[1682] | 1 | !> @file init_3d_model.f90 |
---|
[4648] | 2 | !--------------------------------------------------------------------------------------------------! |
---|
[2696] | 3 | ! This file is part of the PALM model system. |
---|
[1036] | 4 | ! |
---|
[4648] | 5 | ! PALM is free software: you can redistribute it and/or modify it under the terms of the GNU General |
---|
| 6 | ! Public License as published by the Free Software Foundation, either version 3 of the License, or |
---|
| 7 | ! (at your option) any later version. |
---|
[1036] | 8 | ! |
---|
[4648] | 9 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the |
---|
| 10 | ! implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General |
---|
| 11 | ! Public License for more details. |
---|
[1036] | 12 | ! |
---|
[4648] | 13 | ! You should have received a copy of the GNU General Public License along with PALM. If not, see |
---|
| 14 | ! <http://www.gnu.org/licenses/>. |
---|
[1036] | 15 | ! |
---|
[4360] | 16 | ! Copyright 1997-2020 Leibniz Universitaet Hannover |
---|
[4648] | 17 | !--------------------------------------------------------------------------------------------------! |
---|
[1036] | 18 | ! |
---|
[254] | 19 | ! Current revisions: |
---|
[732] | 20 | ! ------------------ |
---|
[4648] | 21 | ! |
---|
| 22 | ! |
---|
[2233] | 23 | ! Former revisions: |
---|
| 24 | ! ----------------- |
---|
| 25 | ! $Id: init_3d_model.f90 4671 2020-09-09 20:27:58Z raasch $ |
---|
[4671] | 26 | ! Implementation of downward facing USM and LSM surfaces |
---|
| 27 | ! |
---|
| 28 | ! 4648 2020-08-25 07:52:08Z raasch |
---|
[4648] | 29 | ! file re-formatted to follow the PALM coding standard |
---|
| 30 | ! |
---|
| 31 | ! 4548 2020-05-28 19:36:45Z suehring |
---|
[4548] | 32 | ! Bugfix, move call for lsf_forcing_surf after lsf_init is called |
---|
[4648] | 33 | ! |
---|
[4548] | 34 | ! 4514 2020-04-30 16:29:59Z suehring |
---|
[4648] | 35 | ! Add possibility to initialize surface sensible and latent heat fluxes via a static driver. |
---|
| 36 | ! |
---|
[4514] | 37 | ! 4493 2020-04-10 09:49:43Z pavelkrc |
---|
[4648] | 38 | ! Overwrite u_init, v_init, pt_init, q_init and s_init with hom for all cyclic_fill-cases, not only |
---|
| 39 | ! for turbulent_inflow = .TRUE. |
---|
| 40 | ! |
---|
[4365] | 41 | ! 4360 2020-01-07 11:25:50Z suehring |
---|
[4648] | 42 | ! Introduction of wall_flags_total_0, which currently sets bits based on static topography |
---|
| 43 | ! information used in wall_flags_static_0 |
---|
| 44 | ! |
---|
[4346] | 45 | ! 4329 2019-12-10 15:46:36Z motisi |
---|
[4329] | 46 | ! Renamed wall_flags_0 to wall_flags_static_0 |
---|
[4648] | 47 | ! |
---|
[4329] | 48 | ! 4286 2019-10-30 16:01:14Z resler |
---|
[4227] | 49 | ! implement new palm_date_time_mod |
---|
[4648] | 50 | ! |
---|
[4227] | 51 | ! 4223 2019-09-10 09:20:47Z gronemeier |
---|
[4648] | 52 | ! Deallocate temporary string array since it may be re-used to read different input data in other |
---|
| 53 | ! modules |
---|
| 54 | ! |
---|
[4187] | 55 | ! 4186 2019-08-23 16:06:14Z suehring |
---|
[4648] | 56 | ! Design change, use variables defined in netcdf_data_input_mod to read netcd variables rather than |
---|
| 57 | ! define local ones. |
---|
| 58 | ! |
---|
[4186] | 59 | ! 4185 2019-08-23 13:49:38Z oliver.maas |
---|
[4185] | 60 | ! For initializing_actions = ' cyclic_fill': |
---|
[4648] | 61 | ! Overwrite u_init, v_init, pt_init, q_init and s_init with the (temporally) and horizontally |
---|
| 62 | ! averaged vertical profiles from the end of the prerun, because these profiles shall be used as the |
---|
| 63 | ! basic state for the rayleigh damping and the pt_damping. |
---|
| 64 | ! |
---|
[4185] | 65 | ! 4182 2019-08-22 15:20:23Z scharf |
---|
[4182] | 66 | ! Corrected "Former revisions" section |
---|
[4648] | 67 | ! |
---|
[4182] | 68 | ! 4168 2019-08-16 13:50:17Z suehring |
---|
[4168] | 69 | ! Replace function get_topography_top_index by topo_top_ind |
---|
[4648] | 70 | ! |
---|
[4168] | 71 | ! 4151 2019-08-09 08:24:30Z suehring |
---|
[4151] | 72 | ! Add netcdf directive around input calls (fix for last commit) |
---|
[4648] | 73 | ! |
---|
[4151] | 74 | ! 4150 2019-08-08 20:00:47Z suehring |
---|
[4648] | 75 | ! Input of additional surface variables independent on land- or urban-surface model |
---|
| 76 | ! |
---|
[4150] | 77 | ! 4131 2019-08-02 11:06:18Z monakurppa |
---|
[4131] | 78 | ! Allocate sums and sums_l to allow profile output for salsa variables. |
---|
[4648] | 79 | ! |
---|
[4131] | 80 | ! 4130 2019-08-01 13:04:13Z suehring |
---|
[4648] | 81 | ! Effectively reduce 3D initialization to 1D initial profiles. This is because 3D initialization |
---|
| 82 | ! produces structures in the w-component that are correlated with the processor grid for some |
---|
| 83 | ! unknown reason |
---|
| 84 | ! |
---|
[4130] | 85 | ! 4090 2019-07-11 15:06:47Z Giersch |
---|
[4090] | 86 | ! Unused variables removed |
---|
[4648] | 87 | ! |
---|
[4090] | 88 | ! 4088 2019-07-11 13:57:56Z Giersch |
---|
[4088] | 89 | ! Pressure and density profile calculations revised using basic functions |
---|
[4648] | 90 | ! |
---|
[4088] | 91 | ! 4048 2019-06-21 21:00:21Z knoop |
---|
[4028] | 92 | ! Further modularization of particle code components |
---|
[4648] | 93 | ! |
---|
[4028] | 94 | ! 4017 2019-06-06 12:16:46Z schwenkel |
---|
[4648] | 95 | ! Convert most location messages to debug messages to reduce output in job logfile to a minimum |
---|
| 96 | ! |
---|
[3939] | 97 | ! unused variable removed |
---|
[4648] | 98 | ! |
---|
[3939] | 99 | ! 3937 2019-04-29 15:09:07Z suehring |
---|
[4648] | 100 | ! Move initialization of synthetic turbulence generator behind initialization of offline nesting. |
---|
| 101 | ! Remove call for stg_adjust, as this is now already done in stg_init. |
---|
| 102 | ! |
---|
[3937] | 103 | ! 3900 2019-04-16 15:17:43Z suehring |
---|
[3900] | 104 | ! Fix problem with LOD = 2 initialization |
---|
[4648] | 105 | ! |
---|
[3900] | 106 | ! 3885 2019-04-11 11:29:34Z kanani |
---|
[4648] | 107 | ! Changes related to global restructuring of location messages and introduction of additional debug |
---|
| 108 | ! messages |
---|
| 109 | ! |
---|
[3885] | 110 | ! 3849 2019-04-01 16:35:16Z knoop |
---|
[3747] | 111 | ! Move initialization of rmask before initializing user_init_arrays |
---|
[4648] | 112 | ! |
---|
[3747] | 113 | ! 3711 2019-01-31 13:44:26Z knoop |
---|
[3711] | 114 | ! Introduced module_interface_init_checks for post-init checks in modules |
---|
[4648] | 115 | ! |
---|
[3711] | 116 | ! 3700 2019-01-26 17:03:42Z knoop |
---|
[3685] | 117 | ! Some interface calls moved to module_interface + cleanup |
---|
[4648] | 118 | ! |
---|
[3685] | 119 | ! 3648 2019-01-02 16:35:46Z suehring |
---|
[3648] | 120 | ! Rename subroutines for surface-data output |
---|
[3569] | 121 | ! |
---|
[4182] | 122 | ! Revision 1.1 1998/03/09 16:22:22 raasch |
---|
| 123 | ! Initial revision |
---|
| 124 | ! |
---|
| 125 | ! |
---|
[1] | 126 | ! Description: |
---|
| 127 | ! ------------ |
---|
[1682] | 128 | !> Allocation of arrays and initialization of the 3D model via |
---|
| 129 | !> a) pre-run the 1D model |
---|
| 130 | !> or |
---|
| 131 | !> b) pre-set constant linear profiles |
---|
| 132 | !> or |
---|
| 133 | !> c) read values of a previous run |
---|
[4648] | 134 | !--------------------------------------------------------------------------------------------------! |
---|
[1682] | 135 | SUBROUTINE init_3d_model |
---|
[1] | 136 | |
---|
[3298] | 137 | |
---|
[667] | 138 | USE advec_ws |
---|
[1320] | 139 | |
---|
[1] | 140 | USE arrays_3d |
---|
[1849] | 141 | |
---|
[4648] | 142 | USE basic_constants_and_equations_mod, & |
---|
| 143 | ONLY: barometric_formula, c_p, exner_function, exner_function_invers, g, & |
---|
| 144 | ideal_gas_law_rho, ideal_gas_law_rho_pt, l_v, pi |
---|
[3274] | 145 | |
---|
[4648] | 146 | USE bulk_cloud_model_mod, & |
---|
[3685] | 147 | ONLY: bulk_cloud_model |
---|
[3274] | 148 | |
---|
[4648] | 149 | USE chem_modules, & |
---|
[3685] | 150 | ONLY: max_pr_cs ! ToDo: this dependency needs to be removed cause it is ugly #new_dom |
---|
[3298] | 151 | |
---|
[1] | 152 | USE control_parameters |
---|
[3298] | 153 | |
---|
[4648] | 154 | USE grid_variables, & |
---|
[2037] | 155 | ONLY: dx, dy, ddx2_mg, ddy2_mg |
---|
[2817] | 156 | |
---|
[1] | 157 | USE indices |
---|
[3469] | 158 | |
---|
[1320] | 159 | USE kinds |
---|
[4648] | 160 | |
---|
| 161 | USE lsf_nudging_mod, & |
---|
[3685] | 162 | ONLY: ls_forcing_surf |
---|
[1849] | 163 | |
---|
[4648] | 164 | USE model_1d_mod, & |
---|
[3241] | 165 | ONLY: init_1d_model, l1d, u1d, v1d |
---|
[2338] | 166 | |
---|
[4648] | 167 | USE module_interface, & |
---|
| 168 | ONLY: module_interface_init_arrays, & |
---|
| 169 | module_interface_init, & |
---|
[3711] | 170 | module_interface_init_checks |
---|
[3685] | 171 | |
---|
[4648] | 172 | USE multi_agent_system_mod, & |
---|
[3159] | 173 | ONLY: agents_active, mas_init |
---|
| 174 | |
---|
[4648] | 175 | USE netcdf_interface, & |
---|
[3700] | 176 | ONLY: dots_max |
---|
[2696] | 177 | |
---|
[4648] | 178 | USE netcdf_data_input_mod, & |
---|
| 179 | ONLY: char_fill, & |
---|
| 180 | check_existence, & |
---|
| 181 | close_input_file, & |
---|
| 182 | get_attribute, & |
---|
| 183 | get_variable, & |
---|
| 184 | init_3d, & |
---|
| 185 | input_pids_static, & |
---|
| 186 | inquire_num_variables, & |
---|
| 187 | inquire_variable_names, & |
---|
| 188 | input_file_static, & |
---|
| 189 | netcdf_data_input_init_3d, & |
---|
| 190 | num_var_pids, & |
---|
| 191 | open_read_file, & |
---|
| 192 | pids_id, & |
---|
| 193 | real_2d, & |
---|
[4186] | 194 | vars_pids |
---|
[4648] | 195 | |
---|
| 196 | USE nesting_offl_mod, & |
---|
[3347] | 197 | ONLY: nesting_offl_init |
---|
[3294] | 198 | |
---|
[4648] | 199 | USE palm_date_time_mod, & |
---|
[4227] | 200 | ONLY: set_reference_date_time |
---|
| 201 | |
---|
[1] | 202 | USE pegrid |
---|
[3298] | 203 | |
---|
[3524] | 204 | #if defined( __parallel ) |
---|
[4648] | 205 | USE pmc_interface, & |
---|
[2934] | 206 | ONLY: nested_run |
---|
[3524] | 207 | #endif |
---|
[2934] | 208 | |
---|
[4648] | 209 | USE random_function_mod |
---|
[3685] | 210 | |
---|
[4648] | 211 | USE random_generator_parallel, & |
---|
[2172] | 212 | ONLY: init_parallel_random_generator |
---|
[3685] | 213 | |
---|
[4648] | 214 | USE read_restart_data_mod, & |
---|
| 215 | ONLY: rrd_local, rrd_read_parts_of_global |
---|
[3685] | 216 | |
---|
[4648] | 217 | USE statistics, & |
---|
| 218 | ONLY: hom, hom_sum, mean_surface_level_height, pr_palm, rmask, statistic_regions, sums, & |
---|
| 219 | sums_divnew_l, sums_divold_l, sums_l, sums_l_l, sums_wsts_bc_l, ts_value, & |
---|
[1833] | 220 | weight_pres, weight_substep |
---|
[2259] | 221 | |
---|
[4648] | 222 | USE synthetic_turbulence_generator_mod, & |
---|
[3939] | 223 | ONLY: stg_init, use_syn_turb_gen |
---|
[3685] | 224 | |
---|
[4648] | 225 | USE surface_layer_fluxes_mod, & |
---|
[1691] | 226 | ONLY: init_surface_layer_fluxes |
---|
[2232] | 227 | |
---|
[4648] | 228 | USE surface_mod, & |
---|
| 229 | ONLY : init_single_surface_properties, & |
---|
| 230 | init_surface_arrays, & |
---|
| 231 | init_surfaces, & |
---|
| 232 | surf_def_h, & |
---|
| 233 | surf_def_v, & |
---|
| 234 | surf_lsm_h, & |
---|
[4168] | 235 | surf_usm_h |
---|
[3685] | 236 | |
---|
[3849] | 237 | #if defined( _OPENACC ) |
---|
[4648] | 238 | USE surface_mod, & |
---|
[3849] | 239 | ONLY : bc_h |
---|
| 240 | #endif |
---|
| 241 | |
---|
[4648] | 242 | USE surface_data_output_mod, & |
---|
[3648] | 243 | ONLY: surface_data_output_init |
---|
[3685] | 244 | |
---|
[2007] | 245 | USE transpose_indices |
---|
[1] | 246 | |
---|
[4648] | 247 | |
---|
[1] | 248 | IMPLICIT NONE |
---|
[4648] | 249 | |
---|
[4150] | 250 | INTEGER(iwp) :: i !< grid index in x direction |
---|
| 251 | INTEGER(iwp) :: ind_array(1) !< dummy used to determine start index for external pressure forcing |
---|
| 252 | INTEGER(iwp) :: j !< grid index in y direction |
---|
| 253 | INTEGER(iwp) :: k !< grid index in z direction |
---|
| 254 | INTEGER(iwp) :: k_surf !< surface level index |
---|
[4648] | 255 | INTEGER(iwp) :: l !< running index over surface orientation |
---|
| 256 | INTEGER(iwp) :: m !< index of surface element in surface data type |
---|
[4150] | 257 | INTEGER(iwp) :: nz_u_shift !< topography-top index on u-grid, used to vertically shift initial profiles |
---|
