[1] | 1 | #if defined( __ibmy_special ) |
---|
| 2 | @PROCESS NOOPTimize |
---|
| 3 | #endif |
---|
| 4 | SUBROUTINE init_3d_model |
---|
| 5 | |
---|
| 6 | !------------------------------------------------------------------------------! |
---|
| 7 | ! Actual revisions: |
---|
| 8 | ! ----------------- |
---|
[39] | 9 | ! |
---|
[1] | 10 | ! |
---|
| 11 | ! Former revisions: |
---|
| 12 | ! ----------------- |
---|
[3] | 13 | ! $Id: init_3d_model.f90 40 2007-03-02 06:32:25Z raasch $ |
---|
[39] | 14 | ! |
---|
| 15 | ! 19 2007-02-23 04:53:48Z raasch |
---|
| 16 | ! +handling of top fluxes |
---|
| 17 | ! |
---|
[3] | 18 | ! RCS Log replace by Id keyword, revision history cleaned up |
---|
| 19 | ! |
---|
[1] | 20 | ! Revision 1.49 2006/08/22 15:59:07 raasch |
---|
| 21 | ! No optimization of this file on the ibmy (Yonsei Univ.) |
---|
| 22 | ! |
---|
| 23 | ! Revision 1.1 1998/03/09 16:22:22 raasch |
---|
| 24 | ! Initial revision |
---|
| 25 | ! |
---|
| 26 | ! |
---|
| 27 | ! Description: |
---|
| 28 | ! ------------ |
---|
| 29 | ! Allocation of arrays and initialization of the 3D model via |
---|
| 30 | ! a) pre-run the 1D model |
---|
| 31 | ! or |
---|
| 32 | ! b) pre-set constant linear profiles |
---|
| 33 | ! or |
---|
| 34 | ! c) read values of a previous run |
---|
| 35 | !------------------------------------------------------------------------------! |
---|
| 36 | |
---|
| 37 | USE arrays_3d |
---|
| 38 | USE averaging |
---|
| 39 | USE constants |
---|
| 40 | USE control_parameters |
---|
| 41 | USE cpulog |
---|
| 42 | USE indices |
---|
| 43 | USE interfaces |
---|
| 44 | USE model_1d |
---|
| 45 | USE particle_attributes |
---|
| 46 | USE pegrid |
---|
| 47 | USE profil_parameter |
---|
| 48 | USE random_function_mod |
---|
| 49 | USE statistics |
---|
| 50 | |
---|
| 51 | IMPLICIT NONE |
---|
| 52 | |
---|
| 53 | INTEGER :: i, j, k, sr |
---|
| 54 | |
---|
| 55 | INTEGER, DIMENSION(:), ALLOCATABLE :: ngp_2dh_l, ngp_3d_inner_l |
---|
| 56 | |
---|
| 57 | INTEGER, DIMENSION(:,:), ALLOCATABLE :: ngp_2dh_outer_l |
---|
| 58 | |
---|
| 59 | REAL, DIMENSION(1:2) :: volume_flow_area_l, volume_flow_initial_l |
---|
| 60 | |
---|
| 61 | |
---|
| 62 | ! |
---|
| 63 | !-- Allocate arrays |
---|
| 64 | ALLOCATE( ngp_2dh(0:statistic_regions), ngp_2dh_l(0:statistic_regions), & |
---|
| 65 | ngp_3d(0:statistic_regions), & |
---|
| 66 | ngp_3d_inner(0:statistic_regions), & |
---|
| 67 | ngp_3d_inner_l(0:statistic_regions), & |
---|
| 68 | sums_divnew_l(0:statistic_regions), & |
---|
| 69 | sums_divold_l(0:statistic_regions) ) |
---|
| 70 | ALLOCATE( rdf(nzb+1:nzt), uvmean_outflow(nzb:nzt+1), & |
---|
| 71 | uvmean_outflow_l(nzb:nzt+1) ) |
---|
| 72 | ALLOCATE( hom_sum(nzb:nzt+1,var_hom,0:statistic_regions), & |
---|
| 73 | ngp_2dh_outer(nzb:nzt+1,0:statistic_regions), & |
---|
| 74 | ngp_2dh_outer_l(nzb:nzt+1,0:statistic_regions), & |
---|
| 75 | rmask(nys-1:nyn+1,nxl-1:nxr+1,0:statistic_regions), & |
---|
| 76 | sums(nzb:nzt+1,var_sum), & |
---|
| 77 | sums_l(nzb:nzt+1,var_sum,0:threads_per_task-1), & |
---|
| 78 | sums_l_l(nzb:nzt+1,0:statistic_regions,0:threads_per_task-1), & |
---|
| 79 | sums_up_fraction_l(10,3,0:statistic_regions), & |
---|
| 80 | sums_wsts_bc_l(nzb:nzt+1,0:statistic_regions) ) |
---|
| 81 | ALLOCATE( km_damp_x(nxl-1:nxr+1), km_damp_y(nys-1:nyn+1) ) |
---|
| 82 | |
---|
[19] | 83 | ALLOCATE( rif_1(nys-1:nyn+1,nxl-1:nxr+1), shf_1(nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 84 | ts(nys-1:nyn+1,nxl-1:nxr+1), tswst_1(nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 85 | us(nys-1:nyn+1,nxl-1:nxr+1), usws_1(nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 86 | vsws_1(nys-1:nyn+1,nxl-1:nxr+1), z0(nys-1:nyn+1,nxl-1:nxr+1) ) |
---|
[1] | 87 | |
---|
| 88 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 89 | ! |
---|
| 90 | !-- Leapfrog scheme needs two timelevels of diffusion quantities |
---|
[19] | 91 | ALLOCATE( rif_2(nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 92 | shf_2(nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 93 | tswst_2(nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 94 | usws_2(nys-1:nyn+1,nxl-1:nxr+1), & |
---|
[1] | 95 | vsws_2(nys-1:nyn+1,nxl-1:nxr+1) ) |
---|
| 96 | ENDIF |
---|
| 97 | |
---|
| 98 | ALLOCATE( d(nzb+1:nzta,nys:nyna,nxl:nxra), & |
---|
