant_top_heatflux ) THEN |
---|
573 | ! |
---|
574 | !-- Heat flux is prescribed |
---|
575 | tswst = top_heatflux |
---|
576 | IF ( ASSOCIATED( tswst_m ) ) tswst_m = tswst |
---|
577 | |
---|
578 | IF ( humidity .OR. passive_scalar ) THEN |
---|
579 | qswst = 0.0 |
---|
580 | IF ( ASSOCIATED( qswst_m ) ) qswst_m = qswst |
---|
581 | ENDIF |
---|
582 | ENDIF |
---|
583 | |
---|
584 | ENDIF |
---|
585 | |
---|
586 | ! |
---|
587 | !-- Initialize Prandtl layer quantities |
---|
588 | IF ( prandtl_layer ) THEN |
---|
589 | |
---|
590 | z0 = roughness_length |
---|
591 | |
---|
592 | IF ( .NOT. constant_heatflux ) THEN |
---|
593 | ! |
---|
594 | !-- Surface temperature is prescribed. Here the heat flux cannot be |
---|
595 | !-- simply estimated, because therefore rif, u* and theta* would have |
---|
596 | !-- to be computed by iteration. This is why the heat flux is assumed |
---|
597 | !-- to be zero before the first time step. It approaches its correct |
---|
598 | !-- value in the course of the first few time steps. |
---|
599 | shf = 0.0 |
---|
600 | IF ( ASSOCIATED( shf_m ) ) shf_m = 0.0 |
---|
601 | ENDIF |
---|
602 | |
---|
603 | IF ( humidity .OR. passive_scalar ) THEN |
---|
604 | IF ( .NOT. constant_waterflux ) THEN |
---|
605 | qsws = 0.0 |
---|
606 | IF ( ASSOCIATED( qsws_m ) ) qsws_m = 0.0 |
---|
607 | ENDIF |
---|
608 | ENDIF |
---|
609 | |
---|
610 | ENDIF |
---|
611 | |
---|
612 | ! |
---|
613 | !-- Calculate the initial volume flow at the right and north boundary |
---|
614 | IF ( conserve_volume_flow ) THEN |
---|
615 | |
---|
616 | volume_flow_initial_l = 0.0 |
---|
617 | volume_flow_area_l = 0.0 |
---|
618 | |
---|
619 | IF ( nxr == nx ) THEN |
---|
620 | DO j = nys, nyn |
---|
621 | DO k = nzb_2d(j,nx) + 1, nzt |
---|
622 | volume_flow_initial_l(1) = volume_flow_initial_l(1) + & |
---|
623 | u(k,j,nx) * dzu(k) |
---|
624 | volume_flow_area_l(1) = volume_flow_area_l(1) + dzu(k) |
---|
625 | ENDDO |
---|
626 | ! |
---|
627 | !-- Correction if velocity at nzb+1 has been set zero further above |
---|
628 | volume_flow_initial_l(1) = volume_flow_initial_l(1) + & |
---|
629 | u_nzb_p1_for_vfc(j) |
---|
630 | ENDDO |
---|
631 | ENDIF |
---|
632 | |
---|
633 | IF ( nyn == ny ) THEN |
---|
634 | DO i = nxl, nxr |
---|
635 | DO k = nzb_2d(ny,i) + 1, nzt |
---|
636 | volume_flow_initial_l(2) = volume_flow_initial_l(2) + & |
---|
637 | v(k,ny,i) * dzu(k) |
---|
638 | volume_flow_area_l(2) = volume_flow_area_l(2) + dzu(k) |
---|
639 | ENDDO |
---|
640 | ! |
---|
641 | !-- Correction if velocity at nzb+1 has been set zero further above |
---|
642 | volume_flow_initial_l(2) = volume_flow_initial_l(2) + & |
---|
643 | v_nzb_p1_for_vfc(i) |
---|
644 | ENDDO |
---|
645 | ENDIF |
---|
646 | |
---|
647 | #if defined( __parallel ) |
---|
648 | CALL MPI_ALLREDUCE( volume_flow_initial_l(1), volume_flow_initial(1),& |
---|
649 | 2, MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
650 | CALL MPI_ALLREDUCE( volume_flow_area_l(1), volume_flow_area(1), & |
---|
651 | 2, MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
652 | #else |
---|
653 | volume_flow_initial = volume_flow_initial_l |
---|
654 | volume_flow_area = volume_flow_area_l |
---|