| 258 | INTEGER(iwp) :: nz_v_shift !< topography-top index on v-grid, used to vertically shift initial profiles |
---|
| 259 | INTEGER(iwp) :: nz_w_shift !< topography-top index on w-grid, used to vertically shift initial profiles |
---|
| 260 | INTEGER(iwp) :: nz_s_shift !< topography-top index on scalar-grid, used to vertically shift initial profiles |
---|
| 261 | INTEGER(iwp) :: nz_u_shift_l !< topography-top index on u-grid, used to vertically shift initial profiles |
---|
| 262 | INTEGER(iwp) :: nz_v_shift_l !< topography-top index on v-grid, used to vertically shift initial profiles |
---|
| 263 | INTEGER(iwp) :: nz_w_shift_l !< topography-top index on w-grid, used to vertically shift initial profiles |
---|
| 264 | INTEGER(iwp) :: nz_s_shift_l !< topography-top index on scalar-grid, used to vertically shift initial profiles |
---|
| 265 | INTEGER(iwp) :: nzt_l !< index of top PE boundary for multigrid level |
---|
| 266 | INTEGER(iwp) :: sr !< index of statistic region |
---|
[1] | 267 | |
---|
[4648] | 268 | INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: ngp_2dh_l !< toal number of horizontal grid points in statistical region on |
---|
| 269 | !< subdomain |
---|
[1] | 270 | |
---|
[4648] | 271 | INTEGER(iwp), DIMENSION(:,:), ALLOCATABLE :: ngp_2dh_outer_l !< number of horizontal non-wall bounded grid points on |
---|
| 272 | !< subdomain |
---|
| 273 | INTEGER(iwp), DIMENSION(:,:), ALLOCATABLE :: ngp_2dh_s_inner_l !< number of horizontal non-topography grid points on |
---|
| 274 | !< subdomain |
---|
[1] | 275 | |
---|
[2037] | 276 | REAL(wp) :: dx_l !< grid spacing along x on different multigrid level |
---|
| 277 | REAL(wp) :: dy_l !< grid spacing along y on different multigrid level |
---|
| 278 | |
---|
[4648] | 279 | REAL(wp), DIMENSION(:), ALLOCATABLE :: init_l !< dummy array used for averaging 3D data to obtain |
---|
| 280 | !< inital profiles |
---|
| 281 | REAL(wp), DIMENSION(:), ALLOCATABLE :: mean_surface_level_height_l !< mean surface level height on subdomain |
---|
| 282 | REAL(wp), DIMENSION(:), ALLOCATABLE :: ngp_3d_inner_l !< total number of non-topography grid points on subdomain |
---|
| 283 | REAL(wp), DIMENSION(:), ALLOCATABLE :: ngp_3d_inner_tmp !< total number of non-topography grid points |
---|
| 284 | REAL(wp), DIMENSION(:), ALLOCATABLE :: p_hydrostatic !< hydrostatic pressure |
---|
| 285 | |
---|
[3547] | 286 | REAL(wp), DIMENSION(1:3) :: volume_flow_area_l !< area of lateral and top model domain surface on local subdomain |
---|
| 287 | REAL(wp), DIMENSION(1:3) :: volume_flow_initial_l !< initial volume flow into model domain |
---|
[1] | 288 | |
---|
[4648] | 289 | TYPE(real_2d) :: tmp_2d !< temporary variable to input additional surface-data from static file |
---|
[1] | 290 | |
---|
[3987] | 291 | CALL location_message( 'model initialization', 'start' ) |
---|
[4227] | 292 | ! |
---|
| 293 | !-- Set reference date-time |
---|
| 294 | CALL set_reference_date_time( date_time_str=origin_date_time ) |
---|
[3987] | 295 | |
---|
| 296 | IF ( debug_output ) CALL debug_message( 'allocating arrays', 'start' ) |
---|
[1] | 297 | ! |
---|
| 298 | !-- Allocate arrays |
---|
[4648] | 299 | ALLOCATE( mean_surface_level_height(0:statistic_regions), & |
---|
| 300 | mean_surface_level_height_l(0:statistic_regions), & |
---|
| 301 | ngp_2dh(0:statistic_regions), ngp_2dh_l(0:statistic_regions), & |
---|
| 302 | ngp_3d(0:statistic_regions), & |
---|
| 303 | ngp_3d_inner(0:statistic_regions), & |
---|
| 304 | ngp_3d_inner_l(0:statistic_regions), & |
---|
| 305 | ngp_3d_inner_tmp(0:statistic_regions), & |
---|
| 306 | sums_divnew_l(0:statistic_regions), & |
---|
[1] | 307 | sums_divold_l(0:statistic_regions) ) |
---|
[1195] | 308 | ALLOCATE( dp_smooth_factor(nzb:nzt), rdf(nzb+1:nzt), rdf_sc(nzb+1:nzt) ) |
---|
[4648] | 309 | ALLOCATE( ngp_2dh_outer(nzb:nzt+1,0:statistic_regions), & |
---|
| 310 | ngp_2dh_outer_l(nzb:nzt+1,0:statistic_regions), & |
---|
| 311 | ngp_2dh_s_inner(nzb:nzt+1,0:statistic_regions), & |
---|
| 312 | ngp_2dh_s_inner_l(nzb:nzt+1,0:statistic_regions), & |
---|
| 313 | rmask(nysg:nyng,nxlg:nxrg,0:statistic_regions), & |
---|
| 314 | sums(nzb:nzt+1,pr_palm+max_pr_user+max_pr_cs+max_pr_salsa), & |
---|
[4131] | 315 | sums_l(nzb:nzt+1,pr_palm+max_pr_user+max_pr_cs+max_pr_salsa,0:threads_per_task-1), & |
---|
[4648] | 316 | sums_l_l(nzb:nzt+1,0:statistic_regions,0:threads_per_task-1), & |
---|
[3700] | 317 | sums_wsts_bc_l(nzb:nzt+1,0:statistic_regions) ) |
---|
| 318 | ALLOCATE( ts_value(dots_max,0:statistic_regions) ) |
---|
[978] | 319 | ALLOCATE( ptdf_x(nxlg:nxrg), ptdf_y(nysg:nyng) ) |
---|
[1] | 320 | |
---|
[4648] | 321 | ALLOCATE( d(nzb+1:nzt,nys:nyn,nxl:nxr), & |
---|
| 322 | p(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
[1010] | 323 | tend(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 324 | |
---|
[4648] | 325 | ALLOCATE( pt_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 326 | pt_3(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 327 | u_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 328 | u_2(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 329 | u_3(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 330 | v_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 331 | v_2(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 332 | v_3(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 333 | w_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 334 | w_2(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
[667] | 335 | w_3(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
[1788] | 336 | IF ( .NOT. neutral ) THEN |
---|
[1032] | 337 | ALLOCATE( pt_2(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 338 | ENDIF |
---|
[673] | 339 | ! |
---|
[3747] | 340 | !-- Pre-set masks for regional statistics. Default is the total model domain. |
---|
[4648] | 341 | !-- Ghost points are excluded because counting values at the ghost boundaries would bias the |
---|
| 342 | !-- statistics. |
---|
[3747] | 343 | rmask = 1.0_wp |
---|
| 344 | rmask(:,nxlg:nxl-1,:) = 0.0_wp; rmask(:,nxr+1:nxrg,:) = 0.0_wp |
---|
| 345 | rmask(nysg:nys-1,:,:) = 0.0_wp; rmask(nyn+1:nyng,:,:) = 0.0_wp |
---|
| 346 | ! |
---|
[4648] | 347 | !-- Following array is required for perturbation pressure within the iterative pressure solvers. For |
---|
| 348 | !-- the multistep schemes (Runge-Kutta), array p holds the weighted average of the substeps and |
---|
| 349 | !-- cannot be used in the Poisson solver. |
---|
[707] | 350 | IF ( psolver == 'sor' ) THEN |
---|
| 351 | ALLOCATE( p_loc(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
[1575] | 352 | ELSEIF ( psolver(1:9) == 'multigrid' ) THEN |
---|
[707] | 353 | ! |
---|
| 354 | !-- For performance reasons, multigrid is using one ghost layer only |
---|
| 355 | ALLOCATE( p_loc(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1) ) |
---|
[673] | 356 | ENDIF |
---|
[1] | 357 | |
---|
[1111] | 358 | ! |
---|
| 359 | !-- Array for storing constant coeffficients of the tridiagonal solver |
---|
| 360 | IF ( psolver == 'poisfft' ) THEN |
---|
[1212] | 361 | ALLOCATE( tri(nxl_z:nxr_z,nys_z:nyn_z,0:nz-1,2) ) |
---|
[1111] | 362 | ALLOCATE( tric(nxl_z:nxr_z,nys_z:nyn_z,0:nz-1) ) |
---|
| 363 | ENDIF |
---|
| 364 | |
---|
[1960] | 365 | IF ( humidity ) THEN |
---|
[1] | 366 | ! |
---|
[1960] | 367 | !-- 3D-humidity |
---|
[4648] | 368 | ALLOCATE( q_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 369 | q_2(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 370 | q_3(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 371 | vpt_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 372 | ENDIF |
---|
| 373 | |
---|
[1960] | 374 | IF ( passive_scalar ) THEN |
---|
[1] | 375 | |
---|
[1960] | 376 | ! |
---|
| 377 | !-- 3D scalar arrays |
---|
[4648] | 378 | ALLOCATE( s_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 379 | s_2(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
[1960] | 380 | s_3(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
[3636] | 381 | |
---|
[1960] | 382 | ENDIF |
---|
| 383 | |
---|
[1] | 384 | ! |
---|
[4648] | 385 | !-- Allocate and set 1d-profiles for Stokes drift velocity. It may be set to non-zero values later |
---|
| 386 | !-- in ocean_init. |
---|
| 387 | ALLOCATE( u_stokes_zu(nzb:nzt+1), u_stokes_zw(nzb:nzt+1), & |
---|
[3302] | 388 | v_stokes_zu(nzb:nzt+1), v_stokes_zw(nzb:nzt+1) ) |
---|
| 389 | u_stokes_zu(:) = 0.0_wp |
---|
| 390 | u_stokes_zw(:) = 0.0_wp |
---|
| 391 | v_stokes_zu(:) = 0.0_wp |
---|
| 392 | v_stokes_zw(:) = 0.0_wp |
---|
| 393 | |
---|
| 394 | ! |
---|
[2037] | 395 | !-- Allocation of anelastic and Boussinesq approximation specific arrays |
---|
| 396 | ALLOCATE( p_hydrostatic(nzb:nzt+1) ) |
---|
| 397 | ALLOCATE( rho_air(nzb:nzt+1) ) |
---|
| 398 | ALLOCATE( rho_air_zw(nzb:nzt+1) ) |
---|
| 399 | ALLOCATE( drho_air(nzb:nzt+1) ) |
---|
| 400 | ALLOCATE( drho_air_zw(nzb:nzt+1) ) |
---|
| 401 | ! |
---|
[4648] | 402 | !-- Density profile calculation for anelastic and Boussinesq approximation. |
---|
| 403 | !-- In case of a Boussinesq approximation, a constant density is calculated mainly for output |
---|
| 404 | !-- purposes. This density does not need to be considered in the model's system of equations. |
---|
[4088] | 405 | IF ( TRIM( approximation ) == 'anelastic' ) THEN |
---|
[2037] | 406 | DO k = nzb, nzt+1 |
---|
[4648] | 407 | p_hydrostatic(k) = barometric_formula(zu(k), pt_surface * & |
---|
| 408 | exner_function(surface_pressure * 100.0_wp), & |
---|
| 409 | surface_pressure * 100.0_wp) |
---|
| 410 | |
---|
[4088] | 411 | rho_air(k) = ideal_gas_law_rho_pt(p_hydrostatic(k), pt_init(k)) |
---|
[2037] | 412 | ENDDO |
---|
[4648] | 413 | |
---|
[2037] | 414 | DO k = nzb, nzt |
---|
| 415 | rho_air_zw(k) = 0.5_wp * ( rho_air(k) + rho_air(k+1) ) |
---|
| 416 | ENDDO |
---|
[4648] | 417 | |
---|
| 418 | rho_air_zw(nzt+1) = rho_air_zw(nzt) + 2.0_wp * ( rho_air(nzt+1) - rho_air_zw(nzt) ) |
---|
| 419 | |
---|
[2037] | 420 | ELSE |
---|
[2252] | 421 | DO k = nzb, nzt+1 |
---|
[4648] | 422 | p_hydrostatic(k) = barometric_formula(zu(nzb), pt_surface * & |
---|
| 423 | exner_function(surface_pressure * 100.0_wp), & |
---|
| 424 | surface_pressure * 100.0_wp) |
---|
[4088] | 425 | |
---|
| 426 | rho_air(k) = ideal_gas_law_rho_pt(p_hydrostatic(k), pt_init(nzb)) |
---|
[2252] | 427 | ENDDO |
---|
[4648] | 428 | |
---|
[2252] | 429 | DO k = nzb, nzt |
---|
| 430 | rho_air_zw(k) = 0.5_wp * ( rho_air(k) + rho_air(k+1) ) |
---|
| 431 | ENDDO |
---|
[4648] | 432 | |
---|
| 433 | rho_air_zw(nzt+1) = rho_air_zw(nzt) + 2.0_wp * ( rho_air(nzt+1) - rho_air_zw(nzt) ) |
---|
| 434 | |
---|
[2037] | 435 | ENDIF |
---|
[2696] | 436 | ! |
---|
[4648] | 437 | !-- Compute the inverse density array in order to avoid expencive divisions |
---|
[2037] | 438 | drho_air = 1.0_wp / rho_air |
---|
| 439 | drho_air_zw = 1.0_wp / rho_air_zw |
---|
| 440 | |
---|
| 441 | ! |
---|
| 442 | !-- Allocation of flux conversion arrays |
---|
| 443 | ALLOCATE( heatflux_input_conversion(nzb:nzt+1) ) |
---|
| 444 | ALLOCATE( waterflux_input_conversion(nzb:nzt+1) ) |
---|
| 445 | ALLOCATE( momentumflux_input_conversion(nzb:nzt+1) ) |
---|
| 446 | ALLOCATE( heatflux_output_conversion(nzb:nzt+1) ) |
---|
| 447 | ALLOCATE( waterflux_output_conversion(nzb:nzt+1) ) |
---|
| 448 | ALLOCATE( momentumflux_output_conversion(nzb:nzt+1) ) |
---|
| 449 | |
---|
| 450 | ! |
---|
[4648] | 451 | !-- Calculate flux conversion factors according to approximation and in-/output mode |
---|
[2037] | 452 | DO k = nzb, nzt+1 |
---|
| 453 | |
---|
| 454 | IF ( TRIM( flux_input_mode ) == 'kinematic' ) THEN |
---|
| 455 | heatflux_input_conversion(k) = rho_air_zw(k) |
---|
| 456 | waterflux_input_conversion(k) = rho_air_zw(k) |
---|
| 457 | momentumflux_input_conversion(k) = rho_air_zw(k) |
---|
| 458 | ELSEIF ( TRIM( flux_input_mode ) == 'dynamic' ) THEN |
---|
[3274] | 459 | heatflux_input_conversion(k) = 1.0_wp / c_p |
---|
[2037] | 460 | waterflux_input_conversion(k) = 1.0_wp / l_v |
---|
| 461 | momentumflux_input_conversion(k) = 1.0_wp |
---|
| 462 | ENDIF |
---|
| 463 | |
---|
| 464 | IF ( TRIM( flux_output_mode ) == 'kinematic' ) THEN |
---|
| 465 | heatflux_output_conversion(k) = drho_air_zw(k) |
---|
| 466 | waterflux_output_conversion(k) = drho_air_zw(k) |
---|
| 467 | momentumflux_output_conversion(k) = drho_air_zw(k) |
---|
| 468 | ELSEIF ( TRIM( flux_output_mode ) == 'dynamic' ) THEN |
---|
[3274] | 469 | heatflux_output_conversion(k) = c_p |
---|
[2037] | 470 | waterflux_output_conversion(k) = l_v |