| 99 | e_1(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 100 | e_2(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 101 | e_3(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 102 | kh_1(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 103 | km_1(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 104 | p(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 105 | pt_1(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 106 | pt_2(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 107 | pt_3(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 108 | tend(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 109 | u_1(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1+uxrp), & |
---|
| 110 | u_2(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1+uxrp), & |
---|
| 111 | u_3(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1+uxrp), & |
---|
| 112 | v_1(nzb:nzt+1,nys-1:nyn+1+vynp,nxl-1:nxr+1), & |
---|
| 113 | v_2(nzb:nzt+1,nys-1:nyn+1+vynp,nxl-1:nxr+1), & |
---|
| 114 | v_3(nzb:nzt+1,nys-1:nyn+1+vynp,nxl-1:nxr+1), & |
---|
| 115 | w_1(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 116 | w_2(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 117 | w_3(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1) ) |
---|
| 118 | |
---|
| 119 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 120 | ALLOCATE( kh_2(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 121 | km_2(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1) ) |
---|
| 122 | ENDIF |
---|
| 123 | |
---|
| 124 | IF ( moisture .OR. passive_scalar ) THEN |
---|
| 125 | ! |
---|
| 126 | !-- 2D-moisture/scalar arrays |
---|
| 127 | ALLOCATE ( qs(nys-1:nyn+1,nxl-1:nxr+1), & |
---|
[19] | 128 | qsws_1(nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 129 | qswst_1(nys-1:nyn+1,nxl-1:nxr+1) ) |
---|
[1] | 130 | |
---|
| 131 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
[19] | 132 | ALLOCATE( qsws_2(nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 133 | qswst_2(nys-1:nyn+1,nxl-1:nxr+1) ) |
---|
[1] | 134 | ENDIF |
---|
| 135 | ! |
---|
| 136 | !-- 3D-moisture/scalar arrays |
---|
| 137 | ALLOCATE( q_1(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 138 | q_2(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 139 | q_3(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1) ) |
---|
| 140 | |
---|
| 141 | ! |
---|
| 142 | !-- 3D-arrays needed for moisture only |
---|
| 143 | IF ( moisture ) THEN |
---|
| 144 | ALLOCATE( vpt_1(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1) ) |
---|
| 145 | |
---|
| 146 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 147 | ALLOCATE( vpt_2(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1) ) |
---|
| 148 | ENDIF |
---|
| 149 | |
---|
| 150 | IF ( cloud_physics ) THEN |
---|
| 151 | ! |
---|
| 152 | !-- Liquid water content |
---|
| 153 | ALLOCATE ( ql_1(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1) ) |
---|
| 154 | ENDIF |
---|
| 155 | |
---|
| 156 | IF ( cloud_droplets ) THEN |
---|
| 157 | ! |
---|
| 158 | !-- Liquid water content, change in liquid water content, |
---|
| 159 | !-- real volume of particles (with weighting), volume of particles |
---|
| 160 | ALLOCATE ( ql_1(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 161 | ql_2(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 162 | ql_v(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1), & |
---|
| 163 | ql_vp(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1) ) |
---|
| 164 | ENDIF |
---|
| 165 | |
---|
| 166 | ENDIF |
---|
| 167 | |
---|
| 168 | ENDIF |
---|
| 169 | |
---|
| 170 | ! |
---|
| 171 | !-- 3D-array for storing the dissipation, needed for calculating the sgs |
---|
| 172 | !-- particle velocities |
---|
| 173 | IF ( use_sgs_for_particles ) THEN |
---|
| 174 | ALLOCATE ( diss(nzb:nzt+1,nys-1:nyn+1,nxl-1:nxr+1) ) |
---|
| 175 | ENDIF |
---|
| 176 | |
---|
| 177 | IF ( dt_dosp /= 9999999.9 ) THEN |
---|
| 178 | ALLOCATE( spectrum_x( 1:nx/2, 1:10, 1:10 ), & |
---|
| 179 | spectrum_y( 1:ny/2, 1:10, 1:10 ) ) |
---|
| 180 | ENDIF |
---|
| 181 | |
---|
| 182 | ! |
---|
| 183 | !-- Initial assignment of the pointers |
---|
| 184 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 185 | |
---|
[19] | 186 | rif_m => rif_1; rif => rif_2 |
---|
| 187 | shf_m => shf_1; shf => shf_2 |
---|
| 188 | tswst_m => tswst_1; tswst => tswst_2 |
---|
| 189 | usws_m => usws_1; usws => usws_2 |
---|
| 190 | vsws_m => vsws_1; vsws => vsws_2 |
---|
[1] | 191 | e_m => e_1; e => e_2; e_p => e_3; te_m => e_3 |
---|
| 192 | kh_m => kh_1; kh => kh_2 |
---|
| 193 | km_m => km_1; km => km_2 |
---|
| 194 | pt_m => pt_1; pt => pt_2; pt_p => pt_3; tpt_m => pt_3 |
---|
| 195 | u_m => u_1; u => u_2; u_p => u_3; tu_m => u_3 |
---|