655 | #endif |
---|
656 | ENDIF |
---|
657 | |
---|
658 | ! |
---|
659 | !-- For the moment, perturbation pressure and vertical velocity are zero |
---|
660 | p = 0.0; w = 0.0 |
---|
661 | |
---|
662 | ! |
---|
663 | !-- Initialize array sums (must be defined in first call of pres) |
---|
664 | sums = 0.0 |
---|
665 | |
---|
666 | ! |
---|
667 | !-- Treating cloud physics, liquid water content and precipitation amount |
---|
668 | !-- are zero at beginning of the simulation |
---|
669 | IF ( cloud_physics ) THEN |
---|
670 | ql = 0.0 |
---|
671 | IF ( precipitation ) precipitation_amount = 0.0 |
---|
672 | ENDIF |
---|
673 | |
---|
674 | ! |
---|
675 | !-- Initialize spectra |
---|
676 | IF ( dt_dosp /= 9999999.9 ) THEN |
---|
677 | spectrum_x = 0.0 |
---|
678 | spectrum_y = 0.0 |
---|
679 | ENDIF |
---|
680 | |
---|
681 | ! |
---|
682 | !-- Impose vortex with vertical axis on the initial velocity profile |
---|
683 | IF ( INDEX( initializing_actions, 'initialize_vortex' ) /= 0 ) THEN |
---|
684 | CALL init_rankine |
---|
685 | ENDIF |
---|
686 | |
---|
687 | ! |
---|
688 | !-- Impose temperature anomaly (advection test only) |
---|
689 | IF ( INDEX( initializing_actions, 'initialize_ptanom' ) /= 0 ) THEN |
---|
690 | CALL init_pt_anomaly |
---|
691 | ENDIF |
---|
692 | |
---|
693 | ! |
---|
694 | !-- If required, change the surface temperature at the start of the 3D run |
---|
695 | IF ( pt_surface_initial_change /= 0.0 ) THEN |
---|
696 | pt(nzb,:,:) = pt(nzb,:,:) + pt_surface_initial_change |
---|
697 | ENDIF |
---|
698 | |
---|
699 | ! |
---|
700 | !-- If required, change the surface humidity/scalar at the start of the 3D |
---|
701 | !-- run |
---|
702 | IF ( ( humidity .OR. passive_scalar ) .AND. & |
---|
703 | q_surface_initial_change /= 0.0 ) THEN |
---|
704 | q(nzb,:,:) = q(nzb,:,:) + q_surface_initial_change |
---|
705 | ENDIF |
---|
706 | |
---|
707 | ! |
---|
708 | !-- Initialize the random number generator (from numerical recipes) |
---|
709 | CALL random_function_ini |
---|
710 | |
---|
711 | ! |
---|
712 | !-- Impose random perturbation on the horizontal velocity field and then |
---|
713 | !-- remove the divergences from the velocity field |
---|
714 | IF ( create_disturbances ) THEN |
---|
715 | CALL disturb_field( nzb_u_inner, tend, u ) |
---|
716 | CALL disturb_field( nzb_v_inner, tend, v ) |
---|
717 | n_sor = nsor_ini |
---|
718 | CALL pres |
---|
719 | n_sor = nsor |
---|
720 | ENDIF |
---|
721 | |
---|
722 | ! |
---|
723 | !-- Once again set the perturbation pressure explicitly to zero in order to |
---|
724 | !-- assure that it does not generate any divergences in the first time step. |
---|
725 | !-- At t=0 the velocity field is free of divergence (as constructed above). |
---|
726 | !-- Divergences being created during a time step are not yet known and thus |
---|
727 | !-- cannot be corrected during the time step yet. |
---|
728 | p = 0.0 |
---|
729 | |
---|
730 | ! |
---|
731 | !-- Initialize old and new time levels. |
---|
732 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
733 | e_m = e; pt_m = pt; u_m = u; v_m = v; w_m = w; kh_m = kh; km_m = km |
---|
734 | ELSE |
---|
735 | te_m = 0.0; tpt_m = 0.0; tu_m = 0.0; tv_m = 0.0; tw_m = 0.0 |