---|
| 471 | momentumflux_output_conversion(k) = 1.0_wp |
---|
| 472 | ENDIF |
---|
| 473 | |
---|
| 474 | IF ( .NOT. humidity ) THEN |
---|
| 475 | waterflux_input_conversion(k) = 1.0_wp |
---|
| 476 | waterflux_output_conversion(k) = 1.0_wp |
---|
| 477 | ENDIF |
---|
| 478 | |
---|
| 479 | ENDDO |
---|
| 480 | |
---|
| 481 | ! |
---|
[4648] | 482 | !-- In case of multigrid method, compute grid lengths and grid factors for the grid levels with |
---|
| 483 | !-- respective density on each grid. |
---|
[2037] | 484 | IF ( psolver(1:9) == 'multigrid' ) THEN |
---|
| 485 | |
---|
| 486 | ALLOCATE( ddx2_mg(maximum_grid_level) ) |
---|
| 487 | ALLOCATE( ddy2_mg(maximum_grid_level) ) |
---|
| 488 | ALLOCATE( dzu_mg(nzb+1:nzt+1,maximum_grid_level) ) |
---|
| 489 | ALLOCATE( dzw_mg(nzb+1:nzt+1,maximum_grid_level) ) |
---|
| 490 | ALLOCATE( f1_mg(nzb+1:nzt,maximum_grid_level) ) |
---|
| 491 | ALLOCATE( f2_mg(nzb+1:nzt,maximum_grid_level) ) |
---|
| 492 | ALLOCATE( f3_mg(nzb+1:nzt,maximum_grid_level) ) |
---|
| 493 | ALLOCATE( rho_air_mg(nzb:nzt+1,maximum_grid_level) ) |
---|
| 494 | ALLOCATE( rho_air_zw_mg(nzb:nzt+1,maximum_grid_level) ) |
---|
| 495 | |
---|
| 496 | dzu_mg(:,maximum_grid_level) = dzu |
---|
| 497 | rho_air_mg(:,maximum_grid_level) = rho_air |
---|
[4648] | 498 | ! |
---|
| 499 | !-- Next line to ensure an equally spaced grid. |
---|
[2037] | 500 | dzu_mg(1,maximum_grid_level) = dzu(2) |
---|
[4648] | 501 | rho_air_mg(nzb,maximum_grid_level) = rho_air(nzb) + (rho_air(nzb) - rho_air(nzb+1)) |
---|
[2037] | 502 | |
---|
| 503 | dzw_mg(:,maximum_grid_level) = dzw |
---|
| 504 | rho_air_zw_mg(:,maximum_grid_level) = rho_air_zw |
---|
| 505 | nzt_l = nzt |
---|
| 506 | DO l = maximum_grid_level-1, 1, -1 |
---|
| 507 | dzu_mg(nzb+1,l) = 2.0_wp * dzu_mg(nzb+1,l+1) |
---|
| 508 | dzw_mg(nzb+1,l) = 2.0_wp * dzw_mg(nzb+1,l+1) |
---|
[4648] | 509 | rho_air_mg(nzb,l) = rho_air_mg(nzb,l+1) + ( rho_air_mg(nzb,l+1) - & |
---|
| 510 | rho_air_mg(nzb+1,l+1) ) |
---|
| 511 | rho_air_zw_mg(nzb,l) = rho_air_zw_mg(nzb,l+1) + ( rho_air_zw_mg(nzb,l+1) - & |
---|
| 512 | rho_air_zw_mg(nzb+1,l+1) ) |
---|
[2037] | 513 | rho_air_mg(nzb+1,l) = rho_air_mg(nzb+1,l+1) |
---|
| 514 | rho_air_zw_mg(nzb+1,l) = rho_air_zw_mg(nzb+1,l+1) |
---|
| 515 | nzt_l = nzt_l / 2 |
---|
| 516 | DO k = 2, nzt_l+1 |
---|
| 517 | dzu_mg(k,l) = dzu_mg(2*k-2,l+1) + dzu_mg(2*k-1,l+1) |
---|
| 518 | dzw_mg(k,l) = dzw_mg(2*k-2,l+1) + dzw_mg(2*k-1,l+1) |
---|
| 519 | rho_air_mg(k,l) = rho_air_mg(2*k-1,l+1) |
---|
| 520 | rho_air_zw_mg(k,l) = rho_air_zw_mg(2*k-1,l+1) |
---|
| 521 | ENDDO |
---|
| 522 | ENDDO |
---|
| 523 | |
---|
| 524 | nzt_l = nzt |
---|
| 525 | dx_l = dx |
---|
| 526 | dy_l = dy |
---|
| 527 | DO l = maximum_grid_level, 1, -1 |
---|
| 528 | ddx2_mg(l) = 1.0_wp / dx_l**2 |
---|
| 529 | ddy2_mg(l) = 1.0_wp / dy_l**2 |
---|
| 530 | DO k = nzb+1, nzt_l |
---|
| 531 | f2_mg(k,l) = rho_air_zw_mg(k,l) / ( dzu_mg(k+1,l) * dzw_mg(k,l) ) |
---|
| 532 | f3_mg(k,l) = rho_air_zw_mg(k-1,l) / ( dzu_mg(k,l) * dzw_mg(k,l) ) |
---|
[4648] | 533 | f1_mg(k,l) = 2.0_wp * ( ddx2_mg(l) + ddy2_mg(l) ) & |
---|
[2037] | 534 | * rho_air_mg(k,l) + f2_mg(k,l) + f3_mg(k,l) |
---|
| 535 | ENDDO |
---|
| 536 | nzt_l = nzt_l / 2 |
---|
| 537 | dx_l = dx_l * 2.0_wp |
---|
| 538 | dy_l = dy_l * 2.0_wp |
---|
| 539 | ENDDO |
---|
| 540 | |
---|
| 541 | ENDIF |
---|
| 542 | |
---|
| 543 | ! |
---|
[1299] | 544 | !-- 1D-array for large scale subsidence velocity |
---|
[1361] | 545 | IF ( .NOT. ALLOCATED( w_subs ) ) THEN |
---|
| 546 | ALLOCATE ( w_subs(nzb:nzt+1) ) |
---|
| 547 | w_subs = 0.0_wp |
---|
| 548 | ENDIF |
---|
[1299] | 549 | |
---|
| 550 | ! |
---|
[4648] | 551 | !-- Arrays to store velocity data from t-dt and the phase speeds which are needed for radiation |
---|
| 552 | !-- boundary conditions. |
---|
[3182] | 553 | IF ( bc_radiation_l ) THEN |
---|
[4648] | 554 | ALLOCATE( u_m_l(nzb:nzt+1,nysg:nyng,1:2), & |
---|
| 555 | v_m_l(nzb:nzt+1,nysg:nyng,0:1), & |
---|
[667] | 556 | w_m_l(nzb:nzt+1,nysg:nyng,0:1) ) |
---|
[73] | 557 | ENDIF |
---|
[3182] | 558 | IF ( bc_radiation_r ) THEN |
---|
[4648] | 559 | ALLOCATE( u_m_r(nzb:nzt+1,nysg:nyng,nx-1:nx), & |
---|
| 560 | v_m_r(nzb:nzt+1,nysg:nyng,nx-1:nx), & |
---|
[667] | 561 | w_m_r(nzb:nzt+1,nysg:nyng,nx-1:nx) ) |
---|
[73] | 562 | ENDIF |
---|
[3182] | 563 | IF ( bc_radiation_l .OR. bc_radiation_r ) THEN |
---|
[4648] | 564 | ALLOCATE( c_u(nzb:nzt+1,nysg:nyng), c_v(nzb:nzt+1,nysg:nyng), c_w(nzb:nzt+1,nysg:nyng) ) |
---|
[106] | 565 | ENDIF |
---|
[3182] | 566 | IF ( bc_radiation_s ) THEN |
---|
[4648] | 567 | ALLOCATE( u_m_s(nzb:nzt+1,0:1,nxlg:nxrg), & |
---|
| 568 | v_m_s(nzb:nzt+1,1:2,nxlg:nxrg), & |
---|
[667] | 569 | w_m_s(nzb:nzt+1,0:1,nxlg:nxrg) ) |
---|
[73] | 570 | ENDIF |
---|
[3182] | 571 | IF ( bc_radiation_n ) THEN |
---|
[4648] | 572 | ALLOCATE( u_m_n(nzb:nzt+1,ny-1:ny,nxlg:nxrg), & |
---|
| 573 | v_m_n(nzb:nzt+1,ny-1:ny,nxlg:nxrg), & |
---|
[667] | 574 | w_m_n(nzb:nzt+1,ny-1:ny,nxlg:nxrg) ) |
---|
[73] | 575 | ENDIF |
---|
[3182] | 576 | IF ( bc_radiation_s .OR. bc_radiation_n ) THEN |
---|
[4648] | 577 | ALLOCATE( c_u(nzb:nzt+1,nxlg:nxrg), c_v(nzb:nzt+1,nxlg:nxrg), c_w(nzb:nzt+1,nxlg:nxrg) ) |
---|
[106] | 578 | ENDIF |
---|
[4648] | 579 | IF ( bc_radiation_l .OR. bc_radiation_r .OR. bc_radiation_s .OR. bc_radiation_n ) THEN |
---|
| 580 | ALLOCATE( c_u_m_l(nzb:nzt+1), c_v_m_l(nzb:nzt+1), c_w_m_l(nzb:nzt+1) ) |
---|
[978] | 581 | ALLOCATE( c_u_m(nzb:nzt+1), c_v_m(nzb:nzt+1), c_w_m(nzb:nzt+1) ) |
---|
| 582 | ENDIF |
---|
[73] | 583 | |
---|
| 584 | ! |
---|
[1] | 585 | !-- Initial assignment of the pointers |
---|
[1032] | 586 | IF ( .NOT. neutral ) THEN |
---|
| 587 | pt => pt_1; pt_p => pt_2; tpt_m => pt_3 |
---|
| 588 | ELSE |
---|
| 589 | pt => pt_1; pt_p => pt_1; tpt_m => pt_3 |
---|
| 590 | ENDIF |
---|
[1001] | 591 | u => u_1; u_p => u_2; tu_m => u_3 |
---|
| 592 | v => v_1; v_p => v_2; tv_m => v_3 |
---|
| 593 | w => w_1; w_p => w_2; tw_m => w_3 |
---|
[1] | 594 | |
---|
[1960] | 595 | IF ( humidity ) THEN |
---|
[1001] | 596 | q => q_1; q_p => q_2; tq_m => q_3 |
---|
[3274] | 597 | vpt => vpt_1 |
---|
[1001] | 598 | ENDIF |
---|
[4648] | 599 | |
---|
[1960] | 600 | IF ( passive_scalar ) THEN |
---|
| 601 | s => s_1; s_p => s_2; ts_m => s_3 |
---|
[4648] | 602 | ENDIF |
---|
[1] | 603 | |
---|
| 604 | ! |
---|
[2696] | 605 | !-- Initialize surface arrays |
---|
[2232] | 606 | CALL init_surface_arrays |
---|
| 607 | ! |
---|
[3294] | 608 | !-- Allocate arrays for other modules |
---|
[3685] | 609 | CALL module_interface_init_arrays |
---|
[1551] | 610 | |
---|
[1914] | 611 | |
---|
[2320] | 612 | ! |
---|
[4648] | 613 | !-- Allocate arrays containing the RK coefficient for calculation of perturbation pressure and |
---|
| 614 | !-- turbulent fluxes. At this point values are set for pressure calculation during initialization |
---|
| 615 | !-- (where no timestep is done). Further below the values needed within the timestep scheme will be |
---|
| 616 | !-- set. |
---|
| 617 | ALLOCATE( weight_substep(1:intermediate_timestep_count_max), & |
---|
[1878] | 618 | weight_pres(1:intermediate_timestep_count_max) ) |
---|
[1340] | 619 | weight_substep = 1.0_wp |
---|
| 620 | weight_pres = 1.0_wp |
---|
[1918] | 621 | intermediate_timestep_count = 0 ! needed when simulated_time = 0.0 |
---|
[4648] | 622 | |
---|
[3987] | 623 | IF ( debug_output ) CALL debug_message( 'allocating arrays', 'end' ) |
---|
[1918] | 624 | |
---|
[673] | 625 | ! |
---|
[3014] | 626 | !-- Initialize time series |
---|
| 627 | ts_value = 0.0_wp |
---|
| 628 | |
---|
| 629 | ! |
---|
[1918] | 630 | !-- Initialize local summation arrays for routine flow_statistics. |
---|
[4648] | 631 | !-- This is necessary because they may not yet have been initialized when they are called from |
---|
| 632 | !-- flow_statistics (or - depending on the chosen model run - are never initialized) |
---|
| 633 | sums_divnew_l = 0.0_wp |
---|
| 634 | sums_divold_l = 0.0_wp |
---|
| 635 | sums_l_l = 0.0_wp |
---|
| 636 | sums_wsts_bc_l = 0.0_wp |
---|
| 637 | |
---|
[1918] | 638 | ! |
---|
[1] | 639 | !-- Initialize model variables |
---|
[4648] | 640 | IF ( TRIM( initializing_actions ) /= 'read_restart_data' .AND. & |
---|
[328] | 641 | TRIM( initializing_actions ) /= 'cyclic_fill' ) THEN |
---|
[1] | 642 | ! |
---|
[2696] | 643 | !-- Initialization with provided input data derived from larger-scale model |
---|
| 644 | IF ( INDEX( initializing_actions, 'inifor' ) /= 0 ) THEN |
---|
[3987] | 645 | IF ( debug_output ) CALL debug_message( 'initializing with INIFOR', 'start' ) |
---|
[2696] | 646 | ! |
---|
[4648] | 647 | !-- Read initial 1D profiles or 3D data from NetCDF file, depending on the provided |
---|
| 648 | !-- level-of-detail. |
---|
| 649 | !-- At the moment, only u, v, w, pt and q are provided. |
---|
[2696] | 650 | CALL netcdf_data_input_init_3d |
---|
| 651 | ! |
---|
[4648] | 652 | !-- Please note, Inifor provides data from nzb+1 to nzt. |
---|
| 653 | !-- Bottom and top boundary conditions for Inifor profiles are already set (just after |
---|
| 654 | !-- reading), so that this is not necessary here. |
---|
| 655 | !-- Depending on the provided level-of-detail, initial Inifor data is either stored on data |
---|
| 656 | !-- type (lod=1), or directly on 3D arrays (lod=2). |
---|
| 657 | !-- In order to obtain also initial profiles in case of lod=2 (which is required for e.g. |
---|
| 658 | !-- damping), average over 3D data. |
---|
[3182] | 659 | IF( init_3d%lod_u == 1 ) THEN |
---|
| 660 | u_init = init_3d%u_init |
---|
[4648] | 661 | ELSEIF( init_3d%lod_u == 2 ) THEN |
---|
| 662 | ALLOCATE( init_l(nzb:nzt+1) ) |
---|
[3182] | 663 | DO k = nzb, nzt+1 |
---|
| 664 | init_l(k) = SUM( u(k,nys:nyn,nxl:nxr) ) |
---|
| 665 | ENDDO |
---|
| 666 | init_l = init_l / REAL( ( nx + 1 ) * ( ny + 1 ), KIND = wp ) |
---|
[1384] | 667 | |
---|
[3182] | 668 | #if defined( __parallel ) |
---|
[4648] | 669 | CALL MPI_ALLREDUCE( init_l, u_init, nzt+1-nzb+1, MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
[3182] | 670 | #else |
---|
| 671 | u_init = init_l |
---|
| 672 | #endif |
---|
| 673 | DEALLOCATE( init_l ) |
---|
[3051] | 674 | |
---|
[2696] | 675 | ENDIF |
---|
[4648] | 676 | |
---|
| 677 | IF( init_3d%lod_v == 1 ) THEN |
---|
[3182] | 678 | v_init = init_3d%v_init |
---|
[4648] | 679 | ELSEIF( init_3d%lod_v == 2 ) THEN |
---|
| 680 | ALLOCATE( init_l(nzb:nzt+1) ) |
---|
[3182] | 681 | DO k = nzb, nzt+1 |
---|
| 682 | init_l(k) = SUM( v(k,nys:nyn,nxl:nxr) ) |
---|
| 683 | ENDDO |
---|
| 684 | init_l = init_l / REAL( ( nx + 1 ) * ( ny + 1 ), KIND = wp ) |
---|
[2696] | 685 | |
---|
[3182] | 686 | #if defined( __parallel ) |
---|
[4648] | 687 | CALL MPI_ALLREDUCE( init_l, v_init, nzt+1-nzb+1, MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
[3182] | 688 | #else |
---|
| 689 | v_init = init_l |
---|
| 690 | #endif |
---|
| 691 | DEALLOCATE( init_l ) |
---|
| 692 | ENDIF |
---|
| 693 | IF( .NOT. neutral ) THEN |
---|
| 694 | IF( init_3d%lod_pt == 1 ) THEN |
---|
| 695 | pt_init = init_3d%pt_init |
---|
[4648] | 696 | ELSEIF( init_3d%lod_pt == 2 ) THEN |
---|
| 697 | ALLOCATE( init_l(nzb:nzt+1) ) |
---|
[3182] | 698 | DO k = nzb, nzt+1 |
---|
| 699 | init_l(k) = SUM( pt(k,nys:nyn,nxl:nxr) ) |
---|
| 700 | ENDDO |
---|
| 701 | init_l = init_l / REAL( ( nx + 1 ) * ( ny + 1 ), KIND = wp ) |
---|
| 702 | |
---|
| 703 | #if defined( __parallel ) |
---|
[4648] | 704 | CALL MPI_ALLREDUCE( init_l, pt_init, nzt+1-nzb+1, MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
[3182] | 705 | #else |
---|
| 706 | pt_init = init_l |
---|
| 707 | #endif |
---|
| 708 | DEALLOCATE( init_l ) |
---|
| 709 | ENDIF |
---|
| 710 | ENDIF |
---|
| 711 | |
---|
| 712 | |
---|
| 713 | IF( humidity ) THEN |
---|
| 714 | IF( init_3d%lod_q == 1 ) THEN |
---|
| 715 | q_init = init_3d%q_init |
---|
[4648] | 716 | ELSEIF( init_3d%lod_q == 2 ) THEN |
---|
| 717 | ALLOCATE( init_l(nzb:nzt+1) ) |
---|
[3182] | 718 | DO k = nzb, nzt+1 |
---|
| 719 | init_l(k) = SUM( q(k,nys:nyn,nxl:nxr) ) |
---|
| 720 | ENDDO |
---|
| 721 | init_l = init_l / REAL( ( nx + 1 ) * ( ny + 1 ), KIND = wp ) |
---|
| 722 | |
---|
| 723 | #if defined( __parallel ) |
---|
[4648] | 724 | CALL MPI_ALLREDUCE( init_l, q_init, nzt+1-nzb+1, MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
[3182] | 725 | #else |
---|
| 726 | q_init = init_l |
---|
| 727 | #endif |
---|
| 728 | DEALLOCATE( init_l ) |
---|
| 729 | ENDIF |
---|
| 730 | ENDIF |
---|
| 731 | |
---|
[2696] | 732 | ! |
---|