| 196 | v_m => v_1; v => v_2; v_p => v_3; tv_m => v_3 |
---|
| 197 | w_m => w_1; w => w_2; w_p => w_3; tw_m => w_3 |
---|
| 198 | |
---|
| 199 | IF ( moisture .OR. passive_scalar ) THEN |
---|
[19] | 200 | qsws_m => qsws_1; qsws => qsws_2 |
---|
| 201 | qswst_m => qswst_1; qswst => qswst_2 |
---|
[1] | 202 | q_m => q_1; q => q_2; q_p => q_3; tq_m => q_3 |
---|
| 203 | IF ( moisture ) vpt_m => vpt_1; vpt => vpt_2 |
---|
| 204 | IF ( cloud_physics ) ql => ql_1 |
---|
| 205 | IF ( cloud_droplets ) THEN |
---|
| 206 | ql => ql_1 |
---|
| 207 | ql_c => ql_2 |
---|
| 208 | ENDIF |
---|
| 209 | ENDIF |
---|
| 210 | |
---|
| 211 | ELSE |
---|
| 212 | |
---|
[19] | 213 | rif => rif_1 |
---|
| 214 | shf => shf_1 |
---|
| 215 | tswst => tswst_1 |
---|
| 216 | usws => usws_1 |
---|
| 217 | vsws => vsws_1 |
---|
| 218 | e => e_1; e_p => e_2; te_m => e_3; e_m => e_3 |
---|
| 219 | kh => kh_1 |
---|
| 220 | km => km_1 |
---|
| 221 | pt => pt_1; pt_p => pt_2; tpt_m => pt_3; pt_m => pt_3 |
---|
| 222 | u => u_1; u_p => u_2; tu_m => u_3; u_m => u_3 |
---|
| 223 | v => v_1; v_p => v_2; tv_m => v_3; v_m => v_3 |
---|
| 224 | w => w_1; w_p => w_2; tw_m => w_3; w_m => w_3 |
---|
[1] | 225 | |
---|
| 226 | IF ( moisture .OR. passive_scalar ) THEN |
---|
| 227 | qsws => qsws_1 |
---|
[19] | 228 | qswst => qswst_1 |
---|
[1] | 229 | q => q_1; q_p => q_2; tq_m => q_3; q_m => q_3 |
---|
| 230 | IF ( moisture ) vpt => vpt_1 |
---|
| 231 | IF ( cloud_physics ) ql => ql_1 |
---|
| 232 | IF ( cloud_droplets ) THEN |
---|
| 233 | ql => ql_1 |
---|
| 234 | ql_c => ql_2 |
---|
| 235 | ENDIF |
---|
| 236 | ENDIF |
---|
| 237 | |
---|
| 238 | ENDIF |
---|
| 239 | |
---|
| 240 | ! |
---|
| 241 | !-- Initialize model variables |
---|
| 242 | IF ( TRIM( initializing_actions ) /= 'read_restart_data' ) THEN |
---|
| 243 | ! |
---|
| 244 | !-- First model run of a possible job queue. |
---|
| 245 | !-- Initial profiles of the variables must be computes. |
---|
| 246 | IF ( INDEX( initializing_actions, 'set_1d-model_profiles' ) /= 0 ) THEN |
---|
| 247 | ! |
---|
| 248 | !-- Use solutions of the 1D model as initial profiles, |
---|
| 249 | !-- start 1D model |
---|
| 250 | CALL init_1d_model |
---|
| 251 | ! |
---|
| 252 | !-- Transfer initial profiles to the arrays of the 3D model |
---|
| 253 | DO i = nxl-1, nxr+1 |
---|
| 254 | DO j = nys-1, nyn+1 |
---|
| 255 | e(:,j,i) = e1d |
---|
| 256 | kh(:,j,i) = kh1d |
---|
| 257 | km(:,j,i) = km1d |
---|
| 258 | pt(:,j,i) = pt_init |
---|
| 259 | ENDDO |
---|
| 260 | ENDDO |
---|
| 261 | DO i = nxl-1, nxr+uxrp+1 |
---|
| 262 | DO j = nys-1, nyn+1 |
---|
| 263 | u(:,j,i) = u1d |
---|
| 264 | ENDDO |
---|
| 265 | ENDDO |
---|
| 266 | DO i = nxl-1, nxr+1 |
---|
| 267 | DO j = nys-1, nyn+vynp+1 |
---|
| 268 | v(:,j,i) = v1d |
---|
| 269 | ENDDO |
---|
| 270 | ENDDO |
---|
| 271 | |
---|
| 272 | IF ( moisture .OR. passive_scalar ) THEN |
---|
| 273 | DO i = nxl-1, nxr+1 |
---|
| 274 | DO j = nys-1, nyn+1 |
---|
| 275 | q(:,j,i) = q_init |
---|
| 276 | ENDDO |
---|
| 277 | ENDDO |
---|
| 278 | ENDIF |
---|
| 279 | |
---|
| 280 | IF ( .NOT. constant_diffusion ) THEN |
---|
| 281 | DO i = nxl-1, nxr+1 |
---|
| 282 | DO j = nys-1, nyn+1 |
---|
| 283 | e(:,j,i) = e1d |
---|
| 284 | ENDDO |
---|
| 285 | ENDDO |
---|
| 286 | ! |
---|
| 287 | !-- Store initial profiles for output purposes etc. |
---|
| 288 | hom(:,1,25,:) = SPREAD( l1d, 2, statistic_regions+1 ) |
---|
| 289 | |
---|
| 290 | IF ( prandtl_layer ) THEN |
---|
| 291 | rif = rif1d(nzb+1) |
---|
| 292 | ts = 0.0 ! could actually be computed more accurately in the |
---|
| 293 | ! 1D model. Update when opportunity arises. |
---|
| 294 | us = us1d |
---|
| 295 | usws = usws1d |
---|
| 296 | vsws = vsws1d |
---|
| 297 | ELSE |
---|
| 298 | ts = 0.0 ! must be set, because used in |
---|
| 299 | rif = 0.0 ! flowste |
---|
| 300 | us = 0.0 |
---|
| 301 | usws = 0.0 |
---|
| 302 | vsws = 0.0 |
---|
| 303 | ENDIF |
---|
| 304 | |
---|
| 305 | ELSE |
---|
| 306 | e = 0.0 ! must be set, because used in |
---|
| 307 | rif = 0.0 ! flowste |
---|
| 308 | ts = 0.0 |
---|
| 309 | us = 0.0 |
---|
| 310 | usws = 0.0 |
---|
| 311 | vsws = 0.0 |
---|
| 312 | ENDIF |
---|
| 313 | |
---|
| 314 | ! |
---|
| 315 | !-- In every case qs = 0.0 (see also pt) |
---|
| 316 | !-- This could actually be computed more accurately in the 1D model. |
---|
| 317 | !-- Update when opportunity arises! |
---|
| 318 | IF ( moisture .OR. passive_scalar ) qs = 0.0 |
---|
| 319 | |
---|
| 320 | ! |
---|
| 321 | !-- inside buildings set velocities back to zero |
---|