---|
736 | ENDIF |
---|
737 | e_p = e; pt_p = pt; u_p = u; v_p = v; w_p = w |
---|
738 | |
---|
739 | IF ( humidity .OR. passive_scalar ) THEN |
---|
740 | IF ( ASSOCIATED( q_m ) ) q_m = q |
---|
741 | IF ( timestep_scheme(1:5) == 'runge' ) tq_m = 0.0 |
---|
742 | q_p = q |
---|
743 | IF ( humidity .AND. ASSOCIATED( vpt_m ) ) vpt_m = vpt |
---|
744 | ENDIF |
---|
745 | |
---|
746 | ! |
---|
747 | !-- Initialize old timelevels needed for radiation boundary conditions |
---|
748 | IF ( outflow_l ) THEN |
---|
749 | u_m_l(:,:,:) = u(:,:,-1:1) |
---|
750 | v_m_l(:,:,:) = v(:,:,-1:1) |
---|
751 | w_m_l(:,:,:) = w(:,:,-1:1) |
---|
752 | ENDIF |
---|
753 | IF ( outflow_r ) THEN |
---|
754 | u_m_r(:,:,:) = u(:,:,nx-1:nx+1) |
---|
755 | v_m_r(:,:,:) = v(:,:,nx-1:nx+1) |
---|
756 | w_m_r(:,:,:) = w(:,:,nx-1:nx+1) |
---|
757 | ENDIF |
---|
758 | IF ( outflow_s ) THEN |
---|
759 | u_m_s(:,:,:) = u(:,-1:1,:) |
---|
760 | v_m_s(:,:,:) = v(:,-1:1,:) |
---|
761 | w_m_s(:,:,:) = w(:,-1:1,:) |
---|
762 | ENDIF |
---|
763 | IF ( outflow_n ) THEN |
---|
764 | u_m_n(:,:,:) = u(:,ny-1:ny+1,:) |
---|
765 | v_m_n(:,:,:) = v(:,ny-1:ny+1,:) |
---|
766 | w_m_n(:,:,:) = w(:,ny-1:ny+1,:) |
---|
767 | ENDIF |
---|
768 | |
---|
769 | ELSEIF ( TRIM( initializing_actions ) == 'read_restart_data' ) & |
---|
770 | THEN |
---|
771 | ! |
---|
772 | !-- Read binary data from restart file |
---|
773 | CALL read_3d_binary |
---|
774 | |
---|
775 | ! |
---|
776 | !-- Calculate initial temperature field and other constants used in case |
---|
777 | !-- of a sloping surface |
---|
778 | IF ( sloping_surface ) CALL init_slope |
---|
779 | |
---|
780 | ! |
---|
781 | !-- Initialize new time levels (only done in order to set boundary values |
---|
782 | !-- including ghost points) |
---|
783 | e_p = e; pt_p = pt; u_p = u; v_p = v; w_p = w |
---|
784 | IF ( humidity .OR. passive_scalar ) q_p = q |
---|
785 | |
---|
786 | ELSE |
---|
787 | ! |
---|
788 | !-- Actually this part of the programm should not be reached |
---|
789 | IF ( myid == 0 ) PRINT*,'+++ init_3d_model: unknown initializing ', & |
---|
790 | 'problem' |
---|
791 | CALL local_stop |
---|
792 | ENDIF |
---|
793 | |
---|
794 | ! |
---|
795 | !-- If required, initialize dvrp-software |
---|
796 | IF ( dt_dvrp /= 9999999.9 ) CALL init_dvrp |
---|
797 | |
---|
798 | ! |
---|
799 | !-- If required, initialize quantities for handling cloud physics |
---|
800 | !-- This routine must be called before init_particles, because |
---|
801 | !-- otherwise, array pt_d_t, needed in data_output_dvrp (called by |
---|
802 | !-- init_particles) is not defined. |
---|
803 | CALL init_cloud_physics |
---|
804 | |
---|
805 | ! |
---|
806 | !-- If required, initialize particles |
---|
807 | IF ( particle_advection ) CALL init_particles |
---|
808 | |
---|
809 | ! |
---|
810 | !-- Initialize quantities for special advections schemes |
---|
811 | CALL init_advec |
---|
812 | |
---|
813 | ! |
---|
814 | !-- Initialize Rayleigh damping factors |
---|
815 | rdf = 0.0 |
---|
816 | IF ( rayleigh_damping_factor /= 0.0 ) THEN |
---|
817 | DO k = nzb+1, nzt |
---|
818 | IF ( zu(k) >= rayleigh_damping_height ) THEN |
---|