[4648] | 733 | !-- Write initial profiles onto 3D arrays. |
---|
| 734 | !-- Work-around, 3D initialization of u,v,w creates artificial structures which correlate with |
---|
| 735 | !-- the processor grid. The reason for this is still unknown. To work-around this, 3D |
---|
| 736 | !-- initialization will be effectively reduce to a 1D initialization where no such artificial |
---|
| 737 | !-- structures appear. |
---|
[2696] | 738 | DO i = nxlg, nxrg |
---|
| 739 | DO j = nysg, nyng |
---|
[4648] | 740 | IF( init_3d%lod_u == 1 .OR. init_3d%lod_u == 2 ) u(:,j,i) = u_init(:) |
---|
| 741 | IF( init_3d%lod_v == 1 .OR. init_3d%lod_u == 2 ) v(:,j,i) = v_init(:) |
---|
| 742 | IF( .NOT. neutral .AND. ( init_3d%lod_pt == 1 .OR. init_3d%lod_pt == 2 ) ) & |
---|
[3051] | 743 | pt(:,j,i) = pt_init(:) |
---|
[4648] | 744 | IF( humidity .AND. ( init_3d%lod_q == 1 .OR. init_3d%lod_q == 2 ) ) & |
---|
[4130] | 745 | q(:,j,i) = q_init(:) |
---|
[2696] | 746 | ENDDO |
---|
| 747 | ENDDO |
---|
| 748 | ! |
---|
[4648] | 749 | !-- Set geostrophic wind components. |
---|
[2938] | 750 | IF ( init_3d%from_file_ug ) THEN |
---|
| 751 | ug(:) = init_3d%ug_init(:) |
---|
| 752 | ENDIF |
---|
| 753 | IF ( init_3d%from_file_vg ) THEN |
---|
| 754 | vg(:) = init_3d%vg_init(:) |
---|
| 755 | ENDIF |
---|
[3404] | 756 | ! |
---|
| 757 | !-- Set bottom and top boundary condition for geostrophic wind |
---|
[2938] | 758 | ug(nzt+1) = ug(nzt) |
---|
| 759 | vg(nzt+1) = vg(nzt) |
---|
[3404] | 760 | ug(nzb) = ug(nzb+1) |
---|
| 761 | vg(nzb) = vg(nzb+1) |
---|
[2696] | 762 | ! |
---|
| 763 | !-- Set inital w to 0 |
---|
| 764 | w = 0.0_wp |
---|
| 765 | |
---|
| 766 | IF ( passive_scalar ) THEN |
---|
| 767 | DO i = nxlg, nxrg |
---|
| 768 | DO j = nysg, nyng |
---|
| 769 | s(:,j,i) = s_init |
---|
| 770 | ENDDO |
---|
| 771 | ENDDO |
---|
| 772 | ENDIF |
---|
| 773 | |
---|
| 774 | ! |
---|
[4648] | 775 | !-- Set velocity components at non-atmospheric / oceanic grid points to zero. |
---|
[4346] | 776 | u = MERGE( u, 0.0_wp, BTEST( wall_flags_total_0, 1 ) ) |
---|
| 777 | v = MERGE( v, 0.0_wp, BTEST( wall_flags_total_0, 2 ) ) |
---|
| 778 | w = MERGE( w, 0.0_wp, BTEST( wall_flags_total_0, 3 ) ) |
---|
[2700] | 779 | ! |
---|
[4648] | 780 | !-- Initialize surface variables, e.g. friction velocity, momentum fluxes, etc. |
---|
| 781 | CALL init_surfaces |
---|
[2696] | 782 | |
---|
[4648] | 783 | IF ( debug_output ) CALL debug_message( 'initializing with INIFOR', 'end' ) |
---|
[2696] | 784 | ! |
---|
| 785 | !-- Initialization via computed 1D-model profiles |
---|
| 786 | ELSEIF ( INDEX( initializing_actions, 'set_1d-model_profiles' ) /= 0 ) THEN |
---|
| 787 | |
---|
[4648] | 788 | IF ( debug_output ) CALL debug_message( 'initializing with 1D model profiles', 'start' ) |
---|
[1] | 789 | ! |
---|
| 790 | !-- Use solutions of the 1D model as initial profiles, |
---|
| 791 | !-- start 1D model |
---|
| 792 | CALL init_1d_model |
---|
| 793 | ! |
---|
| 794 | !-- Transfer initial profiles to the arrays of the 3D model |
---|
[667] | 795 | DO i = nxlg, nxrg |
---|
| 796 | DO j = nysg, nyng |
---|
[1] | 797 | pt(:,j,i) = pt_init |
---|
| 798 | u(:,j,i) = u1d |
---|
| 799 | v(:,j,i) = v1d |
---|
| 800 | ENDDO |
---|
| 801 | ENDDO |
---|
| 802 | |
---|
[1960] | 803 | IF ( humidity ) THEN |
---|
[667] | 804 | DO i = nxlg, nxrg |
---|
| 805 | DO j = nysg, nyng |
---|
[1] | 806 | q(:,j,i) = q_init |
---|
| 807 | ENDDO |
---|
| 808 | ENDDO |
---|
| 809 | ENDIF |
---|
[2292] | 810 | |
---|
[1960] | 811 | IF ( passive_scalar ) THEN |
---|
| 812 | DO i = nxlg, nxrg |
---|
| 813 | DO j = nysg, nyng |
---|
| 814 | s(:,j,i) = s_init |
---|
| 815 | ENDDO |
---|
[4648] | 816 | ENDDO |
---|
[1960] | 817 | ENDIF |
---|
[1] | 818 | ! |
---|
| 819 | !-- Store initial profiles for output purposes etc. |
---|
[2696] | 820 | IF ( .NOT. constant_diffusion ) THEN |
---|
[1] | 821 | hom(:,1,25,:) = SPREAD( l1d, 2, statistic_regions+1 ) |
---|
| 822 | ENDIF |
---|
| 823 | ! |
---|
[2696] | 824 | !-- Set velocities back to zero |
---|
[4346] | 825 | u = MERGE( u, 0.0_wp, BTEST( wall_flags_total_0, 1 ) ) |
---|
[4648] | 826 | v = MERGE( v, 0.0_wp, BTEST( wall_flags_total_0, 2 ) ) |
---|
[1] | 827 | ! |
---|
[4648] | 828 | !-- WARNING: The extra boundary conditions set after running the 1D model impose an error on |
---|
| 829 | !-- -------- the divergence one layer below the topography; need to correct later |
---|
| 830 | !-- ATTENTION: Provisional correction for Piacsek & Williams advection scheme: keep u and v |
---|
| 831 | !-- ---------- zero one layer below the topography. |
---|
[2696] | 832 | IF ( ibc_uv_b == 1 ) THEN |
---|
[667] | 833 | ! |
---|
[2696] | 834 | !-- Neumann condition |
---|
| 835 | DO i = nxl-1, nxr+1 |
---|
| 836 | DO j = nys-1, nyn+1 |
---|
| 837 | u(nzb,j,i) = u(nzb+1,j,i) |
---|
| 838 | v(nzb,j,i) = v(nzb+1,j,i) |
---|
[1] | 839 | ENDDO |
---|
[2696] | 840 | ENDDO |
---|
[1] | 841 | |
---|
| 842 | ENDIF |
---|
[2618] | 843 | ! |
---|
[4648] | 844 | !-- Initialize surface variables, e.g. friction velocity, momentum fluxes, etc. |
---|
[2618] | 845 | CALL init_surfaces |
---|
[1] | 846 | |
---|
[4648] | 847 | IF ( debug_output ) CALL debug_message( 'initializing with 1D model profiles', 'end' ) |
---|
[1384] | 848 | |
---|
[4648] | 849 | ELSEIF ( INDEX(initializing_actions, 'set_constant_profiles') /= 0 ) THEN |
---|
[1241] | 850 | |
---|
[4648] | 851 | IF ( debug_output ) CALL debug_message( 'initializing with constant profiles', 'start' ) |
---|
[2259] | 852 | |
---|
| 853 | ! |
---|
[4648] | 854 | !-- Use constructed initial profiles (velocity constant with height, temperature profile with |
---|
| 855 | !-- constant gradient) |
---|
[667] | 856 | DO i = nxlg, nxrg |
---|
| 857 | DO j = nysg, nyng |
---|
[1] | 858 | pt(:,j,i) = pt_init |
---|
| 859 | u(:,j,i) = u_init |
---|
| 860 | v(:,j,i) = v_init |
---|
| 861 | ENDDO |
---|
| 862 | ENDDO |
---|
| 863 | ! |
---|
[2758] | 864 | !-- Mask topography |
---|
[4346] | 865 | u = MERGE( u, 0.0_wp, BTEST( wall_flags_total_0, 1 ) ) |
---|
| 866 | v = MERGE( v, 0.0_wp, BTEST( wall_flags_total_0, 2 ) ) |
---|
[2758] | 867 | ! |
---|
[4648] | 868 | !-- Set initial horizontal velocities at the lowest computational grid levels to zero in order |
---|
| 869 | !-- to avoid too small time steps caused by the diffusion limit in the initial phase of a run |
---|
| 870 | !-- (at k=1, dz/2 occurs in the limiting formula!). |
---|
| 871 | !-- Please note, in case land- or urban-surface model is used and a spinup is applied, masking |
---|
| 872 | !-- the lowest computational level is not possible as MOST as well as energy-balance |
---|
| 873 | !-- parametrizations will not work with zero wind velocity. |
---|
| 874 | IF ( ibc_uv_b /= 1 .AND. .NOT. spinup ) THEN |
---|
[1815] | 875 | DO i = nxlg, nxrg |
---|
| 876 | DO j = nysg, nyng |
---|
[2232] | 877 | DO k = nzb, nzt |
---|
[4648] | 878 | u(k,j,i) = MERGE( u(k,j,i), 0.0_wp, BTEST( wall_flags_total_0(k,j,i), 20 ) ) |
---|
| 879 | v(k,j,i) = MERGE( v(k,j,i), 0.0_wp, BTEST( wall_flags_total_0(k,j,i), 21 ) ) |
---|
[2232] | 880 | ENDDO |
---|
[1815] | 881 | ENDDO |
---|
| 882 | ENDDO |
---|
| 883 | ENDIF |
---|
[1] | 884 | |
---|
[1960] | 885 | IF ( humidity ) THEN |
---|
[667] | 886 | DO i = nxlg, nxrg |
---|
| 887 | DO j = nysg, nyng |
---|
[1] | 888 | q(:,j,i) = q_init |
---|
| 889 | ENDDO |
---|
| 890 | ENDDO |
---|
| 891 | ENDIF |
---|
[4648] | 892 | |
---|
[1960] | 893 | IF ( passive_scalar ) THEN |
---|
| 894 | DO i = nxlg, nxrg |
---|
| 895 | DO j = nysg, nyng |
---|
| 896 | s(:,j,i) = s_init |
---|
| 897 | ENDDO |
---|
| 898 | ENDDO |
---|
| 899 | ENDIF |
---|
[1] | 900 | |
---|
[1920] | 901 | ! |
---|
[4648] | 902 | !-- Compute initial temperature field and other constants used in case of a sloping surface. |
---|
[1] | 903 | IF ( sloping_surface ) CALL init_slope |
---|
[2618] | 904 | ! |
---|
[4648] | 905 | !-- Initialize surface variables, e.g. friction velocity, momentum fluxes, etc. |
---|
[2618] | 906 | CALL init_surfaces |
---|
[4648] | 907 | |
---|
[3987] | 908 | IF ( debug_output ) CALL debug_message( 'initializing with constant profiles', 'end' ) |
---|
[1384] | 909 | |
---|
[4648] | 910 | ELSEIF ( INDEX(initializing_actions, 'by_user') /= 0 ) THEN |
---|
[1384] | 911 | |
---|
[3987] | 912 | IF ( debug_output ) CALL debug_message( 'initializing by user', 'start' ) |
---|
[46] | 913 | ! |
---|
[4648] | 914 | !-- Pre-initialize surface variables, i.e. setting start- and end-indices at each |
---|
| 915 | !-- (j,i)-location. Please note, this does not supersede user-defined initialization of |
---|
| 916 | !-- surface quantities. |
---|
[2618] | 917 | CALL init_surfaces |
---|
| 918 | ! |
---|
[46] | 919 | !-- Initialization will completely be done by the user |
---|
| 920 | CALL user_init_3d_model |
---|
| 921 | |
---|
[3987] | 922 | IF ( debug_output ) CALL debug_message( 'initializing by user', 'end' ) |
---|
[1384] | 923 | |
---|
[1] | 924 | ENDIF |
---|
[1384] | 925 | |
---|
[4648] | 926 | IF ( debug_output ) THEN |
---|
| 927 | CALL debug_message( 'initializing statistics, boundary conditions, etc.', 'start' ) |
---|
| 928 | ENDIF |
---|
[1384] | 929 | |
---|
[667] | 930 | ! |
---|
| 931 | !-- Bottom boundary |
---|
[4648] | 932 | IF ( ibc_uv_b == 0 .OR. ibc_uv_b == 2 ) THEN |
---|
[1340] | 933 | u(nzb,:,:) = 0.0_wp |
---|
| 934 | v(nzb,:,:) = 0.0_wp |
---|
[667] | 935 | ENDIF |
---|
[1] | 936 | |
---|
| 937 | ! |
---|
[151] | 938 | !-- Apply channel flow boundary condition |
---|
[132] | 939 | IF ( TRIM( bc_uv_t ) == 'dirichlet_0' ) THEN |
---|
[1340] | 940 | u(nzt+1,:,:) = 0.0_wp |
---|
| 941 | v(nzt+1,:,:) = 0.0_wp |
---|
[132] | 942 | ENDIF |
---|
| 943 | |
---|
| 944 | ! |
---|
[1] | 945 | !-- Calculate virtual potential temperature |
---|
[1960] | 946 | IF ( humidity ) vpt = pt * ( 1.0_wp + 0.61_wp * q ) |
---|
[1] | 947 | |
---|
| 948 | ! |
---|
[4648] | 949 | !-- Store initial profiles for output purposes etc.. Please note, in case of initialization of u, |
---|
| 950 | !-- v, w, pt, and q via output data derived from larger scale models, data will not be |
---|
| 951 | !-- horizontally homogeneous. Actually, a mean profile should be calculated before. |
---|
[1] | 952 | hom(:,1,5,:) = SPREAD( u(:,nys,nxl), 2, statistic_regions+1 ) |
---|
| 953 | hom(:,1,6,:) = SPREAD( v(:,nys,nxl), 2, statistic_regions+1 ) |
---|
[667] | 954 | IF ( ibc_uv_b == 0 .OR. ibc_uv_b == 2) THEN |
---|
[1340] | 955 | hom(nzb,1,5,:) = 0.0_wp |
---|
| 956 | hom(nzb,1,6,:) = 0.0_wp |
---|
[1] | 957 | ENDIF |
---|
| 958 | hom(:,1,7,:) = SPREAD( pt(:,nys,nxl), 2, statistic_regions+1 ) |
---|
| 959 | |
---|
[75] | 960 | IF ( humidity ) THEN |
---|
[1] | 961 | ! |
---|
[4648] | 962 | !-- Store initial profile of total water content, virtual potential temperature |
---|
[1] | 963 | hom(:,1,26,:) = SPREAD( q(:,nys,nxl), 2, statistic_regions+1 ) |
---|
| 964 | hom(:,1,29,:) = SPREAD( vpt(:,nys,nxl), 2, statistic_regions+1 ) |
---|
[2696] | 965 | ! |
---|
[4648] | 966 | !-- Store initial profile of mixing ratio and potential temperature |
---|
[3274] | 967 | IF ( bulk_cloud_model .OR. cloud_droplets ) THEN |
---|
[1] | 968 | hom(:,1,27,:) = SPREAD( q(:,nys,nxl), 2, statistic_regions+1 ) |
---|
| 969 | hom(:,1,28,:) = SPREAD( pt(:,nys,nxl), 2, statistic_regions+1 ) |
---|
| 970 | ENDIF |
---|
| 971 | ENDIF |
---|
| 972 | |
---|
[2696] | 973 | ! |
---|
| 974 | !-- Store initial scalar profile |
---|
[1] | 975 | IF ( passive_scalar ) THEN |
---|
[2513] | 976 | hom(:,1,121,:) = SPREAD( s(:,nys,nxl), 2, statistic_regions+1 ) |
---|
[1] | 977 | ENDIF |
---|
| 978 | |
---|
| 979 | ! |
---|
[1400] | 980 | !-- Initialize the random number generators (from numerical recipes) |
---|
| 981 | CALL random_function_ini |
---|
[4648] | 982 | |
---|
[1400] | 983 | IF ( random_generator == 'random-parallel' ) THEN |
---|
[3241] | 984 | CALL init_parallel_random_generator( nx, nys, nyn, nxl, nxr ) |
---|
[1400] | 985 | ENDIF |
---|
| 986 | ! |
---|
[4648] | 987 | !-- Set the reference state to be used in the buoyancy terms (for ocean runs the reference state |
---|
| 988 | !-- will be set (overwritten) in init_ocean). |
---|
[1179] | 989 | IF ( use_single_reference_value ) THEN |
---|
[4648] | 990 | IF ( .NOT. humidity ) THEN |
---|
[1179] | 991 | ref_state(:) = pt_reference |
---|
| 992 | ELSE |
---|
| 993 | ref_state(:) = vpt_reference |
---|
| 994 | ENDIF |
---|
| 995 | ELSE |
---|
[4648] | 996 | IF ( .NOT. humidity ) THEN |
---|
[1179] | 997 | ref_state(:) = pt_init(:) |
---|
| 998 | ELSE |
---|