| 322 | IF ( topography /= 'flat' ) THEN |
---|
| 323 | DO i = nxl-1, nxr+1 |
---|
| 324 | DO j = nys-1, nyn+1 |
---|
| 325 | u(nzb:nzb_u_inner(j,i),j,i) = 0.0 |
---|
| 326 | v(nzb:nzb_v_inner(j,i),j,i) = 0.0 |
---|
| 327 | ENDDO |
---|
| 328 | ENDDO |
---|
| 329 | ! |
---|
| 330 | !-- WARNING: The extra boundary conditions set after running the |
---|
| 331 | !-- ------- 1D model impose an error on the divergence one layer |
---|
| 332 | !-- below the topography; need to correct later |
---|
| 333 | !-- ATTENTION: Provisional correction for Piacsek & Williams |
---|
| 334 | !-- --------- advection scheme: keep u and v zero one layer below |
---|
| 335 | !-- the topography. |
---|
| 336 | IF ( ibc_uv_b == 0 ) THEN |
---|
| 337 | ! |
---|
| 338 | !-- Satisfying the Dirichlet condition with an extra layer below |
---|
| 339 | !-- the surface where the u and v component change their sign. |
---|
| 340 | DO i = nxl-1, nxr+1 |
---|
| 341 | DO j = nys-1, nyn+1 |
---|
| 342 | IF ( nzb_u_inner(j,i) == 0 ) u(0,j,i) = -u(1,j,i) |
---|
| 343 | IF ( nzb_v_inner(j,i) == 0 ) v(0,j,i) = -v(1,j,i) |
---|
| 344 | ENDDO |
---|
| 345 | ENDDO |
---|
| 346 | |
---|
| 347 | ELSE |
---|
| 348 | ! |
---|
| 349 | !-- Neumann condition |
---|
| 350 | DO i = nxl-1, nxr+1 |
---|
| 351 | DO j = nys-1, nyn+1 |
---|
| 352 | IF ( nzb_u_inner(j,i) == 0 ) u(0,j,i) = u(1,j,i) |
---|
| 353 | IF ( nzb_v_inner(j,i) == 0 ) v(0,j,i) = v(1,j,i) |
---|
| 354 | ENDDO |
---|
| 355 | ENDDO |
---|
| 356 | |
---|
| 357 | ENDIF |
---|
| 358 | |
---|
| 359 | ENDIF |
---|
| 360 | |
---|
| 361 | ELSEIF ( INDEX(initializing_actions, 'set_constant_profiles') /= 0 ) & |
---|
| 362 | THEN |
---|
| 363 | ! |
---|
| 364 | !-- Use constructed initial profiles (velocity constant with height, |
---|
| 365 | !-- temperature profile with constant gradient) |
---|
| 366 | DO i = nxl-1, nxr+1 |
---|
| 367 | DO j = nys-1, nyn+1 |
---|
| 368 | pt(:,j,i) = pt_init |
---|
| 369 | ENDDO |
---|
| 370 | ENDDO |
---|
| 371 | DO i = nxl-1, nxr+uxrp+1 |
---|
| 372 | DO j = nys-1, nyn+1 |
---|
| 373 | u(:,j,i) = u_init |
---|
| 374 | ENDDO |
---|
| 375 | ENDDO |
---|
| 376 | DO i = nxl-1, nxr+1 |
---|
| 377 | DO j = nys-1, nyn+vynp+1 |
---|
| 378 | v(:,j,i) = v_init |
---|
| 379 | ENDDO |
---|
| 380 | ENDDO |
---|
| 381 | ! |
---|
| 382 | !-- Set initial horizontal velocities at the lowest grid levels to zero |
---|
| 383 | !-- in order to avoid too small time steps caused by the diffusion |
---|
| 384 | !-- limit in the initial phase of a run (at k=1, dz/2 occurs in the |
---|
| 385 | !-- limiting formula!) |
---|
| 386 | DO i = nxl-1, nxr+1 |
---|
| 387 | DO j = nys-1, nyn+1 |
---|
| 388 | u(nzb:nzb_u_inner(j,i)+1,j,i) = 0.0 |
---|
| 389 | v(nzb:nzb_v_inner(j,i)+1,j,i) = 0.0 |
---|
| 390 | ENDDO |
---|
| 391 | ENDDO |
---|
| 392 | |
---|
| 393 | IF ( moisture .OR. passive_scalar ) THEN |
---|
| 394 | DO i = nxl-1, nxr+1 |
---|
| 395 | DO j = nys-1, nyn+1 |
---|
| 396 | q(:,j,i) = q_init |
---|
| 397 | ENDDO |
---|
| 398 | ENDDO |
---|
| 399 | ENDIF |
---|
| 400 | |
---|
| 401 | |
---|
| 402 | IF ( constant_diffusion ) THEN |
---|
| 403 | km = km_constant |
---|
| 404 | kh = km / prandtl_number |
---|
| 405 | ELSE |
---|
| 406 | kh = 0.01 ! there must exist an initial diffusion, because |
---|
| 407 | km = 0.01 ! otherwise no TKE would be produced by the |
---|
| 408 | ! production terms, as long as not yet |
---|
| 409 | ! e = (u*/cm)**2 at k=nzb+1 |
---|
| 410 | ENDIF |
---|
| 411 | e = 0.0 |
---|
| 412 | rif = 0.0 |
---|
| 413 | ts = 0.0 |
---|
| 414 | us = 0.0 |
---|
| 415 | usws = 0.0 |
---|
| 416 | vsws = 0.0 |
---|
| 417 | IF ( moisture .OR. passive_scalar ) qs = 0.0 |
---|
| 418 | |
---|
| 419 | ! |
---|
| 420 | !-- Compute initial temperature field and other constants used in case |
---|
| 421 | !-- of a sloping surface |
---|
| 422 | IF ( sloping_surface ) CALL init_slope |
---|
| 423 | |
---|
| 424 | ENDIF |
---|
| 425 | |
---|
| 426 | ! |
---|
| 427 | !-- Calculate virtual potential temperature |
---|
| 428 | IF ( moisture ) vpt = pt * ( 1.0 + 0.61 * q ) |
---|
| 429 | |
---|
| 430 | ! |
---|
| 431 | !-- Store initial profiles for output purposes etc. |
---|
| 432 | hom(:,1,5,:) = SPREAD( u(:,nys,nxl), 2, statistic_regions+1 ) |
---|
| 433 | hom(:,1,6,:) = SPREAD( v(:,nys,nxl), 2, statistic_regions+1 ) |
---|
| 434 | IF ( ibc_uv_b == 0 ) THEN |
---|
| 435 | hom(nzb,1,5,:) = -hom(nzb+1,1,5,:) ! due to satisfying the Dirichlet |
---|
| 436 | hom(nzb,1,6,:) = -hom(nzb+1,1,6,:) ! condition with an extra layer |
---|
