[1682] | 1 | !> @file init_3d_model.f90 |
---|
[2000] | 2 | !------------------------------------------------------------------------------! |
---|
[2696] | 3 | ! This file is part of the PALM model system. |
---|
[1036] | 4 | ! |
---|
[2000] | 5 | ! PALM is free software: you can redistribute it and/or modify it under the |
---|
| 6 | ! terms of the GNU General Public License as published by the Free Software |
---|
| 7 | ! Foundation, either version 3 of the License, or (at your option) any later |
---|
| 8 | ! version. |
---|
[1036] | 9 | ! |
---|
| 10 | ! PALM is distributed in the hope that it will be useful, but WITHOUT ANY |
---|
| 11 | ! WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR |
---|
| 12 | ! A PARTICULAR PURPOSE. See the GNU General Public License for more details. |
---|
| 13 | ! |
---|
| 14 | ! You should have received a copy of the GNU General Public License along with |
---|
| 15 | ! PALM. If not, see <http://www.gnu.org/licenses/>. |
---|
| 16 | ! |
---|
[4360] | 17 | ! Copyright 1997-2020 Leibniz Universitaet Hannover |
---|
[2000] | 18 | !------------------------------------------------------------------------------! |
---|
[1036] | 19 | ! |
---|
[254] | 20 | ! Current revisions: |
---|
[732] | 21 | ! ------------------ |
---|
[2233] | 22 | ! |
---|
[3589] | 23 | ! |
---|
[2233] | 24 | ! Former revisions: |
---|
| 25 | ! ----------------- |
---|
| 26 | ! $Id: init_3d_model.f90 4514 2020-04-30 16:29:59Z oliver.maas $ |
---|
[4514] | 27 | ! Add possibility to initialize surface sensible and latent heat fluxes via |
---|
| 28 | ! a static driver. |
---|
| 29 | ! |
---|
| 30 | ! 4493 2020-04-10 09:49:43Z pavelkrc |
---|
[4365] | 31 | ! Overwrite u_init, v_init, pt_init, q_init and s_init with hom for all |
---|
| 32 | ! cyclic_fill-cases, not only for turbulent_inflow = .TRUE. |
---|
| 33 | ! |
---|
| 34 | ! 4360 2020-01-07 11:25:50Z suehring |
---|
[4346] | 35 | ! Introduction of wall_flags_total_0, which currently sets bits based on static |
---|
| 36 | ! topography information used in wall_flags_static_0 |
---|
| 37 | ! |
---|
| 38 | ! 4329 2019-12-10 15:46:36Z motisi |
---|
[4329] | 39 | ! Renamed wall_flags_0 to wall_flags_static_0 |
---|
| 40 | ! |
---|
| 41 | ! 4286 2019-10-30 16:01:14Z resler |
---|
[4227] | 42 | ! implement new palm_date_time_mod |
---|
| 43 | ! |
---|
| 44 | ! 4223 2019-09-10 09:20:47Z gronemeier |
---|
[4187] | 45 | ! Deallocate temporary string array since it may be re-used to read different |
---|
| 46 | ! input data in other modules |
---|
| 47 | ! |
---|
| 48 | ! 4186 2019-08-23 16:06:14Z suehring |
---|
[4186] | 49 | ! Design change, use variables defined in netcdf_data_input_mod to read netcd |
---|
| 50 | ! variables rather than define local ones. |
---|
| 51 | ! |
---|
| 52 | ! 4185 2019-08-23 13:49:38Z oliver.maas |
---|
[4185] | 53 | ! For initializing_actions = ' cyclic_fill': |
---|
| 54 | ! Overwrite u_init, v_init, pt_init, q_init and s_init with the |
---|
| 55 | ! (temporally) and horizontally averaged vertical profiles from the end |
---|
| 56 | ! of the prerun, because these profiles shall be used as the basic state |
---|
| 57 | ! for the rayleigh damping and the pt_damping. |
---|
| 58 | ! |
---|
| 59 | ! 4182 2019-08-22 15:20:23Z scharf |
---|
[4182] | 60 | ! Corrected "Former revisions" section |
---|
| 61 | ! |
---|
| 62 | ! 4168 2019-08-16 13:50:17Z suehring |
---|
[4168] | 63 | ! Replace function get_topography_top_index by topo_top_ind |
---|
| 64 | ! |
---|
| 65 | ! 4151 2019-08-09 08:24:30Z suehring |
---|
[4151] | 66 | ! Add netcdf directive around input calls (fix for last commit) |
---|
| 67 | ! |
---|
| 68 | ! 4150 2019-08-08 20:00:47Z suehring |
---|
[4150] | 69 | ! Input of additional surface variables independent on land- or urban-surface |
---|
| 70 | ! model |
---|
| 71 | ! |
---|
| 72 | ! 4131 2019-08-02 11:06:18Z monakurppa |
---|
[4131] | 73 | ! Allocate sums and sums_l to allow profile output for salsa variables. |
---|
| 74 | ! |
---|
| 75 | ! 4130 2019-08-01 13:04:13Z suehring |
---|
[4130] | 76 | ! Effectively reduce 3D initialization to 1D initial profiles. This is because |
---|
| 77 | ! 3D initialization produces structures in the w-component that are correlated |
---|
| 78 | ! with the processor grid for some unknown reason |
---|
| 79 | ! |
---|
| 80 | ! 4090 2019-07-11 15:06:47Z Giersch |
---|
[4090] | 81 | ! Unused variables removed |
---|
| 82 | ! |
---|
| 83 | ! 4088 2019-07-11 13:57:56Z Giersch |
---|
[4088] | 84 | ! Pressure and density profile calculations revised using basic functions |
---|
| 85 | ! |
---|
| 86 | ! 4048 2019-06-21 21:00:21Z knoop |
---|
[4028] | 87 | ! Further modularization of particle code components |
---|
| 88 | ! |
---|
| 89 | ! 4017 2019-06-06 12:16:46Z schwenkel |
---|
[3987] | 90 | ! Convert most location messages to debug messages to reduce output in |
---|
| 91 | ! job logfile to a minimum |
---|
| 92 | ! |
---|
| 93 | ! |
---|
[3939] | 94 | ! unused variable removed |
---|
| 95 | ! |
---|
| 96 | ! 3937 2019-04-29 15:09:07Z suehring |
---|
[3937] | 97 | ! Move initialization of synthetic turbulence generator behind initialization |
---|
| 98 | ! of offline nesting. Remove call for stg_adjust, as this is now already done |
---|
| 99 | ! in stg_init. |
---|
| 100 | ! |
---|
| 101 | ! 3900 2019-04-16 15:17:43Z suehring |
---|
[3900] | 102 | ! Fix problem with LOD = 2 initialization |
---|
| 103 | ! |
---|
| 104 | ! 3885 2019-04-11 11:29:34Z kanani |
---|
[3885] | 105 | ! Changes related to global restructuring of location messages and introduction |
---|
| 106 | ! of additional debug messages |
---|
| 107 | ! |
---|
| 108 | ! 3849 2019-04-01 16:35:16Z knoop |
---|
[3747] | 109 | ! Move initialization of rmask before initializing user_init_arrays |
---|
| 110 | ! |
---|
| 111 | ! 3711 2019-01-31 13:44:26Z knoop |
---|
[3711] | 112 | ! Introduced module_interface_init_checks for post-init checks in modules |
---|
| 113 | ! |
---|
| 114 | ! 3700 2019-01-26 17:03:42Z knoop |
---|
[3685] | 115 | ! Some interface calls moved to module_interface + cleanup |
---|
| 116 | ! |
---|
| 117 | ! 3648 2019-01-02 16:35:46Z suehring |
---|
[3648] | 118 | ! Rename subroutines for surface-data output |
---|
[3569] | 119 | ! |
---|
[4182] | 120 | ! Revision 1.1 1998/03/09 16:22:22 raasch |
---|
| 121 | ! Initial revision |
---|
| 122 | ! |
---|
| 123 | ! |
---|
[1] | 124 | ! Description: |
---|
| 125 | ! ------------ |
---|
[1682] | 126 | !> Allocation of arrays and initialization of the 3D model via |
---|
| 127 | !> a) pre-run the 1D model |
---|
| 128 | !> or |
---|
| 129 | !> b) pre-set constant linear profiles |
---|
| 130 | !> or |
---|
| 131 | !> c) read values of a previous run |
---|
[1] | 132 | !------------------------------------------------------------------------------! |
---|
[1682] | 133 | SUBROUTINE init_3d_model |
---|
[1] | 134 | |
---|
[3298] | 135 | |
---|
[667] | 136 | USE advec_ws |
---|
[1320] | 137 | |
---|
[1] | 138 | USE arrays_3d |
---|
[1849] | 139 | |
---|
[3274] | 140 | USE basic_constants_and_equations_mod, & |
---|
[4090] | 141 | ONLY: c_p, g, l_v, pi, exner_function, exner_function_invers, & |
---|
[3274] | 142 | ideal_gas_law_rho, ideal_gas_law_rho_pt, barometric_formula |
---|
| 143 | |
---|
| 144 | USE bulk_cloud_model_mod, & |
---|
[3685] | 145 | ONLY: bulk_cloud_model |
---|
[3274] | 146 | |
---|
[3298] | 147 | USE chem_modules, & |
---|
[3685] | 148 | ONLY: max_pr_cs ! ToDo: this dependency needs to be removed cause it is ugly #new_dom |
---|
[3298] | 149 | |
---|
[1] | 150 | USE control_parameters |
---|
[3298] | 151 | |
---|
[1320] | 152 | USE grid_variables, & |
---|
[2037] | 153 | ONLY: dx, dy, ddx2_mg, ddy2_mg |
---|
[2817] | 154 | |
---|
[1] | 155 | USE indices |
---|
[3469] | 156 | |
---|
[1320] | 157 | USE kinds |
---|
[1496] | 158 | |
---|
[2320] | 159 | USE lsf_nudging_mod, & |
---|
[3685] | 160 | ONLY: ls_forcing_surf |
---|
[1849] | 161 | |
---|
[2338] | 162 | USE model_1d_mod, & |
---|
[3241] | 163 | ONLY: init_1d_model, l1d, u1d, v1d |
---|
[2338] | 164 | |
---|
[3685] | 165 | USE module_interface, & |
---|
[3711] | 166 | ONLY: module_interface_init_arrays, & |
---|
| 167 | module_interface_init, & |
---|
| 168 | module_interface_init_checks |
---|
[3685] | 169 | |
---|
[3159] | 170 | USE multi_agent_system_mod, & |
---|
| 171 | ONLY: agents_active, mas_init |
---|
| 172 | |
---|
[1783] | 173 | USE netcdf_interface, & |
---|
[3700] | 174 | ONLY: dots_max |
---|
[2696] | 175 | |
---|
[2906] | 176 | USE netcdf_data_input_mod, & |
---|
[4150] | 177 | ONLY: char_fill, & |
---|
| 178 | check_existence, & |
---|
| 179 | close_input_file, & |
---|
| 180 | get_attribute, & |
---|
| 181 | get_variable, & |
---|
| 182 | init_3d, & |
---|
| 183 | input_pids_static, & |
---|
| 184 | inquire_num_variables, & |
---|
| 185 | inquire_variable_names, & |
---|
| 186 | input_file_static, & |
---|
| 187 | netcdf_data_input_init_3d, & |
---|
[4186] | 188 | num_var_pids, & |
---|
[4150] | 189 | open_read_file, & |
---|
[4186] | 190 | pids_id, & |
---|
| 191 | real_2d, & |
---|
| 192 | vars_pids |
---|
[4150] | 193 | |
---|
[3347] | 194 | USE nesting_offl_mod, & |
---|
| 195 | ONLY: nesting_offl_init |
---|
[3294] | 196 | |
---|
[4227] | 197 | USE palm_date_time_mod, & |
---|
| 198 | ONLY: set_reference_date_time |
---|
| 199 | |
---|
[1] | 200 | USE pegrid |
---|
[3298] | 201 | |
---|
[3524] | 202 | #if defined( __parallel ) |
---|
[2934] | 203 | USE pmc_interface, & |
---|
| 204 | ONLY: nested_run |
---|
[3524] | 205 | #endif |
---|
[2934] | 206 | |
---|
[1320] | 207 | USE random_function_mod |
---|
[3685] | 208 | |
---|
[1400] | 209 | USE random_generator_parallel, & |
---|
[2172] | 210 | ONLY: init_parallel_random_generator |
---|
[3685] | 211 | |
---|
[2894] | 212 | USE read_restart_data_mod, & |
---|
[3685] | 213 | ONLY: rrd_read_parts_of_global, rrd_local |
---|
| 214 | |
---|
[1320] | 215 | USE statistics, & |
---|
[1738] | 216 | ONLY: hom, hom_sum, mean_surface_level_height, pr_palm, rmask, & |
---|
[1833] | 217 | statistic_regions, sums, sums_divnew_l, sums_divold_l, sums_l, & |
---|
[2277] | 218 | sums_l_l, sums_wsts_bc_l, ts_value, & |
---|
[1833] | 219 | weight_pres, weight_substep |
---|
[2259] | 220 | |
---|
| 221 | USE synthetic_turbulence_generator_mod, & |
---|
[3939] | 222 | ONLY: stg_init, use_syn_turb_gen |
---|
[3685] | 223 | |
---|
[1691] | 224 | USE surface_layer_fluxes_mod, & |
---|
| 225 | ONLY: init_surface_layer_fluxes |
---|
[2232] | 226 | |
---|
| 227 | USE surface_mod, & |
---|
[4150] | 228 | ONLY : init_single_surface_properties, & |
---|
| 229 | init_surface_arrays, & |
---|
| 230 | init_surfaces, & |
---|
| 231 | surf_def_h, & |
---|
| 232 | surf_def_v, & |
---|
| 233 | surf_lsm_h, & |
---|
[4168] | 234 | surf_usm_h |
---|
[3685] | 235 | |
---|
[3849] | 236 | #if defined( _OPENACC ) |
---|
| 237 | USE surface_mod, & |
---|
| 238 | ONLY : bc_h |
---|
| 239 | #endif |
---|
| 240 | |
---|
[3648] | 241 | USE surface_data_output_mod, & |
---|
| 242 | ONLY: surface_data_output_init |
---|
[3685] | 243 | |
---|
[2007] | 244 | USE transpose_indices |
---|
[1] | 245 | |
---|
| 246 | IMPLICIT NONE |
---|
[4150] | 247 | |
---|
| 248 | INTEGER(iwp) :: i !< grid index in x direction |
---|
| 249 | INTEGER(iwp) :: ind_array(1) !< dummy used to determine start index for external pressure forcing |
---|
| 250 | INTEGER(iwp) :: j !< grid index in y direction |
---|
| 251 | INTEGER(iwp) :: k !< grid index in z direction |
---|
| 252 | INTEGER(iwp) :: k_surf !< surface level index |
---|
| 253 | INTEGER(iwp) :: l !< running index over surface orientation |
---|
| 254 | INTEGER(iwp) :: m !< index of surface element in surface data type |
---|
| 255 | INTEGER(iwp) :: nz_u_shift !< topography-top index on u-grid, used to vertically shift initial profiles |
---|
| 256 | INTEGER(iwp) :: nz_v_shift !< topography-top index on v-grid, used to vertically shift initial profiles |
---|
| 257 | INTEGER(iwp) :: nz_w_shift !< topography-top index on w-grid, used to vertically shift initial profiles |
---|
| 258 | INTEGER(iwp) :: nz_s_shift !< topography-top index on scalar-grid, used to vertically shift initial profiles |
---|
| 259 | INTEGER(iwp) :: nz_u_shift_l !< topography-top index on u-grid, used to vertically shift initial profiles |
---|
| 260 | INTEGER(iwp) :: nz_v_shift_l !< topography-top index on v-grid, used to vertically shift initial profiles |
---|
| 261 | INTEGER(iwp) :: nz_w_shift_l !< topography-top index on w-grid, used to vertically shift initial profiles |
---|