| 999 | ref_state(:) = vpt(:,nys,nxl) |
---|
| 1000 | ENDIF |
---|
| 1001 | ENDIF |
---|
[152] | 1002 | |
---|
| 1003 | ! |
---|
[707] | 1004 | !-- For the moment, vertical velocity is zero |
---|
[1340] | 1005 | w = 0.0_wp |
---|
[1] | 1006 | |
---|
| 1007 | ! |
---|
| 1008 | !-- Initialize array sums (must be defined in first call of pres) |
---|
[1340] | 1009 | sums = 0.0_wp |
---|
[1] | 1010 | |
---|
| 1011 | ! |
---|
[707] | 1012 | !-- In case of iterative solvers, p must get an initial value |
---|
[1575] | 1013 | IF ( psolver(1:9) == 'multigrid' .OR. psolver == 'sor' ) p = 0.0_wp |
---|
[707] | 1014 | ! |
---|
[1] | 1015 | !-- Impose vortex with vertical axis on the initial velocity profile |
---|
| 1016 | IF ( INDEX( initializing_actions, 'initialize_vortex' ) /= 0 ) THEN |
---|
| 1017 | CALL init_rankine |
---|
| 1018 | ENDIF |
---|
| 1019 | |
---|
| 1020 | ! |
---|
[4648] | 1021 | !-- Impose temperature anomaly (advection test only) or warm air bubble close to surface. |
---|
| 1022 | IF ( INDEX( initializing_actions, 'initialize_ptanom' ) /= 0 .OR. & |
---|
[3035] | 1023 | INDEX( initializing_actions, 'initialize_bubble' ) /= 0 ) THEN |
---|
[1] | 1024 | CALL init_pt_anomaly |
---|
| 1025 | ENDIF |
---|
[4648] | 1026 | |
---|
[1] | 1027 | ! |
---|
| 1028 | !-- If required, change the surface temperature at the start of the 3D run |
---|
[1340] | 1029 | IF ( pt_surface_initial_change /= 0.0_wp ) THEN |
---|
[1] | 1030 | pt(nzb,:,:) = pt(nzb,:,:) + pt_surface_initial_change |
---|
| 1031 | ENDIF |
---|
| 1032 | |
---|
| 1033 | ! |
---|
| 1034 | !-- If required, change the surface humidity/scalar at the start of the 3D |
---|
| 1035 | !-- run |
---|
[4648] | 1036 | IF ( humidity .AND. q_surface_initial_change /= 0.0_wp ) & |
---|
[1] | 1037 | q(nzb,:,:) = q(nzb,:,:) + q_surface_initial_change |
---|
[4648] | 1038 | |
---|
| 1039 | IF ( passive_scalar .AND. s_surface_initial_change /= 0.0_wp ) & |
---|
[1960] | 1040 | s(nzb,:,:) = s(nzb,:,:) + s_surface_initial_change |
---|
[1] | 1041 | |
---|
[4648] | 1042 | |
---|
[1] | 1043 | ! |
---|
| 1044 | !-- Initialize old and new time levels. |
---|
[2696] | 1045 | tpt_m = 0.0_wp; tu_m = 0.0_wp; tv_m = 0.0_wp; tw_m = 0.0_wp |
---|
| 1046 | pt_p = pt; u_p = u; v_p = v; w_p = w |
---|
[1] | 1047 | |
---|
[1960] | 1048 | IF ( humidity ) THEN |
---|
[1340] | 1049 | tq_m = 0.0_wp |
---|
[1] | 1050 | q_p = q |
---|
| 1051 | ENDIF |
---|
[4648] | 1052 | |
---|
[1960] | 1053 | IF ( passive_scalar ) THEN |
---|
| 1054 | ts_m = 0.0_wp |
---|
| 1055 | s_p = s |
---|
[4648] | 1056 | ENDIF |
---|
[1] | 1057 | |
---|
[4648] | 1058 | IF ( debug_output ) THEN |
---|
| 1059 | CALL debug_message( 'initializing statistics, boundary conditions, etc.', 'end' ) |
---|
| 1060 | ENDIF |
---|
[94] | 1061 | |
---|
[1788] | 1062 | ELSEIF ( TRIM( initializing_actions ) == 'read_restart_data' .OR. & |
---|
[2232] | 1063 | TRIM( initializing_actions ) == 'cyclic_fill' ) & |
---|
[1] | 1064 | THEN |
---|
[1384] | 1065 | |
---|
[4648] | 1066 | IF ( debug_output ) THEN |
---|
| 1067 | CALL debug_message( 'initializing in case of restart / cyclic_fill', 'start' ) |
---|
| 1068 | ENDIF |
---|
[1] | 1069 | ! |
---|
[4648] | 1070 | !-- Initialize surface elements and its attributes, e.g. heat- and momentumfluxes, roughness, |
---|
| 1071 | !-- scaling parameters. As number of surface elements might be different between runs, e.g. in |
---|
| 1072 | !-- case of cyclic fill, and not all surface elements are read, surface elements need to be |
---|
| 1073 | !-- initialized before. |
---|
| 1074 | !-- Please note, in case of cyclic fill, surfaces should be initialized after restart data is |
---|
| 1075 | !-- read, else, individual settings of surface parameters will be overwritten from data of |
---|
| 1076 | !-- precursor run, hence, init_surfaces is called a second time after reading the restart data. |
---|
| 1077 | CALL init_surfaces |
---|
[3609] | 1078 | ! |
---|
[4648] | 1079 | !-- When reading data for cyclic fill of 3D prerun data files, read some of the global variables |
---|
| 1080 | !-- from the restart file which are required for initializing the inflow |
---|
[328] | 1081 | IF ( TRIM( initializing_actions ) == 'cyclic_fill' ) THEN |
---|
[559] | 1082 | |
---|
[759] | 1083 | DO i = 0, io_blocks-1 |
---|
| 1084 | IF ( i == io_group ) THEN |
---|
[2894] | 1085 | CALL rrd_read_parts_of_global |
---|
[759] | 1086 | ENDIF |
---|
| 1087 | #if defined( __parallel ) |
---|
| 1088 | CALL MPI_BARRIER( comm2d, ierr ) |
---|
| 1089 | #endif |
---|
| 1090 | ENDDO |
---|
[328] | 1091 | |
---|
[767] | 1092 | ENDIF |
---|
| 1093 | |
---|
[151] | 1094 | ! |
---|
[2894] | 1095 | !-- Read processor specific binary data from restart file |
---|
[767] | 1096 | DO i = 0, io_blocks-1 |
---|
| 1097 | IF ( i == io_group ) THEN |
---|
[2894] | 1098 | CALL rrd_local |
---|
[767] | 1099 | ENDIF |
---|
| 1100 | #if defined( __parallel ) |
---|
| 1101 | CALL MPI_BARRIER( comm2d, ierr ) |
---|
| 1102 | #endif |
---|
| 1103 | ENDDO |
---|
[4648] | 1104 | |
---|
| 1105 | |
---|
[4365] | 1106 | IF ( TRIM( initializing_actions ) == 'cyclic_fill' ) THEN |
---|
| 1107 | |
---|
[3608] | 1108 | ! |
---|
[4648] | 1109 | !-- In case of cyclic fill, call init_surfaces a second time, so that surface properties such |
---|
| 1110 | !-- as heat fluxes are initialized as prescribed. |
---|
[3609] | 1111 | CALL init_surfaces |
---|
[767] | 1112 | |
---|
[328] | 1113 | ! |
---|
[4648] | 1114 | !-- Overwrite u_init, v_init, pt_init, q_init and s_init with the horizontally mean (hom) |
---|
| 1115 | !-- vertical profiles from the end of the prerun, because these profiles shall be used as the |
---|
| 1116 | !-- reference state for the rayleigh damping and the pt_damping. This is especially important |
---|
| 1117 | !-- for the use of large_scale_subsidence, because the reference temperature in the free |
---|
| 1118 | !-- atmosphere changes in time. |
---|
[4365] | 1119 | u_init(:) = hom_sum(:,1,0) |
---|
| 1120 | v_init(:) = hom_sum(:,2,0) |
---|
| 1121 | pt_init(:) = hom_sum(:,4,0) |
---|
[4648] | 1122 | IF ( humidity ) q_init(:) = hom_sum(:,41,0) |
---|
| 1123 | IF ( passive_scalar ) s_init(:) = hom_sum(:,115,0) |
---|
[4365] | 1124 | ENDIF |
---|
| 1125 | ! |
---|
[4648] | 1126 | !-- In case of complex terrain and cyclic fill method as initialization, shift initial data in |
---|
| 1127 | !-- the vertical direction for each point in the x-y-plane depending on local surface height. |
---|
| 1128 | IF ( complex_terrain .AND. TRIM( initializing_actions ) == 'cyclic_fill' ) THEN |
---|
[2550] | 1129 | DO i = nxlg, nxrg |
---|
| 1130 | DO j = nysg, nyng |
---|
[4168] | 1131 | nz_u_shift = topo_top_ind(j,i,1) |
---|
| 1132 | nz_v_shift = topo_top_ind(j,i,2) |
---|
| 1133 | nz_w_shift = topo_top_ind(j,i,3) |
---|
| 1134 | nz_s_shift = topo_top_ind(j,i,0) |
---|
[2550] | 1135 | |
---|
[4648] | 1136 | u(nz_u_shift:nzt+1,j,i) = u(0:nzt+1-nz_u_shift,j,i) |
---|
[2550] | 1137 | |
---|
| 1138 | v(nz_v_shift:nzt+1,j,i) = v(0:nzt+1-nz_v_shift,j,i) |
---|
| 1139 | |
---|
| 1140 | w(nz_w_shift:nzt+1,j,i) = w(0:nzt+1-nz_w_shift,j,i) |
---|
| 1141 | |
---|
| 1142 | p(nz_s_shift:nzt+1,j,i) = p(0:nzt+1-nz_s_shift,j,i) |
---|
| 1143 | pt(nz_s_shift:nzt+1,j,i) = pt(0:nzt+1-nz_s_shift,j,i) |
---|
| 1144 | ENDDO |
---|
| 1145 | ENDDO |
---|
| 1146 | ENDIF |
---|
| 1147 | ! |
---|
[767] | 1148 | !-- Initialization of the turbulence recycling method |
---|
[4648] | 1149 | IF ( TRIM( initializing_actions ) == 'cyclic_fill' .AND. turbulent_inflow ) THEN |
---|
[767] | 1150 | ! |
---|
| 1151 | !-- First store the profiles to be used at the inflow. |
---|
[4648] | 1152 | !-- These profiles are the (temporally) and horizontally averaged vertical profiles from the |
---|
| 1153 | !-- prerun. Alternatively, prescribed profiles for u,v-components can be used. |
---|
[3288] | 1154 | ALLOCATE( mean_inflow_profiles(nzb:nzt+1,1:num_mean_inflow_profiles) ) |
---|
[151] | 1155 | |
---|
[767] | 1156 | IF ( use_prescribed_profile_data ) THEN |
---|
| 1157 | mean_inflow_profiles(:,1) = u_init ! u |
---|
| 1158 | mean_inflow_profiles(:,2) = v_init ! v |
---|
| 1159 | ELSE |
---|
[328] | 1160 | mean_inflow_profiles(:,1) = hom_sum(:,1,0) ! u |
---|
| 1161 | mean_inflow_profiles(:,2) = hom_sum(:,2,0) ! v |
---|
[767] | 1162 | ENDIF |
---|
| 1163 | mean_inflow_profiles(:,4) = hom_sum(:,4,0) ! pt |
---|
[4648] | 1164 | IF ( humidity ) mean_inflow_profiles(:,6) = hom_sum(:,41,0) ! q |
---|
| 1165 | IF ( passive_scalar ) mean_inflow_profiles(:,7) = hom_sum(:,115,0) ! s |
---|
[4365] | 1166 | |
---|
[2550] | 1167 | ! |
---|
[4648] | 1168 | !-- In case of complex terrain, determine vertical displacement at inflow boundary and adjust |
---|
| 1169 | !-- mean inflow profiles |
---|
[2550] | 1170 | IF ( complex_terrain ) THEN |
---|
[4648] | 1171 | IF ( nxlg <= 0 .AND. nxrg >= 0 .AND. nysg <= 0 .AND. nyng >= 0 ) THEN |
---|
[4168] | 1172 | nz_u_shift_l = topo_top_ind(j,i,1) |
---|
| 1173 | nz_v_shift_l = topo_top_ind(j,i,2) |
---|
| 1174 | nz_w_shift_l = topo_top_ind(j,i,3) |
---|
| 1175 | nz_s_shift_l = topo_top_ind(j,i,0) |
---|
[2550] | 1176 | ELSE |
---|
| 1177 | nz_u_shift_l = 0 |
---|
| 1178 | nz_v_shift_l = 0 |
---|
| 1179 | nz_w_shift_l = 0 |
---|
| 1180 | nz_s_shift_l = 0 |
---|
| 1181 | ENDIF |
---|
[151] | 1182 | |
---|
[2550] | 1183 | #if defined( __parallel ) |
---|
[4648] | 1184 | CALL MPI_ALLREDUCE( nz_u_shift_l, nz_u_shift, 1, MPI_INTEGER, MPI_MAX, comm2d, ierr ) |
---|
| 1185 | CALL MPI_ALLREDUCE( nz_v_shift_l, nz_v_shift, 1, MPI_INTEGER, MPI_MAX, comm2d, ierr ) |
---|
| 1186 | CALL MPI_ALLREDUCE( nz_w_shift_l, nz_w_shift, 1, MPI_INTEGER, MPI_MAX, comm2d, ierr ) |
---|
| 1187 | CALL MPI_ALLREDUCE( nz_s_shift_l, nz_s_shift, 1, MPI_INTEGER, MPI_MAX, comm2d, ierr ) |
---|
[2550] | 1188 | #else |
---|
| 1189 | nz_u_shift = nz_u_shift_l |
---|
| 1190 | nz_v_shift = nz_v_shift_l |
---|
| 1191 | nz_w_shift = nz_w_shift_l |
---|
| 1192 | nz_s_shift = nz_s_shift_l |
---|
| 1193 | #endif |
---|
| 1194 | |
---|
| 1195 | mean_inflow_profiles(:,1) = 0.0_wp |
---|
| 1196 | mean_inflow_profiles(nz_u_shift:nzt+1,1) = hom_sum(0:nzt+1-nz_u_shift,1,0) ! u |
---|
| 1197 | |
---|
| 1198 | mean_inflow_profiles(:,2) = 0.0_wp |
---|
| 1199 | mean_inflow_profiles(nz_v_shift:nzt+1,2) = hom_sum(0:nzt+1-nz_v_shift,2,0) ! v |
---|
| 1200 | |
---|
| 1201 | mean_inflow_profiles(nz_s_shift:nzt+1,4) = hom_sum(0:nzt+1-nz_s_shift,4,0) ! pt |
---|
| 1202 | |
---|
| 1203 | ENDIF |
---|
| 1204 | |
---|
[151] | 1205 | ! |
---|
[4648] | 1206 | !-- If necessary, adjust the horizontal flow field to the prescribed profiles |
---|
[767] | 1207 | IF ( use_prescribed_profile_data ) THEN |
---|
| 1208 | DO i = nxlg, nxrg |
---|
[667] | 1209 | DO j = nysg, nyng |
---|
[328] | 1210 | DO k = nzb, nzt+1 |
---|
[767] | 1211 | u(k,j,i) = u(k,j,i) - hom_sum(k,1,0) + u_init(k) |
---|
| 1212 | v(k,j,i) = v(k,j,i) - hom_sum(k,2,0) + v_init(k) |
---|
[328] | 1213 | ENDDO |
---|
[151] | 1214 | ENDDO |
---|
[767] | 1215 | ENDDO |
---|
| 1216 | ENDIF |
---|
[151] | 1217 | |
---|
| 1218 | ! |
---|
[4648] | 1219 | !-- Use these mean profiles at the inflow (provided that Dirichlet conditions are used) |
---|
[3182] | 1220 | IF ( bc_dirichlet_l ) THEN |
---|
[767] | 1221 | DO j = nysg, nyng |
---|
| 1222 | DO k = nzb, nzt+1 |
---|
| 1223 | u(k,j,nxlg:-1) = mean_inflow_profiles(k,1) |
---|
| 1224 | v(k,j,nxlg:-1) = mean_inflow_profiles(k,2) |
---|
[1340] | 1225 | w(k,j,nxlg:-1) = 0.0_wp |
---|
[767] | 1226 | pt(k,j,nxlg:-1) = mean_inflow_profiles(k,4) |
---|
[4648] | 1227 | IF ( humidity ) q(k,j,nxlg:-1) = mean_inflow_profiles(k,6) |
---|
| 1228 | IF ( passive_scalar ) s(k,j,nxlg:-1) = mean_inflow_profiles(k,7) |
---|
[767] | 1229 | ENDDO |
---|
| 1230 | ENDDO |
---|
| 1231 | ENDIF |
---|
| 1232 | |
---|
[151] | 1233 | ! |
---|
[4648] | 1234 | !-- Calculate the damping factors to be used at the inflow. For a turbulent inflow the |
---|
| 1235 | !-- turbulent fluctuations have to be limited vertically because otherwise the turbulent |
---|
| 1236 | !-- inflow layer will grow in time. |
---|
[1340] | 1237 | IF ( inflow_damping_height == 9999999.9_wp ) THEN |
---|
[767] | 1238 | ! |
---|
[4648] | 1239 | !-- Default: use the inversion height calculated by the prerun; if this is zero, |
---|
| 1240 | !-- inflow_damping_height must be explicitly specified. |
---|
[1340] | 1241 | IF ( hom_sum(nzb+6,pr_palm,0) /= 0.0_wp ) THEN |
---|
[767] | 1242 | inflow_damping_height = hom_sum(nzb+6,pr_palm,0) |
---|
| 1243 | ELSE |
---|