| 437 | ! below the surface where the u and v component change their sign |
---|
| 438 | ENDIF |
---|
| 439 | hom(:,1,7,:) = SPREAD( pt(:,nys,nxl), 2, statistic_regions+1 ) |
---|
| 440 | hom(:,1,23,:) = SPREAD( km(:,nys,nxl), 2, statistic_regions+1 ) |
---|
| 441 | hom(:,1,24,:) = SPREAD( kh(:,nys,nxl), 2, statistic_regions+1 ) |
---|
| 442 | |
---|
| 443 | |
---|
| 444 | IF ( moisture ) THEN |
---|
| 445 | ! |
---|
| 446 | !-- Store initial profile of total water content, virtual potential |
---|
| 447 | !-- temperature |
---|
| 448 | hom(:,1,26,:) = SPREAD( q(:,nys,nxl), 2, statistic_regions+1 ) |
---|
| 449 | hom(:,1,29,:) = SPREAD( vpt(:,nys,nxl), 2, statistic_regions+1 ) |
---|
| 450 | IF ( cloud_physics .OR. cloud_droplets ) THEN |
---|
| 451 | ! |
---|
| 452 | !-- Store initial profile of specific humidity and potential |
---|
| 453 | !-- temperature |
---|
| 454 | hom(:,1,27,:) = SPREAD( q(:,nys,nxl), 2, statistic_regions+1 ) |
---|
| 455 | hom(:,1,28,:) = SPREAD( pt(:,nys,nxl), 2, statistic_regions+1 ) |
---|
| 456 | ENDIF |
---|
| 457 | ENDIF |
---|
| 458 | |
---|
| 459 | IF ( passive_scalar ) THEN |
---|
| 460 | ! |
---|
| 461 | !-- Store initial scalar profile |
---|
| 462 | hom(:,1,26,:) = SPREAD( q(:,nys,nxl), 2, statistic_regions+1 ) |
---|
| 463 | ENDIF |
---|
| 464 | |
---|
| 465 | ! |
---|
[19] | 466 | !-- Initialize fluxes at bottom surface |
---|
[1] | 467 | IF ( use_surface_fluxes ) THEN |
---|
| 468 | |
---|
| 469 | IF ( constant_heatflux ) THEN |
---|
| 470 | ! |
---|
| 471 | !-- Heat flux is prescribed |
---|
| 472 | IF ( random_heatflux ) THEN |
---|
| 473 | CALL disturb_heatflux |
---|
| 474 | ELSE |
---|
| 475 | shf = surface_heatflux |
---|
| 476 | ! |
---|
| 477 | !-- Over topography surface_heatflux is replaced by wall_heatflux(0) |
---|
| 478 | IF ( TRIM( topography ) /= 'flat' ) THEN |
---|
| 479 | DO i = nxl-1, nxr+1 |
---|
| 480 | DO j = nys-1, nyn+1 |
---|
| 481 | IF ( nzb_s_inner(j,i) /= 0 ) THEN |
---|
| 482 | shf(j,i) = wall_heatflux(0) |
---|
| 483 | ENDIF |
---|
| 484 | ENDDO |
---|
| 485 | ENDDO |
---|
| 486 | ENDIF |
---|
| 487 | ENDIF |
---|
| 488 | IF ( ASSOCIATED( shf_m ) ) shf_m = shf |
---|
| 489 | ENDIF |
---|
| 490 | |
---|
| 491 | ! |
---|
| 492 | !-- Determine the near-surface water flux |
---|
| 493 | IF ( moisture .OR. passive_scalar ) THEN |
---|
| 494 | IF ( constant_waterflux ) THEN |
---|
| 495 | qsws = surface_waterflux |
---|
| 496 | IF ( ASSOCIATED( qsws_m ) ) qsws_m = qsws |
---|
| 497 | ENDIF |
---|
| 498 | ENDIF |
---|
| 499 | |
---|
| 500 | ENDIF |
---|
| 501 | |
---|
| 502 | ! |
---|
[19] | 503 | !-- Initialize fluxes at top surface |
---|
| 504 | !-- Currently, only the heatflux can be prescribed. The latent flux is |
---|
[40] | 505 | !-- zero in this case! |
---|
[19] | 506 | IF ( use_top_fluxes ) THEN |
---|
| 507 | |
---|
| 508 | IF ( constant_top_heatflux ) THEN |
---|
| 509 | ! |
---|
| 510 | !-- Heat flux is prescribed |
---|
| 511 | tswst = top_heatflux |
---|
| 512 | IF ( ASSOCIATED( tswst_m ) ) tswst_m = tswst |
---|
| 513 | |
---|
| 514 | IF ( moisture .OR. passive_scalar ) THEN |
---|
| 515 | qswst = 0.0 |
---|
| 516 | IF ( ASSOCIATED( qswst_m ) ) qswst_m = qswst |
---|
| 517 | ENDIF |
---|
| 518 | ENDIF |
---|
| 519 | |
---|
| 520 | ENDIF |
---|
| 521 | |
---|
| 522 | ! |
---|
[1] | 523 | !-- Initialize Prandtl layer quantities |
---|
| 524 | IF ( prandtl_layer ) THEN |
---|
| 525 | |
---|
| 526 | z0 = roughness_length |
---|
| 527 | |
---|
| 528 | IF ( .NOT. constant_heatflux ) THEN |
---|
| 529 | ! |
---|
| 530 | !-- Surface temperature is prescribed. Here the heat flux cannot be |
---|
| 531 | !-- simply estimated, because therefore rif, u* and theta* would have |
---|
| 532 | !-- to be computed by iteration. This is why the heat flux is assumed |
---|
| 533 | !-- to be zero before the first time step. It approaches its correct |
---|
| 534 | !-- value in the course of the first few time steps. |
---|
| 535 | shf = 0.0 |
---|
| 536 | IF ( ASSOCIATED( shf_m ) ) shf_m = 0.0 |
---|
| 537 | ENDIF |
---|
| 538 | |
---|
| 539 | IF ( moisture .OR. passive_scalar ) THEN |
---|
| 540 | IF ( .NOT. constant_waterflux ) THEN |
---|
| 541 | qsws = 0.0 |
---|
| 542 | IF ( ASSOCIATED( qsws_m ) ) qsws_m = 0.0 |
---|
| 543 | ENDIF |
---|
| 544 | ENDIF |
---|
| 545 | |
---|
| 546 | ENDIF |
---|
| 547 | |
---|
| 548 | ! |
---|
| 549 | !-- Calculate the initial volume flow at the right and north boundary |
---|
| 550 | IF ( conserve_volume_flow ) THEN |
---|
| 551 | |
---|
| 552 | volume_flow_initial_l = 0.0 |
---|