| 262 | INTEGER(iwp) :: nz_s_shift_l !< topography-top index on scalar-grid, used to vertically shift initial profiles |
---|
| 263 | INTEGER(iwp) :: nzt_l !< index of top PE boundary for multigrid level |
---|
| 264 | INTEGER(iwp) :: sr !< index of statistic region |
---|
[1] | 265 | |
---|
[3547] | 266 | INTEGER(iwp), DIMENSION(:), ALLOCATABLE :: ngp_2dh_l !< toal number of horizontal grid points in statistical region on subdomain |
---|
[1] | 267 | |
---|
[3547] | 268 | INTEGER(iwp), DIMENSION(:,:), ALLOCATABLE :: ngp_2dh_outer_l !< number of horizontal non-wall bounded grid points on subdomain |
---|
| 269 | INTEGER(iwp), DIMENSION(:,:), ALLOCATABLE :: ngp_2dh_s_inner_l !< number of horizontal non-topography grid points on subdomain |
---|
[1] | 270 | |
---|
[4150] | 271 | |
---|
| 272 | |
---|
[3182] | 273 | REAL(wp), DIMENSION(:), ALLOCATABLE :: init_l !< dummy array used for averaging 3D data to obtain inital profiles |
---|
[2037] | 274 | REAL(wp), DIMENSION(:), ALLOCATABLE :: p_hydrostatic !< hydrostatic pressure |
---|
| 275 | |
---|
| 276 | REAL(wp) :: dx_l !< grid spacing along x on different multigrid level |
---|
| 277 | REAL(wp) :: dy_l !< grid spacing along y on different multigrid level |
---|
| 278 | |
---|
[3547] | 279 | REAL(wp), DIMENSION(1:3) :: volume_flow_area_l !< area of lateral and top model domain surface on local subdomain |
---|
| 280 | REAL(wp), DIMENSION(1:3) :: volume_flow_initial_l !< initial volume flow into model domain |
---|
[1] | 281 | |
---|
[3547] | 282 | REAL(wp), DIMENSION(:), ALLOCATABLE :: mean_surface_level_height_l !< mean surface level height on subdomain |
---|
| 283 | REAL(wp), DIMENSION(:), ALLOCATABLE :: ngp_3d_inner_l !< total number of non-topography grid points on subdomain |
---|
| 284 | REAL(wp), DIMENSION(:), ALLOCATABLE :: ngp_3d_inner_tmp !< total number of non-topography grid points |
---|
[1] | 285 | |
---|
[4150] | 286 | TYPE(real_2d) :: tmp_2d !< temporary variable to input additional surface-data from static file |
---|
| 287 | |
---|
[3987] | 288 | CALL location_message( 'model initialization', 'start' ) |
---|
[4227] | 289 | ! |
---|
| 290 | !-- Set reference date-time |
---|
| 291 | CALL set_reference_date_time( date_time_str=origin_date_time ) |
---|
[3987] | 292 | |
---|
| 293 | IF ( debug_output ) CALL debug_message( 'allocating arrays', 'start' ) |
---|
[1] | 294 | ! |
---|
| 295 | !-- Allocate arrays |
---|
[1788] | 296 | ALLOCATE( mean_surface_level_height(0:statistic_regions), & |
---|
| 297 | mean_surface_level_height_l(0:statistic_regions), & |
---|
| 298 | ngp_2dh(0:statistic_regions), ngp_2dh_l(0:statistic_regions), & |
---|
| 299 | ngp_3d(0:statistic_regions), & |
---|
| 300 | ngp_3d_inner(0:statistic_regions), & |
---|
| 301 | ngp_3d_inner_l(0:statistic_regions), & |
---|
| 302 | ngp_3d_inner_tmp(0:statistic_regions), & |
---|
| 303 | sums_divnew_l(0:statistic_regions), & |
---|
[1] | 304 | sums_divold_l(0:statistic_regions) ) |
---|
[1195] | 305 | ALLOCATE( dp_smooth_factor(nzb:nzt), rdf(nzb+1:nzt), rdf_sc(nzb+1:nzt) ) |
---|
[1788] | 306 | ALLOCATE( ngp_2dh_outer(nzb:nzt+1,0:statistic_regions), & |
---|
| 307 | ngp_2dh_outer_l(nzb:nzt+1,0:statistic_regions), & |
---|
| 308 | ngp_2dh_s_inner(nzb:nzt+1,0:statistic_regions), & |
---|
| 309 | ngp_2dh_s_inner_l(nzb:nzt+1,0:statistic_regions), & |
---|
| 310 | rmask(nysg:nyng,nxlg:nxrg,0:statistic_regions), & |
---|
[4131] | 311 | sums(nzb:nzt+1,pr_palm+max_pr_user+max_pr_cs+max_pr_salsa), & |
---|
| 312 | sums_l(nzb:nzt+1,pr_palm+max_pr_user+max_pr_cs+max_pr_salsa,0:threads_per_task-1), & |
---|
[1788] | 313 | sums_l_l(nzb:nzt+1,0:statistic_regions,0:threads_per_task-1), & |
---|
[3700] | 314 | sums_wsts_bc_l(nzb:nzt+1,0:statistic_regions) ) |
---|
| 315 | ALLOCATE( ts_value(dots_max,0:statistic_regions) ) |
---|
[978] | 316 | ALLOCATE( ptdf_x(nxlg:nxrg), ptdf_y(nysg:nyng) ) |
---|
[1] | 317 | |
---|
[1788] | 318 | ALLOCATE( d(nzb+1:nzt,nys:nyn,nxl:nxr), & |
---|
| 319 | p(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
[1010] | 320 | tend(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 321 | |
---|
[2696] | 322 | ALLOCATE( pt_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
[1788] | 323 | pt_3(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 324 | u_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 325 | u_2(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 326 | u_3(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 327 | v_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 328 | v_2(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 329 | v_3(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 330 | w_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 331 | w_2(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
[667] | 332 | w_3(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
[1788] | 333 | IF ( .NOT. neutral ) THEN |
---|
[1032] | 334 | ALLOCATE( pt_2(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 335 | ENDIF |
---|
[673] | 336 | ! |
---|
[3747] | 337 | !-- Pre-set masks for regional statistics. Default is the total model domain. |
---|
| 338 | !-- Ghost points are excluded because counting values at the ghost boundaries |
---|
| 339 | !-- would bias the statistics |
---|
| 340 | rmask = 1.0_wp |
---|
| 341 | rmask(:,nxlg:nxl-1,:) = 0.0_wp; rmask(:,nxr+1:nxrg,:) = 0.0_wp |
---|
| 342 | rmask(nysg:nys-1,:,:) = 0.0_wp; rmask(nyn+1:nyng,:,:) = 0.0_wp |
---|
| 343 | ! |
---|
[707] | 344 | !-- Following array is required for perturbation pressure within the iterative |
---|
| 345 | !-- pressure solvers. For the multistep schemes (Runge-Kutta), array p holds |
---|
| 346 | !-- the weighted average of the substeps and cannot be used in the Poisson |
---|
| 347 | !-- solver. |
---|
| 348 | IF ( psolver == 'sor' ) THEN |
---|
| 349 | ALLOCATE( p_loc(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
[1575] | 350 | ELSEIF ( psolver(1:9) == 'multigrid' ) THEN |
---|
[707] | 351 | ! |
---|
| 352 | !-- For performance reasons, multigrid is using one ghost layer only |
---|
| 353 | ALLOCATE( p_loc(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1) ) |
---|
[673] | 354 | ENDIF |
---|
[1] | 355 | |
---|
[1111] | 356 | ! |
---|
| 357 | !-- Array for storing constant coeffficients of the tridiagonal solver |
---|
| 358 | IF ( psolver == 'poisfft' ) THEN |
---|
[1212] | 359 | ALLOCATE( tri(nxl_z:nxr_z,nys_z:nyn_z,0:nz-1,2) ) |
---|
[1111] | 360 | ALLOCATE( tric(nxl_z:nxr_z,nys_z:nyn_z,0:nz-1) ) |
---|
| 361 | ENDIF |
---|
| 362 | |
---|
[1960] | 363 | IF ( humidity ) THEN |
---|
[1] | 364 | ! |
---|
[1960] | 365 | !-- 3D-humidity |
---|
[1788] | 366 | ALLOCATE( q_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 367 | q_2(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
[3011] | 368 | q_3(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 369 | vpt_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
| 370 | ENDIF |
---|
[1960] | 371 | |
---|
| 372 | IF ( passive_scalar ) THEN |
---|
[1] | 373 | |
---|
[1960] | 374 | ! |
---|
| 375 | !-- 3D scalar arrays |
---|
| 376 | ALLOCATE( s_1(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 377 | s_2(nzb:nzt+1,nysg:nyng,nxlg:nxrg), & |
---|
| 378 | s_3(nzb:nzt+1,nysg:nyng,nxlg:nxrg) ) |
---|
[3636] | 379 | |
---|
[1960] | 380 | ENDIF |
---|
| 381 | |
---|
[1] | 382 | ! |
---|
[3302] | 383 | !-- Allocate and set 1d-profiles for Stokes drift velocity. It may be set to |
---|
| 384 | !-- non-zero values later in ocean_init |
---|
| 385 | ALLOCATE( u_stokes_zu(nzb:nzt+1), u_stokes_zw(nzb:nzt+1), & |
---|
| 386 | v_stokes_zu(nzb:nzt+1), v_stokes_zw(nzb:nzt+1) ) |
---|
| 387 | u_stokes_zu(:) = 0.0_wp |
---|
| 388 | u_stokes_zw(:) = 0.0_wp |
---|
| 389 | v_stokes_zu(:) = 0.0_wp |
---|
| 390 | v_stokes_zw(:) = 0.0_wp |
---|
| 391 | |
---|
| 392 | ! |
---|
[2037] | 393 | !-- Allocation of anelastic and Boussinesq approximation specific arrays |
---|
| 394 | ALLOCATE( p_hydrostatic(nzb:nzt+1) ) |
---|
| 395 | ALLOCATE( rho_air(nzb:nzt+1) ) |
---|
| 396 | ALLOCATE( rho_air_zw(nzb:nzt+1) ) |
---|
| 397 | ALLOCATE( drho_air(nzb:nzt+1) ) |
---|
| 398 | ALLOCATE( drho_air_zw(nzb:nzt+1) ) |
---|
| 399 | ! |
---|
[4088] | 400 | !-- Density profile calculation for anelastic and Boussinesq approximation |
---|
| 401 | !-- In case of a Boussinesq approximation, a constant density is calculated |
---|
| 402 | !-- mainly for output purposes. This density do not need to be considered |
---|
| 403 | !-- in the model's system of equations. |
---|
| 404 | IF ( TRIM( approximation ) == 'anelastic' ) THEN |
---|
[2037] | 405 | DO k = nzb, nzt+1 |
---|
[4088] | 406 | p_hydrostatic(k) = barometric_formula(zu(k), pt_surface * & |
---|
| 407 | exner_function(surface_pressure * 100.0_wp), & |
---|
| 408 | surface_pressure * 100.0_wp) |
---|
| 409 | |
---|
| 410 | rho_air(k) = ideal_gas_law_rho_pt(p_hydrostatic(k), pt_init(k)) |
---|
[2037] | 411 | ENDDO |
---|
[4088] | 412 | |
---|
[2037] | 413 | DO k = nzb, nzt |
---|
| 414 | rho_air_zw(k) = 0.5_wp * ( rho_air(k) + rho_air(k+1) ) |
---|
| 415 | ENDDO |
---|
[4088] | 416 | |
---|
[2037] | 417 | rho_air_zw(nzt+1) = rho_air_zw(nzt) & |
---|
| 418 | + 2.0_wp * ( rho_air(nzt+1) - rho_air_zw(nzt) ) |
---|
[4088] | 419 | |
---|
[2037] | 420 | ELSE |
---|
[2252] | 421 | DO k = nzb, nzt+1 |
---|
[4088] | 422 | p_hydrostatic(k) = barometric_formula(zu(nzb), pt_surface * & |
---|
| 423 | exner_function(surface_pressure * 100.0_wp), & |
---|
| 424 | surface_pressure * 100.0_wp) |
---|
| 425 | |
---|
| 426 | rho_air(k) = ideal_gas_law_rho_pt(p_hydrostatic(k), pt_init(nzb)) |
---|
[2252] | 427 | ENDDO |
---|
[4088] | 428 | |
---|
[2252] | 429 | DO k = nzb, nzt |
---|
| 430 | rho_air_zw(k) = 0.5_wp * ( rho_air(k) + rho_air(k+1) ) |
---|
| 431 | ENDDO |
---|
[4088] | 432 | |
---|
[2252] | 433 | rho_air_zw(nzt+1) = rho_air_zw(nzt) & |
---|
| 434 | + 2.0_wp * ( rho_air(nzt+1) - rho_air_zw(nzt) ) |
---|
[4088] | 435 | |
---|
[2037] | 436 | ENDIF |
---|
[2696] | 437 | ! |
---|
[2037] | 438 | !-- compute the inverse density array in order to avoid expencive divisions |
---|
| 439 | drho_air = 1.0_wp / rho_air |
---|
| 440 | drho_air_zw = 1.0_wp / rho_air_zw |
---|
| 441 | |
---|
| 442 | ! |
---|
| 443 | !-- Allocation of flux conversion arrays |
---|
| 444 | ALLOCATE( heatflux_input_conversion(nzb:nzt+1) ) |
---|
| 445 | ALLOCATE( waterflux_input_conversion(nzb:nzt+1) ) |
---|
| 446 | ALLOCATE( momentumflux_input_conversion(nzb:nzt+1) ) |
---|
| 447 | ALLOCATE( heatflux_output_conversion(nzb:nzt+1) ) |
---|
| 448 | ALLOCATE( waterflux_output_conversion(nzb:nzt+1) ) |
---|
| 449 | ALLOCATE( momentumflux_output_conversion(nzb:nzt+1) ) |
---|
| 450 | |
---|
| 451 | ! |
---|
| 452 | !-- calculate flux conversion factors according to approximation and in-/output mode |
---|
| 453 | DO k = nzb, nzt+1 |
---|
| 454 | |
---|
| 455 | IF ( TRIM( flux_input_mode ) == 'kinematic' ) THEN |
---|
| 456 | heatflux_input_conversion(k) = rho_air_zw(k) |
---|
| 457 | waterflux_input_conversion(k) = rho_air_zw(k) |
---|
| 458 | momentumflux_input_conversion(k) = rho_air_zw(k) |
---|
| 459 | ELSEIF ( TRIM( flux_input_mode ) == 'dynamic' ) THEN |
---|
[3274] | 460 | heatflux_input_conversion(k) = 1.0_wp / c_p |
---|
[2037] | 461 | waterflux_input_conversion(k) = 1.0_wp / l_v |
---|
| 462 | momentumflux_input_conversion(k) = 1.0_wp |
---|
| 463 | ENDIF |
---|
| 464 | |
---|
| 465 | IF ( TRIM( flux_output_mode ) == 'kinematic' ) THEN |
---|
| 466 | heatflux_output_conversion(k) = drho_air_zw(k) |
---|
| 467 | waterflux_output_conversion(k) = drho_air_zw(k) |
---|
| 468 | momentumflux_output_conversion(k) = drho_air_zw(k) |
---|
| 469 | ELSEIF ( TRIM( flux_output_mode ) == 'dynamic' ) THEN |
---|
[3274] | 470 | heatflux_output_conversion(k) = c_p |
---|
[2037] | 471 | waterflux_output_conversion(k) = l_v |
---|
| 472 | momentumflux_output_conversion(k) = 1.0_wp |
---|
| 473 | ENDIF |
---|
| 474 | |
---|
| 475 | IF ( .NOT. humidity ) THEN |
---|
| 476 | waterflux_input_conversion(k) = 1.0_wp |
---|
| 477 | waterflux_output_conversion(k) = 1.0_wp |
---|
| 478 | ENDIF |
---|
| 479 | |
---|
| 480 | ENDDO |
---|
| 481 | |
---|
| 482 | ! |
---|
| 483 | !-- In case of multigrid method, compute grid lengths and grid factors for the |
---|
| 484 | !-- grid levels with respective density on each grid |
---|
| 485 | IF ( psolver(1:9) == 'multigrid' ) THEN |
---|
| 486 | |
---|
| 487 | ALLOCATE( ddx2_mg(maximum_grid_level) ) |
---|
| 488 | ALLOCATE( ddy2_mg(maximum_grid_level) ) |
---|
| 489 | ALLOCATE( dzu_mg(nzb+1:nzt+1,maximum_grid_level) ) |
---|
| 490 | ALLOCATE( dzw_mg(nzb+1:nzt+1,maximum_grid_level) ) |