[4648] | 1244 | WRITE( message_string, * ) 'inflow_damping_height must be ', & |
---|
| 1245 | 'explicitly specified because&the inversion height ', & |
---|
| 1246 | 'calculated by the prerun is zero.' |
---|
[767] | 1247 | CALL message( 'init_3d_model', 'PA0318', 1, 2, 0, 6, 0 ) |
---|
[292] | 1248 | ENDIF |
---|
[151] | 1249 | |
---|
[767] | 1250 | ENDIF |
---|
| 1251 | |
---|
[1340] | 1252 | IF ( inflow_damping_width == 9999999.9_wp ) THEN |
---|
[151] | 1253 | ! |
---|
[4648] | 1254 | !-- Default for the transition range: one tenth of the undamped layer |
---|
[1340] | 1255 | inflow_damping_width = 0.1_wp * inflow_damping_height |
---|
[151] | 1256 | |
---|
[767] | 1257 | ENDIF |
---|
[151] | 1258 | |
---|
[767] | 1259 | ALLOCATE( inflow_damping_factor(nzb:nzt+1) ) |
---|
[151] | 1260 | |
---|
[767] | 1261 | DO k = nzb, nzt+1 |
---|
[151] | 1262 | |
---|
[767] | 1263 | IF ( zu(k) <= inflow_damping_height ) THEN |
---|
[1340] | 1264 | inflow_damping_factor(k) = 1.0_wp |
---|
[996] | 1265 | ELSEIF ( zu(k) <= ( inflow_damping_height + inflow_damping_width ) ) THEN |
---|
[4648] | 1266 | inflow_damping_factor(k) = 1.0_wp - & |
---|
| 1267 | ( zu(k) - inflow_damping_height ) / inflow_damping_width |
---|
[767] | 1268 | ELSE |
---|
[1340] | 1269 | inflow_damping_factor(k) = 0.0_wp |
---|
[767] | 1270 | ENDIF |
---|
[151] | 1271 | |
---|
[767] | 1272 | ENDDO |
---|
[151] | 1273 | |
---|
[147] | 1274 | ENDIF |
---|
| 1275 | |
---|
[152] | 1276 | ! |
---|
[2696] | 1277 | !-- Inside buildings set velocities back to zero |
---|
[4648] | 1278 | IF ( TRIM( initializing_actions ) == 'cyclic_fill' .AND. topography /= 'flat' ) THEN |
---|
[359] | 1279 | ! |
---|
[2696] | 1280 | !-- Inside buildings set velocities back to zero. |
---|
| 1281 | !-- Other scalars (pt, q, s, p, sa, ...) are ignored at present, |
---|
[359] | 1282 | !-- maybe revise later. |
---|
[1001] | 1283 | DO i = nxlg, nxrg |
---|
| 1284 | DO j = nysg, nyng |
---|
[2232] | 1285 | DO k = nzb, nzt |
---|
[4648] | 1286 | u(k,j,i) = MERGE( u(k,j,i), 0.0_wp, BTEST( wall_flags_total_0(k,j,i), 1 ) ) |
---|
| 1287 | v(k,j,i) = MERGE( v(k,j,i), 0.0_wp, BTEST( wall_flags_total_0(k,j,i), 2 ) ) |
---|
| 1288 | w(k,j,i) = MERGE( w(k,j,i), 0.0_wp, BTEST( wall_flags_total_0(k,j,i), 3 ) ) |
---|
[2232] | 1289 | ENDDO |
---|
[359] | 1290 | ENDDO |
---|
[1001] | 1291 | ENDDO |
---|
[359] | 1292 | |
---|
| 1293 | ENDIF |
---|
| 1294 | |
---|
| 1295 | ! |
---|
[4648] | 1296 | !-- Calculate initial temperature field and other constants used in case of a sloping surface |
---|
[1] | 1297 | IF ( sloping_surface ) CALL init_slope |
---|
| 1298 | |
---|
| 1299 | ! |
---|
[4648] | 1300 | !-- Initialize new time levels (only done in order to set boundary values including ghost points) |
---|
[2696] | 1301 | pt_p = pt; u_p = u; v_p = v; w_p = w |
---|
[1960] | 1302 | IF ( humidity ) THEN |
---|
[1053] | 1303 | q_p = q |
---|
| 1304 | ENDIF |
---|
[1960] | 1305 | IF ( passive_scalar ) s_p = s |
---|
[181] | 1306 | ! |
---|
[4648] | 1307 | !-- Allthough tendency arrays are set in prognostic_equations, they have have to be predefined |
---|
| 1308 | !-- here because they are used (but multiplied with 0) there before they are set. |
---|
[2696] | 1309 | tpt_m = 0.0_wp; tu_m = 0.0_wp; tv_m = 0.0_wp; tw_m = 0.0_wp |
---|
[1960] | 1310 | IF ( humidity ) THEN |
---|
[1340] | 1311 | tq_m = 0.0_wp |
---|
[1053] | 1312 | ENDIF |
---|
[1960] | 1313 | IF ( passive_scalar ) ts_m = 0.0_wp |
---|
[181] | 1314 | |
---|
[4648] | 1315 | IF ( debug_output ) THEN |
---|
| 1316 | CALL debug_message( 'initializing in case of restart / cyclic_fill', 'end' ) |
---|
| 1317 | ENDIF |
---|
[1384] | 1318 | |
---|
[1] | 1319 | ELSE |
---|
| 1320 | ! |
---|
| 1321 | !-- Actually this part of the programm should not be reached |
---|
[254] | 1322 | message_string = 'unknown initializing problem' |
---|
| 1323 | CALL message( 'init_3d_model', 'PA0193', 1, 2, 0, 6, 0 ) |
---|
[1] | 1324 | ENDIF |
---|
| 1325 | |
---|
[151] | 1326 | |
---|
| 1327 | IF ( TRIM( initializing_actions ) /= 'read_restart_data' ) THEN |
---|
[1] | 1328 | ! |
---|
[151] | 1329 | !-- Initialize old timelevels needed for radiation boundary conditions |
---|
[3182] | 1330 | IF ( bc_radiation_l ) THEN |
---|
[151] | 1331 | u_m_l(:,:,:) = u(:,:,1:2) |
---|
| 1332 | v_m_l(:,:,:) = v(:,:,0:1) |
---|
| 1333 | w_m_l(:,:,:) = w(:,:,0:1) |
---|
| 1334 | ENDIF |
---|
[3182] | 1335 | IF ( bc_radiation_r ) THEN |
---|
[151] | 1336 | u_m_r(:,:,:) = u(:,:,nx-1:nx) |
---|
| 1337 | v_m_r(:,:,:) = v(:,:,nx-1:nx) |
---|
| 1338 | w_m_r(:,:,:) = w(:,:,nx-1:nx) |
---|
| 1339 | ENDIF |
---|
[3182] | 1340 | IF ( bc_radiation_s ) THEN |
---|
[151] | 1341 | u_m_s(:,:,:) = u(:,0:1,:) |
---|
| 1342 | v_m_s(:,:,:) = v(:,1:2,:) |
---|
| 1343 | w_m_s(:,:,:) = w(:,0:1,:) |
---|
| 1344 | ENDIF |
---|
[3182] | 1345 | IF ( bc_radiation_n ) THEN |
---|
[151] | 1346 | u_m_n(:,:,:) = u(:,ny-1:ny,:) |
---|
| 1347 | v_m_n(:,:,:) = v(:,ny-1:ny,:) |
---|
| 1348 | w_m_n(:,:,:) = w(:,ny-1:ny,:) |
---|
| 1349 | ENDIF |
---|
[4648] | 1350 | |
---|
[151] | 1351 | ENDIF |
---|
[680] | 1352 | |
---|
[667] | 1353 | ! |
---|
| 1354 | !-- Calculate the initial volume flow at the right and north boundary |
---|
[709] | 1355 | IF ( conserve_volume_flow ) THEN |
---|
[151] | 1356 | |
---|
[767] | 1357 | IF ( use_prescribed_profile_data ) THEN |
---|
[667] | 1358 | |
---|
[1340] | 1359 | volume_flow_initial_l = 0.0_wp |
---|
| 1360 | volume_flow_area_l = 0.0_wp |
---|
[732] | 1361 | |
---|
[667] | 1362 | IF ( nxr == nx ) THEN |
---|
| 1363 | DO j = nys, nyn |
---|
[2232] | 1364 | DO k = nzb+1, nzt |
---|
[4648] | 1365 | volume_flow_initial_l(1) = volume_flow_initial_l(1) + & |
---|
| 1366 | u_init(k) * dzw(k) & |
---|
| 1367 | * MERGE( 1.0_wp, 0.0_wp, & |
---|
| 1368 | BTEST( wall_flags_total_0(k,j,nxr), 1 ) & |
---|
| 1369 | ) |
---|
[2232] | 1370 | |
---|
[4648] | 1371 | volume_flow_area_l(1) = volume_flow_area_l(1) + dzw(k) & |
---|
| 1372 | * MERGE( 1.0_wp, 0.0_wp, & |
---|
| 1373 | BTEST( wall_flags_total_0(k,j,nxr), 1 ) & |
---|
| 1374 | ) |
---|
[767] | 1375 | ENDDO |
---|
| 1376 | ENDDO |
---|
| 1377 | ENDIF |
---|
[4648] | 1378 | |
---|
[767] | 1379 | IF ( nyn == ny ) THEN |
---|
| 1380 | DO i = nxl, nxr |
---|
[2232] | 1381 | DO k = nzb+1, nzt |
---|
[4648] | 1382 | volume_flow_initial_l(2) = volume_flow_initial_l(2) + & |
---|
| 1383 | v_init(k) * dzw(k) & |
---|
| 1384 | * MERGE( 1.0_wp, 0.0_wp, & |
---|
| 1385 | BTEST( wall_flags_total_0(k,nyn,i), 2 ) & |
---|
| 1386 | ) |
---|
| 1387 | volume_flow_area_l(2) = volume_flow_area_l(2) + dzw(k) & |
---|
| 1388 | * MERGE( 1.0_wp, 0.0_wp, & |
---|
| 1389 | BTEST( wall_flags_total_0(k,nyn,i), 2 ) & |
---|
| 1390 | ) |
---|
[767] | 1391 | ENDDO |
---|
| 1392 | ENDDO |
---|
| 1393 | ENDIF |
---|
| 1394 | |
---|
| 1395 | #if defined( __parallel ) |
---|
[4648] | 1396 | CALL MPI_ALLREDUCE( volume_flow_initial_l(1), volume_flow_initial(1), 2, MPI_REAL, & |
---|
| 1397 | MPI_SUM, comm2d, ierr ) |
---|
| 1398 | CALL MPI_ALLREDUCE( volume_flow_area_l(1), volume_flow_area(1), 2, MPI_REAL, MPI_SUM, & |
---|
| 1399 | comm2d, ierr ) |
---|
[767] | 1400 | |
---|
| 1401 | #else |
---|
| 1402 | volume_flow_initial = volume_flow_initial_l |
---|
| 1403 | volume_flow_area = volume_flow_area_l |
---|
[4648] | 1404 | #endif |
---|
[767] | 1405 | |
---|
| 1406 | ELSEIF ( TRIM( initializing_actions ) == 'cyclic_fill' ) THEN |
---|
| 1407 | |
---|
[1340] | 1408 | volume_flow_initial_l = 0.0_wp |
---|
| 1409 | volume_flow_area_l = 0.0_wp |
---|
[767] | 1410 | |
---|
| 1411 | IF ( nxr == nx ) THEN |
---|
| 1412 | DO j = nys, nyn |
---|
[2232] | 1413 | DO k = nzb+1, nzt |
---|
[4648] | 1414 | volume_flow_initial_l(1) = volume_flow_initial_l(1) + & |
---|
| 1415 | hom_sum(k,1,0) * dzw(k) & |
---|
| 1416 | * MERGE( 1.0_wp, 0.0_wp, & |
---|
| 1417 | BTEST( wall_flags_total_0(k,j,nx), 1 ) & |
---|
| 1418 | ) |
---|
| 1419 | volume_flow_area_l(1) = volume_flow_area_l(1) + dzw(k) & |
---|
| 1420 | * MERGE( 1.0_wp, 0.0_wp, & |
---|
| 1421 | BTEST( wall_flags_total_0(k,j,nx), 1 ) & |
---|
| 1422 | ) |
---|
[667] | 1423 | ENDDO |
---|
| 1424 | ENDDO |
---|
| 1425 | ENDIF |
---|
[4648] | 1426 | |
---|
[667] | 1427 | IF ( nyn == ny ) THEN |
---|
| 1428 | DO i = nxl, nxr |
---|
[2232] | 1429 | DO k = nzb+1, nzt |
---|
[4648] | 1430 | volume_flow_initial_l(2) = volume_flow_initial_l(2) + & |
---|
| 1431 | hom_sum(k,2,0) * dzw(k) & |
---|
| 1432 | * MERGE( 1.0_wp, 0.0_wp, & |
---|
| 1433 | BTEST( wall_flags_total_0(k,ny,i), 2 ) & |
---|
| 1434 | ) |
---|
| 1435 | volume_flow_area_l(2) = volume_flow_area_l(2) + dzw(k) & |
---|
| 1436 | * MERGE( 1.0_wp, 0.0_wp, & |
---|
| 1437 | BTEST( wall_flags_total_0(k,ny,i), 2 ) & |
---|
| 1438 | ) |
---|
[667] | 1439 | ENDDO |
---|
| 1440 | ENDDO |
---|
| 1441 | ENDIF |
---|
| 1442 | |
---|
[732] | 1443 | #if defined( __parallel ) |
---|
[4648] | 1444 | CALL MPI_ALLREDUCE( volume_flow_initial_l(1), volume_flow_initial(1), 2, MPI_REAL, & |
---|
| 1445 | MPI_SUM, comm2d, ierr ) |
---|
| 1446 | CALL MPI_ALLREDUCE( volume_flow_area_l(1), volume_flow_area(1), 2, MPI_REAL, MPI_SUM, & |
---|
| 1447 | comm2d, ierr ) |
---|
[732] | 1448 | |
---|
| 1449 | #else |
---|
| 1450 | volume_flow_initial = volume_flow_initial_l |
---|
| 1451 | volume_flow_area = volume_flow_area_l |
---|
[4648] | 1452 | #endif |
---|
[732] | 1453 | |
---|
[667] | 1454 | ELSEIF ( TRIM( initializing_actions ) /= 'read_restart_data' ) THEN |
---|
| 1455 | |
---|
[1340] | 1456 | volume_flow_initial_l = 0.0_wp |
---|
| 1457 | volume_flow_area_l = 0.0_wp |
---|
[732] | 1458 | |
---|
[667] | 1459 | IF ( nxr == nx ) THEN |
---|
| 1460 | DO j = nys, nyn |
---|
[2232] | 1461 | DO k = nzb+1, nzt |
---|
[4648] | 1462 | volume_flow_initial_l(1) = volume_flow_initial_l(1) + & |
---|
| 1463 | u(k,j,nx) * dzw(k) & |
---|
| 1464 | * MERGE( 1.0_wp, 0.0_wp, & |
---|
| 1465 | BTEST( wall_flags_total_0(k,j,nx), 1 ) & |
---|
| 1466 | ) |
---|
| 1467 | volume_flow_area_l(1) = volume_flow_area_l(1) + dzw(k) & |
---|
| 1468 | * MERGE( 1.0_wp, 0.0_wp, & |
---|
| 1469 | BTEST( wall_flags_total_0(k,j,nx), 1 ) & |
---|
| 1470 | ) |
---|
[667] | 1471 | ENDDO |
---|
| 1472 | ENDDO |
---|
| 1473 | ENDIF |
---|
[4648] | 1474 | |
---|
[667] | 1475 | IF ( nyn == ny ) THEN |
---|
| 1476 | DO i = nxl, nxr |
---|
[2232] | 1477 | DO k = nzb+1, nzt |
---|
[4648] | 1478 | volume_flow_initial_l(2) = volume_flow_initial_l(2) + & |
---|
| 1479 | v(k,ny,i) * dzw(k) & |
---|
| 1480 | * MERGE( 1.0_wp, 0.0_wp, & |
---|
| 1481 | BTEST( wall_flags_total_0(k,ny,i), 2 ) & |
---|
| 1482 | ) |
---|
| 1483 | volume_flow_area_l(2) = volume_flow_area_l(2) + dzw(k) & |
---|
| 1484 | * MERGE( 1.0_wp, 0.0_wp, & |
---|
| 1485 | BTEST( wall_flags_total_0(k,ny,i), 2 ) & |
---|
| 1486 | ) |
---|
[667] | 1487 | ENDDO |
---|
| 1488 | ENDDO |
---|
| 1489 | ENDIF |
---|
| 1490 | |
---|
| 1491 | #if defined( __parallel ) |
---|
[4648] | 1492 | CALL MPI_ALLREDUCE( volume_flow_initial_l(1), volume_flow_initial(1), 2, MPI_REAL, & |
---|
| 1493 | MPI_SUM, comm2d, ierr ) |
---|
| 1494 | CALL MPI_ALLREDUCE( volume_flow_area_l(1), volume_flow_area(1), 2, MPI_REAL, MPI_SUM, & |
---|
| 1495 | comm2d, ierr ) |
---|
[667] | 1496 | |
---|
| 1497 | #else |
---|
[732] | 1498 | volume_flow_initial = volume_flow_initial_l |
---|
| 1499 | volume_flow_area = volume_flow_area_l |
---|
[4648] | 1500 | #endif |
---|
[667] | 1501 | |
---|
[732] | 1502 | ENDIF |
---|
| 1503 | |
---|
[151] | 1504 | ! |
---|
[4648] | 1505 | !-- In case of 'bulk_velocity' mode, volume_flow_initial is calculated from u|v_bulk instead |
---|
[680] | 1506 | IF ( TRIM( conserve_volume_flow_mode ) == 'bulk_velocity' ) THEN |
---|
| 1507 | volume_flow_initial(1) = u_bulk * volume_flow_area(1) |
---|
| 1508 | volume_flow_initial(2) = v_bulk * volume_flow_area(2) |
---|
| 1509 | ENDIF |
---|
[667] | 1510 | |
---|
[680] | 1511 | ENDIF |
---|
[2232] | 1512 | ! |
---|
[4648] | 1513 | !-- In the following, surface properties can be further initialized with input from static driver |
---|
| 1514 | !-- file. |
---|
| 1515 | !-- At the moment this affects only default surfaces. For example, roughness length or sensible / |
---|
| 1516 | !-- latent heat fluxes can be initialized heterogeneously for default surfaces. Therefore, a generic |
---|
| 1517 | !-- routine from netcdf_data_input_mod is called to read a 2D array. |
---|
[4150] | 1518 | IF ( input_pids_static ) THEN |
---|
| 1519 | ! |
---|
[4151] | 1520 | !-- Allocate memory for possible static input |
---|
| 1521 | ALLOCATE( tmp_2d%var(nys:nyn,nxl:nxr) ) |
---|