| 553 | volume_flow_area_l = 0.0 |
---|
| 554 | |
---|
| 555 | IF ( nxr == nx ) THEN |
---|
| 556 | DO j = nys, nyn |
---|
| 557 | DO k = nzb_2d(j,nx) + 1, nzt |
---|
| 558 | volume_flow_initial_l(1) = volume_flow_initial_l(1) + & |
---|
| 559 | u(k,j,nx) * dzu(k) |
---|
| 560 | volume_flow_area_l(1) = volume_flow_area_l(1) + dzu(k) |
---|
| 561 | ENDDO |
---|
| 562 | ENDDO |
---|
| 563 | ENDIF |
---|
| 564 | |
---|
| 565 | IF ( nyn == ny ) THEN |
---|
| 566 | DO i = nxl, nxr |
---|
| 567 | DO k = nzb_2d(ny,i) + 1, nzt |
---|
| 568 | volume_flow_initial_l(2) = volume_flow_initial_l(2) + & |
---|
| 569 | v(k,ny,i) * dzu(k) |
---|
| 570 | volume_flow_area_l(2) = volume_flow_area_l(2) + dzu(k) |
---|
| 571 | ENDDO |
---|
| 572 | ENDDO |
---|
| 573 | ENDIF |
---|
| 574 | |
---|
| 575 | #if defined( __parallel ) |
---|
| 576 | CALL MPI_ALLREDUCE( volume_flow_initial_l(1), volume_flow_initial(1),& |
---|
| 577 | 2, MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
| 578 | CALL MPI_ALLREDUCE( volume_flow_area_l(1), volume_flow_area(1), & |
---|
| 579 | 2, MPI_REAL, MPI_SUM, comm2d, ierr ) |
---|
| 580 | #else |
---|
| 581 | volume_flow_initial = volume_flow_initial_l |
---|
| 582 | volume_flow_area = volume_flow_area_l |
---|
| 583 | #endif |
---|
| 584 | ENDIF |
---|
| 585 | |
---|
| 586 | ! |
---|
| 587 | !-- For the moment, perturbation pressure and vertical velocity are zero |
---|
| 588 | p = 0.0; w = 0.0 |
---|
| 589 | |
---|
| 590 | ! |
---|
| 591 | !-- Initialize array sums (must be defined in first call of pres) |
---|
| 592 | sums = 0.0 |
---|
| 593 | |
---|
| 594 | ! |
---|
| 595 | !-- Treating cloud physics, liquid water content is zero at beginning of |
---|
| 596 | !-- the simulation |
---|
| 597 | IF ( cloud_physics ) ql = 0.0 |
---|
| 598 | |
---|
| 599 | ! |
---|
| 600 | !-- Initialize spectra |
---|
| 601 | IF ( dt_dosp /= 9999999.9 ) THEN |
---|
| 602 | spectrum_x = 0.0 |
---|
| 603 | spectrum_y = 0.0 |
---|
| 604 | ENDIF |
---|
| 605 | |
---|
| 606 | ! |
---|
| 607 | !-- Impose vortex with vertical axis on the initial velocity profile |
---|
| 608 | IF ( INDEX( initializing_actions, 'initialize_vortex' ) /= 0 ) THEN |
---|
| 609 | CALL init_rankine |
---|
| 610 | ENDIF |
---|
| 611 | |
---|
| 612 | ! |
---|
| 613 | !-- Impose temperature anomaly (advection test only) |
---|
| 614 | IF ( INDEX( initializing_actions, 'initialize_ptanom' ) /= 0 ) THEN |
---|
| 615 | CALL init_pt_anomaly |
---|
| 616 | ENDIF |
---|
| 617 | |
---|
| 618 | ! |
---|
| 619 | !-- If required, change the surface temperature at the start of the 3D run |
---|
| 620 | IF ( pt_surface_initial_change /= 0.0 ) THEN |
---|
| 621 | pt(nzb,:,:) = pt(nzb,:,:) + pt_surface_initial_change |
---|
| 622 | ENDIF |
---|
| 623 | |
---|
| 624 | ! |
---|
| 625 | !-- If required, change the surface humidity/scalar at the start of the 3D |
---|
| 626 | !-- run |
---|
| 627 | IF ( ( moisture .OR. passive_scalar ) .AND. & |
---|
| 628 | q_surface_initial_change /= 0.0 ) THEN |
---|
| 629 | q(nzb,:,:) = q(nzb,:,:) + q_surface_initial_change |
---|
| 630 | ENDIF |
---|
| 631 | |
---|
| 632 | ! |
---|
| 633 | !-- Initialize the random number generator (from numerical recipes) |
---|
| 634 | CALL random_function_ini |
---|
| 635 | |
---|
| 636 | ! |
---|
| 637 | !-- Impose random perturbation on the horizontal velocity field and then |
---|
| 638 | !-- remove the divergences from the velocity field |
---|
| 639 | IF ( create_disturbances ) THEN |
---|
| 640 | CALL disturb_field( nzb_u_inner, tend, u, uxrp, 0 ) |
---|
| 641 | CALL disturb_field( nzb_v_inner, tend, v, 0, vynp ) |
---|
| 642 | n_sor = nsor_ini |
---|
| 643 | CALL pres |
---|
| 644 | n_sor = nsor |
---|
| 645 | ENDIF |
---|
| 646 | |
---|
| 647 | ! |
---|
| 648 | !-- Once again set the perturbation pressure explicitly to zero in order to |
---|
| 649 | !-- assure that it does not generate any divergences in the first time step. |
---|
| 650 | !-- At t=0 the velocity field is free of divergence (as constructed above). |
---|
| 651 | !-- Divergences being created during a time step are not yet known and thus |
---|
| 652 | !-- cannot be corrected during the time step yet. |
---|
| 653 | p = 0.0 |
---|
| 654 | |
---|
| 655 | ! |
---|
| 656 | !-- Initialize old and new time levels. |
---|
| 657 | IF ( timestep_scheme(1:5) /= 'runge' ) THEN |
---|
| 658 | e_m = e; pt_m = pt; u_m = u; v_m = v; w_m = w; kh_m = kh; km_m = km |
---|
| 659 | ELSE |
---|
| 660 | te_m = 0.0; tpt_m = 0.0; tu_m = 0.0; tv_m = 0.0; tw_m = 0.0 |
---|
| 661 | ENDIF |