---|
| 491 | ALLOCATE( f1_mg(nzb+1:nzt,maximum_grid_level) ) |
---|
| 492 | ALLOCATE( f2_mg(nzb+1:nzt,maximum_grid_level) ) |
---|
| 493 | ALLOCATE( f3_mg(nzb+1:nzt,maximum_grid_level) ) |
---|
| 494 | ALLOCATE( rho_air_mg(nzb:nzt+1,maximum_grid_level) ) |
---|
| 495 | ALLOCATE( rho_air_zw_mg(nzb:nzt+1,maximum_grid_level) ) |
---|
| 496 | |
---|
| 497 | dzu_mg(:,maximum_grid_level) = dzu |
---|
| 498 | rho_air_mg(:,maximum_grid_level) = rho_air |
---|
| 499 | ! |
---|
| 500 | !-- Next line to ensure an equally spaced grid. |
---|
| 501 | dzu_mg(1,maximum_grid_level) = dzu(2) |
---|
| 502 | rho_air_mg(nzb,maximum_grid_level) = rho_air(nzb) + & |
---|
| 503 | (rho_air(nzb) - rho_air(nzb+1)) |
---|
| 504 | |
---|
| 505 | dzw_mg(:,maximum_grid_level) = dzw |
---|
| 506 | rho_air_zw_mg(:,maximum_grid_level) = rho_air_zw |
---|
| 507 | nzt_l = nzt |
---|
| 508 | DO l = maximum_grid_level-1, 1, -1 |
---|
| 509 | dzu_mg(nzb+1,l) = 2.0_wp * dzu_mg(nzb+1,l+1) |
---|
| 510 | dzw_mg(nzb+1,l) = 2.0_wp * dzw_mg(nzb+1,l+1) |
---|
| 511 | rho_air_mg(nzb,l) = rho_air_mg(nzb,l+1) + (rho_air_mg(nzb,l+1) - rho_air_mg(nzb+1,l+1)) |
---|
| 512 | rho_air_zw_mg(nzb,l) = rho_air_zw_mg(nzb,l+1) + (rho_air_zw_mg(nzb,l+1) - rho_air_zw_mg(nzb+1,l+1)) |
---|
| 513 | rho_air_mg(nzb+1,l) = rho_air_mg(nzb+1,l+1) |
---|
| 514 | rho_air_zw_mg(nzb+1,l) = rho_air_zw_mg(nzb+1,l+1) |
---|
| 515 | nzt_l = nzt_l / 2 |
---|
| 516 | DO k = 2, nzt_l+1 |
---|
| 517 | dzu_mg(k,l) = dzu_mg(2*k-2,l+1) + dzu_mg(2*k-1,l+1) |
---|
| 518 | dzw_mg(k,l) = dzw_mg(2*k-2,l+1) + dzw_mg(2*k-1,l+1) |
---|
| 519 | rho_air_mg(k,l) = rho_air_mg(2*k-1,l+1) |
---|
| 520 | rho_air_zw_mg(k,l) = rho_air_zw_mg(2*k-1,l+1) |
---|
| 521 | ENDDO |
---|
| 522 | ENDDO |
---|
| 523 | |
---|
| 524 | nzt_l = nzt |
---|
| 525 | dx_l = dx |
---|
| 526 | dy_l = dy |
---|
| 527 | DO l = maximum_grid_level, 1, -1 |
---|
| 528 | ddx2_mg(l) = 1.0_wp / dx_l**2 |
---|
| 529 | ddy2_mg(l) = 1.0_wp / dy_l**2 |
---|
| 530 | DO k = nzb+1, nzt_l |
---|
| 531 | f2_mg(k,l) = rho_air_zw_mg(k,l) / ( dzu_mg(k+1,l) * dzw_mg(k,l) ) |
---|
| 532 | f3_mg(k,l) = rho_air_zw_mg(k-1,l) / ( dzu_mg(k,l) * dzw_mg(k,l) ) |
---|
| 533 | f1_mg(k,l) = 2.0_wp * ( ddx2_mg(l) + ddy2_mg(l) ) & |
---|
| 534 | * rho_air_mg(k,l) + f2_mg(k,l) + f3_mg(k,l) |
---|
| 535 | ENDDO |
---|
| 536 | nzt_l = nzt_l / 2 |
---|
| 537 | dx_l = dx_l * 2.0_wp |
---|
| 538 | dy_l = dy_l * 2.0_wp |
---|
| 539 | ENDDO |
---|
| 540 | |
---|
| 541 | ENDIF |
---|
| 542 | |
---|
| 543 | ! |
---|
[1299] | 544 | !-- 1D-array for large scale subsidence velocity |
---|
[1361] | 545 | IF ( .NOT. ALLOCATED( w_subs ) ) THEN |
---|
| 546 | ALLOCATE ( w_subs(nzb:nzt+1) ) |
---|
| 547 | w_subs = 0.0_wp |
---|
| 548 | ENDIF |
---|
[1299] | 549 | |
---|
| 550 | ! |
---|
[106] | 551 | !-- Arrays to store velocity data from t-dt and the phase speeds which |
---|
| 552 | !-- are needed for radiation boundary conditions |
---|
[3182] | 553 | IF ( bc_radiation_l ) THEN |
---|
[1788] | 554 | ALLOCATE( u_m_l(nzb:nzt+1,nysg:nyng,1:2), & |
---|
| 555 | v_m_l(nzb:nzt+1,nysg:nyng,0:1), & |
---|
[667] | 556 | w_m_l(nzb:nzt+1,nysg:nyng,0:1) ) |
---|
[73] | 557 | ENDIF |
---|
[3182] | 558 | IF ( bc_radiation_r ) THEN |
---|
[1788] | 559 | ALLOCATE( u_m_r(nzb:nzt+1,nysg:nyng,nx-1:nx), & |
---|
| 560 | v_m_r(nzb:nzt+1,nysg:nyng,nx-1:nx), & |
---|
[667] | 561 | w_m_r(nzb:nzt+1,nysg:nyng,nx-1:nx) ) |
---|
[73] | 562 | ENDIF |
---|
[3182] | 563 | IF ( bc_radiation_l .OR. bc_radiation_r ) THEN |
---|
[1788] | 564 | ALLOCATE( c_u(nzb:nzt+1,nysg:nyng), c_v(nzb:nzt+1,nysg:nyng), & |
---|
[667] | 565 | c_w(nzb:nzt+1,nysg:nyng) ) |
---|
[106] | 566 | ENDIF |
---|
[3182] | 567 | IF ( bc_radiation_s ) THEN |
---|
[1788] | 568 | ALLOCATE( u_m_s(nzb:nzt+1,0:1,nxlg:nxrg), & |
---|
| 569 | v_m_s(nzb:nzt+1,1:2,nxlg:nxrg), & |
---|
[667] | 570 | w_m_s(nzb:nzt+1,0:1,nxlg:nxrg) ) |
---|
[73] | 571 | ENDIF |
---|
[3182] | 572 | IF ( bc_radiation_n ) THEN |
---|
[1788] | 573 | ALLOCATE( u_m_n(nzb:nzt+1,ny-1:ny,nxlg:nxrg), & |
---|
| 574 | v_m_n(nzb:nzt+1,ny-1:ny,nxlg:nxrg), & |
---|
[667] | 575 | w_m_n(nzb:nzt+1,ny-1:ny,nxlg:nxrg) ) |
---|
[73] | 576 | ENDIF |
---|
[3182] | 577 | IF ( bc_radiation_s .OR. bc_radiation_n ) THEN |
---|
[1788] | 578 | ALLOCATE( c_u(nzb:nzt+1,nxlg:nxrg), c_v(nzb:nzt+1,nxlg:nxrg), & |
---|
[667] | 579 | c_w(nzb:nzt+1,nxlg:nxrg) ) |
---|
[106] | 580 | ENDIF |
---|
[3182] | 581 | IF ( bc_radiation_l .OR. bc_radiation_r .OR. bc_radiation_s .OR. & |
---|
| 582 | bc_radiation_n ) THEN |
---|
[978] | 583 | ALLOCATE( c_u_m_l(nzb:nzt+1), c_v_m_l(nzb:nzt+1), c_w_m_l(nzb:nzt+1) ) |
---|
| 584 | ALLOCATE( c_u_m(nzb:nzt+1), c_v_m(nzb:nzt+1), c_w_m(nzb:nzt+1) ) |
---|
| 585 | ENDIF |
---|
[73] | 586 | |
---|
| 587 | ! |
---|
[1] | 588 | !-- Initial assignment of the pointers |
---|
[1032] | 589 | IF ( .NOT. neutral ) THEN |
---|
| 590 | pt => pt_1; pt_p => pt_2; tpt_m => pt_3 |
---|
| 591 | ELSE |
---|
| 592 | pt => pt_1; pt_p => pt_1; tpt_m => pt_3 |
---|
| 593 | ENDIF |
---|
[1001] | 594 | u => u_1; u_p => u_2; tu_m => u_3 |
---|
| 595 | v => v_1; v_p => v_2; tv_m => v_3 |
---|
| 596 | w => w_1; w_p => w_2; tw_m => w_3 |
---|
[1] | 597 | |
---|
[1960] | 598 | IF ( humidity ) THEN |
---|
[1001] | 599 | q => q_1; q_p => q_2; tq_m => q_3 |
---|
[3274] | 600 | vpt => vpt_1 |
---|
[1001] | 601 | ENDIF |
---|
[1960] | 602 | |
---|
| 603 | IF ( passive_scalar ) THEN |
---|
| 604 | s => s_1; s_p => s_2; ts_m => s_3 |
---|
| 605 | ENDIF |
---|
[1] | 606 | |
---|
| 607 | ! |
---|
[2696] | 608 | !-- Initialize surface arrays |
---|
[2232] | 609 | CALL init_surface_arrays |
---|
| 610 | ! |
---|
[3294] | 611 | !-- Allocate arrays for other modules |
---|
[3685] | 612 | CALL module_interface_init_arrays |
---|
[1551] | 613 | |
---|
[1914] | 614 | |
---|
[2320] | 615 | ! |
---|
[709] | 616 | !-- Allocate arrays containing the RK coefficient for calculation of |
---|
| 617 | !-- perturbation pressure and turbulent fluxes. At this point values are |
---|
| 618 | !-- set for pressure calculation during initialization (where no timestep |
---|
| 619 | !-- is done). Further below the values needed within the timestep scheme |
---|
| 620 | !-- will be set. |
---|
[1788] | 621 | ALLOCATE( weight_substep(1:intermediate_timestep_count_max), & |
---|
[1878] | 622 | weight_pres(1:intermediate_timestep_count_max) ) |
---|
[1340] | 623 | weight_substep = 1.0_wp |
---|
| 624 | weight_pres = 1.0_wp |
---|
[1918] | 625 | intermediate_timestep_count = 0 ! needed when simulated_time = 0.0 |
---|
[673] | 626 | |
---|
[3987] | 627 | IF ( debug_output ) CALL debug_message( 'allocating arrays', 'end' ) |
---|
[1918] | 628 | |
---|
[673] | 629 | ! |
---|
[3014] | 630 | !-- Initialize time series |
---|
| 631 | ts_value = 0.0_wp |
---|
| 632 | |
---|
| 633 | ! |
---|
[1918] | 634 | !-- Initialize local summation arrays for routine flow_statistics. |
---|
| 635 | !-- This is necessary because they may not yet have been initialized when they |
---|
| 636 | !-- are called from flow_statistics (or - depending on the chosen model run - |
---|
| 637 | !-- are never initialized) |
---|
| 638 | sums_divnew_l = 0.0_wp |
---|
| 639 | sums_divold_l = 0.0_wp |
---|
| 640 | sums_l_l = 0.0_wp |
---|
| 641 | sums_wsts_bc_l = 0.0_wp |
---|
[3182] | 642 | |
---|
[1918] | 643 | ! |
---|
[1] | 644 | !-- Initialize model variables |
---|
[1788] | 645 | IF ( TRIM( initializing_actions ) /= 'read_restart_data' .AND. & |
---|
[328] | 646 | TRIM( initializing_actions ) /= 'cyclic_fill' ) THEN |
---|
[1] | 647 | ! |
---|
[2696] | 648 | !-- Initialization with provided input data derived from larger-scale model |
---|
| 649 | IF ( INDEX( initializing_actions, 'inifor' ) /= 0 ) THEN |
---|
[3987] | 650 | IF ( debug_output ) CALL debug_message( 'initializing with INIFOR', 'start' ) |
---|
[2696] | 651 | ! |
---|
[3051] | 652 | !-- Read initial 1D profiles or 3D data from NetCDF file, depending |
---|
| 653 | !-- on the provided level-of-detail. |
---|
[2696] | 654 | !-- At the moment, only u, v, w, pt and q are provided. |
---|
| 655 | CALL netcdf_data_input_init_3d |
---|
| 656 | ! |
---|
[3182] | 657 | !-- Please note, Inifor provides data from nzb+1 to nzt. |
---|
| 658 | !-- Bottom and top boundary conditions for Inifor profiles are already |
---|
| 659 | !-- set (just after reading), so that this is not necessary here. |
---|
| 660 | !-- Depending on the provided level-of-detail, initial Inifor data is |
---|
| 661 | !-- either stored on data type (lod=1), or directly on 3D arrays (lod=2). |
---|
| 662 | !-- In order to obtain also initial profiles in case of lod=2 (which |
---|
| 663 | !-- is required for e.g. damping), average over 3D data. |
---|
| 664 | IF( init_3d%lod_u == 1 ) THEN |
---|
| 665 | u_init = init_3d%u_init |
---|
| 666 | ELSEIF( init_3d%lod_u == 2 ) THEN |
---|
| 667 | ALLOCATE( init_l(nzb:nzt+1) ) |
---|
| 668 | DO k = nzb, nzt+1 |
---|
| 669 | init_l(k) = SUM( u(k,nys:nyn,nxl:nxr) ) |
---|
| 670 | ENDDO |
---|
| 671 | init_l = init_l / REAL( ( nx + 1 ) * ( ny + 1 ), KIND = wp ) |
---|
[1384] | 672 | |
---|
[3182] | 673 | #if defined( __parallel ) |
---|
| 674 | CALL MPI_ALLREDUCE( init_l, u_init, nzt+1-nzb+1, & |
---|
| 675 | MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
| 676 | #else |
---|
| 677 | u_init = init_l |
---|
| 678 | #endif |
---|
| 679 | DEALLOCATE( init_l ) |
---|
[3051] | 680 | |
---|
[2696] | 681 | ENDIF |
---|
[3182] | 682 | |
---|
| 683 | IF( init_3d%lod_v == 1 ) THEN |
---|
| 684 | v_init = init_3d%v_init |
---|
| 685 | ELSEIF( init_3d%lod_v == 2 ) THEN |
---|
| 686 | ALLOCATE( init_l(nzb:nzt+1) ) |
---|
| 687 | DO k = nzb, nzt+1 |
---|
| 688 | init_l(k) = SUM( v(k,nys:nyn,nxl:nxr) ) |
---|
| 689 | ENDDO |
---|
| 690 | init_l = init_l / REAL( ( nx + 1 ) * ( ny + 1 ), KIND = wp ) |
---|
[2696] | 691 | |
---|
[3182] | 692 | #if defined( __parallel ) |
---|
| 693 | CALL MPI_ALLREDUCE( init_l, v_init, nzt+1-nzb+1, & |
---|
| 694 | MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
| 695 | #else |
---|
| 696 | v_init = init_l |
---|
| 697 | #endif |
---|
| 698 | DEALLOCATE( init_l ) |
---|
| 699 | ENDIF |
---|
| 700 | IF( .NOT. neutral ) THEN |
---|
| 701 | IF( init_3d%lod_pt == 1 ) THEN |
---|
| 702 | pt_init = init_3d%pt_init |
---|
| 703 | ELSEIF( init_3d%lod_pt == 2 ) THEN |
---|
| 704 | ALLOCATE( init_l(nzb:nzt+1) ) |
---|
| 705 | DO k = nzb, nzt+1 |
---|
| 706 | init_l(k) = SUM( pt(k,nys:nyn,nxl:nxr) ) |
---|
| 707 | ENDDO |
---|
| 708 | init_l = init_l / REAL( ( nx + 1 ) * ( ny + 1 ), KIND = wp ) |
---|
| 709 | |
---|
| 710 | #if defined( __parallel ) |
---|
| 711 | CALL MPI_ALLREDUCE( init_l, pt_init, nzt+1-nzb+1, & |
---|
| 712 | MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
| 713 | #else |
---|
| 714 | pt_init = init_l |
---|
| 715 | #endif |
---|
| 716 | DEALLOCATE( init_l ) |
---|
| 717 | ENDIF |
---|
| 718 | ENDIF |
---|
| 719 | |
---|
| 720 | |
---|
| 721 | IF( humidity ) THEN |
---|
| 722 | IF( init_3d%lod_q == 1 ) THEN |
---|
| 723 | q_init = init_3d%q_init |
---|
| 724 | ELSEIF( init_3d%lod_q == 2 ) THEN |
---|
| 725 | ALLOCATE( init_l(nzb:nzt+1) ) |
---|
| 726 | DO k = nzb, nzt+1 |
---|
| 727 | init_l(k) = SUM( q(k,nys:nyn,nxl:nxr) ) |
---|
| 728 | ENDDO |
---|
| 729 | init_l = init_l / REAL( ( nx + 1 ) * ( ny + 1 ), KIND = wp ) |
---|
| 730 | |
---|
| 731 | #if defined( __parallel ) |
---|
| 732 | CALL MPI_ALLREDUCE( init_l, q_init, nzt+1-nzb+1, & |
---|
| 733 | MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
| 734 | #else |
---|
| 735 | q_init = init_l |
---|
| 736 | #endif |
---|
| 737 | DEALLOCATE( init_l ) |
---|
| 738 | ENDIF |
---|
| 739 | ENDIF |
---|
| 740 | |
---|
[2696] | 741 | ! |
---|
[4130] | 742 | !-- Write initial profiles onto 3D arrays. |
---|
| 743 | !-- Work-around, 3D initialization of u,v,w creates artificial |
---|
| 744 | !-- structures wich correlate with the processor grid. The reason |
---|
| 745 | !-- for this is still unknown. To work-around this, 3D initialization |
---|
| 746 | !-- will be effectively reduce to a 1D initialization where no such |
---|
| 747 | !-- artificial structures appear. |
---|
[2696] | 748 | DO i = nxlg, nxrg |
---|
| 749 | DO j = nysg, nyng |
---|
[4130] | 750 | IF( init_3d%lod_u == 1 .OR. init_3d%lod_u == 2 ) & |
---|
| 751 | u(:,j,i) = u_init(:) |
---|
| 752 | IF( init_3d%lod_v == 1 .OR. init_3d%lod_u == 2 ) & |
---|
| 753 | v(:,j,i) = v_init(:) |
---|
| 754 | IF( .NOT. neutral .AND. & |
---|
| 755 | ( init_3d%lod_pt == 1 .OR. init_3d%lod_pt == 2 ) ) & |
---|
[3051] | 756 | pt(:,j,i) = pt_init(:) |
---|
[4130] | 757 | IF( humidity .AND. & |