819 | rdf(k) = rayleigh_damping_factor * & |
---|
820 | ( SIN( pi * 0.5 * ( zu(k) - rayleigh_damping_height ) & |
---|
821 | / ( zu(nzt) - rayleigh_damping_height ) )& |
---|
822 | )**2 |
---|
823 | ENDIF |
---|
824 | ENDDO |
---|
825 | ENDIF |
---|
826 | |
---|
827 | ! |
---|
828 | !-- Initialize diffusivities used within the outflow damping layer in case of |
---|
829 | !-- non-cyclic lateral boundaries. A linear increase is assumed over the first |
---|
830 | !-- half of the width of the damping layer |
---|
831 | IF ( bc_lr == 'dirichlet/radiation' ) THEN |
---|
832 | |
---|
833 | DO i = nxl-1, nxr+1 |
---|
834 | IF ( i >= nx - outflow_damping_width ) THEN |
---|
835 | km_damp_x(i) = km_damp_max * MIN( 1.0, & |
---|
836 | ( i - ( nx - outflow_damping_width ) ) / & |
---|
837 | REAL( outflow_damping_width/2 ) & |
---|
838 | ) |
---|
839 | ELSE |
---|
840 | km_damp_x(i) = 0.0 |
---|
841 | ENDIF |
---|
842 | ENDDO |
---|
843 | |
---|
844 | ELSEIF ( bc_lr == 'radiation/dirichlet' ) THEN |
---|
845 | |
---|
846 | DO i = nxl-1, nxr+1 |
---|
847 | IF ( i <= outflow_damping_width ) THEN |
---|
848 | km_damp_x(i) = km_damp_max * MIN( 1.0, & |
---|
849 | ( outflow_damping_width - i ) / & |
---|
850 | REAL( outflow_damping_width/2 ) & |
---|
851 | ) |
---|
852 | ELSE |
---|
853 | km_damp_x(i) = 0.0 |
---|
854 | ENDIF |
---|
855 | ENDDO |
---|
856 | |
---|
857 | ENDIF |
---|
858 | |
---|
859 | IF ( bc_ns == 'dirichlet/radiation' ) THEN |
---|
860 | |
---|
861 | DO j = nys-1, nyn+1 |
---|
862 | IF ( j >= ny - outflow_damping_width ) THEN |
---|
863 | km_damp_y(j) = km_damp_max * MIN( 1.0, & |
---|
864 | ( j - ( ny - outflow_damping_width ) ) / & |
---|
865 | REAL( outflow_damping_width/2 ) & |
---|
866 | ) |
---|
867 | ELSE |
---|
868 | km_damp_y(j) = 0.0 |
---|
869 | ENDIF |
---|
870 | ENDDO |
---|
871 | |
---|
872 | ELSEIF ( bc_ns == 'radiation/dirichlet' ) THEN |
---|
873 | |
---|
874 | DO j = nys-1, nyn+1 |
---|
875 | IF ( j <= outflow_damping_width ) THEN |
---|
876 | km_damp_y(j) = km_damp_max * MIN( 1.0, & |
---|
877 | ( outflow_damping_width - j ) / & |
---|
878 | REAL( outflow_damping_width/2 ) & |
---|
879 | ) |
---|
880 | ELSE |
---|
881 | km_damp_y(j) = 0.0 |
---|
882 | ENDIF |
---|
883 | ENDDO |
---|
884 | |
---|
885 | ENDIF |
---|
886 | |
---|
887 | ! |
---|
888 | !-- Initialize local summation arrays for UP flow_statistics. This is necessary |
---|
889 | !-- because they may not yet have been initialized when they are called from |
---|
890 | !-- flow_statistics (or - depending on the chosen model run - are never |
---|
891 | !-- initialized) |
---|
892 | sums_divnew_l = 0.0 |
---|
893 | sums_divold_l = 0.0 |
---|
894 | sums_l_l = 0.0 |
---|
895 | sums_up_fraction_l = 0.0 |
---|
896 | sums_wsts_bc_l = 0.0 |
---|
897 | |
---|
898 | ! |
---|
899 | !-- Pre-set masks for regional statistics. Default is the total model domain. |
---|
900 | rmask = 1.0 |
---|
901 | |
---|
902 | ! |
---|
903 | !-- User-defined initializing actions. Check afterwards, if maximum number |
---|
904 | !-- of allowed timeseries is not exceeded |
---|
905 | CALL user_init |
---|
906 | |
---|
907 | IF ( dots_num > dots_max ) THEN |
---|
908 | IF ( myid == 0 ) THEN |
---|