---|
| 662 | e_p = e; pt_p = pt; u_p = u; v_p = v; w_p = w |
---|
| 663 | |
---|
| 664 | IF ( moisture .OR. passive_scalar ) THEN |
---|
| 665 | IF ( ASSOCIATED( q_m ) ) q_m = q |
---|
| 666 | IF ( timestep_scheme(1:5) == 'runge' ) tq_m = 0.0 |
---|
| 667 | q_p = q |
---|
| 668 | IF ( moisture .AND. ASSOCIATED( vpt_m ) ) vpt_m = vpt |
---|
| 669 | ENDIF |
---|
| 670 | |
---|
| 671 | ELSEIF ( TRIM( initializing_actions ) == 'read_restart_data' ) & |
---|
| 672 | THEN |
---|
| 673 | ! |
---|
| 674 | !-- Read binary data from restart file |
---|
| 675 | CALL read_3d_binary |
---|
| 676 | |
---|
| 677 | ! |
---|
| 678 | !-- Calculate initial temperature field and other constants used in case |
---|
| 679 | !-- of a sloping surface |
---|
| 680 | IF ( sloping_surface ) CALL init_slope |
---|
| 681 | |
---|
| 682 | ! |
---|
| 683 | !-- Initialize new time levels (only done in order to set boundary values |
---|
| 684 | !-- including ghost points) |
---|
| 685 | e_p = e; pt_p = pt; u_p = u; v_p = v; w_p = w |
---|
| 686 | IF ( moisture .OR. passive_scalar ) q_p = q |
---|
| 687 | |
---|
| 688 | ELSE |
---|
| 689 | ! |
---|
| 690 | !-- Actually this part of the programm should not be reached |
---|
| 691 | IF ( myid == 0 ) PRINT*,'+++ init_3d_model: unknown initializing ', & |
---|
| 692 | 'problem' |
---|
| 693 | CALL local_stop |
---|
| 694 | ENDIF |
---|
| 695 | |
---|
| 696 | ! |
---|
| 697 | !-- If required, initialize dvrp-software |
---|
| 698 | ! WRITE ( 9, * ) '*** myid=', myid, ' vor init_dvrp' |
---|
| 699 | ! CALL FLUSH_( 9 ) |
---|
| 700 | IF ( dt_dvrp /= 9999999.9 ) CALL init_dvrp |
---|
| 701 | ! WRITE ( 9, * ) '*** myid=', myid, ' nach init_dvrp' |
---|
| 702 | ! CALL FLUSH_( 9 ) |
---|
| 703 | |
---|
| 704 | ! |
---|
| 705 | !-- If required, initialize quantities for handling cloud physics |
---|
| 706 | !-- This routine must be called before init_particles, because |
---|
| 707 | !-- otherwise, array pt_d_t, needed in data_output_dvrp (called by |
---|
| 708 | !-- init_particles) is not defined. |
---|
| 709 | CALL init_cloud_physics |
---|
| 710 | |
---|
| 711 | ! |
---|
| 712 | !-- If required, initialize particles |
---|
| 713 | ! WRITE ( 9, * ) '*** myid=', myid, ' vor init_particles' |
---|
| 714 | ! CALL FLUSH_( 9 ) |
---|
| 715 | CALL init_particles |
---|
| 716 | ! WRITE ( 9, * ) '*** myid=', myid, ' nach init_particles' |
---|
| 717 | ! CALL FLUSH_( 9 ) |
---|
| 718 | |
---|
| 719 | ! |
---|
| 720 | !-- Initialize quantities for special advections schemes |
---|
| 721 | CALL init_advec |
---|
| 722 | |
---|
| 723 | ! |
---|
| 724 | !-- Initialize Rayleigh damping factors |
---|
| 725 | rdf = 0.0 |
---|
| 726 | IF ( rayleigh_damping_factor /= 0.0 ) THEN |
---|
| 727 | DO k = nzb+1, nzt |
---|
| 728 | IF ( zu(k) >= rayleigh_damping_height ) THEN |
---|
| 729 | rdf(k) = rayleigh_damping_factor * & |
---|
| 730 | ( SIN( pi * 0.5 * ( zu(k) - rayleigh_damping_height ) & |
---|
| 731 | / ( zu(nzt) - rayleigh_damping_height ) )& |
---|
| 732 | )**2 |
---|
| 733 | ENDIF |
---|
| 734 | ENDDO |
---|
| 735 | ENDIF |
---|
| 736 | |
---|
| 737 | ! |
---|
| 738 | !-- Initialize diffusivities used within the outflow damping layer in case of |
---|
| 739 | !-- non-cyclic lateral boundaries. A linear increase is assumed over the first |
---|
| 740 | !-- half of the width of the damping layer |
---|
| 741 | IF ( bc_lr /= 'cyclic' ) THEN |
---|
| 742 | |
---|
| 743 | DO i = nxl-1, nxr+1 |
---|
| 744 | |
---|
| 745 | IF ( outflow_r ) THEN |
---|
| 746 | |
---|
| 747 | IF ( i >= nx - outflow_damping_width ) THEN |
---|
| 748 | km_damp_x(i) = km_damp_max * MIN( 1.0, & |
---|
| 749 | ( i - ( nx - outflow_damping_width ) ) / & |
---|
| 750 | REAL( outflow_damping_width/2 ) & |
---|
| 751 | ) |
---|
| 752 | ELSE |
---|
| 753 | km_damp_x(i) = 0.0 |
---|
| 754 | ENDIF |
---|
| 755 | |
---|
| 756 | ELSEIF ( outflow_l ) THEN |
---|
| 757 | |
---|
| 758 | IF ( i <= outflow_damping_width ) THEN |
---|
| 759 | km_damp_x(i) = km_damp_max * MIN( 1.0, & |
---|
| 760 | ( outflow_damping_width - i ) / & |
---|
| 761 | REAL( outflow_damping_width/2 ) & |
---|
| 762 | ) |
---|
| 763 | ELSE |
---|
| 764 | km_damp_x(i) = 0.0 |
---|
| 765 | ENDIF |
---|
| 766 | |
---|
| 767 | ENDIF |
---|
| 768 | |
---|
| 769 | ENDDO |
---|
| 770 | ENDIF |
---|
| 771 | |
---|
| 772 | IF ( bc_ns /= 'cyclic' ) THEN |
---|
| 773 | |
---|
| 774 | DO j = nys-1, nyn+1 |
---|
| 775 | |
---|
| 776 | IF ( outflow_n ) THEN |
---|
| 777 | |
---|
| 778 | IF ( j >= ny - outflow_damping_width ) THEN |
---|