---|
| 758 | ( init_3d%lod_q == 1 .OR. init_3d%lod_q == 2 ) ) & |
---|
| 759 | q(:,j,i) = q_init(:) |
---|
[2696] | 760 | ENDDO |
---|
| 761 | ENDDO |
---|
| 762 | ! |
---|
[3182] | 763 | !-- Set geostrophic wind components. |
---|
[2938] | 764 | IF ( init_3d%from_file_ug ) THEN |
---|
| 765 | ug(:) = init_3d%ug_init(:) |
---|
| 766 | ENDIF |
---|
| 767 | IF ( init_3d%from_file_vg ) THEN |
---|
| 768 | vg(:) = init_3d%vg_init(:) |
---|
| 769 | ENDIF |
---|
[3404] | 770 | ! |
---|
| 771 | !-- Set bottom and top boundary condition for geostrophic wind |
---|
[2938] | 772 | ug(nzt+1) = ug(nzt) |
---|
| 773 | vg(nzt+1) = vg(nzt) |
---|
[3404] | 774 | ug(nzb) = ug(nzb+1) |
---|
| 775 | vg(nzb) = vg(nzb+1) |
---|
[2696] | 776 | ! |
---|
| 777 | !-- Set inital w to 0 |
---|
| 778 | w = 0.0_wp |
---|
| 779 | |
---|
| 780 | IF ( passive_scalar ) THEN |
---|
| 781 | DO i = nxlg, nxrg |
---|
| 782 | DO j = nysg, nyng |
---|
| 783 | s(:,j,i) = s_init |
---|
| 784 | ENDDO |
---|
| 785 | ENDDO |
---|
| 786 | ENDIF |
---|
| 787 | |
---|
| 788 | ! |
---|
| 789 | !-- Set velocity components at non-atmospheric / oceanic grid points to |
---|
| 790 | !-- zero. |
---|
[4346] | 791 | u = MERGE( u, 0.0_wp, BTEST( wall_flags_total_0, 1 ) ) |
---|
| 792 | v = MERGE( v, 0.0_wp, BTEST( wall_flags_total_0, 2 ) ) |
---|
| 793 | w = MERGE( w, 0.0_wp, BTEST( wall_flags_total_0, 3 ) ) |
---|
[2700] | 794 | ! |
---|
| 795 | !-- Initialize surface variables, e.g. friction velocity, momentum |
---|
| 796 | !-- fluxes, etc. |
---|
| 797 | CALL init_surfaces |
---|
[2696] | 798 | |
---|
[3987] | 799 | IF ( debug_output ) CALL debug_message( 'initializing with INIFOR', 'end' ) |
---|
[2696] | 800 | ! |
---|
| 801 | !-- Initialization via computed 1D-model profiles |
---|
| 802 | ELSEIF ( INDEX( initializing_actions, 'set_1d-model_profiles' ) /= 0 ) THEN |
---|
| 803 | |
---|
[3987] | 804 | IF ( debug_output ) CALL debug_message( 'initializing with 1D model profiles', 'start' ) |
---|
[1] | 805 | ! |
---|
| 806 | !-- Use solutions of the 1D model as initial profiles, |
---|
| 807 | !-- start 1D model |
---|
| 808 | CALL init_1d_model |
---|
| 809 | ! |
---|
| 810 | !-- Transfer initial profiles to the arrays of the 3D model |
---|
[667] | 811 | DO i = nxlg, nxrg |
---|
| 812 | DO j = nysg, nyng |
---|
[1] | 813 | pt(:,j,i) = pt_init |
---|
| 814 | u(:,j,i) = u1d |
---|
| 815 | v(:,j,i) = v1d |
---|
| 816 | ENDDO |
---|
| 817 | ENDDO |
---|
| 818 | |
---|
[1960] | 819 | IF ( humidity ) THEN |
---|
[667] | 820 | DO i = nxlg, nxrg |
---|
| 821 | DO j = nysg, nyng |
---|
[1] | 822 | q(:,j,i) = q_init |
---|
| 823 | ENDDO |
---|
| 824 | ENDDO |
---|
| 825 | ENDIF |
---|
[2292] | 826 | |
---|
[1960] | 827 | IF ( passive_scalar ) THEN |
---|
| 828 | DO i = nxlg, nxrg |
---|
| 829 | DO j = nysg, nyng |
---|
| 830 | s(:,j,i) = s_init |
---|
| 831 | ENDDO |
---|
| 832 | ENDDO |
---|
| 833 | ENDIF |
---|
[1] | 834 | ! |
---|
| 835 | !-- Store initial profiles for output purposes etc. |
---|
[2696] | 836 | IF ( .NOT. constant_diffusion ) THEN |
---|
[1] | 837 | hom(:,1,25,:) = SPREAD( l1d, 2, statistic_regions+1 ) |
---|
| 838 | ENDIF |
---|
| 839 | ! |
---|
[2696] | 840 | !-- Set velocities back to zero |
---|
[4346] | 841 | u = MERGE( u, 0.0_wp, BTEST( wall_flags_total_0, 1 ) ) |
---|
| 842 | v = MERGE( v, 0.0_wp, BTEST( wall_flags_total_0, 2 ) ) |
---|
[1] | 843 | ! |
---|
[2696] | 844 | !-- WARNING: The extra boundary conditions set after running the |
---|
| 845 | !-- ------- 1D model impose an error on the divergence one layer |
---|
| 846 | !-- below the topography; need to correct later |
---|
| 847 | !-- ATTENTION: Provisional correction for Piacsek & Williams |
---|
| 848 | !-- --------- advection scheme: keep u and v zero one layer below |
---|
| 849 | !-- the topography. |
---|
| 850 | IF ( ibc_uv_b == 1 ) THEN |
---|
[667] | 851 | ! |
---|
[2696] | 852 | !-- Neumann condition |
---|
| 853 | DO i = nxl-1, nxr+1 |
---|
| 854 | DO j = nys-1, nyn+1 |
---|
| 855 | u(nzb,j,i) = u(nzb+1,j,i) |
---|
| 856 | v(nzb,j,i) = v(nzb+1,j,i) |
---|
[1] | 857 | ENDDO |
---|
[2696] | 858 | ENDDO |
---|
[1] | 859 | |
---|
| 860 | ENDIF |
---|
[2618] | 861 | ! |
---|
| 862 | !-- Initialize surface variables, e.g. friction velocity, momentum |
---|
| 863 | !-- fluxes, etc. |
---|
| 864 | CALL init_surfaces |
---|
[1] | 865 | |
---|
[3987] | 866 | IF ( debug_output ) CALL debug_message( 'initializing with 1D model profiles', 'end' ) |
---|
[1384] | 867 | |
---|
[1788] | 868 | ELSEIF ( INDEX(initializing_actions, 'set_constant_profiles') /= 0 ) & |
---|
[1] | 869 | THEN |
---|
[1241] | 870 | |
---|
[3987] | 871 | IF ( debug_output ) CALL debug_message( 'initializing with constant profiles', 'start' ) |
---|
[2259] | 872 | |
---|
| 873 | ! |
---|
[1] | 874 | !-- Use constructed initial profiles (velocity constant with height, |
---|
| 875 | !-- temperature profile with constant gradient) |
---|
[667] | 876 | DO i = nxlg, nxrg |
---|
| 877 | DO j = nysg, nyng |
---|
[1] | 878 | pt(:,j,i) = pt_init |
---|
| 879 | u(:,j,i) = u_init |
---|
| 880 | v(:,j,i) = v_init |
---|
| 881 | ENDDO |
---|
| 882 | ENDDO |
---|
| 883 | ! |
---|
[2758] | 884 | !-- Mask topography |
---|
[4346] | 885 | u = MERGE( u, 0.0_wp, BTEST( wall_flags_total_0, 1 ) ) |
---|
| 886 | v = MERGE( v, 0.0_wp, BTEST( wall_flags_total_0, 2 ) ) |
---|
[2758] | 887 | ! |
---|
[292] | 888 | !-- Set initial horizontal velocities at the lowest computational grid |
---|
| 889 | !-- levels to zero in order to avoid too small time steps caused by the |
---|
| 890 | !-- diffusion limit in the initial phase of a run (at k=1, dz/2 occurs |
---|
[2758] | 891 | !-- in the limiting formula!). |
---|
| 892 | !-- Please note, in case land- or urban-surface model is used and a |
---|
| 893 | !-- spinup is applied, masking the lowest computational level is not |
---|
| 894 | !-- possible as MOST as well as energy-balance parametrizations will not |
---|
| 895 | !-- work with zero wind velocity. |
---|
| 896 | IF ( ibc_uv_b /= 1 .AND. .NOT. spinup ) THEN |
---|
[1815] | 897 | DO i = nxlg, nxrg |
---|
| 898 | DO j = nysg, nyng |
---|
[2232] | 899 | DO k = nzb, nzt |
---|
| 900 | u(k,j,i) = MERGE( u(k,j,i), 0.0_wp, & |
---|
[4346] | 901 | BTEST( wall_flags_total_0(k,j,i), 20 ) ) |
---|
[2232] | 902 | v(k,j,i) = MERGE( v(k,j,i), 0.0_wp, & |
---|
[4346] | 903 | BTEST( wall_flags_total_0(k,j,i), 21 ) ) |
---|
[2232] | 904 | ENDDO |
---|
[1815] | 905 | ENDDO |
---|
| 906 | ENDDO |
---|
| 907 | ENDIF |
---|
[1] | 908 | |
---|
[1960] | 909 | IF ( humidity ) THEN |
---|
[667] | 910 | DO i = nxlg, nxrg |
---|
| 911 | DO j = nysg, nyng |
---|
[1] | 912 | q(:,j,i) = q_init |
---|
| 913 | ENDDO |
---|
| 914 | ENDDO |
---|
| 915 | ENDIF |
---|
[1960] | 916 | |
---|
| 917 | IF ( passive_scalar ) THEN |
---|
| 918 | DO i = nxlg, nxrg |
---|
| 919 | DO j = nysg, nyng |
---|
| 920 | s(:,j,i) = s_init |
---|
| 921 | ENDDO |
---|
| 922 | ENDDO |
---|
| 923 | ENDIF |
---|
[1] | 924 | |
---|
[1920] | 925 | ! |
---|
[1] | 926 | !-- Compute initial temperature field and other constants used in case |
---|
| 927 | !-- of a sloping surface |
---|
| 928 | IF ( sloping_surface ) CALL init_slope |
---|
[2618] | 929 | ! |
---|
| 930 | !-- Initialize surface variables, e.g. friction velocity, momentum |
---|
| 931 | !-- fluxes, etc. |
---|
| 932 | CALL init_surfaces |
---|
[3579] | 933 | |
---|
[3987] | 934 | IF ( debug_output ) CALL debug_message( 'initializing with constant profiles', 'end' ) |
---|
[1384] | 935 | |
---|
[1788] | 936 | ELSEIF ( INDEX(initializing_actions, 'by_user') /= 0 ) & |
---|
[46] | 937 | THEN |
---|
[1384] | 938 | |
---|
[3987] | 939 | IF ( debug_output ) CALL debug_message( 'initializing by user', 'start' ) |
---|
[46] | 940 | ! |
---|
[2618] | 941 | !-- Pre-initialize surface variables, i.e. setting start- and end-indices |
---|
| 942 | !-- at each (j,i)-location. Please note, this does not supersede |
---|
| 943 | !-- user-defined initialization of surface quantities. |
---|
| 944 | CALL init_surfaces |
---|
| 945 | ! |
---|
[46] | 946 | !-- Initialization will completely be done by the user |
---|
| 947 | CALL user_init_3d_model |
---|
| 948 | |
---|
[3987] | 949 | IF ( debug_output ) CALL debug_message( 'initializing by user', 'end' ) |
---|
[1384] | 950 | |
---|
[1] | 951 | ENDIF |
---|
[1384] | 952 | |
---|
[3987] | 953 | IF ( debug_output ) CALL debug_message( 'initializing statistics, boundary conditions, etc.', 'start' ) |
---|
[1384] | 954 | |
---|
[667] | 955 | ! |
---|
| 956 | !-- Bottom boundary |
---|
| 957 | IF ( ibc_uv_b == 0 .OR. ibc_uv_b == 2 ) THEN |
---|
[1340] | 958 | u(nzb,:,:) = 0.0_wp |
---|
| 959 | v(nzb,:,:) = 0.0_wp |
---|
[667] | 960 | ENDIF |
---|
[1] | 961 | |
---|
| 962 | ! |
---|
[151] | 963 | !-- Apply channel flow boundary condition |
---|
[132] | 964 | IF ( TRIM( bc_uv_t ) == 'dirichlet_0' ) THEN |
---|
[1340] | 965 | u(nzt+1,:,:) = 0.0_wp |
---|
| 966 | v(nzt+1,:,:) = 0.0_wp |
---|
[132] | 967 | ENDIF |
---|
| 968 | |
---|
| 969 | ! |
---|
[1] | 970 | !-- Calculate virtual potential temperature |
---|
[1960] | 971 | IF ( humidity ) vpt = pt * ( 1.0_wp + 0.61_wp * q ) |
---|
[1] | 972 | |
---|
| 973 | ! |
---|
[2696] | 974 | !-- Store initial profiles for output purposes etc.. Please note, in case of |
---|
| 975 | !-- initialization of u, v, w, pt, and q via output data derived from larger |
---|
| 976 | !-- scale models, data will not be horizontally homogeneous. Actually, a mean |
---|
| 977 | !-- profile should be calculated before. |
---|
[1] | 978 | hom(:,1,5,:) = SPREAD( u(:,nys,nxl), 2, statistic_regions+1 ) |
---|
| 979 | hom(:,1,6,:) = SPREAD( v(:,nys,nxl), 2, statistic_regions+1 ) |
---|
[667] | 980 | IF ( ibc_uv_b == 0 .OR. ibc_uv_b == 2) THEN |
---|
[1340] | 981 | hom(nzb,1,5,:) = 0.0_wp |
---|
| 982 | hom(nzb,1,6,:) = 0.0_wp |
---|
[1] | 983 | ENDIF |
---|
| 984 | hom(:,1,7,:) = SPREAD( pt(:,nys,nxl), 2, statistic_regions+1 ) |
---|
| 985 | |
---|
[75] | 986 | IF ( humidity ) THEN |
---|
[1] | 987 | ! |
---|
| 988 | !-- Store initial profile of total water content, virtual potential |
---|
| 989 | !-- temperature |
---|
| 990 | hom(:,1,26,:) = SPREAD( q(:,nys,nxl), 2, statistic_regions+1 ) |
---|
| 991 | hom(:,1,29,:) = SPREAD( vpt(:,nys,nxl), 2, statistic_regions+1 ) |
---|
[2696] | 992 | ! |
---|
[3040] | 993 | !-- Store initial profile of mixing ratio and potential |
---|
[2696] | 994 | !-- temperature |
---|
[3274] | 995 | IF ( bulk_cloud_model .OR. cloud_droplets ) THEN |
---|
[1] | 996 | hom(:,1,27,:) = SPREAD( q(:,nys,nxl), 2, statistic_regions+1 ) |
---|
| 997 | hom(:,1,28,:) = SPREAD( pt(:,nys,nxl), 2, statistic_regions+1 ) |
---|
| 998 | ENDIF |
---|
| 999 | ENDIF |
---|
| 1000 | |
---|
[2696] | 1001 | ! |
---|
| 1002 | !-- Store initial scalar profile |
---|
[1] | 1003 | IF ( passive_scalar ) THEN |
---|
[2513] | 1004 | hom(:,1,121,:) = SPREAD( s(:,nys,nxl), 2, statistic_regions+1 ) |
---|
[1] | 1005 | ENDIF |
---|
| 1006 | |
---|
| 1007 | ! |
---|
[1400] | 1008 | !-- Initialize the random number generators (from numerical recipes) |
---|
| 1009 | CALL random_function_ini |
---|
[1429] | 1010 | |
---|
[1400] | 1011 | IF ( random_generator == 'random-parallel' ) THEN |
---|
[3241] | 1012 | CALL init_parallel_random_generator( nx, nys, nyn, nxl, nxr ) |
---|
[1400] | 1013 | ENDIF |
---|
| 1014 | ! |
---|
[1179] | 1015 | !-- Set the reference state to be used in the buoyancy terms (for ocean runs |
---|
| 1016 | !-- the reference state will be set (overwritten) in init_ocean) |
---|
| 1017 | IF ( use_single_reference_value ) THEN |
---|
[1788] | 1018 | IF ( .NOT. humidity ) THEN |
---|
[1179] | 1019 | ref_state(:) = pt_reference |
---|
| 1020 | ELSE |
---|
| 1021 | ref_state(:) = vpt_reference |
---|
| 1022 | ENDIF |
---|
| 1023 | ELSE |
---|
[1788] | 1024 | IF ( .NOT. humidity ) THEN |
---|
[1179] | 1025 | ref_state(:) = pt_init(:) |
---|
| 1026 | ELSE |
---|
| 1027 | ref_state(:) = vpt(:,nys,nxl) |
---|
| 1028 | ENDIF |
---|
| 1029 | ENDIF |
---|
[152] | 1030 | |
---|
| 1031 | ! |
---|
[707] | 1032 | !-- For the moment, vertical velocity is zero |
---|
[1340] | 1033 | w = 0.0_wp |
---|
[1] | 1034 | |
---|
| 1035 | ! |
---|
| 1036 | !-- Initialize array sums (must be defined in first call of pres) |
---|
[1340] | 1037 | sums = 0.0_wp |
---|
[1] | 1038 | |
---|
| 1039 | ! |
---|
[707] | 1040 | !-- In case of iterative solvers, p must get an initial value |
---|
[1575] | 1041 | IF ( psolver(1:9) == 'multigrid' .OR. psolver == 'sor' ) p = 0.0_wp |
---|
[707] | 1042 | ! |
---|
[1] | 1043 | !-- Impose vortex with vertical axis on the initial velocity profile |