909 | PRINT*, '+++ user_init: number of time series quantities exceeds', & |
---|
910 | ' its maximum of dots_max = ', dots_max |
---|
911 | PRINT*, ' Please increase dots_max in modules.f90.' |
---|
912 | ENDIF |
---|
913 | CALL local_stop |
---|
914 | ENDIF |
---|
915 | |
---|
916 | ! |
---|
917 | !-- Input binary data file is not needed anymore. This line must be placed |
---|
918 | !-- after call of user_init! |
---|
919 | CALL close_file( 13 ) |
---|
920 | |
---|
921 | ! |
---|
922 | !-- Compute total sum of active mask grid points |
---|
923 | !-- ngp_2dh: number of grid points of a horizontal cross section through the |
---|
924 | !-- total domain |
---|
925 | !-- ngp_3d: number of grid points of the total domain |
---|
926 | !-- Note: The lower vertical index nzb_s_outer imposes a small error on the 2D |
---|
927 | !-- ---- averages of staggered variables such as u and v due to the topography |
---|
928 | !-- arrangement on the staggered grid. Maybe revise later. |
---|
929 | ngp_2dh_outer_l = 0 |
---|
930 | ngp_2dh_outer = 0 |
---|
931 | ngp_2dh_l = 0 |
---|
932 | ngp_2dh = 0 |
---|
933 | ngp_3d_inner_l = 0 |
---|
934 | ngp_3d_inner = 0 |
---|
935 | ngp_3d = 0 |
---|
936 | ngp_sums = ( nz + 2 ) * ( pr_palm + max_pr_user ) |
---|
937 | |
---|
938 | DO sr = 0, statistic_regions |
---|
939 | DO i = nxl, nxr |
---|
940 | DO j = nys, nyn |
---|
941 | IF ( rmask(j,i,sr) == 1.0 ) THEN |
---|
942 | ! |
---|
943 | !-- All xy-grid points |
---|
944 | ngp_2dh_l(sr) = ngp_2dh_l(sr) + 1 |
---|
945 | ! |
---|
946 | !-- xy-grid points above topography |
---|
947 | DO k = nzb_s_outer(j,i), nz + 1 |
---|
948 | ngp_2dh_outer_l(k,sr) = ngp_2dh_outer_l(k,sr) + 1 |
---|
949 | ENDDO |
---|
950 | ! |
---|
951 | !-- All grid points of the total domain above topography |
---|
952 | ngp_3d_inner_l(sr) = ngp_3d_inner_l(sr) + & |
---|
953 | ( nz - nzb_s_inner(j,i) + 2 ) |
---|
954 | ENDIF |
---|
955 | ENDDO |
---|
956 | ENDDO |
---|
957 | ENDDO |
---|
958 | |
---|
959 | sr = statistic_regions + 1 |
---|
960 | #if defined( __parallel ) |
---|
961 | CALL MPI_ALLREDUCE( ngp_2dh_l(0), ngp_2dh(0), sr, MPI_INTEGER, MPI_SUM, & |
---|
962 | comm2d, ierr ) |
---|
963 | CALL MPI_ALLREDUCE( ngp_2dh_outer_l(0,0), ngp_2dh_outer(0,0), (nz+2)*sr, & |
---|
964 | MPI_INTEGER, MPI_SUM, comm2d, ierr ) |
---|
965 | CALL MPI_ALLREDUCE( ngp_3d_inner_l(0), ngp_3d_inner(0), sr, MPI_INTEGER, & |
---|
966 | MPI_SUM, comm2d, ierr ) |
---|
967 | #else |
---|
968 | ngp_2dh = ngp_2dh_l |
---|
969 | ngp_2dh_outer = ngp_2dh_outer_l |
---|
970 | ngp_3d_inner = ngp_3d_inner_l |
---|
971 | #endif |
---|
972 | |
---|
973 | ngp_3d = ngp_2dh * ( nz + 2 ) |
---|
974 | |
---|
975 | ! |
---|
976 | !-- Set a lower limit of 1 in order to avoid zero divisions in flow_statistics, |
---|
977 | !-- buoyancy, etc. A zero value will occur for cases where all grid points of |
---|
978 | !-- the respective subdomain lie below the surface topography |
---|
979 | ngp_2dh_outer = MAX( 1, ngp_2dh_outer(:,:) ) |
---|
980 | ngp_3d_inner = MAX( 1, ngp_3d_inner(:) ) |
---|
981 | |
---|
982 | DEALLOCATE( ngp_2dh_l, ngp_2dh_outer_l, ngp_3d_inner_l ) |
---|
983 | |
---|
984 | |
---|
985 | END SUBROUTINE init_3d_model |
---|