| 1522 | tmp_2d%var = 0.0_wp |
---|
| 1523 | ! |
---|
[4150] | 1524 | !-- Open the static input file |
---|
[4151] | 1525 | #if defined( __netcdf ) |
---|
[4648] | 1526 | CALL open_read_file( TRIM( input_file_static ) // & |
---|
| 1527 | TRIM( coupling_char ), pids_id ) |
---|
| 1528 | |
---|
[4186] | 1529 | CALL inquire_num_variables( pids_id, num_var_pids ) |
---|
[4150] | 1530 | ! |
---|
| 1531 | !-- Allocate memory to store variable names and read them |
---|
[4186] | 1532 | ALLOCATE( vars_pids(1:num_var_pids) ) |
---|
| 1533 | CALL inquire_variable_names( pids_id, vars_pids ) |
---|
[4150] | 1534 | ! |
---|
[4648] | 1535 | !-- Input roughness length. |
---|
[4186] | 1536 | IF ( check_existence( vars_pids, 'z0' ) ) THEN |
---|
[4150] | 1537 | ! |
---|
| 1538 | !-- Read _FillValue attribute |
---|
[4648] | 1539 | CALL get_attribute( pids_id, char_fill, tmp_2d%fill, .FALSE., 'z0' ) |
---|
| 1540 | ! |
---|
| 1541 | !-- Read variable |
---|
| 1542 | CALL get_variable( pids_id, 'z0', tmp_2d%var, nxl, nxr, nys, nyn ) |
---|
| 1543 | ! |
---|
| 1544 | !-- Initialize roughness length. Note, z0 will be only initialized at default-type surfaces. |
---|
| 1545 | !-- At natural or urban z0 is implicitly initialized by the respective parameter lists. |
---|
| 1546 | !-- Initialize horizontal surface elements. |
---|
| 1547 | CALL init_single_surface_properties( surf_def_h(0)%z0, tmp_2d%var, surf_def_h(0)%ns, & |
---|
| 1548 | tmp_2d%fill, surf_def_h(0)%i, surf_def_h(0)%j ) |
---|
| 1549 | ! |
---|
| 1550 | !-- Initialize roughness also at vertical surface elements. |
---|
| 1551 | !-- Note, the actual 2D input arrays are only defined on the subdomain. Therefore, pass the |
---|
| 1552 | !-- index arrays with their respective offset values. |
---|
| 1553 | DO l = 0, 3 |
---|
| 1554 | CALL init_single_surface_properties( surf_def_v(l)%z0, tmp_2d%var, surf_def_v(l)%ns, & |
---|
| 1555 | tmp_2d%fill, surf_def_v(l)%i+surf_def_v(l)%ioff, & |
---|
| 1556 | surf_def_v(l)%j+surf_def_v(l)%joff ) |
---|
[4150] | 1557 | ENDDO |
---|
[4648] | 1558 | |
---|
[4150] | 1559 | ENDIF |
---|
| 1560 | ! |
---|
[4648] | 1561 | !-- Input surface sensible heat flux. |
---|
[4514] | 1562 | IF ( check_existence( vars_pids, 'shf' ) ) THEN |
---|
| 1563 | ! |
---|
| 1564 | !-- Read _FillValue attribute |
---|
[4648] | 1565 | CALL get_attribute( pids_id, char_fill, tmp_2d%fill, .FALSE., 'shf' ) |
---|
[4514] | 1566 | ! |
---|
| 1567 | !-- Read variable |
---|
[4648] | 1568 | CALL get_variable( pids_id, 'shf', tmp_2d%var, nxl, nxr, nys, nyn ) |
---|
[4514] | 1569 | ! |
---|
[4648] | 1570 | !-- Initialize heat flux. Note, shf will be only initialized at default-type surfaces. At |
---|
| 1571 | !-- natural or urban shf is implicitly initialized by the respective parameter lists. |
---|
[4514] | 1572 | !-- Initialize horizontal surface elements. |
---|
[4648] | 1573 | CALL init_single_surface_properties( surf_def_h(0)%shf, tmp_2d%var, surf_def_h(0)%ns, & |
---|
| 1574 | tmp_2d%fill, surf_def_h(0)%i, surf_def_h(0)%j ) |
---|
[4514] | 1575 | ! |
---|
| 1576 | !-- Initialize heat flux also at vertical surface elements. |
---|
[4648] | 1577 | !-- Note, the actual 2D input arrays are only defined on the subdomain. Therefore, pass the |
---|
| 1578 | !-- index arrays with their respective offset values. |
---|
[4514] | 1579 | DO l = 0, 3 |
---|
[4648] | 1580 | CALL init_single_surface_properties( surf_def_v(l)%shf, tmp_2d%var, surf_def_v(l)%ns, & |
---|
| 1581 | tmp_2d%fill, surf_def_v(l)%i+surf_def_v(l)%ioff, & |
---|
| 1582 | surf_def_v(l)%j+surf_def_v(l)%joff ) |
---|
[4514] | 1583 | ENDDO |
---|
| 1584 | |
---|
| 1585 | ENDIF |
---|
| 1586 | ! |
---|
[4648] | 1587 | !-- Input surface sensible heat flux. |
---|
[4514] | 1588 | IF ( check_existence( vars_pids, 'qsws' ) ) THEN |
---|
| 1589 | ! |
---|
| 1590 | !-- Read _FillValue attribute |
---|
| 1591 | CALL get_attribute( pids_id, char_fill, tmp_2d%fill, & |
---|
| 1592 | .FALSE., 'qsws' ) |
---|
| 1593 | ! |
---|
| 1594 | !-- Read variable |
---|
| 1595 | CALL get_variable( pids_id, 'qsws', tmp_2d%var, & |
---|
| 1596 | nxl, nxr, nys, nyn ) |
---|
| 1597 | ! |
---|
[4648] | 1598 | !-- Initialize latent heat flux. Note, qsws will be only initialized at default-type surfaces. |
---|
| 1599 | !-- At natural or urban qsws is implicitly initialized by the respective parameter lists. |
---|
[4514] | 1600 | !-- Initialize horizontal surface elements. |
---|
[4648] | 1601 | CALL init_single_surface_properties( surf_def_h(0)%qsws, tmp_2d%var, surf_def_h(0)%ns, & |
---|
| 1602 | tmp_2d%fill, surf_def_h(0)%i, surf_def_h(0)%j ) |
---|
[4514] | 1603 | ! |
---|
| 1604 | !-- Initialize latent heat flux also at vertical surface elements. |
---|
[4648] | 1605 | !-- Note, the actual 2D input arrays are only defined on the subdomain. Therefore, pass the |
---|
| 1606 | !-- index arrays with their respective offset values. |
---|
[4514] | 1607 | DO l = 0, 3 |
---|
[4648] | 1608 | CALL init_single_surface_properties( surf_def_v(l)%qsws, tmp_2d%var, surf_def_v(l)%ns,& |
---|
| 1609 | tmp_2d%fill, surf_def_v(l)%i+surf_def_v(l)%ioff, & |
---|
| 1610 | surf_def_v(l)%j+surf_def_v(l)%joff ) |
---|
[4514] | 1611 | ENDDO |
---|
| 1612 | |
---|
| 1613 | ENDIF |
---|
| 1614 | ! |
---|
[4648] | 1615 | !-- Additional variables, can be initialized the |
---|
[4150] | 1616 | !-- same way. |
---|
[4514] | 1617 | |
---|
[4150] | 1618 | ! |
---|
[4187] | 1619 | !-- Finally, close the input file and deallocate temporary arrays |
---|
| 1620 | DEALLOCATE( vars_pids ) |
---|
[4648] | 1621 | |
---|
[4186] | 1622 | CALL close_input_file( pids_id ) |
---|
[4151] | 1623 | #endif |
---|
| 1624 | DEALLOCATE( tmp_2d%var ) |
---|
[4150] | 1625 | ENDIF |
---|
| 1626 | ! |
---|
[4648] | 1627 | !-- Finally, if random_heatflux is set, disturb shf at horizontal surfaces. Actually, this should be |
---|
| 1628 | !-- done in surface_mod, where all other initializations of surface quantities are done. However, |
---|
| 1629 | !-- this would create a ring dependency, hence, it is done here. Maybe delete disturb_heatflux and |
---|
| 1630 | !-- tranfer the respective code directly into the initialization in surface_mod. |
---|
| 1631 | IF ( TRIM( initializing_actions ) /= 'read_restart_data' .AND. & |
---|
[2232] | 1632 | TRIM( initializing_actions ) /= 'cyclic_fill' ) THEN |
---|
[4648] | 1633 | |
---|
| 1634 | IF ( use_surface_fluxes .AND. constant_heatflux .AND. random_heatflux ) THEN |
---|
[2232] | 1635 | IF ( surf_def_h(0)%ns >= 1 ) CALL disturb_heatflux( surf_def_h(0) ) |
---|
[4671] | 1636 | IF ( surf_lsm_h(0)%ns >= 1 ) CALL disturb_heatflux( surf_lsm_h(0) ) |
---|
| 1637 | IF ( surf_usm_h(0)%ns >= 1 ) CALL disturb_heatflux( surf_usm_h(0) ) |
---|
[2232] | 1638 | ENDIF |
---|
| 1639 | ENDIF |
---|
[680] | 1640 | |
---|
[787] | 1641 | ! |
---|
[4648] | 1642 | !-- Compute total sum of grid points and the mean surface level height for each statistic region. |
---|
| 1643 | !-- These are mainly used for horizontal averaging of turbulence statistics. |
---|
| 1644 | !-- ngp_2dh: number of grid points of a horizontal cross section through the respective statistic |
---|
| 1645 | !-- region |
---|
[3747] | 1646 | !-- ngp_3d: number of grid points of the respective statistic region |
---|
[2696] | 1647 | ngp_2dh_outer_l = 0 |
---|
| 1648 | ngp_2dh_outer = 0 |
---|
| 1649 | ngp_2dh_s_inner_l = 0 |
---|
| 1650 | ngp_2dh_s_inner = 0 |
---|
| 1651 | ngp_2dh_l = 0 |
---|
| 1652 | ngp_2dh = 0 |
---|
| 1653 | ngp_3d_inner_l = 0.0_wp |
---|
| 1654 | ngp_3d_inner = 0 |
---|
| 1655 | ngp_3d = 0 |
---|
| 1656 | ngp_sums = ( nz + 2 ) * ( pr_palm + max_pr_user ) |
---|
| 1657 | |
---|
| 1658 | mean_surface_level_height = 0.0_wp |
---|
| 1659 | mean_surface_level_height_l = 0.0_wp |
---|
| 1660 | ! |
---|
| 1661 | !-- To do: New concept for these non-topography grid points! |
---|
| 1662 | DO sr = 0, statistic_regions |
---|
| 1663 | DO i = nxl, nxr |
---|
| 1664 | DO j = nys, nyn |
---|
| 1665 | IF ( rmask(j,i,sr) == 1.0_wp ) THEN |
---|
| 1666 | ! |
---|
| 1667 | !-- All xy-grid points |
---|
| 1668 | ngp_2dh_l(sr) = ngp_2dh_l(sr) + 1 |
---|
| 1669 | ! |
---|
[4648] | 1670 | !-- Determine mean surface-level height. In case of downward-facing walls are present, |
---|
| 1671 | !-- more than one surface level exist. |
---|
| 1672 | !-- In this case, use the lowest surface-level height. |
---|
| 1673 | IF ( surf_def_h(0)%start_index(j,i) <= surf_def_h(0)%end_index(j,i) ) THEN |
---|
[2696] | 1674 | m = surf_def_h(0)%start_index(j,i) |
---|
| 1675 | k = surf_def_h(0)%k(m) |
---|
[4648] | 1676 | mean_surface_level_height_l(sr) = mean_surface_level_height_l(sr) + zw(k-1) |
---|
[2696] | 1677 | ENDIF |
---|
[4671] | 1678 | IF ( surf_lsm_h(0)%start_index(j,i) <= surf_lsm_h(0)%end_index(j,i) ) THEN |
---|
| 1679 | m = surf_lsm_h(0)%start_index(j,i) |
---|
| 1680 | k = surf_lsm_h(0)%k(m) |
---|
[4648] | 1681 | mean_surface_level_height_l(sr) = mean_surface_level_height_l(sr) + zw(k-1) |
---|
[2696] | 1682 | ENDIF |
---|
[4671] | 1683 | IF ( surf_usm_h(0)%start_index(j,i) <= surf_usm_h(0)%end_index(j,i) ) THEN |
---|
| 1684 | m = surf_usm_h(0)%start_index(j,i) |
---|
| 1685 | k = surf_usm_h(0)%k(m) |
---|
[4648] | 1686 | mean_surface_level_height_l(sr) = mean_surface_level_height_l(sr) + zw(k-1) |
---|
[2696] | 1687 | ENDIF |
---|
| 1688 | |
---|
| 1689 | k_surf = k - 1 |
---|
| 1690 | |
---|
| 1691 | DO k = nzb, nzt+1 |
---|
| 1692 | ! |
---|
| 1693 | !-- xy-grid points above topography |
---|
[4648] | 1694 | ngp_2dh_outer_l(k,sr) = ngp_2dh_outer_l(k,sr) + & |
---|
| 1695 | MERGE( 1, 0, BTEST( wall_flags_total_0(k,j,i), 24 ) ) |
---|
[2696] | 1696 | |
---|
[4648] | 1697 | ngp_2dh_s_inner_l(k,sr) = ngp_2dh_s_inner_l(k,sr) + & |
---|
| 1698 | MERGE( 1, 0, BTEST( wall_flags_total_0(k,j,i), 22 ) ) |
---|
[2696] | 1699 | |
---|
| 1700 | ENDDO |
---|
| 1701 | ! |
---|
| 1702 | !-- All grid points of the total domain above topography |
---|
| 1703 | ngp_3d_inner_l(sr) = ngp_3d_inner_l(sr) + ( nz - k_surf + 2 ) |
---|
| 1704 | |
---|
| 1705 | |
---|
| 1706 | |
---|
| 1707 | ENDIF |
---|
| 1708 | ENDDO |
---|
| 1709 | ENDDO |
---|
| 1710 | ENDDO |
---|
[3747] | 1711 | |
---|
[2696] | 1712 | sr = statistic_regions + 1 |
---|
| 1713 | #if defined( __parallel ) |
---|
| 1714 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[4648] | 1715 | CALL MPI_ALLREDUCE( ngp_2dh_l(0), ngp_2dh(0), sr, MPI_INTEGER, MPI_SUM, comm2d, ierr ) |
---|
| 1716 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
| 1717 | CALL MPI_ALLREDUCE( ngp_2dh_outer_l(0,0), ngp_2dh_outer(0,0), (nz+2)*sr, MPI_INTEGER, MPI_SUM, & |
---|
[2696] | 1718 | comm2d, ierr ) |
---|
| 1719 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[4648] | 1720 | CALL MPI_ALLREDUCE( ngp_2dh_s_inner_l(0,0), ngp_2dh_s_inner(0,0), (nz+2)*sr, MPI_INTEGER, & |
---|
| 1721 | MPI_SUM, comm2d, ierr ) |
---|
[2696] | 1722 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[4648] | 1723 | CALL MPI_ALLREDUCE( ngp_3d_inner_l(0), ngp_3d_inner_tmp(0), sr, MPI_REAL, MPI_SUM, comm2d, & |
---|
| 1724 | ierr ) |
---|
[2696] | 1725 | ngp_3d_inner = INT( ngp_3d_inner_tmp, KIND = SELECTED_INT_KIND( 18 ) ) |
---|
| 1726 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
[4648] | 1727 | CALL MPI_ALLREDUCE( mean_surface_level_height_l(0), mean_surface_level_height(0), sr, MPI_REAL,& |
---|
[2696] | 1728 | MPI_SUM, comm2d, ierr ) |
---|
| 1729 | mean_surface_level_height = mean_surface_level_height / REAL( ngp_2dh ) |
---|
| 1730 | #else |
---|
| 1731 | ngp_2dh = ngp_2dh_l |
---|
| 1732 | ngp_2dh_outer = ngp_2dh_outer_l |
---|
| 1733 | ngp_2dh_s_inner = ngp_2dh_s_inner_l |
---|
| 1734 | ngp_3d_inner = INT( ngp_3d_inner_l, KIND = SELECTED_INT_KIND( 18 ) ) |
---|
| 1735 | mean_surface_level_height = mean_surface_level_height_l / REAL( ngp_2dh_l ) |
---|
| 1736 | #endif |
---|
| 1737 | |
---|
[4648] | 1738 | ngp_3d = INT ( ngp_2dh, KIND = SELECTED_INT_KIND( 18 ) ) * & |
---|
[2696] | 1739 | INT ( (nz + 2 ), KIND = SELECTED_INT_KIND( 18 ) ) |
---|
| 1740 | |
---|
| 1741 | ! |
---|
[4648] | 1742 | !-- Set a lower limit of 1 in order to avoid zero divisions in flow_statistics, buoyancy, etc. A |
---|
| 1743 | !-- zero value will occur for cases where all grid points of the respective subdomain lie below the |
---|
| 1744 | !-- surface topography |
---|
| 1745 | ngp_2dh_outer = MAX( 1, ngp_2dh_outer(:,:) ) |
---|
| 1746 | ngp_3d_inner = MAX( INT(1, KIND = SELECTED_INT_KIND( 18 )), ngp_3d_inner(:) ) |
---|
| 1747 | ngp_2dh_s_inner = MAX( 1, ngp_2dh_s_inner(:,:) ) |
---|