---|
| 1044 | IF ( INDEX( initializing_actions, 'initialize_vortex' ) /= 0 ) THEN |
---|
| 1045 | CALL init_rankine |
---|
| 1046 | ENDIF |
---|
| 1047 | |
---|
| 1048 | ! |
---|
[3035] | 1049 | !-- Impose temperature anomaly (advection test only) or warm air bubble |
---|
| 1050 | !-- close to surface |
---|
| 1051 | IF ( INDEX( initializing_actions, 'initialize_ptanom' ) /= 0 .OR. & |
---|
| 1052 | INDEX( initializing_actions, 'initialize_bubble' ) /= 0 ) THEN |
---|
[1] | 1053 | CALL init_pt_anomaly |
---|
| 1054 | ENDIF |
---|
[3035] | 1055 | |
---|
[1] | 1056 | ! |
---|
| 1057 | !-- If required, change the surface temperature at the start of the 3D run |
---|
[1340] | 1058 | IF ( pt_surface_initial_change /= 0.0_wp ) THEN |
---|
[1] | 1059 | pt(nzb,:,:) = pt(nzb,:,:) + pt_surface_initial_change |
---|
| 1060 | ENDIF |
---|
| 1061 | |
---|
| 1062 | ! |
---|
| 1063 | !-- If required, change the surface humidity/scalar at the start of the 3D |
---|
| 1064 | !-- run |
---|
[1960] | 1065 | IF ( humidity .AND. q_surface_initial_change /= 0.0_wp ) & |
---|
[1] | 1066 | q(nzb,:,:) = q(nzb,:,:) + q_surface_initial_change |
---|
[1960] | 1067 | |
---|
| 1068 | IF ( passive_scalar .AND. s_surface_initial_change /= 0.0_wp ) & |
---|
| 1069 | s(nzb,:,:) = s(nzb,:,:) + s_surface_initial_change |
---|
| 1070 | |
---|
[1] | 1071 | |
---|
| 1072 | ! |
---|
| 1073 | !-- Initialize old and new time levels. |
---|
[2696] | 1074 | tpt_m = 0.0_wp; tu_m = 0.0_wp; tv_m = 0.0_wp; tw_m = 0.0_wp |
---|
| 1075 | pt_p = pt; u_p = u; v_p = v; w_p = w |
---|
[1] | 1076 | |
---|
[1960] | 1077 | IF ( humidity ) THEN |
---|
[1340] | 1078 | tq_m = 0.0_wp |
---|
[1] | 1079 | q_p = q |
---|
| 1080 | ENDIF |
---|
[1960] | 1081 | |
---|
| 1082 | IF ( passive_scalar ) THEN |
---|
| 1083 | ts_m = 0.0_wp |
---|
| 1084 | s_p = s |
---|
| 1085 | ENDIF |
---|
[1] | 1086 | |
---|
[3987] | 1087 | IF ( debug_output ) CALL debug_message( 'initializing statistics, boundary conditions, etc.', 'end' ) |
---|
[94] | 1088 | |
---|
[1788] | 1089 | ELSEIF ( TRIM( initializing_actions ) == 'read_restart_data' .OR. & |
---|
[2232] | 1090 | TRIM( initializing_actions ) == 'cyclic_fill' ) & |
---|
[1] | 1091 | THEN |
---|
[1384] | 1092 | |
---|
[3987] | 1093 | IF ( debug_output ) CALL debug_message( 'initializing in case of restart / cyclic_fill', 'start' ) |
---|
[1] | 1094 | ! |
---|
[3609] | 1095 | !-- Initialize surface elements and its attributes, e.g. heat- and |
---|
| 1096 | !-- momentumfluxes, roughness, scaling parameters. As number of surface |
---|
| 1097 | !-- elements might be different between runs, e.g. in case of cyclic fill, |
---|
| 1098 | !-- and not all surface elements are read, surface elements need to be |
---|
| 1099 | !-- initialized before. |
---|
| 1100 | !-- Please note, in case of cyclic fill, surfaces should be initialized |
---|
| 1101 | !-- after restart data is read, else, individual settings of surface |
---|
| 1102 | !-- parameters will be overwritten from data of precursor run, hence, |
---|
| 1103 | !-- init_surfaces is called a second time after reading the restart data. |
---|
| 1104 | CALL init_surfaces |
---|
| 1105 | ! |
---|
[767] | 1106 | !-- When reading data for cyclic fill of 3D prerun data files, read |
---|
| 1107 | !-- some of the global variables from the restart file which are required |
---|
| 1108 | !-- for initializing the inflow |
---|
[328] | 1109 | IF ( TRIM( initializing_actions ) == 'cyclic_fill' ) THEN |
---|
[559] | 1110 | |
---|
[759] | 1111 | DO i = 0, io_blocks-1 |
---|
| 1112 | IF ( i == io_group ) THEN |
---|
[2894] | 1113 | CALL rrd_read_parts_of_global |
---|
[759] | 1114 | ENDIF |
---|
| 1115 | #if defined( __parallel ) |
---|
| 1116 | CALL MPI_BARRIER( comm2d, ierr ) |
---|
| 1117 | #endif |
---|
| 1118 | ENDDO |
---|
[328] | 1119 | |
---|
[767] | 1120 | ENDIF |
---|
| 1121 | |
---|
[151] | 1122 | ! |
---|
[2894] | 1123 | !-- Read processor specific binary data from restart file |
---|
[767] | 1124 | DO i = 0, io_blocks-1 |
---|
| 1125 | IF ( i == io_group ) THEN |
---|
[2894] | 1126 | CALL rrd_local |
---|
[767] | 1127 | ENDIF |
---|
| 1128 | #if defined( __parallel ) |
---|
| 1129 | CALL MPI_BARRIER( comm2d, ierr ) |
---|
| 1130 | #endif |
---|
| 1131 | ENDDO |
---|
[4365] | 1132 | |
---|
| 1133 | |
---|
| 1134 | IF ( TRIM( initializing_actions ) == 'cyclic_fill' ) THEN |
---|
| 1135 | |
---|
[3608] | 1136 | ! |
---|
[4365] | 1137 | !-- In case of cyclic fill, call init_surfaces a second time, so that |
---|
| 1138 | !-- surface properties such as heat fluxes are initialized as prescribed. |
---|
[3609] | 1139 | CALL init_surfaces |
---|
[767] | 1140 | |
---|
[328] | 1141 | ! |
---|
[4365] | 1142 | !-- Overwrite u_init, v_init, pt_init, q_init and s_init with the |
---|
| 1143 | !-- horizontally mean (hom) vertical profiles from the end |
---|
| 1144 | !-- of the prerun, because these profiles shall be used as the reference |
---|
| 1145 | !-- state for the rayleigh damping and the pt_damping. This is especially |
---|
| 1146 | !-- important for the use of large_scale_subsidence, because the |
---|
| 1147 | !-- reference temperature in the free atmosphere changes in time. |
---|
| 1148 | u_init(:) = hom_sum(:,1,0) |
---|
| 1149 | v_init(:) = hom_sum(:,2,0) |
---|
| 1150 | pt_init(:) = hom_sum(:,4,0) |
---|
| 1151 | IF ( humidity ) & |
---|
| 1152 | q_init(:) = hom_sum(:,41,0) |
---|
| 1153 | IF ( passive_scalar ) & |
---|
| 1154 | s_init(:) = hom_sum(:,115,0) |
---|
| 1155 | ENDIF |
---|
| 1156 | ! |
---|
[2550] | 1157 | !-- In case of complex terrain and cyclic fill method as initialization, |
---|
| 1158 | !-- shift initial data in the vertical direction for each point in the |
---|
| 1159 | !-- x-y-plane depending on local surface height |
---|
| 1160 | IF ( complex_terrain .AND. & |
---|
| 1161 | TRIM( initializing_actions ) == 'cyclic_fill' ) THEN |
---|
| 1162 | DO i = nxlg, nxrg |
---|
| 1163 | DO j = nysg, nyng |
---|
[4168] | 1164 | nz_u_shift = topo_top_ind(j,i,1) |
---|
| 1165 | nz_v_shift = topo_top_ind(j,i,2) |
---|
| 1166 | nz_w_shift = topo_top_ind(j,i,3) |
---|
| 1167 | nz_s_shift = topo_top_ind(j,i,0) |
---|
[2550] | 1168 | |
---|
| 1169 | u(nz_u_shift:nzt+1,j,i) = u(0:nzt+1-nz_u_shift,j,i) |
---|
| 1170 | |
---|
| 1171 | v(nz_v_shift:nzt+1,j,i) = v(0:nzt+1-nz_v_shift,j,i) |
---|
| 1172 | |
---|
| 1173 | w(nz_w_shift:nzt+1,j,i) = w(0:nzt+1-nz_w_shift,j,i) |
---|
| 1174 | |
---|
| 1175 | p(nz_s_shift:nzt+1,j,i) = p(0:nzt+1-nz_s_shift,j,i) |
---|
| 1176 | pt(nz_s_shift:nzt+1,j,i) = pt(0:nzt+1-nz_s_shift,j,i) |
---|
| 1177 | ENDDO |
---|
| 1178 | ENDDO |
---|
| 1179 | ENDIF |
---|
| 1180 | ! |
---|
[767] | 1181 | !-- Initialization of the turbulence recycling method |
---|
[1788] | 1182 | IF ( TRIM( initializing_actions ) == 'cyclic_fill' .AND. & |
---|
[767] | 1183 | turbulent_inflow ) THEN |
---|
| 1184 | ! |
---|
| 1185 | !-- First store the profiles to be used at the inflow. |
---|
| 1186 | !-- These profiles are the (temporally) and horizontally averaged vertical |
---|
| 1187 | !-- profiles from the prerun. Alternatively, prescribed profiles |
---|
[4185] | 1188 | !-- for u,v-components can be used. |
---|
[3288] | 1189 | ALLOCATE( mean_inflow_profiles(nzb:nzt+1,1:num_mean_inflow_profiles) ) |
---|
[151] | 1190 | |
---|
[767] | 1191 | IF ( use_prescribed_profile_data ) THEN |
---|
| 1192 | mean_inflow_profiles(:,1) = u_init ! u |
---|
| 1193 | mean_inflow_profiles(:,2) = v_init ! v |
---|
| 1194 | ELSE |
---|
[328] | 1195 | mean_inflow_profiles(:,1) = hom_sum(:,1,0) ! u |
---|
| 1196 | mean_inflow_profiles(:,2) = hom_sum(:,2,0) ! v |
---|
[767] | 1197 | ENDIF |
---|
| 1198 | mean_inflow_profiles(:,4) = hom_sum(:,4,0) ! pt |
---|
[1960] | 1199 | IF ( humidity ) & |
---|
| 1200 | mean_inflow_profiles(:,6) = hom_sum(:,41,0) ! q |
---|
| 1201 | IF ( passive_scalar ) & |
---|
| 1202 | mean_inflow_profiles(:,7) = hom_sum(:,115,0) ! s |
---|
[4365] | 1203 | |
---|
[2550] | 1204 | ! |
---|
| 1205 | !-- In case of complex terrain, determine vertical displacement at inflow |
---|
| 1206 | !-- boundary and adjust mean inflow profiles |
---|
| 1207 | IF ( complex_terrain ) THEN |
---|
| 1208 | IF ( nxlg <= 0 .AND. nxrg >= 0 .AND. nysg <= 0 .AND. nyng >= 0 ) THEN |
---|
[4168] | 1209 | nz_u_shift_l = topo_top_ind(j,i,1) |
---|
| 1210 | nz_v_shift_l = topo_top_ind(j,i,2) |
---|
| 1211 | nz_w_shift_l = topo_top_ind(j,i,3) |
---|
| 1212 | nz_s_shift_l = topo_top_ind(j,i,0) |
---|
[2550] | 1213 | ELSE |
---|
| 1214 | nz_u_shift_l = 0 |
---|
| 1215 | nz_v_shift_l = 0 |
---|
| 1216 | nz_w_shift_l = 0 |
---|
| 1217 | nz_s_shift_l = 0 |
---|
| 1218 | ENDIF |
---|
[151] | 1219 | |
---|
[2550] | 1220 | #if defined( __parallel ) |
---|
| 1221 | CALL MPI_ALLREDUCE(nz_u_shift_l, nz_u_shift, 1, MPI_INTEGER, & |
---|
| 1222 | MPI_MAX, comm2d, ierr) |
---|
| 1223 | CALL MPI_ALLREDUCE(nz_v_shift_l, nz_v_shift, 1, MPI_INTEGER, & |
---|
| 1224 | MPI_MAX, comm2d, ierr) |
---|
| 1225 | CALL MPI_ALLREDUCE(nz_w_shift_l, nz_w_shift, 1, MPI_INTEGER, & |
---|
| 1226 | MPI_MAX, comm2d, ierr) |
---|
| 1227 | CALL MPI_ALLREDUCE(nz_s_shift_l, nz_s_shift, 1, MPI_INTEGER, & |
---|
| 1228 | MPI_MAX, comm2d, ierr) |
---|
| 1229 | #else |
---|
| 1230 | nz_u_shift = nz_u_shift_l |
---|
| 1231 | nz_v_shift = nz_v_shift_l |
---|
| 1232 | nz_w_shift = nz_w_shift_l |
---|
| 1233 | nz_s_shift = nz_s_shift_l |
---|
| 1234 | #endif |
---|
| 1235 | |
---|
| 1236 | mean_inflow_profiles(:,1) = 0.0_wp |
---|
| 1237 | mean_inflow_profiles(nz_u_shift:nzt+1,1) = hom_sum(0:nzt+1-nz_u_shift,1,0) ! u |
---|
| 1238 | |
---|
| 1239 | mean_inflow_profiles(:,2) = 0.0_wp |
---|
| 1240 | mean_inflow_profiles(nz_v_shift:nzt+1,2) = hom_sum(0:nzt+1-nz_v_shift,2,0) ! v |
---|
| 1241 | |
---|
| 1242 | mean_inflow_profiles(nz_s_shift:nzt+1,4) = hom_sum(0:nzt+1-nz_s_shift,4,0) ! pt |
---|
| 1243 | |
---|
| 1244 | ENDIF |
---|
| 1245 | |
---|
[151] | 1246 | ! |
---|
[767] | 1247 | !-- If necessary, adjust the horizontal flow field to the prescribed |
---|
| 1248 | !-- profiles |
---|
| 1249 | IF ( use_prescribed_profile_data ) THEN |
---|
| 1250 | DO i = nxlg, nxrg |
---|
[667] | 1251 | DO j = nysg, nyng |
---|
[328] | 1252 | DO k = nzb, nzt+1 |
---|
[767] | 1253 | u(k,j,i) = u(k,j,i) - hom_sum(k,1,0) + u_init(k) |
---|
| 1254 | v(k,j,i) = v(k,j,i) - hom_sum(k,2,0) + v_init(k) |
---|
[328] | 1255 | ENDDO |
---|
[151] | 1256 | ENDDO |
---|
[767] | 1257 | ENDDO |
---|
| 1258 | ENDIF |
---|
[151] | 1259 | |
---|
| 1260 | ! |
---|
[767] | 1261 | !-- Use these mean profiles at the inflow (provided that Dirichlet |
---|
| 1262 | !-- conditions are used) |
---|
[3182] | 1263 | IF ( bc_dirichlet_l ) THEN |
---|
[767] | 1264 | DO j = nysg, nyng |
---|
| 1265 | DO k = nzb, nzt+1 |
---|
| 1266 | u(k,j,nxlg:-1) = mean_inflow_profiles(k,1) |
---|
| 1267 | v(k,j,nxlg:-1) = mean_inflow_profiles(k,2) |
---|
[1340] | 1268 | w(k,j,nxlg:-1) = 0.0_wp |
---|
[767] | 1269 | pt(k,j,nxlg:-1) = mean_inflow_profiles(k,4) |
---|
[1960] | 1270 | IF ( humidity ) & |
---|
[1615] | 1271 | q(k,j,nxlg:-1) = mean_inflow_profiles(k,6) |
---|
[1960] | 1272 | IF ( passive_scalar ) & |
---|
| 1273 | s(k,j,nxlg:-1) = mean_inflow_profiles(k,7) |
---|
[767] | 1274 | ENDDO |
---|
| 1275 | ENDDO |
---|
| 1276 | ENDIF |
---|
| 1277 | |
---|
[151] | 1278 | ! |
---|
[767] | 1279 | !-- Calculate the damping factors to be used at the inflow. For a |
---|
| 1280 | !-- turbulent inflow the turbulent fluctuations have to be limited |
---|
| 1281 | !-- vertically because otherwise the turbulent inflow layer will grow |
---|
| 1282 | !-- in time. |
---|
[1340] | 1283 | IF ( inflow_damping_height == 9999999.9_wp ) THEN |
---|
[767] | 1284 | ! |
---|
| 1285 | !-- Default: use the inversion height calculated by the prerun; if |
---|
| 1286 | !-- this is zero, inflow_damping_height must be explicitly |
---|
| 1287 | !-- specified. |
---|
[1340] | 1288 | IF ( hom_sum(nzb+6,pr_palm,0) /= 0.0_wp ) THEN |
---|
[767] | 1289 | inflow_damping_height = hom_sum(nzb+6,pr_palm,0) |
---|
| 1290 | ELSE |
---|
[1788] | 1291 | WRITE( message_string, * ) 'inflow_damping_height must be ', & |
---|
| 1292 | 'explicitly specified because&the inversion height ', & |
---|
[767] | 1293 | 'calculated by the prerun is zero.' |
---|
| 1294 | CALL message( 'init_3d_model', 'PA0318', 1, 2, 0, 6, 0 ) |
---|
[292] | 1295 | ENDIF |
---|
[151] | 1296 | |
---|
[767] | 1297 | ENDIF |
---|
| 1298 | |
---|
[1340] | 1299 | IF ( inflow_damping_width == 9999999.9_wp ) THEN |
---|
[151] | 1300 | ! |
---|
[767] | 1301 | !-- Default for the transition range: one tenth of the undamped |