| 779 | km_damp_y(j) = km_damp_max * MIN( 1.0, & |
---|
| 780 | ( j - ( ny - outflow_damping_width ) ) / & |
---|
| 781 | REAL( outflow_damping_width/2 ) & |
---|
| 782 | ) |
---|
| 783 | ELSE |
---|
| 784 | km_damp_y(j) = 0.0 |
---|
| 785 | ENDIF |
---|
| 786 | |
---|
| 787 | ELSEIF ( outflow_s ) THEN |
---|
| 788 | |
---|
| 789 | IF ( j <= outflow_damping_width ) THEN |
---|
| 790 | km_damp_y(j) = km_damp_max * MIN( 1.0, & |
---|
| 791 | ( outflow_damping_width - j ) / & |
---|
| 792 | REAL( outflow_damping_width/2 ) & |
---|
| 793 | ) |
---|
| 794 | ELSE |
---|
| 795 | km_damp_y(j) = 0.0 |
---|
| 796 | ENDIF |
---|
| 797 | |
---|
| 798 | ENDIF |
---|
| 799 | |
---|
| 800 | ENDDO |
---|
| 801 | ENDIF |
---|
| 802 | |
---|
| 803 | ! |
---|
| 804 | !-- Initialize local summation arrays for UP flow_statistics. This is necessary |
---|
| 805 | !-- because they may not yet have been initialized when they are called from |
---|
| 806 | !-- flow_statistics (or - depending on the chosen model run - are never |
---|
| 807 | !-- initialized) |
---|
| 808 | sums_divnew_l = 0.0 |
---|
| 809 | sums_divold_l = 0.0 |
---|
| 810 | sums_l_l = 0.0 |
---|
| 811 | sums_up_fraction_l = 0.0 |
---|
| 812 | sums_wsts_bc_l = 0.0 |
---|
| 813 | |
---|
| 814 | ! |
---|
| 815 | !-- Pre-set masks for regional statistics. Default is the total model domain. |
---|
| 816 | rmask = 1.0 |
---|
| 817 | |
---|
| 818 | ! |
---|
| 819 | !-- User-defined initializing actions |
---|
| 820 | CALL user_init |
---|
| 821 | |
---|
| 822 | ! |
---|
| 823 | !-- Input binary data file is not needed anymore. This line must be placed |
---|
| 824 | !-- after call of user_init! |
---|
| 825 | CALL close_file( 13 ) |
---|
| 826 | |
---|
| 827 | ! |
---|
| 828 | !-- Compute total sum of active mask grid points |
---|
| 829 | !-- ngp_2dh: number of grid points of a horizontal cross section through the |
---|
| 830 | !-- total domain |
---|
| 831 | !-- ngp_3d: number of grid points of the total domain |
---|
| 832 | !-- Note: The lower vertical index nzb_s_outer imposes a small error on the 2D |
---|
| 833 | !-- ---- averages of staggered variables such as u and v due to the topography |
---|
| 834 | !-- arrangement on the staggered grid. Maybe revise later. |
---|
| 835 | ngp_2dh_outer_l = 0 |
---|
| 836 | ngp_2dh_outer = 0 |
---|
| 837 | ngp_2dh_l = 0 |
---|
| 838 | ngp_2dh = 0 |
---|
| 839 | ngp_3d_inner_l = 0 |
---|
| 840 | ngp_3d_inner = 0 |
---|
| 841 | ngp_3d = 0 |
---|
| 842 | ngp_sums = ( nz + 2 ) * var_sum |
---|
| 843 | |
---|
| 844 | DO sr = 0, statistic_regions |
---|
| 845 | DO i = nxl, nxr |
---|
| 846 | DO j = nys, nyn |
---|
| 847 | IF ( rmask(j,i,sr) == 1.0 ) THEN |
---|
| 848 | ! |
---|
| 849 | !-- All xy-grid points |
---|
| 850 | ngp_2dh_l(sr) = ngp_2dh_l(sr) + 1 |
---|
| 851 | ! |
---|
| 852 | !-- xy-grid points above topography |
---|
| 853 | DO k = nzb_s_outer(j,i), nz + 1 |
---|
| 854 | ngp_2dh_outer_l(k,sr) = ngp_2dh_outer_l(k,sr) + 1 |
---|
| 855 | ENDDO |
---|
| 856 | ! |
---|
| 857 | !-- All grid points of the total domain above topography |
---|
| 858 | ngp_3d_inner_l(sr) = ngp_3d_inner_l(sr) + & |
---|
| 859 | ( nz - nzb_s_inner(j,i) + 2 ) |
---|
| 860 | ENDIF |
---|
| 861 | ENDDO |
---|
| 862 | ENDDO |
---|
| 863 | ENDDO |
---|
| 864 | |
---|
| 865 | sr = statistic_regions + 1 |
---|
| 866 | #if defined( __parallel ) |
---|
| 867 | CALL MPI_ALLREDUCE( ngp_2dh_l(0), ngp_2dh(0), sr, MPI_INTEGER, MPI_SUM, & |
---|
| 868 | comm2d, ierr ) |
---|
| 869 | CALL MPI_ALLREDUCE( ngp_2dh_outer_l(0,0), ngp_2dh_outer(0,0), (nz+2)*sr, & |
---|
| 870 | MPI_INTEGER, MPI_SUM, comm2d, ierr ) |
---|
| 871 | CALL MPI_ALLREDUCE( ngp_3d_inner_l(0), ngp_3d_inner(0), sr, MPI_INTEGER, & |
---|
| 872 | MPI_SUM, comm2d, ierr ) |
---|
| 873 | #else |
---|
| 874 | ngp_2dh = ngp_2dh_l |
---|
| 875 | ngp_2dh_outer = ngp_2dh_outer_l |
---|
| 876 | ngp_3d_inner = ngp_3d_inner_l |
---|
| 877 | #endif |
---|
| 878 | |
---|
| 879 | ngp_3d = ngp_2dh * ( nz + 2 ) |
---|
| 880 | |
---|
| 881 | ! |
---|
| 882 | !-- Set a lower limit of 1 in order to avoid zero divisions in flow_statistics, |
---|
| 883 | !-- buoyancy, etc. A zero value will occur for cases where all grid points of |
---|
| 884 | !-- the respective subdomain lie below the surface topography |
---|
| 885 | ngp_2dh_outer = MAX( 1, ngp_2dh_outer(:,:) ) |
---|
| 886 | ngp_3d_inner = MAX( 1, ngp_3d_inner(:) ) |
---|
| 887 | |
---|
| 888 | DEALLOCATE( ngp_2dh_l, ngp_2dh_outer_l, ngp_3d_inner_l ) |
---|
| 889 | |
---|
| 890 | |
---|
| 891 | END SUBROUTINE init_3d_model |
---|