[2696] | 1748 | |
---|
[4648] | 1749 | DEALLOCATE( mean_surface_level_height_l, ngp_2dh_l, ngp_2dh_outer_l, ngp_3d_inner_l, & |
---|
| 1750 | ngp_3d_inner_tmp ) |
---|
[4548] | 1751 | |
---|
[2696] | 1752 | ! |
---|
[4648] | 1753 | !-- Initializae 3D offline nesting in COSMO model and read data from |
---|
[3347] | 1754 | !-- external NetCDF file. |
---|
| 1755 | IF ( nesting_offline ) CALL nesting_offl_init |
---|
| 1756 | ! |
---|
[787] | 1757 | !-- Initialize quantities for special advections schemes |
---|
| 1758 | CALL init_advec |
---|
[680] | 1759 | |
---|
[667] | 1760 | ! |
---|
[680] | 1761 | !-- Impose random perturbation on the horizontal velocity field and then |
---|
| 1762 | !-- remove the divergences from the velocity field at the initial stage |
---|
[4648] | 1763 | IF ( create_disturbances .AND. disturbance_energy_limit /= 0.0_wp .AND. & |
---|
| 1764 | TRIM( initializing_actions ) /= 'read_restart_data' .AND. & |
---|
[680] | 1765 | TRIM( initializing_actions ) /= 'cyclic_fill' ) THEN |
---|
| 1766 | |
---|
[4648] | 1767 | IF ( debug_output ) THEN |
---|
| 1768 | CALL debug_message( 'creating disturbances + applying pressure solver', 'start' ) |
---|
| 1769 | ENDIF |
---|
[3849] | 1770 | ! |
---|
| 1771 | !-- Needed for both disturb_field and pres |
---|
| 1772 | !$ACC DATA & |
---|
| 1773 | !$ACC CREATE(tend(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) & |
---|
| 1774 | !$ACC COPY(u(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) & |
---|
| 1775 | !$ACC COPY(v(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) |
---|
| 1776 | |
---|
[2232] | 1777 | CALL disturb_field( 'u', tend, u ) |
---|
| 1778 | CALL disturb_field( 'v', tend, v ) |
---|
[1384] | 1779 | |
---|
[3849] | 1780 | !$ACC DATA & |
---|
| 1781 | !$ACC CREATE(d(nzb+1:nzt,nys:nyn,nxl:nxr)) & |
---|
| 1782 | !$ACC COPY(w(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) & |
---|
| 1783 | !$ACC COPY(p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) & |
---|
| 1784 | !$ACC COPYIN(rho_air(nzb:nzt+1), rho_air_zw(nzb:nzt+1)) & |
---|
| 1785 | !$ACC COPYIN(ddzu(1:nzt+1), ddzw(1:nzt+1)) & |
---|
[4346] | 1786 | !$ACC COPYIN(wall_flags_total_0(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) & |
---|
[3849] | 1787 | !$ACC COPYIN(bc_h(0:1)) & |
---|
| 1788 | !$ACC COPYIN(bc_h(0)%i(1:bc_h(0)%ns)) & |
---|
| 1789 | !$ACC COPYIN(bc_h(0)%j(1:bc_h(0)%ns)) & |
---|
| 1790 | !$ACC COPYIN(bc_h(0)%k(1:bc_h(0)%ns)) & |
---|
| 1791 | !$ACC COPYIN(bc_h(1)%i(1:bc_h(1)%ns)) & |
---|
| 1792 | !$ACC COPYIN(bc_h(1)%j(1:bc_h(1)%ns)) & |
---|
| 1793 | !$ACC COPYIN(bc_h(1)%k(1:bc_h(1)%ns)) |
---|
| 1794 | |
---|
[680] | 1795 | n_sor = nsor_ini |
---|
| 1796 | CALL pres |
---|
| 1797 | n_sor = nsor |
---|
[1384] | 1798 | |
---|
[3849] | 1799 | !$ACC END DATA |
---|
| 1800 | !$ACC END DATA |
---|
| 1801 | |
---|
[4648] | 1802 | IF ( debug_output ) THEN |
---|
| 1803 | CALL debug_message( 'creating disturbances + applying pressure solver', 'end' ) |
---|
| 1804 | ENDIF |
---|
[3987] | 1805 | |
---|
[680] | 1806 | ENDIF |
---|
| 1807 | |
---|
[3294] | 1808 | IF ( .NOT. ocean_mode ) THEN |
---|
[3274] | 1809 | |
---|
| 1810 | ALLOCATE( hyp(nzb:nzt+1) ) |
---|
| 1811 | ALLOCATE( d_exner(nzb:nzt+1) ) |
---|
| 1812 | ALLOCATE( exner(nzb:nzt+1) ) |
---|
| 1813 | ALLOCATE( hyrho(nzb:nzt+1) ) |
---|
[1849] | 1814 | ! |
---|
[3274] | 1815 | !-- Check temperature in case of too large domain height |
---|
| 1816 | DO k = nzb, nzt+1 |
---|
[4648] | 1817 | IF ( ( pt_surface * exner_function( surface_pressure * 100.0_wp ) - g/c_p * zu(k) ) & |
---|
| 1818 | < 0.0_wp ) THEN |
---|
| 1819 | WRITE( message_string, * ) 'absolute temperature < 0.0 at zu(', k, ') = ', zu(k) |
---|
[3685] | 1820 | CALL message( 'init_3d_model', 'PA0142', 1, 2, 0, 6, 0 ) |
---|
[3274] | 1821 | ENDIF |
---|
| 1822 | ENDDO |
---|
| 1823 | |
---|
| 1824 | ! |
---|
| 1825 | !-- Calculate vertical profile of the hydrostatic pressure (hyp) |
---|
[4648] | 1826 | hyp = barometric_formula( zu, pt_surface * exner_function( surface_pressure * 100.0_wp ),& |
---|
| 1827 | surface_pressure * 100.0_wp ) |
---|
| 1828 | d_exner = exner_function_invers( hyp ) |
---|
| 1829 | exner = 1.0_wp / exner_function_invers( hyp ) |
---|
| 1830 | hyrho = ideal_gas_law_rho_pt( hyp, pt_init ) |
---|
[3274] | 1831 | ! |
---|
| 1832 | !-- Compute reference density |
---|
[4648] | 1833 | rho_surface = ideal_gas_law_rho( surface_pressure * 100.0_wp, & |
---|
| 1834 | pt_surface * exner_function( surface_pressure * 100.0_wp ) ) |
---|
[3274] | 1835 | |
---|
[96] | 1836 | ENDIF |
---|
[1] | 1837 | |
---|
| 1838 | ! |
---|
| 1839 | !-- If required, initialize particles |
---|
[3159] | 1840 | IF ( agents_active ) CALL mas_init |
---|
| 1841 | ! |
---|
[3937] | 1842 | !-- Initialization of synthetic turbulence generator |
---|
| 1843 | IF ( use_syn_turb_gen ) CALL stg_init |
---|
[2696] | 1844 | ! |
---|
[3685] | 1845 | !-- Initializing actions for all other modules |
---|
| 1846 | CALL module_interface_init |
---|
[2696] | 1847 | ! |
---|
[4648] | 1848 | !-- Initialize surface layer (done after LSM as roughness length are required for initialization |
---|
[3685] | 1849 | IF ( constant_flux_layer ) CALL init_surface_layer_fluxes |
---|
[2977] | 1850 | ! |
---|
[3421] | 1851 | !-- Initialize surface data output |
---|
[3685] | 1852 | IF ( surface_output ) CALL surface_data_output_init |
---|
[3472] | 1853 | ! |
---|
[4648] | 1854 | !-- Initialize the ws-scheme. |
---|
| 1855 | IF ( ws_scheme_sca .OR. ws_scheme_mom ) CALL ws_init |
---|
[3711] | 1856 | ! |
---|
| 1857 | !-- Perform post-initializing checks for all other modules |
---|
| 1858 | CALL module_interface_init_checks |
---|
[1] | 1859 | |
---|
| 1860 | ! |
---|
[4648] | 1861 | !-- Initialize surface forcing corresponding to large-scale forcing. Therein, |
---|
[4548] | 1862 | !-- initialize heat-fluxes, etc. via datatype. Revise it later! |
---|
[4648] | 1863 | IF ( large_scale_forcing .AND. lsf_surf ) THEN |
---|
[4548] | 1864 | IF ( use_surface_fluxes .AND. constant_heatflux ) THEN |
---|
[4648] | 1865 | CALL ls_forcing_surf( simulated_time ) |
---|
[4548] | 1866 | ENDIF |
---|
| 1867 | ENDIF |
---|
| 1868 | ! |
---|
[4648] | 1869 | !-- Setting weighting factors for calculation of perturbation pressure and turbulent quantities from |
---|
| 1870 | !-- the RK substeps. |
---|
| 1871 | IF ( TRIM( timestep_scheme ) == 'runge-kutta-3' ) THEN ! for RK3-method |
---|
[709] | 1872 | |
---|
[1322] | 1873 | weight_substep(1) = 1._wp/6._wp |
---|
| 1874 | weight_substep(2) = 3._wp/10._wp |
---|
| 1875 | weight_substep(3) = 8._wp/15._wp |
---|
[709] | 1876 | |
---|
[1322] | 1877 | weight_pres(1) = 1._wp/3._wp |
---|
| 1878 | weight_pres(2) = 5._wp/12._wp |
---|
| 1879 | weight_pres(3) = 1._wp/4._wp |
---|
[709] | 1880 | |
---|
[4648] | 1881 | ELSEIF ( TRIM( timestep_scheme ) == 'runge-kutta-2' ) THEN ! for RK2-method |
---|
[709] | 1882 | |
---|
[1322] | 1883 | weight_substep(1) = 1._wp/2._wp |
---|
| 1884 | weight_substep(2) = 1._wp/2._wp |
---|
[4648] | 1885 | |
---|
[1322] | 1886 | weight_pres(1) = 1._wp/2._wp |
---|
[4648] | 1887 | weight_pres(2) = 1._wp/2._wp |
---|
[709] | 1888 | |
---|
[1001] | 1889 | ELSE ! for Euler-method |
---|
[709] | 1890 | |
---|
[4648] | 1891 | weight_substep(1) = 1.0_wp |
---|
| 1892 | weight_pres(1) = 1.0_wp |
---|
[709] | 1893 | |
---|
[673] | 1894 | ENDIF |
---|
| 1895 | |
---|
| 1896 | ! |
---|
[1] | 1897 | !-- Initialize Rayleigh damping factors |
---|
[1340] | 1898 | rdf = 0.0_wp |
---|
| 1899 | rdf_sc = 0.0_wp |
---|
| 1900 | IF ( rayleigh_damping_factor /= 0.0_wp ) THEN |
---|
[3294] | 1901 | |
---|
| 1902 | IF ( .NOT. ocean_mode ) THEN |
---|
[108] | 1903 | DO k = nzb+1, nzt |
---|
| 1904 | IF ( zu(k) >= rayleigh_damping_height ) THEN |
---|
[4648] | 1905 | rdf(k) = rayleigh_damping_factor * & |
---|
| 1906 | ( SIN( pi * 0.5_wp * ( zu(k) - rayleigh_damping_height ) & |
---|
| 1907 | / ( zu(nzt) - rayleigh_damping_height ) ) & |
---|
| 1908 | )**2 |
---|
[108] | 1909 | ENDIF |
---|
| 1910 | ENDDO |
---|
| 1911 | ELSE |
---|
[3294] | 1912 | ! |
---|
[4648] | 1913 | !-- In ocean mode, rayleigh damping is applied in the lower part of the model domain |
---|
[108] | 1914 | DO k = nzt, nzb+1, -1 |
---|
| 1915 | IF ( zu(k) <= rayleigh_damping_height ) THEN |
---|
[4648] | 1916 | rdf(k) = rayleigh_damping_factor * & |
---|
| 1917 | ( SIN( pi * 0.5_wp * ( rayleigh_damping_height - zu(k) ) & |
---|
| 1918 | / ( rayleigh_damping_height - zu(nzb+1) ) ) & |
---|
| 1919 | )**2 |
---|
[108] | 1920 | ENDIF |
---|
| 1921 | ENDDO |
---|
| 1922 | ENDIF |
---|
[3294] | 1923 | |
---|
[1] | 1924 | ENDIF |
---|
[785] | 1925 | IF ( scalar_rayleigh_damping ) rdf_sc = rdf |
---|
[1] | 1926 | |
---|
| 1927 | ! |
---|
[4648] | 1928 | !-- Initialize the starting level and the vertical smoothing factor used for the external pressure |
---|
| 1929 | !-- gradient |
---|
[1340] | 1930 | dp_smooth_factor = 1.0_wp |
---|
[240] | 1931 | IF ( dp_external ) THEN |
---|
| 1932 | ! |
---|
[4648] | 1933 | !-- Set the starting level dp_level_ind_b only if it has not been set before (e.g. in init_grid). |
---|
[240] | 1934 | IF ( dp_level_ind_b == 0 ) THEN |
---|
| 1935 | ind_array = MINLOC( ABS( dp_level_b - zu ) ) |
---|
[4648] | 1936 | dp_level_ind_b = ind_array(1) - 1 + nzb |
---|
[240] | 1937 | ! MINLOC uses lower array bound 1 |
---|
| 1938 | ENDIF |
---|
| 1939 | IF ( dp_smooth ) THEN |
---|
[1340] | 1940 | dp_smooth_factor(:dp_level_ind_b) = 0.0_wp |
---|
[240] | 1941 | DO k = dp_level_ind_b+1, nzt |
---|
[4648] | 1942 | dp_smooth_factor(k) = 0.5_wp * ( 1.0_wp + SIN( pi * & |
---|
| 1943 | ( REAL( k - dp_level_ind_b, KIND=wp ) / & |
---|
| 1944 | REAL( nzt - dp_level_ind_b, KIND=wp ) - 0.5_wp ) ) ) |
---|
[240] | 1945 | ENDDO |
---|
| 1946 | ENDIF |
---|
| 1947 | ENDIF |
---|
| 1948 | |
---|
| 1949 | ! |
---|
[4648] | 1950 | !-- Initialize damping zone for the potential temperature in case of non-cyclic lateral boundaries. |
---|
| 1951 | !-- The damping zone has the maximum value at the inflow boundary and decreases to zero at |
---|
| 1952 | !-- pt_damping_width. |
---|
[1340] | 1953 | ptdf_x = 0.0_wp |
---|
| 1954 | ptdf_y = 0.0_wp |
---|
[1159] | 1955 | IF ( bc_lr_dirrad ) THEN |
---|
[996] | 1956 | DO i = nxl, nxr |
---|
[978] | 1957 | IF ( ( i * dx ) < pt_damping_width ) THEN |
---|
[4648] | 1958 | ptdf_x(i) = pt_damping_factor * ( SIN( pi * 0.5_wp * & |
---|
| 1959 | REAL( pt_damping_width - i * dx, KIND=wp ) / & |
---|
| 1960 | REAL( pt_damping_width, KIND=wp ) ) )**2 |
---|
| 1961 | ENDIF |
---|
[73] | 1962 | ENDDO |
---|
[1159] | 1963 | ELSEIF ( bc_lr_raddir ) THEN |
---|
[996] | 1964 | DO i = nxl, nxr |
---|
[978] | 1965 | IF ( ( i * dx ) > ( nx * dx - pt_damping_width ) ) THEN |
---|
[4648] | 1966 | ptdf_x(i) = pt_damping_factor * SIN( pi * 0.5_wp * & |
---|
| 1967 | ( ( i - nx ) * dx + pt_damping_width ) / & |
---|
| 1968 | REAL( pt_damping_width, KIND=wp ) )**2 |
---|
[73] | 1969 | ENDIF |
---|
[4648] | 1970 | ENDDO |
---|
[1159] | 1971 | ELSEIF ( bc_ns_dirrad ) THEN |
---|
[996] | 1972 | DO j = nys, nyn |
---|
[978] | 1973 | IF ( ( j * dy ) > ( ny * dy - pt_damping_width ) ) THEN |
---|
[4648] | 1974 | ptdf_y(j) = pt_damping_factor * SIN( pi * 0.5_wp * & |
---|
| 1975 | ( ( j - ny ) * dy + pt_damping_width ) / & |
---|
| 1976 | REAL( pt_damping_width, KIND=wp ) )**2 |
---|
[1] | 1977 | ENDIF |
---|
[4648] | 1978 | ENDDO |
---|
[1159] | 1979 | ELSEIF ( bc_ns_raddir ) THEN |
---|
[996] | 1980 | DO j = nys, nyn |
---|
[978] | 1981 | IF ( ( j * dy ) < pt_damping_width ) THEN |
---|
[4648] | 1982 | ptdf_y(j) = pt_damping_factor * SIN( pi * 0.5_wp * & |
---|
| 1983 | ( pt_damping_width - j * dy ) / & |
---|
| 1984 | REAL( pt_damping_width, KIND=wp ) )**2 |
---|
[1] | 1985 | ENDIF |
---|
[73] | 1986 | ENDDO |
---|
[1] | 1987 | ENDIF |
---|
[51] | 1988 | |
---|
[1] | 1989 | ! |
---|
[4648] | 1990 | !-- Input binary data file is not needed anymore. This line must be placed after call of user_init! |
---|
[1] | 1991 | CALL close_file( 13 ) |
---|
[2934] | 1992 | ! |
---|
[4648] | 1993 | !-- In case of nesting, put an barrier to assure that all parent and child domains finished |
---|
| 1994 | !-- initialization. |
---|
[2934] | 1995 | #if defined( __parallel ) |
---|
| 1996 | IF ( nested_run ) CALL MPI_BARRIER( MPI_COMM_WORLD, ierr ) |
---|
| 1997 | #endif |
---|
[1] | 1998 | |
---|
[2934] | 1999 | |
---|
[3987] | 2000 | CALL location_message( 'model initialization', 'finished' ) |
---|
[1] | 2001 | |
---|
| 2002 | END SUBROUTINE init_3d_model |
---|