---|
| 1302 | !-- layer |
---|
[1340] | 1303 | inflow_damping_width = 0.1_wp * inflow_damping_height |
---|
[151] | 1304 | |
---|
[767] | 1305 | ENDIF |
---|
[151] | 1306 | |
---|
[767] | 1307 | ALLOCATE( inflow_damping_factor(nzb:nzt+1) ) |
---|
[151] | 1308 | |
---|
[767] | 1309 | DO k = nzb, nzt+1 |
---|
[151] | 1310 | |
---|
[767] | 1311 | IF ( zu(k) <= inflow_damping_height ) THEN |
---|
[1340] | 1312 | inflow_damping_factor(k) = 1.0_wp |
---|
[996] | 1313 | ELSEIF ( zu(k) <= ( inflow_damping_height + inflow_damping_width ) ) THEN |
---|
[1340] | 1314 | inflow_damping_factor(k) = 1.0_wp - & |
---|
[996] | 1315 | ( zu(k) - inflow_damping_height ) / & |
---|
| 1316 | inflow_damping_width |
---|
[767] | 1317 | ELSE |
---|
[1340] | 1318 | inflow_damping_factor(k) = 0.0_wp |
---|
[767] | 1319 | ENDIF |
---|
[151] | 1320 | |
---|
[767] | 1321 | ENDDO |
---|
[151] | 1322 | |
---|
[147] | 1323 | ENDIF |
---|
| 1324 | |
---|
[152] | 1325 | ! |
---|
[2696] | 1326 | !-- Inside buildings set velocities back to zero |
---|
[1788] | 1327 | IF ( TRIM( initializing_actions ) == 'cyclic_fill' .AND. & |
---|
[359] | 1328 | topography /= 'flat' ) THEN |
---|
| 1329 | ! |
---|
[2696] | 1330 | !-- Inside buildings set velocities back to zero. |
---|
| 1331 | !-- Other scalars (pt, q, s, p, sa, ...) are ignored at present, |
---|
[359] | 1332 | !-- maybe revise later. |
---|
[1001] | 1333 | DO i = nxlg, nxrg |
---|
| 1334 | DO j = nysg, nyng |
---|
[2232] | 1335 | DO k = nzb, nzt |
---|
| 1336 | u(k,j,i) = MERGE( u(k,j,i), 0.0_wp, & |
---|
[4346] | 1337 | BTEST( wall_flags_total_0(k,j,i), 1 ) ) |
---|
[2232] | 1338 | v(k,j,i) = MERGE( v(k,j,i), 0.0_wp, & |
---|
[4346] | 1339 | BTEST( wall_flags_total_0(k,j,i), 2 ) ) |
---|
[2232] | 1340 | w(k,j,i) = MERGE( w(k,j,i), 0.0_wp, & |
---|
[4346] | 1341 | BTEST( wall_flags_total_0(k,j,i), 3 ) ) |
---|
[2232] | 1342 | ENDDO |
---|
[359] | 1343 | ENDDO |
---|
[1001] | 1344 | ENDDO |
---|
[359] | 1345 | |
---|
| 1346 | ENDIF |
---|
| 1347 | |
---|
| 1348 | ! |
---|
[1] | 1349 | !-- Calculate initial temperature field and other constants used in case |
---|
| 1350 | !-- of a sloping surface |
---|
| 1351 | IF ( sloping_surface ) CALL init_slope |
---|
| 1352 | |
---|
| 1353 | ! |
---|
| 1354 | !-- Initialize new time levels (only done in order to set boundary values |
---|
| 1355 | !-- including ghost points) |
---|
[2696] | 1356 | pt_p = pt; u_p = u; v_p = v; w_p = w |
---|
[1960] | 1357 | IF ( humidity ) THEN |
---|
[1053] | 1358 | q_p = q |
---|
| 1359 | ENDIF |
---|
[1960] | 1360 | IF ( passive_scalar ) s_p = s |
---|
[181] | 1361 | ! |
---|
| 1362 | !-- Allthough tendency arrays are set in prognostic_equations, they have |
---|
| 1363 | !-- have to be predefined here because they are used (but multiplied with 0) |
---|
| 1364 | !-- there before they are set. |
---|
[2696] | 1365 | tpt_m = 0.0_wp; tu_m = 0.0_wp; tv_m = 0.0_wp; tw_m = 0.0_wp |
---|
[1960] | 1366 | IF ( humidity ) THEN |
---|
[1340] | 1367 | tq_m = 0.0_wp |
---|
[1053] | 1368 | ENDIF |
---|
[1960] | 1369 | IF ( passive_scalar ) ts_m = 0.0_wp |
---|
[181] | 1370 | |
---|
[3987] | 1371 | IF ( debug_output ) CALL debug_message( 'initializing in case of restart / cyclic_fill', 'end' ) |
---|
[1384] | 1372 | |
---|
[1] | 1373 | ELSE |
---|
| 1374 | ! |
---|
| 1375 | !-- Actually this part of the programm should not be reached |
---|
[254] | 1376 | message_string = 'unknown initializing problem' |
---|
| 1377 | CALL message( 'init_3d_model', 'PA0193', 1, 2, 0, 6, 0 ) |
---|
[1] | 1378 | ENDIF |
---|
| 1379 | |
---|
[151] | 1380 | |
---|
| 1381 | IF ( TRIM( initializing_actions ) /= 'read_restart_data' ) THEN |
---|
[1] | 1382 | ! |
---|
[151] | 1383 | !-- Initialize old timelevels needed for radiation boundary conditions |
---|
[3182] | 1384 | IF ( bc_radiation_l ) THEN |
---|
[151] | 1385 | u_m_l(:,:,:) = u(:,:,1:2) |
---|
| 1386 | v_m_l(:,:,:) = v(:,:,0:1) |
---|
| 1387 | w_m_l(:,:,:) = w(:,:,0:1) |
---|
| 1388 | ENDIF |
---|
[3182] | 1389 | IF ( bc_radiation_r ) THEN |
---|
[151] | 1390 | u_m_r(:,:,:) = u(:,:,nx-1:nx) |
---|
| 1391 | v_m_r(:,:,:) = v(:,:,nx-1:nx) |
---|
| 1392 | w_m_r(:,:,:) = w(:,:,nx-1:nx) |
---|
| 1393 | ENDIF |
---|
[3182] | 1394 | IF ( bc_radiation_s ) THEN |
---|
[151] | 1395 | u_m_s(:,:,:) = u(:,0:1,:) |
---|
| 1396 | v_m_s(:,:,:) = v(:,1:2,:) |
---|
| 1397 | w_m_s(:,:,:) = w(:,0:1,:) |
---|
| 1398 | ENDIF |
---|
[3182] | 1399 | IF ( bc_radiation_n ) THEN |
---|
[151] | 1400 | u_m_n(:,:,:) = u(:,ny-1:ny,:) |
---|
| 1401 | v_m_n(:,:,:) = v(:,ny-1:ny,:) |
---|
| 1402 | w_m_n(:,:,:) = w(:,ny-1:ny,:) |
---|
| 1403 | ENDIF |
---|
[667] | 1404 | |
---|
[151] | 1405 | ENDIF |
---|
[680] | 1406 | |
---|
[667] | 1407 | ! |
---|
| 1408 | !-- Calculate the initial volume flow at the right and north boundary |
---|
[709] | 1409 | IF ( conserve_volume_flow ) THEN |
---|
[151] | 1410 | |
---|
[767] | 1411 | IF ( use_prescribed_profile_data ) THEN |
---|
[667] | 1412 | |
---|
[1340] | 1413 | volume_flow_initial_l = 0.0_wp |
---|
| 1414 | volume_flow_area_l = 0.0_wp |
---|
[732] | 1415 | |
---|
[667] | 1416 | IF ( nxr == nx ) THEN |
---|
| 1417 | DO j = nys, nyn |
---|
[2232] | 1418 | DO k = nzb+1, nzt |
---|
[4346] | 1419 | volume_flow_initial_l(1) = volume_flow_initial_l(1) + & |
---|
| 1420 | u_init(k) * dzw(k) & |
---|
| 1421 | * MERGE( 1.0_wp, 0.0_wp, & |
---|
| 1422 | BTEST( wall_flags_total_0(k,j,nxr), 1 )& |
---|
[2232] | 1423 | ) |
---|
| 1424 | |
---|
[4346] | 1425 | volume_flow_area_l(1) = volume_flow_area_l(1) + dzw(k) & |
---|
| 1426 | * MERGE( 1.0_wp, 0.0_wp, & |
---|
| 1427 | BTEST( wall_flags_total_0(k,j,nxr), 1 )& |
---|
[2232] | 1428 | ) |
---|
[767] | 1429 | ENDDO |
---|
| 1430 | ENDDO |
---|
| 1431 | ENDIF |
---|
| 1432 | |
---|
| 1433 | IF ( nyn == ny ) THEN |
---|
| 1434 | DO i = nxl, nxr |
---|
[2232] | 1435 | DO k = nzb+1, nzt |
---|
[4346] | 1436 | volume_flow_initial_l(2) = volume_flow_initial_l(2) + & |
---|
| 1437 | v_init(k) * dzw(k) & |
---|
| 1438 | * MERGE( 1.0_wp, 0.0_wp, & |
---|
| 1439 | BTEST( wall_flags_total_0(k,nyn,i), 2 )& |
---|
[2232] | 1440 | ) |
---|
[4346] | 1441 | volume_flow_area_l(2) = volume_flow_area_l(2) + dzw(k) & |
---|
| 1442 | * MERGE( 1.0_wp, 0.0_wp, & |
---|
| 1443 | BTEST( wall_flags_total_0(k,nyn,i), 2 )& |
---|
[2232] | 1444 | ) |
---|
[767] | 1445 | ENDDO |
---|
| 1446 | ENDDO |
---|
| 1447 | ENDIF |
---|
| 1448 | |
---|
| 1449 | #if defined( __parallel ) |
---|
| 1450 | CALL MPI_ALLREDUCE( volume_flow_initial_l(1), volume_flow_initial(1),& |
---|
| 1451 | 2, MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
| 1452 | CALL MPI_ALLREDUCE( volume_flow_area_l(1), volume_flow_area(1), & |
---|
| 1453 | 2, MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
| 1454 | |
---|
| 1455 | #else |
---|
| 1456 | volume_flow_initial = volume_flow_initial_l |
---|
| 1457 | volume_flow_area = volume_flow_area_l |
---|
| 1458 | #endif |
---|
| 1459 | |
---|
| 1460 | ELSEIF ( TRIM( initializing_actions ) == 'cyclic_fill' ) THEN |
---|
| 1461 | |
---|
[1340] | 1462 | volume_flow_initial_l = 0.0_wp |
---|
| 1463 | volume_flow_area_l = 0.0_wp |
---|
[767] | 1464 | |
---|
| 1465 | IF ( nxr == nx ) THEN |
---|
| 1466 | DO j = nys, nyn |
---|
[2232] | 1467 | DO k = nzb+1, nzt |
---|
[4346] | 1468 | volume_flow_initial_l(1) = volume_flow_initial_l(1) + & |
---|
| 1469 | hom_sum(k,1,0) * dzw(k) & |
---|
| 1470 | * MERGE( 1.0_wp, 0.0_wp, & |
---|
| 1471 | BTEST( wall_flags_total_0(k,j,nx), 1 ) & |
---|
[2232] | 1472 | ) |
---|
[4346] | 1473 | volume_flow_area_l(1) = volume_flow_area_l(1) + dzw(k) & |
---|
| 1474 | * MERGE( 1.0_wp, 0.0_wp, & |
---|
| 1475 | BTEST( wall_flags_total_0(k,j,nx), 1 ) & |
---|
[2232] | 1476 | ) |
---|
[667] | 1477 | ENDDO |
---|
| 1478 | ENDDO |
---|
| 1479 | ENDIF |
---|
| 1480 | |
---|
| 1481 | IF ( nyn == ny ) THEN |
---|
| 1482 | DO i = nxl, nxr |
---|
[2232] | 1483 | DO k = nzb+1, nzt |
---|
[4346] | 1484 | volume_flow_initial_l(2) = volume_flow_initial_l(2) + & |
---|
| 1485 | hom_sum(k,2,0) * dzw(k) & |
---|
| 1486 | * MERGE( 1.0_wp, 0.0_wp, & |
---|
| 1487 | BTEST( wall_flags_total_0(k,ny,i), 2 ) & |
---|
[2232] | 1488 | ) |
---|
[4346] | 1489 | volume_flow_area_l(2) = volume_flow_area_l(2) + dzw(k) & |
---|
| 1490 | * MERGE( 1.0_wp, 0.0_wp, & |
---|
| 1491 | BTEST( wall_flags_total_0(k,ny,i), 2 ) & |
---|
[2232] | 1492 | ) |
---|
[667] | 1493 | ENDDO |
---|
| 1494 | ENDDO |
---|
| 1495 | ENDIF |
---|
| 1496 | |
---|
[732] | 1497 | #if defined( __parallel ) |
---|
| 1498 | CALL MPI_ALLREDUCE( volume_flow_initial_l(1), volume_flow_initial(1),& |
---|
| 1499 | 2, MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
| 1500 | CALL MPI_ALLREDUCE( volume_flow_area_l(1), volume_flow_area(1), & |
---|
| 1501 | 2, MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
| 1502 | |
---|
| 1503 | #else |
---|
| 1504 | volume_flow_initial = volume_flow_initial_l |
---|
| 1505 | volume_flow_area = volume_flow_area_l |
---|
| 1506 | #endif |
---|
| 1507 | |
---|
[667] | 1508 | ELSEIF ( TRIM( initializing_actions ) /= 'read_restart_data' ) THEN |
---|
| 1509 | |
---|
[1340] | 1510 | volume_flow_initial_l = 0.0_wp |
---|
| 1511 | volume_flow_area_l = 0.0_wp |
---|
[732] | 1512 | |
---|
[667] | 1513 | IF ( nxr == nx ) THEN |
---|
| 1514 | DO j = nys, nyn |
---|
[2232] | 1515 | DO k = nzb+1, nzt |
---|
[4346] | 1516 | volume_flow_initial_l(1) = volume_flow_initial_l(1) + & |
---|
| 1517 | u(k,j,nx) * dzw(k) & |
---|
| 1518 | * MERGE( 1.0_wp, 0.0_wp, & |
---|
| 1519 | BTEST( wall_flags_total_0(k,j,nx), 1 ) & |
---|
[2232] | 1520 | ) |
---|
[4346] | 1521 | volume_flow_area_l(1) = volume_flow_area_l(1) + dzw(k) & |
---|
| 1522 | * MERGE( 1.0_wp, 0.0_wp, & |
---|
| 1523 | BTEST( wall_flags_total_0(k,j,nx), 1 ) & |
---|
[2232] | 1524 | ) |
---|
[667] | 1525 | ENDDO |
---|
| 1526 | ENDDO |
---|
| 1527 | ENDIF |
---|
| 1528 | |
---|
| 1529 | IF ( nyn == ny ) THEN |
---|
| 1530 | DO i = nxl, nxr |
---|
[2232] | 1531 | DO k = nzb+1, nzt |
---|
[4346] | 1532 | volume_flow_initial_l(2) = volume_flow_initial_l(2) + & |
---|
| 1533 | v(k,ny,i) * dzw(k) & |
---|
| 1534 | * MERGE( 1.0_wp, 0.0_wp, & |
---|
| 1535 | BTEST( wall_flags_total_0(k,ny,i), 2 ) & |
---|
[2232] | 1536 | ) |
---|
[4346] | 1537 | volume_flow_area_l(2) = volume_flow_area_l(2) + dzw(k) & |
---|
| 1538 | * MERGE( 1.0_wp, 0.0_wp, & |
---|
| 1539 | BTEST( wall_flags_total_0(k,ny,i), 2 ) & |
---|
[2232] | 1540 | ) |
---|
[667] | 1541 | ENDDO |
---|
| 1542 | ENDDO |
---|
| 1543 | ENDIF |
---|
| 1544 | |
---|
| 1545 | #if defined( __parallel ) |
---|
[732] | 1546 | CALL MPI_ALLREDUCE( volume_flow_initial_l(1), volume_flow_initial(1),& |
---|
| 1547 | 2, MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
| 1548 | CALL MPI_ALLREDUCE( volume_flow_area_l(1), volume_flow_area(1), & |
---|
| 1549 | 2, MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
[667] | 1550 | |
---|
| 1551 | #else |
---|
[732] | 1552 | volume_flow_initial = volume_flow_initial_l |
---|
| 1553 | volume_flow_area = volume_flow_area_l |
---|
[667] | 1554 | #endif |
---|
| 1555 | |
---|
[732] | 1556 | ENDIF |
---|
| 1557 | |
---|
[151] | 1558 | ! |
---|
[709] | 1559 | !-- In case of 'bulk_velocity' mode, volume_flow_initial is calculated |
---|
| 1560 | !-- from u|v_bulk instead |
---|
[680] | 1561 | IF ( TRIM( conserve_volume_flow_mode ) == 'bulk_velocity' ) THEN |
---|
| 1562 | volume_flow_initial(1) = u_bulk * volume_flow_area(1) |
---|
| 1563 | volume_flow_initial(2) = v_bulk * volume_flow_area(2) |
---|
| 1564 | ENDIF |
---|
[667] | 1565 | |
---|
[680] | 1566 | ENDIF |
---|
[2232] | 1567 | ! |
---|
[4150] | 1568 | !-- In the following, surface properties can be further initialized with |
---|
| 1569 | !-- input from static driver file. |
---|
| 1570 | !-- At the moment this affects only default surfaces. For example, |
---|
| 1571 | !-- roughness length or sensible / latent heat fluxes can be initialized |
---|
| 1572 | !-- heterogeneously for default surfaces. Therefore, a generic routine |
---|
| 1573 | !-- from netcdf_data_input_mod is called to read a 2D array. |
---|
| 1574 | IF ( input_pids_static ) THEN |
---|
| 1575 | ! |
---|
[4151] | 1576 | !-- Allocate memory for possible static input |
---|
| 1577 | ALLOCATE( tmp_2d%var(nys:nyn,nxl:nxr) ) |
---|
| 1578 | tmp_2d%var = 0.0_wp |
---|
| 1579 | ! |
---|
[4150] | 1580 | !-- Open the static input file |
---|
[4151] | 1581 | #if defined( __netcdf ) |
---|
[4150] | 1582 | CALL open_read_file( TRIM( input_file_static ) // & |
---|
| 1583 | TRIM( coupling_char ), & |
---|
[4186] | 1584 | pids_id ) |
---|
[4150] | 1585 | |
---|
[4186] | 1586 | CALL inquire_num_variables( pids_id, num_var_pids ) |
---|
[4150] | 1587 | ! |
---|
| 1588 | !-- Allocate memory to store variable names and read them |
---|
[4186] | 1589 | ALLOCATE( vars_pids(1:num_var_pids) ) |
---|
| 1590 | CALL inquire_variable_names( pids_id, vars_pids ) |
---|
[4150] | 1591 | ! |
---|
| 1592 | !-- Input roughness length. |
---|
[4186] | 1593 | IF ( check_existence( vars_pids, 'z0' ) ) THEN |
---|
[4150] | 1594 | ! |
---|
| 1595 | !-- Read _FillValue attribute |
---|
[4186] | 1596 | CALL get_attribute( pids_id, char_fill, tmp_2d%fill, & |
---|
[4150] | 1597 | .FALSE., 'z0' ) |
---|
| 1598 | ! |
---|
| 1599 | !-- Read variable |
---|
[4186] | 1600 | CALL get_variable( pids_id, 'z0', tmp_2d%var, & |
---|
[4150] | 1601 | nxl, nxr, nys, nyn ) |
---|
| 1602 | ! |
---|
| 1603 | !-- Initialize roughness length. Note, z0 will be only initialized at |
---|
| 1604 | !-- default-type surfaces. At natural or urban z0 is implicitly |
---|
[4514] | 1605 | !-- initialized by the respective parameter lists. |
---|
[4150] | 1606 | !-- Initialize horizontal surface elements. |
---|
| 1607 | CALL init_single_surface_properties( surf_def_h(0)%z0, & |
---|
| 1608 | tmp_2d%var, & |
---|
| 1609 | surf_def_h(0)%ns, & |
---|
| 1610 | tmp_2d%fill, & |
---|
| 1611 | surf_def_h(0)%i, & |
---|
| 1612 | surf_def_h(0)%j ) |
---|
| 1613 | ! |
---|
| 1614 | !-- Initialize roughness also at vertical surface elements. |
---|
| 1615 | !-- Note, the actual 2D input arrays are only defined on the |
---|
| 1616 | !-- subdomain. Therefore, pass the index arrays with their respective |
---|
| 1617 | !-- offset values. |
---|
| 1618 | DO l = 0, 3 |
---|
| 1619 | CALL init_single_surface_properties( & |
---|
| 1620 | surf_def_v(l)%z0, & |
---|
| 1621 | tmp_2d%var, & |
---|
| 1622 | surf_def_v(l)%ns, & |
---|
| 1623 | tmp_2d%fill, & |
---|
| 1624 | surf_def_v(l)%i + surf_def_v(l)%ioff, & |
---|
| 1625 | surf_def_v(l)%j + surf_def_v(l)%joff ) |
---|
| 1626 | ENDDO |
---|
| 1627 | |
---|
| 1628 | ENDIF |
---|
| 1629 | ! |
---|
[4514] | 1630 | !-- Input surface sensible heat flux. |
---|
| 1631 | IF ( check_existence( vars_pids, 'shf' ) ) THEN |
---|
| 1632 | ! |
---|
| 1633 | !-- Read _FillValue attribute |
---|
| 1634 | CALL get_attribute( pids_id, char_fill, tmp_2d%fill, & |
---|
| 1635 | .FALSE., 'shf' ) |
---|
| 1636 | ! |
---|
| 1637 | !-- Read variable |
---|
| 1638 | CALL get_variable( pids_id, 'shf', tmp_2d%var, & |
---|
| 1639 | nxl, nxr, nys, nyn ) |
---|
| 1640 | ! |
---|
| 1641 | !-- Initialize heat flux. Note, shf will be only initialized at |
---|
| 1642 | !-- default-type surfaces. At natural or urban shf is implicitly |
---|
| 1643 | !-- initialized by the respective parameter lists. |
---|
| 1644 | !-- Initialize horizontal surface elements. |
---|
| 1645 | CALL init_single_surface_properties( surf_def_h(0)%shf, & |
---|
| 1646 | tmp_2d%var, & |
---|
| 1647 | surf_def_h(0)%ns, & |
---|
| 1648 | tmp_2d%fill, & |
---|
| 1649 | surf_def_h(0)%i, & |
---|
| 1650 | surf_def_h(0)%j ) |
---|
| 1651 | ! |
---|
| 1652 | !-- Initialize heat flux also at vertical surface elements. |
---|
| 1653 | !-- Note, the actual 2D input arrays are only defined on the |
---|
| 1654 | !-- subdomain. Therefore, pass the index arrays with their respective |
---|
| 1655 | !-- offset values. |
---|
| 1656 | DO l = 0, 3 |
---|
| 1657 | CALL init_single_surface_properties( & |
---|
| 1658 | surf_def_v(l)%shf, & |
---|
| 1659 | tmp_2d%var, & |
---|
| 1660 | surf_def_v(l)%ns, & |
---|
| 1661 | tmp_2d%fill, & |
---|
| 1662 | surf_def_v(l)%i + surf_def_v(l)%ioff, & |
---|
| 1663 | surf_def_v(l)%j + surf_def_v(l)%joff ) |
---|
| 1664 | ENDDO |
---|
| 1665 | |
---|
| 1666 | ENDIF |
---|
| 1667 | ! |
---|
| 1668 | !-- Input surface sensible heat flux. |
---|
| 1669 | IF ( check_existence( vars_pids, 'qsws' ) ) THEN |
---|
| 1670 | ! |
---|
| 1671 | !-- Read _FillValue attribute |
---|
| 1672 | CALL get_attribute( pids_id, char_fill, tmp_2d%fill, & |
---|
| 1673 | .FALSE., 'qsws' ) |
---|
| 1674 | ! |
---|
| 1675 | !-- Read variable |
---|
| 1676 | CALL get_variable( pids_id, 'qsws', tmp_2d%var, & |
---|
| 1677 | nxl, nxr, nys, nyn ) |
---|
| 1678 | ! |
---|
| 1679 | !-- Initialize latent heat flux. Note, qsws will be only initialized at |
---|
| 1680 | !-- default-type surfaces. At natural or urban qsws is implicitly |
---|
| 1681 | !-- initialized by the respective parameter lists. |
---|
| 1682 | !-- Initialize horizontal surface elements. |
---|
| 1683 | CALL init_single_surface_properties( surf_def_h(0)%qsws, & |
---|
| 1684 | tmp_2d%var, & |
---|
| 1685 | surf_def_h(0)%ns, & |
---|
| 1686 | tmp_2d%fill, & |
---|
| 1687 | surf_def_h(0)%i, & |
---|
| 1688 | surf_def_h(0)%j ) |
---|
| 1689 | ! |
---|
| 1690 | !-- Initialize latent heat flux also at vertical surface elements. |
---|
| 1691 | !-- Note, the actual 2D input arrays are only defined on the |
---|
| 1692 | !-- subdomain. Therefore, pass the index arrays with their respective |
---|
| 1693 | !-- offset values. |
---|
| 1694 | DO l = 0, 3 |
---|
| 1695 | CALL init_single_surface_properties( & |
---|
| 1696 | surf_def_v(l)%qsws, & |
---|
| 1697 | tmp_2d%var, & |
---|
| 1698 | surf_def_v(l)%ns, & |
---|
| 1699 | tmp_2d%fill, & |
---|
| 1700 | surf_def_v(l)%i + surf_def_v(l)%ioff, & |
---|
| 1701 | surf_def_v(l)%j + surf_def_v(l)%joff ) |
---|
| 1702 | ENDDO |
---|
| 1703 | |
---|
| 1704 | ENDIF |
---|
| 1705 | ! |
---|
| 1706 | !-- Additional variables, can be initialized the |
---|
[4150] | 1707 | !-- same way. |
---|
[4514] | 1708 | |
---|
[4150] | 1709 | ! |
---|
[4187] | 1710 | !-- Finally, close the input file and deallocate temporary arrays |
---|
| 1711 | DEALLOCATE( vars_pids ) |
---|
| 1712 | |
---|
[4186] | 1713 | CALL close_input_file( pids_id ) |
---|
[4151] | 1714 | #endif |
---|
| 1715 | DEALLOCATE( tmp_2d%var ) |
---|
[4150] | 1716 | ENDIF |
---|
| 1717 | ! |
---|
[2618] | 1718 | !-- Finally, if random_heatflux is set, disturb shf at horizontal |
---|
| 1719 | !-- surfaces. Actually, this should be done in surface_mod, where all other |
---|
| 1720 | !-- initializations of surface quantities are done. However, this |
---|
| 1721 | !-- would create a ring dependency, hence, it is done here. Maybe delete |
---|
| 1722 | !-- disturb_heatflux and tranfer the respective code directly into the |
---|
| 1723 | !-- initialization in surface_mod. |
---|
[2232] | 1724 | IF ( TRIM( initializing_actions ) /= 'read_restart_data' .AND. & |
---|
| 1725 | TRIM( initializing_actions ) /= 'cyclic_fill' ) THEN |
---|
[2618] | 1726 | |
---|
[2232] | 1727 | IF ( use_surface_fluxes .AND. constant_heatflux .AND. & |
---|
| 1728 | random_heatflux ) THEN |
---|
| 1729 | IF ( surf_def_h(0)%ns >= 1 ) CALL disturb_heatflux( surf_def_h(0) ) |
---|
| 1730 | IF ( surf_lsm_h%ns >= 1 ) CALL disturb_heatflux( surf_lsm_h ) |
---|
| 1731 | IF ( surf_usm_h%ns >= 1 ) CALL disturb_heatflux( surf_usm_h ) |
---|
| 1732 | ENDIF |
---|
| 1733 | ENDIF |
---|
[680] | 1734 | |
---|
[787] | 1735 | ! |
---|
[3747] | 1736 | !-- Compute total sum of grid points and the mean surface level height for each |
---|
| 1737 | !-- statistic region. These are mainly used for horizontal averaging of |
---|
| 1738 | !-- turbulence statistics. |
---|
[2696] | 1739 | !-- ngp_2dh: number of grid points of a horizontal cross section through the |
---|
[3747] | 1740 | !-- respective statistic region |
---|
| 1741 | !-- ngp_3d: number of grid points of the respective statistic region |
---|
[2696] | 1742 | ngp_2dh_outer_l = 0 |
---|
| 1743 | ngp_2dh_outer = 0 |
---|
| 1744 | ngp_2dh_s_inner_l = 0 |
---|
| 1745 | ngp_2dh_s_inner = 0 |
---|
| 1746 | ngp_2dh_l = 0 |
---|
| 1747 | ngp_2dh = 0 |
---|
| 1748 | ngp_3d_inner_l = 0.0_wp |
---|
| 1749 | ngp_3d_inner = 0 |
---|
| 1750 | ngp_3d = 0 |
---|
| 1751 | ngp_sums = ( nz + 2 ) * ( pr_palm + max_pr_user ) |
---|
| 1752 | |
---|
| 1753 | mean_surface_level_height = 0.0_wp |
---|
| 1754 | mean_surface_level_height_l = 0.0_wp |
---|
| 1755 | ! |
---|
| 1756 | !-- To do: New concept for these non-topography grid points! |
---|
| 1757 | DO sr = 0, statistic_regions |
---|
| 1758 | DO i = nxl, nxr |
---|
| 1759 | DO j = nys, nyn |
---|
| 1760 | IF ( rmask(j,i,sr) == 1.0_wp ) THEN |
---|
| 1761 | ! |
---|
| 1762 | !-- All xy-grid points |
---|
| 1763 | ngp_2dh_l(sr) = ngp_2dh_l(sr) + 1 |
---|
| 1764 | ! |
---|
| 1765 | !-- Determine mean surface-level height. In case of downward- |
---|
| 1766 | !-- facing walls are present, more than one surface level exist. |
---|
| 1767 | !-- In this case, use the lowest surface-level height. |
---|
| 1768 | IF ( surf_def_h(0)%start_index(j,i) <= & |
---|
| 1769 | surf_def_h(0)%end_index(j,i) ) THEN |
---|
| 1770 | m = surf_def_h(0)%start_index(j,i) |
---|
| 1771 | k = surf_def_h(0)%k(m) |
---|
| 1772 | mean_surface_level_height_l(sr) = & |
---|
| 1773 | mean_surface_level_height_l(sr) + zw(k-1) |
---|
| 1774 | ENDIF |
---|
| 1775 | IF ( surf_lsm_h%start_index(j,i) <= & |
---|
| 1776 | surf_lsm_h%end_index(j,i) ) THEN |
---|
| 1777 | m = surf_lsm_h%start_index(j,i) |
---|
| 1778 | k = surf_lsm_h%k(m) |
---|
| 1779 | mean_surface_level_height_l(sr) = & |
---|
| 1780 | mean_surface_level_height_l(sr) + zw(k-1) |
---|
| 1781 | ENDIF |
---|
| 1782 | IF ( surf_usm_h%start_index(j,i) <= & |
---|
| 1783 | surf_usm_h%end_index(j,i) ) THEN |
---|
| 1784 | m = surf_usm_h%start_index(j,i) |
---|
| 1785 | k = surf_usm_h%k(m) |
---|
| 1786 | mean_surface_level_height_l(sr) = & |
---|
| 1787 | mean_surface_level_height_l(sr) + zw(k-1) |
---|
| 1788 | ENDIF |
---|
| 1789 | |
---|
| 1790 | k_surf = k - 1 |
---|
| 1791 | |
---|
| 1792 | DO k = nzb, nzt+1 |
---|
| 1793 | ! |
---|
| 1794 | !-- xy-grid points above topography |
---|
| 1795 | ngp_2dh_outer_l(k,sr) = ngp_2dh_outer_l(k,sr) + & |
---|
[4346] | 1796 | MERGE( 1, 0, BTEST( wall_flags_total_0(k,j,i), 24 ) ) |
---|
[2696] | 1797 | |
---|
| 1798 | ngp_2dh_s_inner_l(k,sr) = ngp_2dh_s_inner_l(k,sr) + & |
---|
[4346] | 1799 | MERGE( 1, 0, BTEST( wall_flags_total_0(k,j,i), 22 ) ) |
---|
[2696] | 1800 | |
---|
| 1801 | ENDDO |
---|
| 1802 | ! |
---|
| 1803 | !-- All grid points of the total domain above topography |
---|
| 1804 | ngp_3d_inner_l(sr) = ngp_3d_inner_l(sr) + ( nz - k_surf + 2 ) |
---|
| 1805 | |
---|
| 1806 | |
---|
| 1807 | |
---|
| 1808 | ENDIF |
---|
| 1809 | ENDDO |
---|
| 1810 | ENDDO |
---|
| 1811 | ENDDO |
---|
[3747] | 1812 | |
---|
[2696] | 1813 | sr = statistic_regions + 1 |
---|
| 1814 | #if defined( __parallel ) |
---|
| 1815 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
| 1816 | CALL MPI_ALLREDUCE( ngp_2dh_l(0), ngp_2dh(0), sr, MPI_INTEGER, MPI_SUM, & |
---|
| 1817 | comm2d, ierr ) |
---|
| 1818 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
| 1819 | CALL MPI_ALLREDUCE( ngp_2dh_outer_l(0,0), ngp_2dh_outer(0,0), (nz+2)*sr, & |
---|
| 1820 | MPI_INTEGER, MPI_SUM, comm2d, ierr ) |
---|
| 1821 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
| 1822 | CALL MPI_ALLREDUCE( ngp_2dh_s_inner_l(0,0), ngp_2dh_s_inner(0,0), & |
---|
| 1823 | (nz+2)*sr, MPI_INTEGER, MPI_SUM, comm2d, ierr ) |
---|
| 1824 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
| 1825 | CALL MPI_ALLREDUCE( ngp_3d_inner_l(0), ngp_3d_inner_tmp(0), sr, MPI_REAL, & |
---|
| 1826 | MPI_SUM, comm2d, ierr ) |
---|
| 1827 | ngp_3d_inner = INT( ngp_3d_inner_tmp, KIND = SELECTED_INT_KIND( 18 ) ) |
---|
| 1828 | IF ( collective_wait ) CALL MPI_BARRIER( comm2d, ierr ) |
---|
| 1829 | CALL MPI_ALLREDUCE( mean_surface_level_height_l(0), & |
---|
| 1830 | mean_surface_level_height(0), sr, MPI_REAL, & |
---|
| 1831 | MPI_SUM, comm2d, ierr ) |
---|
| 1832 | mean_surface_level_height = mean_surface_level_height / REAL( ngp_2dh ) |
---|
| 1833 | #else |
---|
| 1834 | ngp_2dh = ngp_2dh_l |
---|
| 1835 | ngp_2dh_outer = ngp_2dh_outer_l |
---|
| 1836 | ngp_2dh_s_inner = ngp_2dh_s_inner_l |
---|
| 1837 | ngp_3d_inner = INT( ngp_3d_inner_l, KIND = SELECTED_INT_KIND( 18 ) ) |
---|
| 1838 | mean_surface_level_height = mean_surface_level_height_l / REAL( ngp_2dh_l ) |
---|
| 1839 | #endif |
---|
| 1840 | |
---|
| 1841 | ngp_3d = INT ( ngp_2dh, KIND = SELECTED_INT_KIND( 18 ) ) * & |
---|
| 1842 | INT ( (nz + 2 ), KIND = SELECTED_INT_KIND( 18 ) ) |
---|
| 1843 | |
---|
| 1844 | ! |
---|
| 1845 | !-- Set a lower limit of 1 in order to avoid zero divisions in flow_statistics, |
---|
| 1846 | !-- buoyancy, etc. A zero value will occur for cases where all grid points of |
---|
| 1847 | !-- the respective subdomain lie below the surface topography |
---|
| 1848 | ngp_2dh_outer = MAX( 1, ngp_2dh_outer(:,:) ) |
---|
| 1849 | ngp_3d_inner = MAX( INT(1, KIND = SELECTED_INT_KIND( 18 )), & |
---|
| 1850 | ngp_3d_inner(:) ) |
---|
| 1851 | ngp_2dh_s_inner = MAX( 1, ngp_2dh_s_inner(:,:) ) |
---|
| 1852 | |
---|
| 1853 | DEALLOCATE( mean_surface_level_height_l, ngp_2dh_l, ngp_2dh_outer_l, & |
---|
| 1854 | ngp_3d_inner_l, ngp_3d_inner_tmp ) |
---|
| 1855 | ! |
---|
[2232] | 1856 | !-- Initialize surface forcing corresponding to large-scale forcing. Therein, |
---|
| 1857 | !-- initialize heat-fluxes, etc. via datatype. Revise it later! |
---|
| 1858 | IF ( large_scale_forcing .AND. lsf_surf ) THEN |
---|
| 1859 | IF ( use_surface_fluxes .AND. constant_heatflux ) THEN |
---|
| 1860 | CALL ls_forcing_surf ( simulated_time ) |
---|
| 1861 | ENDIF |
---|
| 1862 | ENDIF |
---|
| 1863 | ! |
---|
[3347] | 1864 | !-- Initializae 3D offline nesting in COSMO model and read data from |
---|
| 1865 | !-- external NetCDF file. |
---|
| 1866 | IF ( nesting_offline ) CALL nesting_offl_init |
---|
| 1867 | ! |
---|
[787] | 1868 | !-- Initialize quantities for special advections schemes |
---|
| 1869 | CALL init_advec |
---|
[680] | 1870 | |
---|
[667] | 1871 | ! |
---|
[680] | 1872 | !-- Impose random perturbation on the horizontal velocity field and then |
---|
| 1873 | !-- remove the divergences from the velocity field at the initial stage |
---|
[1788] | 1874 | IF ( create_disturbances .AND. disturbance_energy_limit /= 0.0_wp .AND. & |
---|
| 1875 | TRIM( initializing_actions ) /= 'read_restart_data' .AND. & |
---|
[680] | 1876 | TRIM( initializing_actions ) /= 'cyclic_fill' ) THEN |
---|
| 1877 | |
---|
[3987] | 1878 | IF ( debug_output ) CALL debug_message( 'creating disturbances + applying pressure solver', 'start' ) |
---|
[3849] | 1879 | ! |
---|
| 1880 | !-- Needed for both disturb_field and pres |
---|
| 1881 | !$ACC DATA & |
---|
| 1882 | !$ACC CREATE(tend(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) & |
---|
| 1883 | !$ACC COPY(u(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) & |
---|
| 1884 | !$ACC COPY(v(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) |
---|
| 1885 | |
---|
[2232] | 1886 | CALL disturb_field( 'u', tend, u ) |
---|
| 1887 | CALL disturb_field( 'v', tend, v ) |
---|
[1384] | 1888 | |
---|
[3849] | 1889 | !$ACC DATA & |
---|
| 1890 | !$ACC CREATE(d(nzb+1:nzt,nys:nyn,nxl:nxr)) & |
---|
| 1891 | !$ACC COPY(w(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) & |
---|
| 1892 | !$ACC COPY(p(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) & |
---|
| 1893 | !$ACC COPYIN(rho_air(nzb:nzt+1), rho_air_zw(nzb:nzt+1)) & |
---|
| 1894 | !$ACC COPYIN(ddzu(1:nzt+1), ddzw(1:nzt+1)) & |
---|
[4346] | 1895 | !$ACC COPYIN(wall_flags_total_0(nzb:nzt+1,nysg:nyng,nxlg:nxrg)) & |
---|
[3849] | 1896 | !$ACC COPYIN(bc_h(0:1)) & |
---|
| 1897 | !$ACC COPYIN(bc_h(0)%i(1:bc_h(0)%ns)) & |
---|
| 1898 | !$ACC COPYIN(bc_h(0)%j(1:bc_h(0)%ns)) & |
---|
| 1899 | !$ACC COPYIN(bc_h(0)%k(1:bc_h(0)%ns)) & |
---|
| 1900 | !$ACC COPYIN(bc_h(1)%i(1:bc_h(1)%ns)) & |
---|
| 1901 | !$ACC COPYIN(bc_h(1)%j(1:bc_h(1)%ns)) & |
---|
| 1902 | !$ACC COPYIN(bc_h(1)%k(1:bc_h(1)%ns)) |
---|
| 1903 | |
---|
[680] | 1904 | n_sor = nsor_ini |
---|
| 1905 | CALL pres |
---|
| 1906 | n_sor = nsor |
---|
[1384] | 1907 | |
---|
[3849] | 1908 | !$ACC END DATA |
---|
| 1909 | !$ACC END DATA |
---|
| 1910 | |
---|
[3987] | 1911 | IF ( debug_output ) CALL debug_message( 'creating disturbances + applying pressure solver', 'end' ) |
---|
| 1912 | |
---|
[680] | 1913 | ENDIF |
---|
| 1914 | |
---|
[3294] | 1915 | IF ( .NOT. ocean_mode ) THEN |
---|
[3274] | 1916 | |
---|
| 1917 | ALLOCATE( hyp(nzb:nzt+1) ) |
---|
| 1918 | ALLOCATE( d_exner(nzb:nzt+1) ) |
---|
| 1919 | ALLOCATE( exner(nzb:nzt+1) ) |
---|
| 1920 | ALLOCATE( hyrho(nzb:nzt+1) ) |
---|
[1849] | 1921 | ! |
---|
[3274] | 1922 | !-- Check temperature in case of too large domain height |
---|
| 1923 | DO k = nzb, nzt+1 |
---|
| 1924 | IF ( ( pt_surface * exner_function(surface_pressure * 100.0_wp) - g/c_p * zu(k) ) < 0.0_wp ) THEN |
---|
| 1925 | WRITE( message_string, * ) 'absolute temperature < 0.0 at zu(', k, & |
---|
| 1926 | ') = ', zu(k) |
---|
[3685] | 1927 | CALL message( 'init_3d_model', 'PA0142', 1, 2, 0, 6, 0 ) |
---|
[3274] | 1928 | ENDIF |
---|
| 1929 | ENDDO |
---|
| 1930 | |
---|
| 1931 | ! |
---|
| 1932 | !-- Calculate vertical profile of the hydrostatic pressure (hyp) |
---|
| 1933 | hyp = barometric_formula(zu, pt_surface * exner_function(surface_pressure * 100.0_wp), surface_pressure * 100.0_wp) |
---|
| 1934 | d_exner = exner_function_invers(hyp) |
---|
| 1935 | exner = 1.0_wp / exner_function_invers(hyp) |
---|
| 1936 | hyrho = ideal_gas_law_rho_pt(hyp, pt_init) |
---|
| 1937 | ! |
---|
| 1938 | !-- Compute reference density |
---|
| 1939 | rho_surface = ideal_gas_law_rho(surface_pressure * 100.0_wp, pt_surface * exner_function(surface_pressure * 100.0_wp)) |
---|
| 1940 | |
---|
[96] | 1941 | ENDIF |
---|
[1] | 1942 | |
---|
| 1943 | ! |
---|
| 1944 | !-- If required, initialize particles |
---|
[3159] | 1945 | IF ( agents_active ) CALL mas_init |
---|
| 1946 | ! |
---|
[3937] | 1947 | !-- Initialization of synthetic turbulence generator |
---|
| 1948 | IF ( use_syn_turb_gen ) CALL stg_init |
---|
[2696] | 1949 | ! |
---|
[3685] | 1950 | !-- Initializing actions for all other modules |
---|
| 1951 | CALL module_interface_init |
---|
[2696] | 1952 | ! |
---|
[3685] | 1953 | !-- Initialize surface layer (done after LSM as roughness length are required |
---|
| 1954 | !-- for initialization |
---|
| 1955 | IF ( constant_flux_layer ) CALL init_surface_layer_fluxes |
---|
[2977] | 1956 | ! |
---|
[3421] | 1957 | !-- Initialize surface data output |
---|
[3685] | 1958 | IF ( surface_output ) CALL surface_data_output_init |
---|
[3472] | 1959 | ! |
---|
[673] | 1960 | !-- Initialize the ws-scheme. |
---|
[3448] | 1961 | IF ( ws_scheme_sca .OR. ws_scheme_mom ) CALL ws_init |
---|
[3711] | 1962 | ! |
---|
| 1963 | !-- Perform post-initializing checks for all other modules |
---|
| 1964 | CALL module_interface_init_checks |
---|
[1] | 1965 | |
---|
| 1966 | ! |
---|
[709] | 1967 | !-- Setting weighting factors for calculation of perturbation pressure |
---|
[1762] | 1968 | !-- and turbulent quantities from the RK substeps |
---|
[709] | 1969 | IF ( TRIM(timestep_scheme) == 'runge-kutta-3' ) THEN ! for RK3-method |
---|
| 1970 | |
---|
[1322] | 1971 | weight_substep(1) = 1._wp/6._wp |
---|
| 1972 | weight_substep(2) = 3._wp/10._wp |
---|
| 1973 | weight_substep(3) = 8._wp/15._wp |
---|
[709] | 1974 | |
---|
[1322] | 1975 | weight_pres(1) = 1._wp/3._wp |
---|
| 1976 | weight_pres(2) = 5._wp/12._wp |
---|
| 1977 | weight_pres(3) = 1._wp/4._wp |
---|
[709] | 1978 | |
---|
| 1979 | ELSEIF ( TRIM(timestep_scheme) == 'runge-kutta-2' ) THEN ! for RK2-method |
---|
| 1980 | |
---|
[1322] | 1981 | weight_substep(1) = 1._wp/2._wp |
---|
| 1982 | weight_substep(2) = 1._wp/2._wp |
---|
[673] | 1983 | |
---|
[1322] | 1984 | weight_pres(1) = 1._wp/2._wp |
---|
| 1985 | weight_pres(2) = 1._wp/2._wp |
---|
[709] | 1986 | |
---|
[1001] | 1987 | ELSE ! for Euler-method |
---|
[709] | 1988 | |
---|
[1340] | 1989 | weight_substep(1) = 1.0_wp |
---|
| 1990 | weight_pres(1) = 1.0_wp |
---|
[709] | 1991 | |
---|
[673] | 1992 | ENDIF |
---|
| 1993 | |
---|
| 1994 | ! |
---|
[1] | 1995 | !-- Initialize Rayleigh damping factors |
---|
[1340] | 1996 | rdf = 0.0_wp |
---|
| 1997 | rdf_sc = 0.0_wp |
---|
| 1998 | IF ( rayleigh_damping_factor /= 0.0_wp ) THEN |
---|
[3294] | 1999 | |
---|
| 2000 | IF ( .NOT. ocean_mode ) THEN |
---|
[108] | 2001 | DO k = nzb+1, nzt |
---|
| 2002 | IF ( zu(k) >= rayleigh_damping_height ) THEN |
---|
[1788] | 2003 | rdf(k) = rayleigh_damping_factor * & |
---|
[1340] | 2004 | ( SIN( pi * 0.5_wp * ( zu(k) - rayleigh_damping_height ) & |
---|
[1788] | 2005 | / ( zu(nzt) - rayleigh_damping_height ) ) & |
---|
[1] | 2006 | )**2 |
---|
[108] | 2007 | ENDIF |
---|
| 2008 | ENDDO |
---|
| 2009 | ELSE |
---|
[3294] | 2010 | ! |
---|
| 2011 | !-- In ocean mode, rayleigh damping is applied in the lower part of the |
---|
| 2012 | !-- model domain |
---|
[108] | 2013 | DO k = nzt, nzb+1, -1 |
---|
| 2014 | IF ( zu(k) <= rayleigh_damping_height ) THEN |
---|
[1788] | 2015 | rdf(k) = rayleigh_damping_factor * & |
---|
[1340] | 2016 | ( SIN( pi * 0.5_wp * ( rayleigh_damping_height - zu(k) ) & |
---|
[1788] | 2017 | / ( rayleigh_damping_height - zu(nzb+1) ) ) & |
---|
[108] | 2018 | )**2 |
---|
| 2019 | ENDIF |
---|
| 2020 | ENDDO |
---|
| 2021 | ENDIF |
---|
[3294] | 2022 | |
---|
[1] | 2023 | ENDIF |
---|
[785] | 2024 | IF ( scalar_rayleigh_damping ) rdf_sc = rdf |
---|
[1] | 2025 | |
---|
| 2026 | ! |
---|
[240] | 2027 | !-- Initialize the starting level and the vertical smoothing factor used for |
---|
| 2028 | !-- the external pressure gradient |
---|
[1340] | 2029 | dp_smooth_factor = 1.0_wp |
---|
[240] | 2030 | IF ( dp_external ) THEN |
---|
| 2031 | ! |
---|
| 2032 | !-- Set the starting level dp_level_ind_b only if it has not been set before |
---|
| 2033 | !-- (e.g. in init_grid). |
---|
| 2034 | IF ( dp_level_ind_b == 0 ) THEN |
---|
| 2035 | ind_array = MINLOC( ABS( dp_level_b - zu ) ) |
---|
| 2036 | dp_level_ind_b = ind_array(1) - 1 + nzb |
---|
| 2037 | ! MINLOC uses lower array bound 1 |
---|
| 2038 | ENDIF |
---|
| 2039 | IF ( dp_smooth ) THEN |
---|
[1340] | 2040 | dp_smooth_factor(:dp_level_ind_b) = 0.0_wp |
---|
[240] | 2041 | DO k = dp_level_ind_b+1, nzt |
---|
[1340] | 2042 | dp_smooth_factor(k) = 0.5_wp * ( 1.0_wp + SIN( pi * & |
---|
| 2043 | ( REAL( k - dp_level_ind_b, KIND=wp ) / & |
---|
| 2044 | REAL( nzt - dp_level_ind_b, KIND=wp ) - 0.5_wp ) ) ) |
---|
[240] | 2045 | ENDDO |
---|
| 2046 | ENDIF |
---|
| 2047 | ENDIF |
---|
| 2048 | |
---|
| 2049 | ! |
---|
[978] | 2050 | !-- Initialize damping zone for the potential temperature in case of |
---|
| 2051 | !-- non-cyclic lateral boundaries. The damping zone has the maximum value |
---|
| 2052 | !-- at the inflow boundary and decreases to zero at pt_damping_width. |
---|
[1340] | 2053 | ptdf_x = 0.0_wp |
---|
| 2054 | ptdf_y = 0.0_wp |
---|
[1159] | 2055 | IF ( bc_lr_dirrad ) THEN |
---|
[996] | 2056 | DO i = nxl, nxr |
---|
[978] | 2057 | IF ( ( i * dx ) < pt_damping_width ) THEN |
---|
[1340] | 2058 | ptdf_x(i) = pt_damping_factor * ( SIN( pi * 0.5_wp * & |
---|
| 2059 | REAL( pt_damping_width - i * dx, KIND=wp ) / ( & |
---|
[1788] | 2060 | REAL( pt_damping_width, KIND=wp ) ) ) )**2 |
---|
[73] | 2061 | ENDIF |
---|
| 2062 | ENDDO |
---|
[1159] | 2063 | ELSEIF ( bc_lr_raddir ) THEN |
---|
[996] | 2064 | DO i = nxl, nxr |
---|
[978] | 2065 | IF ( ( i * dx ) > ( nx * dx - pt_damping_width ) ) THEN |
---|
[1322] | 2066 | ptdf_x(i) = pt_damping_factor * & |
---|
[1340] | 2067 | SIN( pi * 0.5_wp * & |
---|
| 2068 | ( ( i - nx ) * dx + pt_damping_width ) / & |
---|
| 2069 | REAL( pt_damping_width, KIND=wp ) )**2 |
---|
[73] | 2070 | ENDIF |
---|
[978] | 2071 | ENDDO |
---|
[1159] | 2072 | ELSEIF ( bc_ns_dirrad ) THEN |
---|
[996] | 2073 | DO j = nys, nyn |
---|
[978] | 2074 | IF ( ( j * dy ) > ( ny * dy - pt_damping_width ) ) THEN |
---|
[1322] | 2075 | ptdf_y(j) = pt_damping_factor * & |
---|
[1340] | 2076 | SIN( pi * 0.5_wp * & |
---|
| 2077 | ( ( j - ny ) * dy + pt_damping_width ) / & |
---|
| 2078 | REAL( pt_damping_width, KIND=wp ) )**2 |
---|
[1] | 2079 | ENDIF |
---|
[978] | 2080 | ENDDO |
---|
[1159] | 2081 | ELSEIF ( bc_ns_raddir ) THEN |
---|
[996] | 2082 | DO j = nys, nyn |
---|
[978] | 2083 | IF ( ( j * dy ) < pt_damping_width ) THEN |
---|
[1322] | 2084 | ptdf_y(j) = pt_damping_factor * & |
---|
[1340] | 2085 | SIN( pi * 0.5_wp * & |
---|
| 2086 | ( pt_damping_width - j * dy ) / & |
---|
| 2087 | REAL( pt_damping_width, KIND=wp ) )**2 |
---|
[1] | 2088 | ENDIF |
---|
[73] | 2089 | ENDDO |
---|
[1] | 2090 | ENDIF |
---|
[51] | 2091 | |
---|
[1] | 2092 | ! |
---|
| 2093 | !-- Input binary data file is not needed anymore. This line must be placed |
---|
| 2094 | !-- after call of user_init! |
---|
| 2095 | CALL close_file( 13 ) |
---|
[2934] | 2096 | ! |
---|
| 2097 | !-- In case of nesting, put an barrier to assure that all parent and child |
---|
| 2098 | !-- domains finished initialization. |
---|
| 2099 | #if defined( __parallel ) |
---|
| 2100 | IF ( nested_run ) CALL MPI_BARRIER( MPI_COMM_WORLD, ierr ) |
---|
| 2101 | #endif |
---|
[1] | 2102 | |
---|
[2934] | 2103 | |
---|
[3987] | 2104 | CALL location_message( 'model initialization', 'finished' ) |
---|
[1] | 2105 | |
---|
| 2106 | END SUBROUTINE init_3d_model |
---|